
ON THE DEFORMATION WITH CONSTANT MILNOR NUMBER
AND NEWTON POLYHEDRON

OULD M ABDERRAHMANE

Abstract- We show that every µ-constant family of isolated hypersurface singularities satisfying a non-

degeneracy condition in the sense of Kouchnirenko, is topologically trivial, also is equimultiple.

Let f : (Cn, 0) → (C, 0) be the germ of a holomorphic function with an isolated sin-
gularity. The Milnor number µ(f) is by definition dimCC{z1, . . . , zn}/( ∂f

∂z1
, . . . , ∂f

∂zn
) and

the multiplicity m(f) is the lowest degree in the power series expansion of f at 0 ∈ Cn.
Let F : (Cn×C, 0) → (C, 0) be the deformation of f given by F (z, t) = f(z) +

∑
cν(t)zν ,

where cν : (C, 0) → (C, 0) are germs of holomorphic functions. We use the notation
Ft(z) = F (z, t) when t is fixed. Let mt denote the multiplicity and µt denote the Mil-
nor number of Ft at the origin. The deformation F is equimultiple (resp. µ-constant) if
m0 = mt (resp. µ0 = µt) for small t. It is well-known by the result of Lê-Ramanujam
[8] that for n 6= 3, the topological type of the family Ft is constant under µ-constant
deformations. The question is still open for n = 3. However, under some additional
assumption, positive answers have been given. For example, if Ft is non-degenerate in
the sense of Kouchnirenko [6] and the Newton boundary Γ(Ft) of Ft is independent of
t, i.e., Γ(Ft) = Γ(f), it follows that µ∗(Ft) is constant, and hence Ft is topologically
trivial (see [11, 14] for details). Motivated by the Briançon-Speder µ-constant family
Ft(z) = z5

1 + z2z
7
3 + z15

2 + tz1z
6
3 , which is topologically trivial but not µ∗-constant, M. Oka

[12] shows that any non-degenerate family of type F (z, t) = f(z) + tzA, is topologically
trivial, under the assumption of µ-constancy. Our purpose of this paper is to generalize
this result, more precisely, we show that every µ-constant non-degenerate family Ft with
not necessarily Newton boundary Γ(Ft) independent of t, is topologically trivial. More-
over, we show that F is equimultiple, which gives a positive answer to a question of Zariski
[16] for a non-degenerate family.

To prove the main result (Theorem 1 below), we shall use the notion of (c)-regularity in
the stratification theory, introduced by K. Bekka in [3], which is weaker than the Whitney
regularity, never the less (c)-regularity condition implies topological triviality. First, we
give a characterization of (c)-regularity (Theorem 3 below). By using it, we can show
that the µ-constancy condition for a non-degenerate family implies Bekka’s (c)-regularity
condition and then obtain the topological triviality as a corollary.

1. Newton polyhedron, main results

First we recall some basic notions about the Newton polyhedron (see [6, 11] for details),
and state the main result.

Let f : (Cn, 0) → (C, 0) be an analytic function defined by a convergent power series∑
ν cνx

ν . Also, let Rn
+ = {(x1, . . . , xn) ∈ Rn, each xi ≥ 0, i = 1, . . . , n}. The Newton

polyhedron of f , Γ+(f) ⊂ Rn is defined by the convex hull of {ν + Rn
+ | cν 6= 0}, and
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let Γ(f) be the Newton boundary, i.e., the union of the compact faces of Γ+(f). For a
face γ of Γ(f), we write fγ(z) :=

∑
ν∈γ cνx

ν . We say that f is non-degenerate if, for

any face γ of Γ(f), the equations ∂fγ

∂x1
= · · · = ∂fγ

∂xn
= 0 have no common solution on

x1 · · ·xn 6= 0. The power series f is said to be convenient if Γ+(f) meets each of the co-
ordinate axes. We let Γ−(f) denote the compact polyhedron which is the cone over Γ(f)
with the origin as a vertex. When f is convenient, the Newton number ν(f) is defined
as ν(f) = n!Vn − (n− 1)!Vn−1 + · · ·+ (−1)n−1V1 + (−1)n, where Vn is the n-dimensional
volumes of Γ−(f) and for 1 ≤ k ≤ n − 1, Vk is the sum of the k-dimensional volumes of
the intersection of Γ−(f) with the coordinate planes of dimension k. The Newton number
may also be defined for non-convenient analytic function (see [6]). Finally, we define the
Newton vertices of f as ver(f) = {α : α is a vertex of Γ(f) }.

Now we can state the main result

Theorem 1. Let F : (Cn×C, 0) → (C, 0) be a one parameter deformation of a holomor-
phic germ f : (Cn, 0) → (C, 0) with an isolated singularity such that the Milnor number
µ(Ft) is constant. Suppose that Ft is non-degenerate. Then Ft is topologically trivial, and
moreover, F is equimultiple.

Remark 2. In the above theorem, we do not require the independence of t for the Newton
boundary Γ(Ft).

2. A criterion for (c)-regularity

Let M be a smooth manifold, and let X, Y be smooth submanifolds of M such that
Y ⊆ X and X ∩ Y = ∅.

(i) (Whitney (a)-regularity)
(X,Y ) is (a)-regular at y0 ∈ Y if :
for each sequence of points {xi} which tends to y0 such that the sequence of tangent
spaces {TxiX} tends in the Grassman space of (dim X)-planes to some plane τ ,
then Ty0Y ⊂ τ . We say (X,Y ) is (a)-regular if it is (a)-regular at any point y0 ∈ Y .

(ii) (Bekka (c)-regularity)
Let ρ be a smooth non-negative function such that ρ−1(0) = Y . (X, Y ) is (c)-
regular at y0 ∈ Y for the control function ρ if :
for each sequence of points {xi} which tends to y0 such that the sequence of tangent
spaces {Kerdρ(xi) ∩ TxiX} tends in the Grassman space of (dim X − 1)-planes
to some plane τ , then Ty0Y ⊂ τ . (X,Y ) is (c)-regular at y0 if it is (c)-regular for
some control function ρ. We say (X, Y ) is (c)-regular if it is (c)-regular at any
point y0 ∈ Y .

Let F : (Cn × C, {0} × C) → (C, 0) be a deformation of an analytic function f . We
denote by Σ(VF ) = {F−1(0)− {0} ×C, {0} ×C} the canonical stratification of the germ
variety VF of the zero locus of F . We may assume that f is convenient, this is not a
restriction when it defines an isolated singularity, in fact, by adding zN

i for a sufficiently
large N for which the isomorphism class of Ft does not change. Hereafter, we will assume
that f is convenient,

X = F−1(0)− {0} ×C, Y = {0} ×C and ρ(z) =
∑

α∈ver(Ft)

zαz̄α.
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Here ver(Ft) denotes the Newton vertices of Ft when t 6= 0.
Note that by the convenience assumption on f , ρ−1(0) = Y .
We also let

∂ρ =
n∑

i=1

∂ρ

∂zi

∂

∂zi
+

∂ρ

∂z̄i

∂

∂z̄i
= ∂zρ + ∂z̄ρ

and

∂F =
n∑

i=1

∂F

∂zi

∂

∂zi
+

∂F

∂t
= ∂zF + ∂tF.

Calculation of the map ∂zρ|X
First of all we remark that ∂zρ = ∂zρ|X + ∂zρ|N (where N denotes the normal space to

X). Since N is generated by the gradient of F , we have that ∂zρ = ∂zρ|X + η∂F . On the
other hand, 〈∂zρ|X , ∂F 〉 = 0, so we get η = 〈∂zρ,∂F 〉

|∂F |2 . It follows that

(2.1) ∂zρ|X = ∂zρ− 〈∂zρ, ∂F 〉
|∂F |2 ∂F = (∂zρ|X )z + (∂zρ|X )t,

where

(∂zρ|X )z = ∂zρ− 〈∂zρ, ∂F 〉
|∂F |2 ∂zF, (∂zρ|X )t = −〈∂zρ, ∂F 〉

|∂F |2 ∂tF

and

|∂zρ|X |2 =
|∂F |2 |∂zρ|2 −

∣∣〈∂zρ, ∂F 〉∣∣2
|∂F |2 =

‖∂F ∧ ∂zρ‖2

|∂F |2 .

Then we can characterize the (c)-regularity as follows :

Theorem 3. Consider X and Y as above. The following conditions are equivalent

(i) (X,Y ) is (c)-regular for the the control function ρ.
(ii) (X,Y ) is (a)-regular and |(∂zρ|X )t| ¿ |∂zρ|X | as (z, t) ∈ X and (z, t) → Y .
(iii) |∂tF | ¿ ‖∂F∧∂zρ‖

|∂zρ| as (z, t) ∈ X and (z, t) → Y .

Proof. Since (i) ⇔ (ii) is proved in ([1], Theorem 1), and (iii) ⇒ (ii) is trivial, it is enough
to see (ii) ⇒ (iii).

To show that (ii) ⇒ (iii), it suffices to show this on any analytic curves λ(s) =
(z(s), t(s)) ∈ X and λ(s) → Y . Indeed, we have to distinguish two cases :

First case, we suppose that along λ, |〈∂zρ, ∂F 〉| ∼ |∂zρ| |∂F |, hence by (2.1) and (ii),
we have

|(∂zρ|X )t| = | 〈∂zρ, ∂F 〉
|∂F |2 ∂tF | ¿ ‖∂F ∧ ∂zρ‖

|∂F | .

But this clearly implies

|∂tF | ¿ ‖∂F ∧ ∂zρ‖
|∂zρ| along the curve λ(s),

where |〈∂zρ, ∂F 〉| ∼ |∂zρ| |∂F |.
Second case, we suppose that along λ, |〈∂zρ, ∂F 〉| ¿ |∂zρ| |∂F |, thus

‖∂F ∧ ∂zρ‖ ∼ |∂zρ| |∂F | along the curve λ(s).

On the other hand, by the Whitney (a)-regularity in (ii) we get

|∂tF | ¿ |∂F |.
Therefore, |∂tF | ¿ |∂F | ∼ ‖∂F∧∂zρ‖

|∂zρ| along the curve λ(s). The Theorem 3 is proved. ¤
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3. Proof of the theorem 1

Before starting the proofs, we will recall some important results on the Newton number
and the geometric characterization of µ-constancy.

Theorem 4 (A. G. Kouchnirenko [6]). Let f : (Cn, 0) → (C, 0) be the germ of a holomor-
phic function with an isolated singularity, then the Milnor number µ(f) ≥ ν(f). Moreover,
the equality holds if f is non-degenerate.

As an immediate corollary we have

Corollary 5 (M. Furuya[5]). Let f, g : (Cn, 0) → (C, 0) be two germs of holomorphic
functions with Γ+(g) ⊂ Γ+(f). Then ν(g) ≥ ν(f).

On the other hand, concerning the µ-constancy, we have

Theorem 6 (Lê-Saito [9], Teissier [14]). Let F : (Cn×Cm, 0) → (C, 0) be the deformation
of a holomorphic f : (Cn, 0) → (C, 0) with isolated singularity. The following statement
are equivalent.

1. F is a µ-constant deformation of f

2. ∂F
∂tj

∈ J(Ft), where J(Ft) denotes the integral closure of the Jacobian ideal of Ft

generated by the partial derivatives of F with respect to the variables z1, . . . , zn.
3. The deformation F (z, t) = Ft(z) is a Thom map, that is,

m∑

j=1

|∂F

∂tj
| ¿ ‖∂F‖ as (z, t) → (0, 0).

4. The polar curve of F with respect to {t = 0} does not splits, that is,

{(z, t) ∈ Cn ×Cm | ∂zF (z, t) = 0} = {0} ×Cm near (0, 0).

We now want to prove the theorem 1, in fact, let F : (Cn×C, 0) → (C, 0) be a deforma-
tion of a holomorphic germ f : (Cn, 0) → (C, 0) with an isolated singularity such that the
Milnor number µ(Ft) is constant. Suppose that Ft is non-degenerate. Then, by theorem
4, we have

(3.1) µ(f) = ν(f) = µ(Ft) = ν(Ft).

Consider the deformation F̃ of f given by

F̃ (z, t, λ) = Ft(z) +
∑

α∈ver(Ft)

λαzα.

From the upper semi-continuity of Milnor number [10], we obtain

(3.2) µ(f) ≥ µ(F̃t,λ) for (t, λ) near (0, 0).

By Theorem 4 and Corollary 5 therefore

µ(F̃t,λ) ≥ ν(F̃t,λ) ≥ ν(Ft).

It follows from (3.1) and (3.2) that the deformation F̃ is µ-constant, and hence, by Theorem
6 we get

(3.3) |∂tF |+
∑

α∈ver(Ft)

|zα| ¿ ∣∣∂zF +
∑

α∈ver(Ft)

λα∂zz
α
∣∣ as (z, t, λ) → (0, 0, 0).
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Therefore, for all α ∈ ver(Ft) we have |zα| ¿ |∂zf |, and so m(zα) ≥ m(f). Hence the
equality m(Ft) = m(f) follows. In other word, F is equimultiple.

We also show that condition (3.3), in fact, implies Bekka’s (c)-regularity, hence, this
deformation is topologically trivial. For this purpose, we need the following lemma (see
[13]).

Lemma 7. Suppose Ft is a deformation as above, then we have

(3.4)
∑

α∈ver(Ft)

|zα| ¿ inf
η∈C

{∣∣∂F +
∑

α∈ver(Ft)

η z̄α∂zz
α
∣∣} as (z, t) → (0, 0), F (z, t) = 0.

Proof. Suppose (3.4) does not hold. Then by the curve selection lemma, there exists an
analytic curve p(s) = (z(s), t(s)) and an analytic function η(s), s ∈ [0, ε), such that :

(a) p(0) = 0,
(b) F (p(s)) ≡ 0, and hence dF (p(s))d p

d s ≡ 0,
(c) along the curve p(s) we have

∑

α∈ver(Ft)

|zα| & ∣∣∂F +
∑

α∈ver(Ft)

η(s) z̄α∂zz
α
∣∣.

Set

(3.5) g(z.z̄) =
( ∑

α∈ver(Ft)

z̄αzα

) 1
2

and γ(s) = η(s)g(z(s), z̄(s)).

First suppose that γ(s) → 0. Since |z̄α| ≤ g, we have,

λα(s) =
γ(s)z̄α(s)

g(z(s), z̄(s))
→ 0, ∀α ∈ ver(Ft).

Next, using (3.3) and (3.5) it follows
∑

α∈ver(Ft)

|zα(s)| ¿ ∣∣∂F (p(s)) +
∑

α∈ver(Ft)

η(s) z̄α(s)∂zz
α(s)

∣∣ as s → 0,

which contradicts (c).
Suppose now that the limit of γ(s) is not zero (i.e., |γ(s)| & 1 ). Since p(0) = 0 and

g(z(0), z̄(0)) = 0, we have, asymptotically as s → 0,

(3.6) s|d p

d s
(s)| ∼ |p(s)| and s

d

d s
g(z(s), z̄(s)) ∼ g(z(s), z̄(s)).

But

(3.7)
d

d s
g(z(s), z̄(s)) =

∑

α∈ver(Ft)

1
2g(z(s), z̄(s))

(
z̄αdzα dz

d s
+ zαdz̄α dz̄

d s

)
.

We have z̄αdzα dz
d s = zαdz̄α dz̄

d s and 1 . |γ(s)|. Thus,

(3.8)
∣∣ d

d s
g(z(s), z̄(s))

∣∣ .
∣∣∣∣

∑

α∈ver(Ft)

γ(s)
g(z(s), z̄(s))

z̄αdzα dz

d s

∣∣∣∣.

This together with (3.6), (3.5) and (b) gives

g(z(s), z̄(s)) ∼ ∣∣s d

d s
g(z(s), z̄(s))

∣∣ . s

∣∣∣∣
∑

α∈ver(Ft)

η(s)z̄αdzα dz

d s
+ dF (p(s))

d p

d s

∣∣∣∣.
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Hence

g(z(s), z̄(s)) . s

∣∣∣∣
d p

d s
(s)

∣∣∣∣
∣∣∣∣

∑

α∈ver(Ft)

η(s)z̄α∂zα + ∂F (p(s))
∣∣∣∣,

which contradicts (c). This ends the proof of Lemma. ¤

We shall complete the proof of Theorem 1. Since Γ+(∂tF ) ⊂ Γ+(Ft). Then, by an
argument, based again on the curve selection lemma, we get the following inequality

(3.9)
∣∣∂tF

∣∣ .
∑

α∈ver(Ft)

|zα|.

Then, by the above Lemma 7, we obtain
∣∣∂tF

∣∣ ¿ inf
η∈C

{∣∣∂F + η ∂zρ
∣∣} as (z, t) → (0, 0), F (z, t) = 0,

we recall that

ρ(z) =
∑

α∈ver(Ft)

zαz̄α.

But

inf
η∈C

{∣∣∂F + η ∂zρ
∣∣}2 =

|∂F |2 |∂zρ|2 −
∣∣〈∂zρ, ∂F 〉

∣∣2
|∂zρ|2 =

‖∂F ∧ ∂zρ‖2

|∂zρ|2 .

Therefore, by Theorem 3, we see that the canonical stratification Σ(VF ) is (c)-regular for
the control function ρ, then F is a topologically trivial deformation (see[3]).

This completes the proof of Theorem 1.

Remark 8. We should mention that our arguments still hold for any µ-constant defor-
mation F of weighted homogeneous polynomial f with isolated singularity. Indeed, we can
find from Varchenko’s theorem [15] that µ(f) = ν(f) = µ(Ft) = ν(Ft). Thus, the above
proof can be applied.

Unfortunately this approach does not work, if we only suppose that f is non-degenerate.
For consider the example of Altman [2] defined by

Ft(x, y, z) = x5 + y6 + z5 + y3z2 + 2tx2y2z + t2x4y,

which is a µ-constant degenerate deformation of the non-degenerate polynomial f(x, y, z) =
x5 + y6 + z5 + y3z2. He showed that this family has a weak simultaneous resolution. Thus,
by Laufer’s theorem [7], F is a topologically trivial deformation. But we cannot apply the
above proof because µ(f) = ν(f) = µ(Ft) = 68 and ν(Ft) = 67 for t 6= 0.

We conclude with several examples.

Example 9. Consider the family given by

Ft(x, y, z) = x13 + y20 + zx6y5 + tx6y8 + t2x10y3 + zl, l ≥ 7.

It is not hard to see that this family is non-degenerate. Moreover, by using the formula
for the computation of Newton number we get µ(Ft) = ν(Ft) = 153 l + 32. Thus, by
theorem 1, we have that Ft is topologically trivial. We remark that this deformation is not
µ∗-constant, in fact, the Milnor numbers of the generic hyperplane sections {z = 0} of F0

and Ft ( for t 6= 0) are 260 and 189 respectively.
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Example 10. Let

Ft(x, y, z) = x10 + x3y4z + yl + zl + t3x4y5 + t5x4y5

where l ≥ 6. Since µ(Ft) = 2l2 +32l+9 and Ft is a non-degenerate family, it follows from
Theorem 1 that F is a topologically trivial deformation.
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