ON THE ŁOJASIEWICZ EXPONENT AND NEWTON POLYHEDRON

OULD M ABDERRAHMANE

Abstract- The object of this paper is to give an estimation of the Lojasiewicz exponent of the gradient of a holomorphic function under Kouchnirenko's nondegeneracy condition, using information from the Newton polyhedron.

Let $f: (\mathbf{C}^n, 0) \to (\mathbf{C}, 0)$ be a germ of holomorphic function. The Lojasiewicz exponent of gradient of f, L(f) is by definition

$$L(f) := \inf\{\lambda > 0 : | \operatorname{grad} f| \ge \operatorname{const.} |x|^{\lambda} \text{ near zero } \}.$$

It is well-known that $L(f) < \infty$ if and only if f has an isolated singularity at the origin. Chang and Lu [1] proved that for any integer r greater than L(f), f is a C^0 -sufficient, r-jet in holomorphic functions, i.e., adding to the function f monomials of order greater than L(f) does note change its topological type. Originally this was proved by Kuo and Kuiper in the real case (see [4, 5]). Teissier [9] showed that C^0 -sufficiency degree of f(i.e., the minimal integer r such that f is C^0 -sufficient, r-jet) is equal to [L(f)] + 1, where [L(f)] denotes the integral part of L(f). We were motived by the work of Lichtin [7] and Fukui [2] who used the Newton polyhedron of f to give an estimation of L(f), where fis non-degenerate in the sense of Kouchnirenko. In this note, following this procedure, we estimate the Lojasiewicz exponent of gradient L(f) (Theorem 1 below). However, our estimations are based on other ideas, more precisely, we use the Kouchnirenko's theorem [3] on the Newton number and the geometric characterization of μ -constancy in [6, 9].

1. Newton polyhedron, main results

Now we recall some basic notions about the Newton polyhedron (see [3, 8] for details) and state the main result. Let $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be an analytic function defined by a convergent power series $\sum_{\nu} c_{\nu} x^{\nu}$. Also, let $\mathbb{R}^n_+ = \{(x_1, \ldots, x_n) \in \mathbb{R}^n, x_i \geq 0, i =$ $1, \ldots, n\}$ and $\mathbb{Z}^n_+ = \mathbb{Z}^n \cap \mathbb{R}^n_+$. A Newton polyhedron $\Gamma_+(f) \subset \mathbb{R}^n$ is defined by the convex hull of $\{\nu + \mathbb{R}^n_+ | c_{\nu} \neq 0\}$, and $\Gamma(f)$ be the union of the compact faces of $\Gamma_+(f)$. Define f_{γ} by $\sum_{\nu \in \gamma} c_{\nu} x^{\nu}$ for γ face of $\Gamma(f)$. We say that f is non-degenerate in Kouchnirenko's sense if, for any γ face of $\Gamma(f)$, the equations $\frac{\partial f_{\gamma}}{\partial x_1} = \cdots = \frac{\partial f_{\gamma}}{\partial x_n} = 0$ have no common solution on $x_1 \cdots x_n \neq 0$. The power series f is said to be convenient if $\Gamma_+(f)$ meets each of the coordinate axes. We let $\Gamma_-(f)$ denote the compact polyhedron which is the cone over $\Gamma(f)$ with the origin as a vertex. When f is convenient, the Newton number $\nu(f)$ is defined as $\nu(f) = n!V_n - (n-1)!V_{n-1} + \cdots + (-1)^{n-1}V_1 + (-1)^n$, where V_n is the n-dimensional volumes of $\Gamma_-(f)$ and for $1 \leq k \leq n-1$, V_k is the sum of the k-dimensional volumes of the intersection of $\Gamma_-(f)$ with the coordinate planes of dimension k. The Newton number

²⁰⁰⁰ Mathematics Subject Classification. 14B05, 32S05.

This research was supported by the Japan Society for the Promotion of Science.

may also be defined for non-convenient analytic function (see [3]). Finally, we let

(1.1)
$$a_{j} = 1 + f(e_{j}) \text{ for } j = 1, \dots, n,$$
$$r_{j}(f) = min\{m \in \mathbb{Z}_{+} - \{0\} \mid \nu(f) = \nu(f + a_{j}x_{j}^{m})\}, \text{ and}$$
$$r(f) = \max\{r_{j}(f) \mid j = 1, \dots, n\},$$

where e_i denotes the j-th unit row vector $(0, \ldots, 0, 1, 0, \ldots, 0)$.

Now we can state the main result.

Theorem 1. Let $f: (\mathbf{C}^n, 0) \to (\mathbf{C}, 0)$ be an analytic function having an isolated singularity at the origin. Suppose that f is non-degenerate in the sense of Kouchnirenko. Then $r(f) - 2 < L(f) \le r(f) - 1$.

2. Proof of the theorem

First we show that L(f) > r(f) - 2. So suppose now that $L(f) \le r(f) - 2$, and modulo a permutation of coordinates in \mathbb{C}^n we may assume $r(f) = r_1$. Because the non-degenerate condition of Kouchnirenko is an open condition (see [3, 8] for details), we can find an analytic family $F(x,t) = f(x) + \gamma(t) x_1^{r_1-1}$ such that F(x,0) = f(x) and $F_t(x) = F(x,t)$ is non-degenerate in Kouchnirenko's sense for each t. Since $L(f) \le r_1 - 2$, then there exists a positive c such that $|\operatorname{grad} f| \ge c |x|^{r_1-2}$ in a neighbourhood U of 0. Also, for t sufficiently small so that $|\gamma(t)| \le \frac{c}{2}$, we have

$$|\operatorname{grad} F(x,t)| \ge |\operatorname{grad} f| - |\gamma(t) x_1^{r_1-2}| \ge \frac{c}{2} |x|^{r_1-2} \quad \text{as } x \in U.$$

Then, we get

(2.1)
$$\left|\frac{\partial F}{\partial t}(x,t)\right| = \left|\frac{\partial \gamma}{\partial t}(t) x_1^{r_1-1}\right| \ll |x|^{r_1-2} \lesssim |\operatorname{grad} F(x,t)| \text{ as } (x,t) \to (0,0).$$

It follows from the geometric characterization of Lê and Saito [6] that F_t is μ -constant, where μ denotes the Milnor number. This fact, together with the Kouchnirenko's theorem [3], (i.e., the nondegeneracy condition implies $\mu(F_t) = \nu(F_t)$), gives $\nu(f(x)) = \nu(f(x) + \gamma(t) x_1^{r_1-1})$, which contradicts the definition of r_1 in (1.1).

In order to complete the proof of the theorem we need the following lemma.

Lemma 2. For any subset $J \subset \{1, \ldots, n\}$, we have

$$\nu(f) = \nu(f + \sum_{j \in J} a_j x_j^{r_j}).$$

Proof. First note that if #J = 1, one finds this lemma by definition of r_j in (1.1). We will prove this lemma only for #J = 2, the general case can be proved in a similar way. Let $J = \{j_1, j_2\}$, then it easy to see that $\Gamma_-(f) = \Gamma_-(f + a_{j_1}x_{j_1}^{r_{j_1}}) \cup \Gamma_-(f + a_{j_2}x_{j_2}^{r_{j_2}})$ is a polyhedral decomposition of $\Gamma_-(f)$, and $\Gamma_-(f + a_{j_1}x_{j_1}^{r_{j_1}} + a_{j_2}x_{j_2}^{r_{j_2}}) = \Gamma_-(f + a_{j_1}x_{j_1}^{r_{j_1}}) \cap \Gamma_-(f + a_{j_2}x_{j_2}^{r_{j_2}})$. Then, we have

$$\nu(\Gamma_{-}(f)) = \nu(\Gamma_{-}(f + a_{j_1}x_{j_1}^{r_{j_1}})) + \nu(\Gamma_{-}(f + a_{j_2}x_{j_2}^{r_{j_2}})) - \nu(\Gamma_{-}(f + a_{j_1}x_{j_1}^{r_{j_1}} + a_{j_2}x_{j_2}^{r_{j_2}}))$$

$$\nu(f) = \nu(f + a_{j_1}x_{j_1}^{r_{j_1}}) + \nu(f + a_{j_2}x_{j_2}^{r_{j_2}}) - \nu(f + a_{j_1}x_{j_1}^{r_{j_1}} + a_{j_2}x_{j_2}^{r_{j_2}}).$$

Thus, the assumption that $\nu(f) = \nu(f + a_j x_j^{r_j})$ implies $\nu(f) = \nu(f + a_{j_1} x_{j_1}^{r_{j_1}} + a_{j_2} x_{j_2}^{r_{j_2}})$. \Box

Now we are ready to prove that r(f)-1 is an upper bound for the Lojasiewicz exponent L(f). Define an analytic family $F(x,t) = f(x) + \sum_{j=1}^{n} \gamma_j(t) x_j^{r_j}$ such that F(x,0) = f(x) and $F_t(x) = F(x,t)$ is non-degenerate in Kouchnirenko's sense for each t. This is again possible because of the nondegenracy condition of Kouchnirenko is an open condition (see [3, 8]). Recall that $\nu(F_t) = \mu(F_t)$ by Kouchnerinko [3], it follows from the above lemma that F_t is μ -constant. According to Teissier, ([9] Remarque 5 and [10], Chap. II), the μ -constancy of F_t implies that

(2.2)
$$L(f) = L(F_0) \le L(F_t).$$

On the other hand, fix $t \in \mathbf{C}$. So we can find from Yoshinaga's theorem ([11], Theorem 1.7) that F_t is non-degenerate in Kouchnirenko's sense, if and only if there exists a positive ϵ such that

(2.3)
$$\sum_{i=1}^{n} |x_i \frac{\partial F_t}{\partial x_i}| \ge \epsilon \sum_{\alpha \in ver(F_t)} |x^{\alpha}| \quad \text{as } x \text{ near } 0,$$

where $ver(F_t) = \{ \alpha : \alpha \text{ is a vertex of } \Gamma(F_t) \}$. But, $r_j e_j \in ver(F_t)$ for $t \neq 0$, the axial vertices of $\Gamma_+(F_t)$ (recall that e_j denotes the *j*-th unit row vector), which implies that $L(F_t) \leq r(f) - 1$ for $t \neq 0$. Together with (2.2), this completes the proof of theorem.

Remark 3. The above inequality (2.3) can be proved directly by an argument, based on the curve selection lemma.

We conclude with several examples.

Example 4. Consider the map germ $f: (\mathbf{C}^2, 0) \to (\mathbf{C}, 0)$ given by $f(x, y) = xy^8 + x^2y^3 + yx^7 + x^p + y^q$, where $p, q \ge 14$. It is not hard to see that $r_1(f) = 11$ and $r_2(f) = 13$. It follows from Theorem 1 that $11 < L(f) \le 12$ and so f is a C⁰-sufficient, 13-jet. For the comparison, we note that from the Lichtin and Fukui results we have $L(f) \le \max\{p,q\}-1$. Their estimation, depens on the choice of the axial vertices (p, 0) and (q, 0).

Example 5. Let $f: (\mathbf{C}^3, 0) \to (\mathbf{C}, 0)$ given by $f(x, y, z) = x^2(x+y)^2 + x(x+y)^4 + x^5 + (x+y+z)^5$. This function is degenerate in Kouchnirenko's sense. However, by a linear transformation X = x, Y = x + y and Z = x + y + z we obtain a non-degenerate in Kouchnirenko's sense $\tilde{f}(X, Y, Z) = X^2Y^2 + XY^4 + X^5 + Z^5$ with the same value of the Lojasiewicz exponent of the gradient. Moreover, by the formula of Newton number, it is not difficult to compute that

$$\mu(\tilde{f}) = \nu(\tilde{f}) = \nu(\tilde{f} + Y^6) = 48,$$

$$\nu(\tilde{f} + X^4) = \nu(\tilde{f} + Y^5) = 44 \text{ and}$$

$$\nu(\tilde{f} + Z^4) = 36.$$

Hence, we get $r_1(\tilde{f}) = 5$, $r_2(\tilde{f}) = 6$ and $r_3(\tilde{f}) = 5$. Thus, from the above Theorem 1 we have $4 < L(f) = L(\tilde{f}) \le 5$. In this case the Fukui result gives $L(\tilde{f}) \le 5$.

References

- [1] S. S. Chang and Y.C. Lu, On C⁰-sufficiency of complex jets, Canad. J. Math. 25 (1973), 874-880.
- [2] T. Fukui, Lojasiewicz type inequalities and Newton diagrams, Proc.Amer. Math 112 (1991), 1169-1183.
- [3] A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. math. 32 (1976), 1-31.

OULD M ABDERRAHMANE

- [4] T.-C. Kuo, On C^0 -sufficiency of jets of potential functions, Topology 8 (1969), 167–171.
- [5] N. Kuiper, C¹-equivalence of function near isolated critical points, Symposium on Infinite Dimensional Topology (Baton Rouge 1967), Ann. of Math. Stud., no.69, Princeton University Press, Princeton, NJ, 98 (1972), 199–218.
- [6] D.T. Lê and K. Saito, La constance du nombre de Milnor donne des bonnes stratification, C.R. Acad. Sci. Paris Sér. A 272 (1973), 793-795.
- [7] B. Lichtin, Estimation of Lojasiewicz exponent and Newton polygons, Invt. math 64 (1981), 417-429.
- [8] M. Oka, On the bifurcation on the multiplicity and topology of the Newton boundary, J. Math. Soc. Japan 31 (1979), 435-450.
- [9] B. Teissier, Variétés polaires, Invent. Math. 40 (1977), 267-292.
- [10] B. Teissier, Cycles évanescent, section planes, et conditions de Whitney, Singularités à Cargèse 1972, Astérisque No 7-8, Soc. Math. Fr. (1973)
- [11] E. Yoshinaga, Topologically principal part of analytic functions, Trans. Amer. Math. Soc. 314 (1989), 803-814

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, SAITAMA UNIVERSITY, 255 SHIMO-OKUBO, URAWA, 338-8570 JAPAN

E-mail address: vould@rimath.saitama-u.ac.jp