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Abstract- The object of this paper is to give an estimation of the ÃLojasiewicz exponent of the gradient of

a holomorphic function under Kouchnirenko’s nondegeneracy condition, using information from the Newton

polyhedron.

Let f : (Cn, 0) → (C, 0) be a germ of holomorphic function. The ÃLojasiewicz exponent
of gradient of f , L(f) is by definition

L(f) := inf{λ > 0 : | gradf | ≥ const. |x|λ near zero }.

It is well-known that L(f) < ∞ if and only if f has an isolated singularity at the origin.
Chang and Lu [1] proved that for any integer r greater than L(f), f is a C0-sufficient,
r-jet in holomorphic functions, i.e., adding to the function f monomials of order greater
than L(f) does note change its topological type. Originally this was proved by Kuo and
Kuiper in the real case (see [4, 5]). Teissier [9] showed that C0-sufficiency degree of f

(i.e., the minimal integer r such that f is C0-sufficient, r-jet) is equal to [L(f)] + 1, where
[L(f)] denotes the integral part of L(f). We were motived by the work of Lichtin [7] and
Fukui [2] who used the Newton polyhedron of f to give an estimation of L(f), where f

is non-degenerate in the sense of Kouchnirenko. In this note, following this procedure,
we estimate the ÃLojasiewicz exponent of gradient L(f) (Theorem 1 below). However, our
estimations are based on other ideas, more precisely, we use the Kouchnirenko’s theorem
[3] on the Newton number and the geometric characterization of µ-constancy in [6, 9].

1. Newton polyhedron, main results

Now we recall some basic notions about the Newton polyhedron (see [3, 8] for details)
and state the main result. Let f : (Cn, 0) → (C, 0) be an analytic function defined by
a convergent power series

∑
ν cνx

ν . Also, let Rn
+ = {(x1, . . . , xn) ∈ Rn, xi ≥ 0, i =

1, . . . , n} and Zn
+ = Zn ∩Rn

+. A Newton polyhedron Γ+(f) ⊂ Rn is defined by the convex
hull of {ν +Rn

+ | cν 6= 0}, and Γ(f) be the union of the compact faces of Γ+(f). Define fγ

by
∑

ν∈γ cνx
ν for γ face of Γ(f). We say that f is non-degenerate in Kouchnirenko’s sense

if, for any γ face of Γ(f), the equations ∂fγ

∂x1
= · · · = ∂fγ

∂xn
= 0 have no common solution

on x1 · · ·xn 6= 0. The power series f is said to be convenient if Γ+(f) meets each of the
coordinate axes. We let Γ−(f) denote the compact polyhedron which is the cone over Γ(f)
with the origin as a vertex. When f is convenient, the Newton number ν(f) is defined
as ν(f) = n!Vn − (n− 1)!Vn−1 + · · ·+ (−1)n−1V1 + (−1)n, where Vn is the n-dimensional
volumes of Γ−(f) and for 1 ≤ k ≤ n − 1, Vk is the sum of the k-dimensional volumes of
the intersection of Γ−(f) with the coordinate planes of dimension k. The Newton number
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may also be defined for non-convenient analytic function (see [3]). Finally, we let

(1.1)

aj = 1 + f(ej) for j = 1, . . . , n,

rj(f) = min{m ∈ Z+ − {0} | ν(f) = ν(f + ajx
m
j )}, and

r(f) = max{rj(f) | j = 1, . . . , n},
where ej denotes the j-th unit row vector (0, . . . , 0, 1, 0, . . . , 0).

Now we can state the main result.

Theorem 1. Let f : (Cn, 0) → (C, 0) be an analytic function having an isolated singularity
at the origin. Suppose that f is non-degenerate in the sense of Kouchnirenko. Then
r(f)− 2 < L(f) ≤ r(f)− 1.

2. Proof of the theorem

First we show that L(f) > r(f)−2. So suppose now that L(f) ≤ r(f)−2, and modulo a
permutation of coordinates in Cn we may assume r(f) = r1. Because the non-degenerate
condition of Kouchnirenko is an open condition (see [3, 8] for details), we can find an
analytic family F (x, t) = f(x) + γ(t) xr1−1

1 such that F (x, 0) = f(x) and Ft(x) = F (x, t)
is non-degenerate in Kouchnirenko’s sense for each t. Since L(f) ≤ r1 − 2, then there
exists a positive c such that | gradf | ≥ c |x|r1−2 in a neighbourhood U of 0. Also, for t

sufficiently small so that |γ(t)| ≤ c
2 , we have

| gradF (x, t)| ≥ | gradf | − |γ(t) xr1−2
1 | ≥ c

2
|x|r1−2 as x ∈ U.

Then, we get

(2.1) |∂F

∂t
(x, t)| = |∂γ

∂t
(t) xr1−1

1 | ¿ |x|r1−2 . | gradF (x, t)| as (x, t) → (0, 0).

It follows from the geometric characterization of Lê and Saito [6] that Ft is µ-constant,
where µ denotes the Milnor number. This fact, together with the Kouchnirenko’s the-
orem [3], (i.e., the nondegeneracy condition implies µ(Ft) = ν(Ft)), gives ν(f(x)) =
ν(f(x) + γ(t) xr1−1

1 ), which contradicts the definition of r1 in (1.1).

In order to complete the proof of the theorem we need the following lemma.

Lemma 2. For any subset J ⊂ {1, . . . , n}, we have

ν(f) = ν(f +
∑

j∈J

ajx
rj

j ).

Proof. First note that if #J = 1, one finds this lemma by definition of rj in (1.1). We will
prove this lemma only for #J = 2, the general case can be proved in a similar way. Let J =
{j1, j2}, then it easy to see that Γ−(f) = Γ−(f +aj1x

rj1
j1

)∪Γ−(f +aj2x
rj2
j2

) is a polyhedral
decomposition of Γ−(f), and Γ−(f +aj1x

rj1
j1

+aj2x
rj2
j2

) = Γ−(f +aj1x
rj1
j1

)∩Γ−(f +aj2x
rj2
j2

).
Then, we have

ν(Γ−(f)) =ν(Γ−(f + aj1x
rj1
j1

)) +ν(Γ−(f + aj2x
rj2
j2

)) −ν(Γ−(f + aj1x
rj1
j1

+ aj2x
rj2
j2

))

ν(f) =ν(f + aj1x
rj1
j1

) +ν(f + aj2x
rj2
j2

) −ν(f + aj1x
rj1
j1

+ aj2x
rj2
j2

).

Thus, the assumption that ν(f) = ν(f +ajx
rj

j ) implies ν(f) = ν(f +aj1x
rj1
j1

+aj2x
rj2
j2

). ¤
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Now we are ready to prove that r(f)−1 is an upper bound for the ÃLojasiewicz exponent
L(f). Define an analytic family F (x, t) = f(x) +

∑n
j=1 γj(t) x

rj

j such that F (x, 0) = f(x)
and Ft(x) = F (x, t) is non-degenerate in Kouchnirenko’s sense for each t. This is again
possible because of the nondegenracy condition of Kouchnirenko is an open condition (see
[3, 8]). Recall that ν(Ft) = µ(Ft) by Kouchnerinko [3], it follows from the above lemma
that Ft is µ-constant. According to Teissier, ([9] Remarque 5 and [10], Chap. II), the
µ-constancy of Ft implies that

(2.2) L(f) = L(F0) ≤ L(Ft).

On the other hand, fix t ∈ C. So we can find from Yoshinaga’s theorem ([11], Theorem
1.7) that Ft is non-degenerate in Kouchnirenko’s sense, if and only if there exists a positive
ε such that

(2.3)
n∑

i=1

|xi
∂Ft

∂xi
| ≥ ε

∑

α∈ver(Ft)

|xα| as x near 0,

where ver(Ft) = {α : α is a vertex of Γ(Ft) }. But, rjej ∈ ver(Ft) for t 6= 0, the axial
vertices of Γ+(Ft) (recall that ej denotes the j-th unit row vector), which implies that
L(Ft) ≤ r(f)− 1 for t 6= 0. Together with (2.2), this completes the proof of theorem.

Remark 3. The above inequality (2.3) can be proved directly by an argument, based on
the curve selection lemma.

We conclude with several examples.

Example 4. Consider the map germ f : (C2, 0) → (C, 0) given by f(x, y) = xy8 +x2y3 +
yx7 + xp + yq, where p, q ≥ 14. It is not hard to see that r1(f) = 11 and r2(f) = 13. It
follows from Theorem 1 that 11 < L(f) ≤ 12 and so f is a C0-sufficient, 13-jet. For the
comparison, we note that from the Lichtin and Fukui results we have L(f) ≤ max{p, q}−1.
Their estimation, depens on the choice of the axial vertices (p, 0) and (q, 0).

Example 5. Let f : (C3, 0) → (C, 0) given by f(x, y, z) = x2(x + y)2 + x(x + y)4 + x5 +
(x + y + z)5. This function is degenerate in Kouchnirenko’s sense. However, by a linear
transformation X = x, Y = x + y and Z = x + y + z we obtain a non-degenerate in
Kouchnirenko’s sense f̃(X,Y, Z) = X2Y 2 + XY 4 + X5 + Z5 with the same value of the
ÃLojasiewicz exponent of the gradient. Moreover, by the formula of Newton number, it is
not difficult to compute that

µ(f̃) = ν(f̃) = ν(f̃ + Y 6) = 48,

ν(f̃ + X4) = ν(f̃ + Y 5) = 44 and

ν(f̃ + Z4) = 36.

Hence, we get r1(f̃) = 5, r2(f̃) = 6 and r3(f̃) = 5. Thus, from the above Theorem 1 we
have 4 < L(f) = L(f̃) ≤ 5. In this case the Fukui result gives L(f̃) ≤ 5.
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