ON THE DEFORMATION WITH CONSTANT MILNOR NUMBER
AND NEWTON POLYHEDRON

OULD M ABDERRAHMANE

Abstract- We show that every p-constant family of isolated hypersurface singularities satisfying a non-
degeneracy condition in the sense of Kouchnirenko, is topologically trivial, also is equimultiple.

Let f: (C" 0) — (C,0) be the germ of a holomorphic function with an isolated sin-
gularity. The Milnor number u(f) is by definition dimcC{z1,...,2,}/ (%’ cee %) and
the multiplicity m(f) is the lowest degree in the power series expansion of f at 0 € C™.
Let F: (C™ x C,0) — (C,0) be the deformation of f given by F(z,t) = f(2)+>_ ¢, ()2,
where ¢,: (C,0) — (C,0) are germs of holomorphic functions. We use the notation
Fy(z) = F(z,t) when t is fixed. Let m; denote the multiplicity and p; denote the Mil-
nor number of F; at the origin. The deformation F' is equimultiple (resp. p-constant) if
mo = my (resp. po = p¢) for small ¢. It is well-known by the result of Lé-Ramanujam
[8] that for n # 3, the topological type of the family F; is constant under p-constant
deformations. The question is still open for n = 3. However, under some additional
assumption, positive answers have been given. For example, if F} is non-degenerate in
the sense of Kouchnirenko [6] and the Newton boundary I'(F;) of F; is independent of
t, ie., I'(F,) = T'(f), it follows that p*(F};) is constant, and hence F; is topologically
trivial (see [11, 14] for details). Motivated by the Briangon-Speder p-constant family
Fi(2) = 2} + 2028 + 235 + 212§, which is topologically trivial but not u*-constant, M. Oka
[12] shows that any non-degenerate family of type F(z,t) = f(z) + tz4, is topologically
trivial, under the assumption of p-constancy. Our purpose of this paper is to generalize
this result, more precisely, we show that every p-constant non-degenerate family F; with
not necessarily Newton boundary I'(F;) independent of ¢, is topologically trivial. More-
over, we show that F' is equimultiple, which gives a positive answer to a question of Zariski
[16] for a non-degenerate family.

To prove the main result (Theorem 1 below), we shall use the notion of (c¢)-regularity in
the stratification theory, introduced by K. Bekka in [3], which is weaker than the Whitney
regularity, never the less (c)-regularity condition implies topological triviality. First, we
give a characterization of (c¢)-regularity (Theorem 3 below). By using it, we can show
that the u-constancy condition for a non-degenerate family implies Bekka’s (¢)-regularity
condition and then obtain the topological triviality as a corollary.

1. Newton polyhedron, main results

First we recall some basic notions about the Newton polyhedron (see [6, 11] for details),
and state the main result.

Let f: (C™,0) — (C,0) be an analytic function defined by a convergent power series
>, e’ Also, let RY = {(x1,...,2,) € R", eachx; > 0,7 = 1,...,n}. The Newton
polyhedron of f, I'y(f) C R"™ is defined by the convex hull of {v + R’ |c, # 0}, and
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let T'(f) be the Newton boundary, i.e., the union of the compact faces of I'y(f). For a
face v of I'(f), we write fy(2) := >, cvz”. We say that f is non-degenerate if, for
any face v of I'(f), the equations % = ... = g%z = 0 have no common solution on
x1 - xy # 0. The power series f is said to be convenient if I'y (f) meets each of the co-
ordinate axes. We let I'_(f) denote the compact polyhedron which is the cone over T'(f)
with the origin as a vertex. When f is convenient, the Newton number v(f) is defined
as v(f) =nlV, — (n— )Wh1+ -+ (=1)""1V; + (=1)", where V,, is the n-dimensional
volumes of I'_(f) and for 1 < k < n — 1, Vj is the sum of the k-dimensional volumes of
the intersection of I'_(f) with the coordinate planes of dimension k. The Newton number
may also be defined for non-convenient analytic function (see [6]). Finally, we define the
Newton vertices of f as ver(f) ={«a : «is a vertex of I'(f) }.

Now we can state the main result

Theorem 1. Let F': (C" x C,0) — (C,0) be a one parameter deformation of a holomor-
phic germ f: (C",0) — (C,0) with an isolated singularity such that the Milnor number
w(Fy) is constant. Suppose that Fy is non-degenerate. Then Fy is topologically trivial, and
moreover, F is equimultiple.

Remark 2. In the above theorem, we do not require the independence of t for the Newton
boundary T'(Fy).

2. A criterion for (c)-regularity

Let M be a smooth manifold, and let X, Y be smooth submanifolds of M such that
YCXand XNY =0.

(i) (Whitney (a)-regularity)
(X,Y) is (a)-regular at yg € Y if:
for each sequence of points {z;} which tends to yg such that the sequence of tangent
spaces {T,, X} tends in the Grassman space of (dim X)-planes to some plane T,
then Ty, Y C 7. Wesay (X,Y) is (a)-regular if it is (a)-regular at any point yp € Y.

(ii) (Bekka (c)-regularity)
Let p be a smooth non-negative function such that p=1(0) = Y. (X,Y) is (c)-
regular at yg € Y for the control function p if:
for each sequence of points {x;} which tends to yo such that the sequence of tangent
spaces {Kerdp(xz;) N Ty, X} tends in the Grassman space of (dim X — 1)-planes
to some plane 7, then T,,)Y C 7. (X,Y) is (c)-regular at y if it is (c)-regular for
some control function p. We say (X,Y) is (¢)-regular if it is (c)-regular at any
point yg € Y.

Let F: (C" x C,{0} x C) — (C,0) be a deformation of an analytic function f. We
denote by X(Vr) = {F~(0) — {0} x C, {0} x C} the canonical stratification of the germ
variety Vr of the zero locus of F. We may assume that f is convenient, this is not a
restriction when it defines an isolated singularity, in fact, by adding 2}V for a sufficiently
large N for which the isomorphism class of F; does not change. Hereafter, we will assume
that f is convenient,

X=F0)-{0} xC, Y ={0} xC and p(z)= » 22"

acver(Fy)
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Here ver(F}) denotes the Newton vertices of F; when t # 0.
Note that by the convenience assumption on f, p~1(0) =Y.
We also let

dp 0 8p o .
Op _Zazz 9 "oz 05 0Pt O

and

oF 0 3F
OF = Z 0% 82, or = %EHOFE

Calculation of the map 8Zp‘X

First of all we remark that 0,p = 0.p| + 0.p| (where N denotes the normal space to
X). Since N is generated by the gradient of F', we have that 9,p = 9,p|, +7n0F. On the

other hand, (9.p|,,0F) = 0, so we get 1 = < ﬁ;},a‘f). It follows that
0.p,OF
(2.1) azp|X = 6Zp - <|8F|2>8F = (azpb()z + (azp|x)t7
where (0.p,0F) (0.p,0F)
zPs zPs
(azp\x)z =0p — W@F’ (021 )¢ = —W&‘F

and

2
|2 _ 0F | |0.p]" — ‘(32,0, 8F>‘ _ |OF A 9.pl®
OF? oFp

Then we can characterize the (c)-regularity as follows:

|azp\x

Theorem 3. Consider X and Y as above. The following conditions are equivalent
(i) (X,Y) is (c)-regular for the the control function p.
(i) (X,Y) is (a)-regular and [(D.p|, )i| < |02p| | as (2,t) € X and (2,t) — Y.
(ili) |0 F| < w s (z,t) € X and (2,t) = Y.

Proof. Since (i) < (i) is proved in ([1], Theorem 1), and (#i7) = (4¢) is trivial, it is enough
to see (i1) = (iii).

To show that (ii) = (di4), it suffices to show this on any analytic curves A(s) =
(2(s),t(s)) € X and A(s) — Y. Indeed, we have to distinguish two cases:

First case, we suppose that along A, |(0,p, 0F)| ~ |0,p||0F|, hence by (2.1) and (ii),
we have

(0.0, 0F) |0F A d.p]
3 — | =BT F Ll
But this clearly implies
|08 A O:p]

|0 F| < along the curve A(s),

10.p|

where [(0,p, 0F)| ~ |0,p| |0F.
Second case, we suppose that along \, [(9.p,0F)| < |0.p| |0F|, thus

|OF A Oqp|| ~ |0:p| |OF| along the curve A(s).
On the other hand, by the Whitney (a)-regularity in (ii) we get
|0 F| < |OF|.

Therefore, |0, F| < [0F| ~ IBLalzpll along the curve A(s). The Theorem 3 is proved. [
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3. Proof of the theorem 1

Before starting the proofs, we will recall some important results on the Newton number
and the geometric characterization of u-constancy.

Theorem 4 (A. G. Kouchnirenko [6]). Let f: (C",0) — (C,0) be the germ of a holomor-
phic function with an isolated singularity, then the Milnor number u(f) > v(f). Moreover,
the equality holds if f is non-degenerate.

As an immediate corollary we have

Corollary 5 (M. Furuya[5]). Let f, g: (C™,0) — (C,0) be two germs of holomorphic
functions with Ty (g) C T'+(f). Then v(g) > v(f).

On the other hand, concerning the p-constancy, we have

Theorem 6 (Lé-Saito [9], Teissier [14]). Let F': (C" x C™,0) — (C,0) be the deformation
of a holomorphic f: (C",0) — (C,0) with isolated singularity. The following statement
are equivalent.
1. F' is a p-constant deformation of f
2. ngj_ € J(Fy), where J(Fy) denotes the integral closure of the Jacobian ideal of F}
generated by the partial derivatives of F' with respect to the variables z1,. .., zy.
3. The deformation F(z,t) = Fy(z) is a Thom map, that is,

Z| y<<HaFH as (z,t) — (0,0).
7j=1

4. The polar curve of F with respect to {t = 0} does not splits, that is,
{(z,t) e C" x C™ | 9,F(z,t) =0} = {0} x C™ near (0,0).

We now want to prove the theorem 1, in fact, let F': (C" x C,0) — (C,0) be a deforma-
tion of a holomorphic germ f: (C",0) — (C,0) with an isolated singularity such that the
Milnor number p(F}) is constant. Suppose that F; is non-degenerate. Then, by theorem
4, we have

(3.1) u(f) = v(f) = p(F) = v(F).
Consider the deformation F of f given by

F(z,t,\) = Z Aoz

aever(Fy)
From the upper semi-continuity of Milnor number [10], we obtain
(3.2) u(f) = p(Fry)  for (t,) near (0,0).
By Theorem 4 and Corollary 5 therefore
w(Fyp) > v(Fy) > v(R).

It follows from (3.1) and (3.2) that the deformation F is y-constant, and hence, by Theorem
6 we get

(3.3) O F |+ > <[P+ Y X2 as (2,£,A) — (0,0,0).

aever(Fy) acver(Fy)
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Therefore, for all a € ver(F;) we have |2%| < |0, f|, and so m(z%) > m(f). Hence the
equality m(Fy) = m(f) follows. In other word, F' is equimultiple.

We also show that condition (3.3), in fact, implies Bekka’s (c)-regularity, hence, this
deformation is topologically trivial. For this purpose, we need the following lemma (see

[13]).

Lemma 7. Suppose F; is a deformation as above, then we have

(3.4) Z 2% < inf {|OF + Z nz%0,2%|} as (z,t) — (0,0), F(z,t) = 0.
acver(Fy) nec acver(Fy)

Proof. Suppose (3.4) does not hold. Then by the curve selection lemma, there exists an
analytic curve p(s) = (z(s),t(s)) and an analytic function 7(s), s € [0,¢€), such that:

(a) p(0) =0,
(b) F(p(s)) =0, and hence dF(p(s))d—g =0,
(c) along the curve p(s) we have

Z |ZO‘\Z’8F—|— Z n(s)éaﬁzzo‘|.

a€ver(Fy) acever(Fy)
Set
1
(35) oo =( 0 =) and 2(s) = n9)a(x(5). 05)
acver(Fy)

First suppose that y(s) — 0. Since |2%| < g, we have,

_ e)2%s) o € vor
Al) = ety 0 Y S verlh).

Next, using (3.3) and (3.5) it follows
S (s < [OF(o(s) + 1(s) 2°(5)02%(s)] a5 5 — 0,
aever(Fy) acver(Fy)

which contradicts (c).
Suppose now that the limit of v(s) is not zero (i.e., |y(s)| 2 1 ). Since p(0) = 0 and
9(2(0),2(0)) = 0, we have, asymptotically as s — 0,

(3.5 S92 (@] ~ Ip(s)] and s g(=(s). 2(5)) ~ g(=(5),7(5)).
But
d 1 dz dz
(3.7) —g(z(s),2(s)) = ——— | 2%z — + 2%z — ).
ds areniFy) 2g(z(s), z(s)) < ds ds)

We have Eo‘dzo‘% = zadZO‘% and 1 < |y(s)|. Thus,

d

B (s) B dz
(3.8) =) 2| S| DD = .
ds ‘ acrortF) 9(z(s),2(s)) ds
This together with (3.6), (3.5) and (b) gives

d

9(=(5).7() ~ |5 g(a(s). 7)) S s ap

> e+ dF(p(s) |

S
acever(Fy)
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Hence
. dp _ag,o
9(2(s), 2(s)) S 5|7 (s) Y 0(s)z°0z" + OF (p(s)) |,
a€ever(Fy)
which contradicts (c). This ends the proof of Lemma. O

We shall complete the proof of Theorem 1. Since I'; (0, F) C I';(F;). Then, by an
argument, based again on the curve selection lemma, we get the following inequality

(3.9) aF) S Y 2%
aever(Fy)

Then, by the above Lemma 7, we obtain
|8tF‘ < imfj {’8F+778Zp‘} as (z,t) — (0,0), F(z,t) =0,
ne

we recall that

aever(Fy)
But

| 2 OF2|0:p* = [(0:p,0F)|" _ |OF A 0.p?
égé{‘aF—{—nazp‘} B |0.p? a |0.p]?

Therefore, by Theorem 3, we see that the canonical stratification ¥(VF) is (c)-regular for
the control function p, then F' is a topologically trivial deformation (see[3]).
This completes the proof of Theorem 1.

Remark 8. We should mention that our arguments still hold for any p-constant defor-
mation F of weighted homogeneous polynomial f with isolated singularity. Indeed, we can
find from Varchenko’s theorem [15] that u(f) = v(f) = p(Fy) = v(Fy). Thus, the above
proof can be applied.

Unfortunately this approach does not work, if we only suppose that f is non-degenerate.
For consider the example of Altman [2] defined by

Fi(x,y,2) = 2° + 9% + 25 + 4322 4 2ty 2 + 22y,

which is a p-constant degenerate deformation of the non-degenerate polynomial f(x,y, z) =
x® 4+ y8 + 25 +y322. He showed that this family has a weak simultaneous resolution. Thus,
by Laufer’s theorem [7], F is a topologically trivial deformation. But we cannot apply the
above proof because p(f) = v(f) = p(Fy) = 68 and v(F;) = 67 fort # 0.

We conclude with several examples.
Example 9. Consider the family given by
Fi(z,y,2) = 23 + 420 + 2255 + 1258 + 12203 + 2L, 1> 7.

It is not hard to see that this family is non-degenerate. Moreover, by using the formula
for the computation of Newton number we get p(F;) = v(Fy;) = 1531+ 32. Thus, by
theorem 1, we have that Fy is topologically trivial. We remark that this deformation is not
w*-constant, in fact, the Milnor numbers of the generic hyperplane sections {z = 0} of Fy
and Fy ( fort #0) are 260 and 189 respectively.
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Example 10. Let

Fy(z,y,2) = 20 + 23yz + of + 2 + B2ty + 524yP

where | > 6. Since pu(Fy) = 212+ 320+ 9 and F; is a non-degenerate family, it follows from
Theorem 1 that F is a topologically trivial deformation.

1]
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