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Abstract We investigate the local differential geometric invariants of cuspidal edge and
swallowtail from the view point of singularity theory. We introduce finite type invariants
of such singularities (see Remark T3 and Theorem PTT) based on certain normal forms
for cuspidal edge and swallowtail. Then we discuss several geometric aspects based on our
normal form. We also present several asymptotic formulas concerning our invariants with
respect to Gauss curvatures and mean curvature.
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Typical examples of wave fronts are parallel surfaces of a regular surface in the 3-dimensional
Euclidean space, and it is well-known that such surfaces may have several singularities like
cuspidal edge and swallowtail. Singularity types of parallel surfaces are investigated in [3], and
the next interest is to investigate local differential geometries of such singularities. There are
several attempts to describe them. For instance, K. Saji, M. Umehara, and K. Yamada ([12])
defined the notion of singular curvature x4 and normal curvature «, of cuspidal edge, and, later,
K. Saji and L. Martins ([[7]) described all invariants up to order 3. It is clear that there are more
differential geometric invariants in higher order terms, and to describe all such invariants up to
finite order is one motivation of the paper.

Since Gauss curvature and mean curvature are often diverge at singularities and we are
interested in their asymptotic behaviors near a singularity in terms of our invariants. We are
going to describe their asymptotic behaviors of our local differential geometric invariants of
cuspidal edge near swallowtail.

An ideas of singularity theory is to reduce a given map-germ (R?,0) — (R3,0) to certain
normal form (see [4], for example). Their normal forms are obtained up to A-equivalence where
A is the group of coordinate changes of the source and the target. In that context, we reduce a
given map-germ to one of normal forms in the list there, composing certain coordinate changes
of the source and the target. For differential geometric purpose, general coordinate changes of
the target are too rough, since they do not preserve differential geometric properties, and we
should restrict the coordinate change of the target to the motion group. From this point, we
will consider the product group of coordinate change of the source with the motion group of the
target (the rotation group when we consider map-germs) and we introduce a normal form for
cuspidal edge (see (I)) and swallowtail (Theorem P4) by the equivalence relation defined by
this group. We believe that this is a powerful method to investigate singular surfaces, since this
unable us to describe all differential geometric properties in terms of them. The purpose of the
paper is to investigate them in a reasonably complete form for cuspidal edge and swallowtail.



The paper is organized as follows. In §1, we investigate cuspidal edge as moving cusps
with introducing a normal form () with conditions (i), (ii), (iii) there. We describe the
first fundamental form and the second fundamental form, and conclude an asymptotic formula
(Theorem M) of Gauss curvature, the mean curvature and thus the principal curvatures. We
also investigate the singularity of asymptotic lines at a non parabolic point (subsection )
and curvature lines (subsection [A) in a generic context. In §2, we investigate swallowtail with
introducing a normal form (Theorem Z4). We describe the first fundamental form and the
second fundamental form in terms of this normal form, and conclude an asymptotic formula
(Theorem P20) of Gauss curvature, the mean curvature and the principal curvatures. We also
investigate the singularity of asymptotic lines (subsection 2Z4) and curvature lines (subsection
PH) in a generic context. Asymptotic behaviors of several invariants of cuspidal edge nearby
swallowtail is also investigated in subsection ZZ4. In Appendix A, we quickly review several
basic notions of a surface in the 3-dimensional Euclidean space for convenience of reference. In
Appendix B, we review criteria of singularity types.

The author would like to thank Kentaro Saji, who organized an opportunity to talk about
this topic in June 2016, A. Honda, M. Umehara, and K. Yamada, who have informed the author
several application of computation in §1 to the construction of isomers of surfaces with cuspidal
edges ([B]) in March 2019, and the anonymous referee for several comments for the earlier version
of the paper. The author also thanks to JSPS (Grant-in-Aid for Scientific Research (C), no.
15K04867) and the Research Institute for Mathematical Sciences for their supports (a Joint
Usage/Research Center located in Kyoto University) for their support.
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Throughout the paper, we use the following notation
= (17070)7 €y = <07 170)7 €3 = (0707 1)7

which form a basis of the 3-dimensional Euclidean space R3. We sometimes (in §2) express
elements in R? using column vectors to shorten the expressions.

By custom, one writes f(u,v) = O(g(u,v)), if and only if there exist positive numbers
0 and M such that |f(u,v)] < M|g(u,v)| when |(u,v)] < 6. For shortness, one also writes
f(u,v) = O(p) when f(u,v) = O(|(u, v)[").

1 Cuspidal edge
1.1 Cuspidal edge as moving cusps

Let v : (R,0) — (R3,0), s = 7(s), be a regular curve with arc length parameter s. Let
t, n, b denote its Frenet-Serre frame. We consider a map-germ f : (R 0) — (R30) as a
singular surface with the following conditions: There is a sequence {f : (R,0) — (R3,0),s >
§1.(8) bke1,2,.. of C*-maps so that

(o) for any positive integer m we have

k

f(s.1) = <>+zf-k< )7+ O™, (1.1)

(i) the singular set 3(f) = {t = 0}.

(i) (fi(s), (s)) = 0 for &k = , and

(iii) ¢?/2 is an arc length parameter of the section of the plane spanned by w and b, that is,
{f

1(s,t), fils, 1)) = 2.

Remark that f,(s) = ZLli—o, (fo, fo)limo = 1, (fs(5,0), fi(s,8)) = 0, and (f, f;) = 2. The

condition (ii) implies that t is a parameter of the singular curves which are sections of the
surface with the planes spanned by n(s) and b(s). If these curves are of multiplicity 2, we can
take parameter ¢ with the condition (iii). We remark that

k m—1 k

m-1 /t m t m
fs =t+ > ] +O(t™), =232 Friigg +0(t™),
k=1 : k=0 '

and fili—0 = ¢, fili=o = F1(s). By the condition (iii), we have (fi(s,0), fi(s,0)) = 0, and
conclude that f,(s) = 0. We remark that n = 0; represents a null vector on X(f), i.e., df (n) =
on X(f).

Throughout this section we consider the map f : (R?0) — (R3,0) with the properties
above.

We here recall the notion of multiplicities of curves v ([@]). We say that v : (R, 0) — (R?,0)
is of multiplicity m at t = 0 if there is a C°°-map 7 : (R, 0) — R? with the following property:



Remark 1.1. A typical singularity of a map with the conditions above is cuspidal edge, a map
f:(R20) — (R3,0) which is A-equivalent to the map represented by

(u,v) = (u,v?, v%). (1.2)
Another example is cuspidal crosscap, a map which is A-equivalent to the map represented by
(u,v) = (u,v?, uv?). (1.3)

Remark 1.2. S.Shiba and M. Umehara ([I4]) has analyzed (2,3) cusp (3/2-cusp, in their
terminology) in the plane R? using the square root of an arc length parameter as a parameter
(they call it the half-arclength parameter). For a curve with multiplicity 2 in R", there exists a
parameter t so that t>/2 is an arc length parameter ([4, Theorem 1.1]).

When the curvature kof 7 is not zero, we have the following Frenet-Serret formula for :

t 0 x O t
wl=|-k 0 7] |n (1.4)
b’ 0O —7 0 b

where ’ denote derivative by the arc length parameter s. Let us define § (0 < 6 < 7) and b, by
cosf = [t f, bl,  br = [t F, |- (1.5)

We use the orthnormal frame defined by a; = t, ay = §,, and az = t X §,. When we write
a; = cosfn —sinfb, and a3 =" x §f, = sinfn + cos0 b, we have cos = |t f, b| = (a3, b),
and thus

n(s) = cosfay(s) +sinfas(s), b(s) = —sinfay(s) + cosbas(s), (1.6)
and
_ _ <fs><ft7fsxf38> _ <f87f8><ft>f83>_<f37ft><f37f88>
A A A |13 1 P T 1 VA R A

Lemma 1.3. Assume that k # 0. We have

a) 0 Kkcosf ksind a;
a, | = | —rcosb 0 T—0 as
al —ksing 0 —71 0 as

: ay\ [cosf —sinf\ (n
Proof. Since (ag) = (sin@ cos 0 ) (b)’ we have

al _y —sinf —cosf) (n n cosf —sinf\ (n’

ay ) cos) —sinf) \b sinf  cosf b’
__y sinf  cosf\ [n n cos —sinf\ [(—x 0 T t
- —cosf sinf) \ b sinf  cos6 0 —7 0 E
_y 0 -1 a —Kkcosf 0 71 t
1 0 as T\ —ksing -7 0 G

as

- cos y 0 1 a
(e () () .
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We can write f, as a linear combination of ay and as:

Y. = apag + bras, ap = <fk7 a2>7 (1-7>

and we have f; = |a; as f5]as (i.e., a3 = 0). Remark that f = 7(s) 4+ aay + baz where

? tk
a=a(s,t) =5 + > ar(s)yy + o™+,
k=3
b=b(s,t) =) br(s) 7 + O™
k=3 )

Lemma 1.4. The coefficient ay (k > 3) are determined by the lower order terms inductively.
Precisely speaking, ay ts determined by by, b, ..., by_1.

Proof. Under the condition (i) we have

= (ft, fi) Ztk Z ml’—w’

141
i+j=k v

and we obtain that |f2| =1, <f2af3> =0, %<f27f4> + i<f3af3> =0

k—2
i<f27f5>+1_12<f37f4> :O f27fk +Z fz—i—lvfk z—i—l -0 (/ﬂZG)

Since ar = (fy, f), ar (k > 3) are determined by bg, bs, ..., br_1. ]

Remark 1.5. It is clear that (d'by/ds’)(0) (k > 3) are invariants of the maps, under the
actions by orientation preserving diffeomorphisms of the source preserving the singular curves
with their orientation and rotations of R3.

Proposition 1.6. Let f: (R% 0) — (R3,0) be a map as in the first paragraph in this section.
We have that

o the singularity of f is cuspidal edge if b3(0) # 0, and
e the singularity of f is cuspidal cross-cap if b3(0) =0, b5(0) # 0,

where bz is the invariant defined in (ICH)

Proof. See Appendix Bl m

1.2 The first order derivatives and the first fundamental form

Since

tF tF
ft =a; a2 + btag = <t + Z Aly175 il + O(tm)> as + (Z bk_,_ly + O(tm)>a3, (18)

k>2
fs =ai + asay + aal, + b,az + bay’



=a; + a,ay + bsaz + a(—kcosfa; + (1 — ' )az) + b(—rksinfa; + (' — 7)ay)
=(1 — k(acosf +bsinb))a; + (as + b(0' — 7))az + (bs + a(r — 6'))as, (1.9)

we obtain the following expressions of the first fundamental quantities:

(for fi) =(1 = lacos 0 +bsin0))? + (a, + (' = 7))° + (b, + al(r = 0'))’
=1 — (kcosO)t* — —bgﬁgineﬁ +O(th),

(fo, fr) =as(as +b(0" — 7)) + bi(bs +a(T —0')) = %(T - el)ﬁ +O(t"),

2 6
<ft7 ft) :af + th = t2.
The last relation is expressed by

2 =(t+ Y a1t /i) + (3 bjat? /§1)?, and thus

i>3 i>2
L=(14 3 aspat'[il)* + (3 byt /51)%.
i>2 i>1

Comparing the coefficients of t* in both sides, we easily see that a; is determined by as, ...,
ap_1, bs, ..., bp_1 and bg. By induction, we conclude that a; is determined by bs, ..., b,. We
also remark that

(o, fV e £) = (fos [ = t2(1 — t*kcos O + - - -).

1.3 Unit normal vector v

Lemma 1.7. We have the following asymptotic expansion of the unit normal vector v:

_ fSX% _ / £ 3 bs 3 b§2 3
v = (' —7)5 + Ot )]a1+[—§t+0(t )]z + [1_?5 + 0] a.

Proof. Since

2 2
fs xéz (a1+a’2%+~~~) X (a2+f3%+~~):a3—63u2%+(a; X ag)%+0(t3),
we have
[fox (Fe/t)] 71 = 1= 5(bst)* + O(F").
Since
a, X ay = (—rcosfa; + (17— 0)az) x ayg = —kcosfaz — (71— 0')ay,
we have

fo X (fi/t) = a3 — (b3/2)ast — (kcosfas + (1 — 0 )ar)(t?/2) + O(t?),
and we obtain the expression of v. ]

Lemma 1.8. The map (f,v) : (R%,0) — (R*xR3,(0,v(0))) is an embedding germ, if and only
if by £ 0.

Proof. This is a consequence of the following:

(451

a —ksinfd @ —7 0
df(s,0) = ((;) 7 dv(s,0) = ( 0 by /2 O) as | . O
as



1.4 The second order derivatives and the second fundamental form
I I, ¢, Tt defined by

CER sty

FS

st

Let us first compute Christoffel symbols 1"

fss =Usofs + T fe + Ly, foo =Ufs + T fe + M, Ju =Lafs + T fe + Nv.

Since

<fsa fs)s :2<fssa fs>7 <fs>ft>s :<fssa ft> + <.fst> ft>7 <fs>fs>t :2<fst7 f8>7
(fss fsde =2([st, f5), (fss fo)e =(fsts o) + (fss fua)s (fe, fede =2(fues o),

we obtain

1(<fsafs> <fsaft>> <F§s th Fft):<<fssafs> <fst>fs> <ftt>fs>>
(fo. fs) (e fe)) P T T (fsss fr) (fsts fo) - (s S)

— ( <f57f5>8 <fs>fs>t 2<fs>ft>t - <ft>ft>s>
2<fsaft>s - <f57fs>t <ft,ft>s <ft,ft>t

— 1 ( <-f87f5>8 <f57fs>t 2<fs>ft>t>
2<f37ft>8 - <f87fs>t 0 t ’

and we obtain that

fss =O(tH)ay + [k cos O 4+ O(t*)]ay — [ksin @ + O(t?)]as, (1.10)
fst =[(=rcosO)t + O] a; + [(T — O)t + O(t*)]ay + (7 — 0)tas, (1.11)
fi =O0(t*)a; + [L+ O(t?)]ag + [bst + O(t?)]as. (1.12)

We thus obtain the following expressions of the second fundamental quantities:

bsk cos 6

<f587’/> =ksinf — t+ O(t2)7
(fst,v) =(7 — 0’)t+ b3 342 +0(t%),
3

3
) =20+ 22 4 (= BT o).

2 3 278

Theorem 1.9. We consider a map f : (R?,0) — (R3,0) as in the first paragraph of this section.
The asymptotic expansions of Gauss curvature K cmd the mean curvature H are expressed as
follows:

1 b3msin9+[ <b4sin9_b§cose
2 "3 4

_1/b3 by ksiné 9
H‘?(Z+(E+ 5 >t+0(t))

where k and T are the curvature and the torsion of v defined in (CA), and 0, by, are the invariants
defined in (IH). If the singularity of f is cuspidal edge (i.e., by # 0), then the principal
curvatures are given by

) — (T — 0’)2} t+ O(tQ)), and

b3k cos @ + 4(T — 6;)?
2bs

1/bs by, 2(r—0,)?
2 _ - 3 4 s 2 3
t+O(t), Hz_t<_2+3t+—b3 t+O(t)>.

K1 = ksinf —
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Proof. Since

- 2
(fes UV fu, V) — (far, V)? = bgmgmet + <%/£sin9 — %50059 — (7 — 9’)2)752 + O(t%),

we obtain the expression for K. Since

(o F i) = 2o N o) U o) = ot (5 sind) 2+ O(F),

we obtain the expression for H. The assertion for principal curvatures are obtained by solving
the equation \> — 2H\A + K = 0. O

We assume that b3 # 0, that is, t — f(s,t) define a (2, 3)-cusp. Then we have the following:

e If ksinf # 0, then one side of the singular locus is hyperbolic (i.e., K < 0) and the other
side of the singular locus is elliptic (i.e., K > 0) nearthe singular locus.
o If K #0 and § = 0 modr, then K = —xb%/4 — (1 —0')* + O(2).

Remark 1.10. Several geometric invariants for cuspidal edge were already defined. Here is a
list for these invariants:

e normal curvature k, and singular curvature kg in [12],
o cuspidal curvature k. in [8], and
e cusp-directional torsion k; and edge inflectional curvature k; in [7].

We express them in terms of §1:

Rs :|fs fss aS’t:O - KCOSQ7 Ry :fss : V|t:0 - HJSiIlQ, Re = |fs ftt fttt’t:O - b37

R :|fs ftt fstt’t:O =T — 9/, R :‘fs ftt fsss’t:(] = KT cos 0 + K’ sin 6.

To check them we need to look the mid terms closely, using (I9), (CR), (1), (), (CI2),
and

fste = —k(cosO + aysinf)a; + (0" —1)as + (1 — 0)as, fiu =bzaz, on t=0.

1.5 Asymptotic lines
The equation for asymptotic directions is defined by

bak cos 6

2

Ksinf —

t+ O(t2)] ds® + 2[(r — 0')t + O(t2)|ds dt + [%% + 0(t2)] A2 =0 (1.13)
in the region defined by K = w + .-+ < 0. Assume that the singularity of f is cuspidal
edge (i.e., by # 0). We say that a point in cuspidal edge (i.e., a point in the locus defined by
t = 0) isparabolic if it is in the closure of the set of parabolic points in the regular locus.
Theparabolic cuspidal edge is defined by & sin 6=0 in the generic context, that is, xsinf is not
identically zero (see the end of Appendix [Al). If ksiné > 0 (or < 0), the equation (CI3) defines
asymptotic directions in the region ¢ < 0 (or ¢ > 0), and there is a homeomorphism of (R?,0)
which sends solution curves of (I”T3) to that of folded regular point (see Appendex B=2). The
singularities of asymptotic curves near a parabolic cuspidal edge point (i.e., t = ksinf = 0) are
degenerate, and we do not consider them here.

8



1.6 Curvature lines

The equation for principal directions is

1— (kcosO)t? + O(t?) ksind — BECSE 4 O(t2)  di?
O(3) (1 =0+ O(t?) —dsdt| = 0.
t2 Bt +0(t?) ds?

This reduces to

t

2bg+--~]d52+ [%+t<b—4—msin0> —|—~~~]dsdt— [t2(7'—0’)—|—--- dt* = 0.

(r-)+ 2 "'\3

Assume that (f, v) is an embedding (i.e., by # 0). This defines two nonsingular transverse flows
at any point near t = 0. This fact is already recognized in [I0, Lemma 1.3]. The author thanks
the referee to let him know this paper.

1.7 Ridge and subparabolic lines

By the equation for principal directions in the previous subsection, we obtain the following
expression of the principal vectors near cuspidal edge.

v = (1 _Ar -6 + O(t3))6s + (2(9—_7) + O(t))&:,

b3 bs
(2T =0t 5 1 2(r—6)%t 5
vy = (=5 + 0(1))0, + (; -+t ).
So the ridge lines are defined by zero of
b2 (K'sin @ 0) +4(r —0')3 b
i, =3 (K'sin@ + k7 cc2)s )+ 4T ) +O(1), or Voky = — _33 + 0.
b3 2t
Similarly the subparabolic lines are defined by zero of
b2 O+4(r —0)? _y
oty = — 3K COS ;;b (1 ) +O(19), or V1Ko :Tt—2 o)
3

1.8 Moving cusps along a straight line

Since Lemma I3 requires the assumption x # 0, we need to consider separately the case that
the curvature « is identically zero. At this case v(s) is a part of line, and a; = t =4/, as = f,,
as =t X f, form an orthonormal frame. One can define k by

a; 0 0 O a
a, | =0 0 & as
aj 0 -k O a;

For f(s,t) = v(s) +aay+bas, a =t>/2—b3t*/32+ O(t5), b = bst3 /6 + byt* /24 + O(t*), we have
fs = a1 + (a5 — bR)ay + (bs+ak)as, fi = aias + byaz, and

(for fo) =L+ R A+ O, (fo fi) = bst/124+O(F°), (fi, fi) = 1°.

9



Since fs X f; = (asby — a;bs — (aa;+bby)R)a; — byas + a,a3, we have
v=(—k({t*/2) + O(t*))a; + (=bst/2 — bs(t?/6) + O(t*))ay + (1 — b3(¢*/8) + O(+*)) a3

The vector n = 0, represents a null vector along 3(f). Since A = det(f, f; v) =t + O(t?),
¢ = det(t nv v) = =8 — Y¢ 4 O(t?), the singularity of f at (0,0) is cuspidal edge (resp.
a cuspidal crosscap) if b3( ) # 0 (resp. b3(0) = 0 and b5(0) # 0). We also remark that
(f,v): (R?,0) —» R x R? is an embedding if b3(0) # 0.

Moreover, we have fo, = (a5 — 2bsk — ak? — bR')ay + (bss + K(2as — bR)+ak )as, fo =
(ast — bik)as + (bg+aiR)as, fu = apas + byas, and

t? 3 ot 3 bs by 3 3
(fss, v >—/€§+O(t )y (fst,v) = Rt +b5— —I—O(t )y (fu,v) = 5t+§t + O(t°).
We thus conclude the asymptotic expansions of Gauss curvature K and the mean curvature H
as follows:
1/0bs

1
_ =2 - =/ / - 2 2
K == i 4 (bR — 4R}t + O(2), H= t(4 +6b4t+0(t ))

Moreover, we obtain the asymptotic expansions of the principal curvatures:

by by ) 287 K ViR AbyR? )
t<2+3t+0(t)) t(b—3+(§ b—3+ 32 )t+0(t)).

The configuration of asymptotic lines is folded regular point if b3(0) # 0 and 7'(0) # 0. The
equation for principal directions is

(Fc + %t + O(t2))ds2 + (%3 + Z;—“t +O(t ))ds dt + (—kt* + O(*))dt* = 0,

which defines two transverse directions whenever b3(0) # 0.

2 Swallowtails
2.1 Normal form theorem

Throughout this section, we consider a C'*°-map
f : (R27O) — <R370)7 (ulavl) — f(ulavl)v
with the following conditions:

(i) The singular locus X(f) = {v; = 0}.
(ii) f(3(f)) is a curve of multiplicity 2 at u; = 0 with an arc length parameter (u;)?/2.
(iii) The Jacobi matrix of f|x(s is of rank 1.

Remark 2.1. A typical singularity of a map with these conditions is swallowtail, a map f :
(R%,0) — (R3,0) which is A-quivalent to

(u,v) = (3u* + v?v, 4u® + 2uw, v). (2.1)

10



We are going to change f a normal form under the action of the product group of coordinate
change of the source with the rotation group as we explained in Introduction.

We can assume that there is a sequence {g, : (R,0) — (R?0)),u1 — @;(u1)}r—012, . of
C*°-maps so that

flug,v) = Z gy (u1) (Uk') + O(v;™)  for any positive integer m. (2.2)
k=0

We express Taylor expansions of g, as follows.

B m—k [ ki (ul)z —— B
gk(ul) = bk,i T+O(U1 ) (]{7— 1,2,...,m).
=2\ Cry '

Lemma 2.2. Without loss of generality, we can assume the following condition:

(1v) go(wr) = uigy(u1) and [gy(ur)| = 1.
(v) @, and g, satisfy the following:

1 + ay1,1U1 m a1 (u )
gi(w) = buw | +D | b (uy™), (2.3)
0 i=2 \C1,
(U1)2/2 _b%,l (u1)4
go(ul) = b171(u1)3/3 + b1’2 — 2@1’117171 8 + O((U1)5) . (24)
0 C12

/

Proof. Since df (u1,0) = (gi(u1), g, (u1)), the condition (i) implies gf(u;) and g, (u;) are linearly
dependent. By (ii), g5(0) = 0 and the condition (iii) implies g;(0) # 0. So there is a function
g(u1) with gy(ur) = g1 (u1)g(ua), 9(0) =0, ¢'(0) # 0. Setting (u1, v1) = (u,v/[g1(u)]), we have

f<u1’vl) - ng(ul) (U];) + O(U1m+1) = Z |ggk<(uu))|k% + O(Um+1)-
k=1 : 1 .

k=1

So we can assume that |g;(u1)| = 1.
Rotating f(uq,v1) in R?, if necessary, we may assume (E23). Since o = (u1)?/2 is an arc
length parameter of the curve u; — gq(u1),

d d
)] = lgCunllgn (un)] = | F22] = |S22| 22 =
and we conclude that g(u;) = ftuy. We assume that g(u;) = u;. Then we have (24). O

We can assume that b;; > 0 changing the sign of u, if necessary.
Since the 1-jet of o = f,, x fu, is (0,0,b11v1), v = U/|P| is extendible continuously to
(Ul, Ul) == (0, O), if bl,l 7é 0.

Remark 2.3. Ifb; 1 = 0, then the singularity of f cannot be swallowtail. In fact, when by = 0,
the coefficient of uv in the Taylor expansion of f is zero. But a map, which is swallowtail has
non zero uv term whenever its 1-jet is ve.
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Theorem 2.4. Let f : (R*0) — (R3,0) be a map as in the first paragraph of this section
with conditions (iv) and (v) of Lemma Z3. If byy # 0, then there is a coordinate change,
(u,v) = (u1,v1) = h(u,v) = (hi(u,v), ho(u,v)), of the source so that

(i) X(foh) = {v =10},
(ii) f(X(foh)) is a curve of multiplicity 2 at w = 0 with an arc length parameter u*/2,
(iii) the Jacobi matriz of foh|s(fony ts of rank 1, and

(i) {(foh)u: (foh)u)lo=0 = u?, ((foh)u; (foh)e) = u+ O(p), and ((foh)., (foh),) = 1+ O(p)

for any positive integer p.

2.2 Proof of Theorem 2.4
The key of the proof of Theorem P4 is the following

Theorem 2.5. Let f: (R?,0) — (R3,0) be a map as in the first paragraph of this section with
conditions (iv) and (v) of Lemma ZB. Let k be a positive integer and byy > 0. There is a

coordinate system (uy,vy) so that uy = uy + vePr_1, v1 = ve(1 + @k), where P, and @k are
polynomials in (ug,vy) of degrees k — 1 and k, respectively, and

<ka’ ka> = ui + biﬁ}i + Uk O<2)’ <ka7ka> = Up + Vg O(k - 1)7 <ka7 ka> =1+ O(k)
For the coordinate system (ug, vx), we easily see the following conditions:

(i) 2(f) = {or = 0};
(i) f(3(f)) is a curve of multiplicity 2 at ux = 0 with an arc length parameter (uy)?/2;
(iii) The Jacobi matrix of f|s( is of rank 1.

Remark 2.6. If (f,, fo) = u and {f,, f,) = 1, then the curves v — f(u,v) present geodesics,

since <fvv7f’u> = %<fvafv>v = 0; and <fv1)7fu> = <fuafv>v - %<fv7fv>u = 0. This is a strong
evidence to expect the existence of a geodesic which reaches swallowtail singularity.

Corollary 2.7. Under the same assumption to the previous theorem, there exists a C™-
coordinate system (u,v) so that the Taylor expansions of (fu, fu), (fu, fo) and {f,, f,) are given
by u? + 6%71212 +v0(2), u, and 1, respectively.

Proof. Consequence of the previous theorem and Bott’s theorem (|11, §1.5]). [

Lemma 2.8. Assume that by; # 0. If

p=— bz,o G = —ay1 — 52,0 @ = _@ al,lbz,o _ b%_,o (2 5)
%, B gp 0 2 2011 02, '
u2
5 T

then 32 f(0) = 51,1U§J where uy = u + pv,v; = v + v(qgou + V).
Cz,o%

Proof. Taylor expansion of f is

go(u1) + gy (ur)vr + gy(ur) (U;) + ng(ul) (U]:;l)
k>3 ’

12



2 .. . .
(u1)?/2 1+ ar1u (v1)? 92,0 @irj (u1)? (v1)"

= 0 + vy biuy + 5 bao | + Z bi T
0 0 2.0 4753 \ Cis uly!
(u+ pv)?/2 1+ ai(u+pv) 2 2 (a0
' v*(1 + gou + q1v ’
= 0 -+ U(l + qou + qlv) b171(u —+ p'U) + ( q02 4 ) bgyo
0 0 C2.0
i (u+
pv) (v + v(gu + qv))*
* Z big ilj!
i+523 \ Cj j
v+ “32 a1 +p+qo 1 @20 + 2a11p + p* + 2¢1
= 0 + bl,l uv + 5 b270 + 261,1[) v? + 0(3)
0 0 €2,0

By (23), we have
a1 +p+qo =0, asg+2a11p+p°+2q0 =0, by + 2b11p =0,
and we conclude the result. O

By the lemma, we have

“32 + v U 1
jzf(()) = bl,lug ; jlfu(o) =|bv]|, jlfu(o) = | biau |,
C20% 0 C2,00

(fur fu) = u? + bilqﬂ +v0(2), (fufo)=u+v0Q1), (fo,f,)=1+0(2).
This shows Theorem PZH when k& = 2.

Lemma 2.9. Set f(u,v) = > 1_, gp(w)o"/k! + O(vPt). Assume that gy(u) = g(u)gy(u). If
(for fo) = 1+ O(u¥)v + O(v?), then

<fw fv) =u-+ O(Uk)'U + O(UQ).
Proof. Since f, = Zi:é Gry1(W)v k Ik 4+ O(vP),

i p—1 J p—1 k
<fva fv> <Z 911 U' ; Z g]+1;}| > + O(’Up) ]CZ:(]iJrJZ:k(gi—i-la gj+1>;!)_j! + O(Up)
=(g1,081) + 2<91a 92)v + ((82, 82) + (81, 93))”2 + O(US)- (2.6)

Since <gl7gl> = 1a and <gl>g2> = O(uk)7 we have

:%<91> 81)u + 9(u)(g1, 85) = O(u")

Since v = (gp, 85) = 9(w)*(81, 81) = g(u)?, we may assume that g(u) = u, and
(80, 81) = g(u){g;, 81) = u.
Since f, = Y h_ ng( )k'f +O(wP),

<g/17 gl> + <gi)7 92>

i p—1 Y p—1 V¥
) =T 815, PoLAe ) FOW) =Y S (g ) 5 +O0)
=0 v J k=0 i+j=Fk ilj!
=(80, 1) + (<90:92> + (g1, 81))v + O(v*) = u+ O(u*)v + O(v?). (2.7)

13



We are looking for a coordinate system (u,v) with

(fus fu) = 0> 402 10* +00(2), (fus fo) = u+Ok), {fu, fo) =1+ O(k)

where k is a positive integer. We consider tuples H;(u, v) of homogeneous polynomials of degree
i in (u,v) so that f(u,v) = 2% | Hi(u,v) + O(k +1). We have H,(u,v) = ve;, and

2 _p2 wv 2 v
U /2 0 U3 2b1,1 2 2C2,0 6 3
— N u-v >k uv * v
Hy(u,v) = b1,112w . Hi(u,v) = | bia 3 + 51,2? + 52,172 + 537033
ucv * Uv x v
c200°/2 0 €273 T CuTy T GG
here b, — 62_o< B ) x + b2,0(c2,0—c1,2) pr - C20021 baocz,0(c2,0—c1,2) &
WRETE 031 = 3, \C20 = C12), Con = G20 T == 030 = T3 b2, v G30 =
3b2 0c2,1 3b2,0(x1,2—C2,0) b d . . f ord db
€30 — 302,0C2,0 — by + YT . 50 b11 and ¢y are invariants of order 2, and by 5, ¢ 2,
, 1,1
c5 1, and cj, are invariants of order 3.
Lemma 2.10. Let (ug,vg) be a coordinate system so that
k+1 )
[ =wvker + > Hi(ug, vg) + b110; Py_o(ug, vg)es + O(k + 2), (2.8)
i=2

<fuk> ka> :U’Z + biﬂ)z + Uk 0(2)7
(Fur for) =t + v Ap—1 + by 10 Pea (g, vi) + v O(k),
(foe> for) =1+ Bp + O(k + 1),

where A_1 and By, are homogeneous polynomials in (ux, vx) of degrees k—1 and k, respectively.
Setting u, = Ugt1 + Vg1 Pe—1(Ukt1, V1), Uk = Vg1 (1 + Qp(tps1, Ver1)) where Py_q(u,v) and
Qr(u,v) are homogeneous polynomials of degrees k — 1 and k in (u,v), respectively, we have

kb1
f=uvprer + 3 Hi(up1, 1) + 011071 Preoo(Upi1, V1) €2
i

UV Py 1 (Upt1, Vig1) + VQp (Unt1, Vkg1)
- b110? Py (Wit Vk1) +O(k+2),
C2,0VQk (U1, Vg+1)

and, for a suitable choice of Py_o and Qy, we conclude that
<fuk+17 fuk+1> :ui-H + b%,l”i—&-l + Uk41 0(2)7

<fuk+17 ka+1> =Uk41 + V41 O(k)7
(foerrs foorn) =1+ O(k +1).

Proof. Setting uy, = u + vP_1, vy = v(1 + Qx), we have vye; = v(1 + Qy)ey,

ui /2 u?/2 uwv Py
Hy(ug,v) = | baugvg | = | bijuwv | 4+ | biiv?* Py | + O(k + 2).
02701}]3/2 0270'112/2 C2,0'UQI€

Since

(ut P ) (14 QY =YY (Z> (‘i) u' Tt B0 Q)

s=0 t=0

14



we have H;(ug,vg) = Hi(u,v) + O(k+2),i=3,4,...,k+ 1. We thus have

u?/2 ft wPy_1 +vQy
[=vei+ | bauwv |+ Hi(u,v) +bl71v2Pk_2(u, v)es+ by 10* Py +0(k+2). (2.9)
027002/2 =3 CQ,OUQk

Then we obtain that

u k1 (v Pyy + vQp)u
Ju=|biav | + > (Hi)u+ b1 (V2 Pp_g)u€s + b1.10*(Pr—1)u + O(k+1),
0 =3 C2,0(VQk )u
0 k+1 (uvPy—y + vQk )y
fo=ei+ | biiu | + S (H)y +b11(0*Pr_2)€s + b11(vV2Pe—1), +O(k+1).
Ca,0V =3 C2,0(”Qk)u

Remark that the homogeneous part of degree k of (f.,, f,) is
k
2(uv Py + vQp)y + 267 1u(v* Posa)y + S ((Hy)oy (Hio—i)o) + 2{(Hi41)v, €1)- (2.10)
i=2

We choose a homogeneous polynomial Ry, of degree k£ + 1 so that

(R = z (Hos (Hrrai))s (Risr + (Hisss €)oo — 0.

N —

Since Ryi1+ (Hgi1, e1) is divisible by v, we can choose a homogeneous polynomial @y of degree
k so that
UUPk_l + UQk + bilU’UQPk_Q + Rk+1 + <Hk+1, €1> =0.

Then (1) is zero and the first component of (29) does not depend on P;_;. Moreover, we
have that the degree k-part of (f,, f,) is equal to

ka(Hi)w (Hrto-i)o) + (uv Py +0Qk)u + (Hps1)u, €1) + bilkv2Pk,2
= i((Hi)w (Hiro—i)v) = (Rigr)u + 05 10 [k Prg — (uPe_s)u), (2.11)

since (uvPy—1 + vQp)u + b7 (W Pe_2)y + (Rit1)u + ((Hi41)u, €1) = 0. We finish the proof if
we choose Pj_5 so that (EI) is zero. Setting Py_o = Zi:OQ piu'v* =2 the equation becomes

k k—2

S {(Hi)us (Higo—i)o) — (Rigr)u + 011 Y (k= i)piu'n* ™ =0,
=2 i=0
which is possible to solve inductively by Lemma P279. [

2.3 Computation based on the normal form

From now on, we assume that the C*>°-map
f:(R%0) = (R®,0), (u,0) = f(u,v),

15



as in the first paragraph of this section with conditions (iv) and (v) of Lemma P72. Let

Qij \ iyt
uv

Hk<U,U) = E bi,j Z'—' (k}: 1,2,)
i+j=k \Ci; -

be homogeneous polynomials with f(u,v) = sh_, Hp(x,y) + O(p + 1) for any positive integer
p. Remark that

v u?/2 0\ 3 19 + ag 2, +&30g
Hi=10], Ho=| bauw |, and H3 = | bis E—i‘ b12%5" 3 4 bo 1ty +5306
0 Co.0v* /2 0 Crat + 21" + c30%

We first see the following

Theorem 2.11. Let f be as in the previous paragraph. The coefficients a;j, b;j, c;; are
wmvariants under the action of orientation preserving diffeomorphisms of the source preserving
the singular curves with their orientation.

Proof. Assume that there is another coordinate (u’,v") with conditions (i)—(iv). We can assume
that v = u + viy1(u,v) and v = v(1 + Pa(u,v)), by (i) and (ii). It is enough to show that
both 11 (u, v), 1o (u, v) are flat functions, that is, all partial derivatives, including higher order’s,
are zero at 0. Let us assume the contrary. Then there exist ¢;(u,v), ¢2(u,v) homogeneous
polynomials (possibly zero) of degree k — 1, k, respectively, so that ¢; # 0 or ¢y # 0 and
U = ¢+ O(k), Yy = ¢o + O(k + 1). We can assume that k£ > 2. Since

fu :(1 + (le)u)fu’ + <U¢2)ufv’7 fv :(U¢1)vfu’ + (1 + (U¢2)v)fv’7

we obtain

(fur fo) =(L+ (1)) (V1)o(fur, fur) + [(L+ (001)u) (1 + (002)0) + (082)u(vih1)o](fur, frr)
+ (vd)?)u(l + (U¢2)v)<fv’a fv’>a
(for fo) =) furs fur) + 2(000)0 (1 + (v2)o) (fur, fur) + (1 + (082)0)*(fors for).

Comparing degree k parts of them, we obtain that

0= (vo1)ut +vP1 + (VP2)y, (Vd1)vu + (VP2), =
and thus (vey),u = (voy1),u + ve. When ¢ = Zf o au'vF11 we have

k—1 k—1
(k — i)au Rt Z(z + 1) auv*.
i=0 i=0
This implies ¢; = 0, and ¢ = 0 also. [
Remark that we have by1 = co(ca0 — ¢12)/b11, b3o = —C20¢2.1/(2011). Actually, we have

the following

Proposition 2.12. The coefficients a; j (i > 1), b;; (i > 2) are determined by the lower order
terms and ¢, i+j—p, 0 < p < i+7, inductively. Precisely speaking, aik, Gak—1, - - -, Gkt1,0, b25—2,
bs k-3, ..., bgo are determined by by 1, b1a, ..., big—1, and cpq (P+q < k).
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Remark 2.13. This proposition implies that the coefficients in the first components of Taylor
expansions of @;(u) (i > 1) and the coefficients in the second components of Taylor expan-
sions of g;(u) (i > 2) are determined by the lower order terms. Remark that the orthogonal
projection of the singular curve gq(u) to y-azis (the principal normal line of gq(u) at u = 0)
determines by ; and the orthogonal projection of f(u,v) to z-azis (the binormal line of gq(u) at
u=10), determines c; ;. By Proposition 213, these informations determine all our finite order
mvariants.

Proof of Proposition Z13. By (£4), we obtain

1=(gy,01) =1+ 2a11u + (a172 + ai1 + bil)UQ

p k—2
2 i1 k—i + b1 b1 g iC1k—i
n Z( a1,k 4 Z a1,:01 k +' 1, 17k' + CLiCLk )uk + O(upﬂ),

—\ k! — il(k —1)!
and ay j is determined by by 1, b12, ..., big—1, c11, C1,2, ..., €1 x—1. Since
0
fu: bll'l} +Z +Op+1) f =e; + bllu +Z +O(p+1),
Ca,0V =3

for k > 2, the conditions imply that

0 =the degree k-part of (fu. fo) = S {(H)us (Hisa—i)u) + {(His)us €1)

u k-1 : 0
= < blblv a(Hk)v> + 2((Hz)u, (Hpq2-i)v) + <(Hk)ua bi1u > + (Hi41)u, €1)
=u(ey, (Hy)y) + kg:«Hz)u, (Hit2-i)v) + c2,00((Hp)u, €3) + bi11k{ea, Hy) + (Hpt1)u, €1),

0 =the degree k-part of <fva fv> = £<(H1)U7 (Hk+2—i)v> + 2<(Hk+l)v> €1>

i=2
_ 0
=S " ((Hi)v, (Hig2-:)v) +2 < biiu |, (Hk:)v> + 2((Hy41)0, €1)
=3 C2,0V
k-1
= > ((Hi)v, (Hiy2-i)o) + 2c20v(es, (Hi)y) + 201 1u{€s, (Hi)v) + 2((Hgy1)v, €1)-
i=3
In other words, we have
k—1
51,1k<€2, Hk> + <(Hk:+l)u> €1> = - U<€1, (Hk)v> - Z <(Hi)ua (Hk+2—i)v> - Cz,ov<(Hk)u, €3>7
i=3
1 k—1

biules, (Hy)o) + (Hit1)v, €1) = — 3 ; ((Hi)o, (Hiy2-i)o) — c20v(€3, (H)0)-

These equations can be written in the following forms:

i

ulv? u
3 (buakby + @) o T > piir

i+j=k i+j=k
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u'v?
Z (b1,1bjs1,i-1 +ag+11 - Z Qji—

15! iyl
i+j=k i+j=k

Setting b = by 1, we have

O 1 --- 0 bk --- 0 Ak+1,0 Pk,
. Ak 1 Pk-1,1
o o -~ 1 0 --- bk : :
1 0 --- 0 0 --- 0 2k-1 | _ | P2,k—2
01 5 0 br.o k.0
bk—l,l qk—1,1
0 . .
0 010 b2 k2 q1,k—1
and this determines ay41,0, @1, - .- a@25-1, bro, bk—1,1, - -, b2 p—2. O

Remark 2.14. Let us assume that the coordinate (u,v) satisfies that

<fU7fU> :u2+00(2>7 <fu>fv> :u_'_UO(k_l)? <fv;fv> :1+O(k)7

for any k. Since (g,,8,) = 1, we have {f,, f,) = u+v*O(k) for any positive integer k by (21).
Since

(fur fu) = 0 4 2u(g,, g})v + O(v?) = v 4+ O(v?),

we obtain {f., fu) = u* + v*0* where ¢ is a non-zero function whose Taylor expansion is the
same as that of |(fu, X fu)/v|. The first few terms of Taylor expansion of ¢ is given by

2
o= bl,l +bl,2u+ 02,0(02217,3101,2)1}_’_( 127 20 —I—b13—|—b )u

b1
bi2ca0(c1,2—c20) 261,302,0+201,2C2,1—702,062,1)
+( b7, T uv
2 2
c3o(c1,2—c2,0) b1,2¢2,002,1 12 1 1 12 v2
(=g T R 0 — gCa0022 — 5012030 3020030 — 3630b11) 5 + O(3).
Lemma 2.15. A unit normal v is expressed by
2c90 — C
0 0 c 2,0 1,2
Cc1.2—C2.0 cg’? 2b1,2(c2,0—cl,2) 81,3—26271 u2
v = 0 —+ “ha u + %1 1 v+ bil( , b1,1 ?
_ €1,2—C2,0)
1 0 0 L2000
11
c21/2 3,0 )
cg0(er,2—c2,0)®  bipear | e 2 3,0 c2,0¢2,1(c1,2—C2,0) 31 | v
+ 263 27, T +ezobin | ww + 207 | Br [ 5+ O(3).
(01,2—62,0)62,1 C% Loy
—21731 2 G0

In particular, (f,v) is an embedding, if and only if cao # €12.
Proof. Since

(fu x fo)/v=1(0,0,—b11)+ (b1,1c2,0, (c1,2 — c20)u + c2.1v/2, —b1 2u — c20(c2,0 — c1,2)v/2) + O(2),
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we obtain |(f, x f,)/v|7Y? = 2 — M + O(2), and we conclude the formula up to

b11 b

order 2. The second order part is obtained smnlarly The last assertion is a consequence of the

following;:
000 O —61’21_102’0 0
d<f7y)(070): 100 20 2 :

2b1,1

Thus the initial terms of the second fundamental quantities are given by

L =(fuu, V) = (€20 — €12)0 — co0u” + (W + 301 — c13)uv

+ (B2 — Leps + Seso — caobd )0 + O(3),

2

M :<fuv7 V> = —CoU — 02,1U/2 - CQ,lu2 - (0270((:;}702_61’2) + 03’0—562’2)UU
1,1
,0¢2,1(c2,0=¢1,2)
_'_(02002145;10 C1,2 031) —|—O( )
_ 2
=(for, V) = —Cap — C21U — C30V — (% +ep0)%

+ (2ommalogoman) oYy — (B0 4 (4 cy0))0? +O(3).

e, I'n

uu? uv?

v u
FU'U ? F’UU ?

We will use Christoffel symbols I'}, 'Y defined by

uu?

fuu :FZufU + FZufv + LV7
fuv :vafu + szfv + MV7
fvv :ngfu + ngfv + Nv.

Lemma 2.16. For any positive integer p, we have

(Fu e Twu ) 1 UP + UVPy + VP, Y+ VP, 0

Fuu Fuv Fvv —UVP, — U2S03 _ UQ()OQSOU

Proof. Since

- 2, 2 O

O

(2.12)

(2.13)

(2.14)

(2.15)

2(u+ v*0pu) + O(p) = (fus fudu = 2{fuus fu)s  2(09% +0%000) + O(D) = (fus fu)v = 2{ fuvs fu)

1+O(p):<fuafv>u:<fuu7fv>+<fuafuv>7 O(p):<f’u7f’v>v <fU/U7f> <fu7f’U'U>7
O(p) - <fv>fv>u = 2<fuva fv>7 O<p> - <fv7 fv)v 2( VU fv>
we obtain
(fuus fu) =t + 000, + O(p), (Fuvs Fu) =0(¢” +v900) +O(p),  (fon, fu) =O(p),
(fuus o) =1 = 0(&* + vp@y) + OD),  (fuvs o) =O(p), (fovs fo) =0 ().
Since

(Jusfod {Sos o)) T T Tt
:1( < <fuafu>u <fuafu>v 2<fuafv>v_

2 fuafv>u - <fu7fu>v <fv7fv>u <fv7fv>v
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we have
uw’ + 0?0 +0(p) u+O(p)\ (Ty, Tu, T,
u+ O(p) 1+0(p)) \I'nu Ty T,
u + 120, vp? + 1200, 0
_ < Pup ¢* +vPpp )JFO(p),

1 —vp? — v2pp, 0 0
and thus
re, Te ey 1 1 —u U+ V3P, v? +vipp, 0 L oW)
re, Too v ) 0202 \—u u? +02? ) \1 —vp? —v%pp, 0 0 P
1 up + uvpy + vy ptop, 0
2 2
= v — urp — utvp, _ + O(p). O
v (—Uwu it gy, ) Ut 0
Lemma 2.17. The Gauss curvature K is given by
2 v + v VU
K= %o, O(p).
v

Proof. Since A = ((fu, fu)(fo, fo) — (fus fo)2)V/? = |v]p + O(p), we have

k=3 (), - () | = 20 = (ot vl +00)

(fo, fo) (fo, fo)
2y + Uy
= + O(p). O

Remark 2.18. The formula in the previous lemma is equivalent to Gauss’s equations. Minardi-

Coddazi equatz’ons <(fuu)v7 V> = <(fuv)u> V>: <<fuv)vv V> = <(fvv)u> V> are stated as fOllO?,US.'

L, — M, + Z2H e VO (0 1, ) 4 MentNemuen) — o(p),

vp ®

M, = Ny + 2225 (0 + viw) = O(p).
Proposition 2.19. The singularity of f is swallowtail, if
(f,v): (R%,0) = (R® x R, (0,1(0)))
is an embedding (i.e.,co0 # C12).
Proof. See Appendix Bl n

Theorem 2.20. Let f: (R%0) — (R3,0) be a map as in the first paragraph of this section with
conditions (i) and (v) of Lemma 2. If the singularity of f is swallowtail (i.e., ca0 # c12),
then the asymptotic expansions of Gauss curvature K and the mean curvature H are given by

7
1 02,0(02,0 - C1,2) 302,051,2(0270 - C1,2) C2,0C1,3 + C2,1C12 — 5C2,0C2,1
k= w2 5 * w2 U
v 1,1 11 1,1
c2o(cap—c12)? b 31— 2¢o0Can — 4y 9C30 + 6eggC
_(G0\C20 —C12)" biaCooCon  C2n 2,0C2,2 1,2€3,0 2030 | 2 +0(2)

bl 203 av? 20)" ’
1,1 1,1 1,1
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lrcag—c 3b1a(c19 — ¢ Seg 1 — 2¢
q :_[ 2,0 _ 1,2 X ( 1,2( 1,?)) 2,0) n 2,1 _ 1,3>
1 <—Cz,0(01,2 - 02,0)2 I 51,262,1 1 €30 — C22 c >U 1 0(2)}
201, 403, 403, 20 '
If the singularity of f is swallowtail (i.e., cag # c12), then the asymptotic expansions of the
02
principal curvatures are Ky = —ca 0 — Ca U + <m — 037())1) + O(2), and
Lreig —c2p0 (3512(61.2—020) 5021—2013> <512021 C22 — C30 )
_lrea—can | (nalera—can) | Seaa — 2 s a0 o)
K2 v[ 7, v, + %1, 27, 27, c20 v+ O(2)

Proof. The assertions for K and H are followed by (A). The assertion for principal curvatures
is obtained by solving the equation A\ — 2H\ + K = 0. [

Remark 2.21. In [8/, L. Martins, K. Saji, M. Umehara, and K. Yamda define the limiting
normal curvature k,, the normalized cuspidal curvature p., and the limiting singular curvature
Ts for swallowtail. We have that
Ci12 — C2p
b,
The first equality is from (2.2) in [8]. We obtain the second comparing (4.6) in [8] with the
expression of H in Theorem ZZZ0. The last one is from the definition of T4 (the last line of the
page 272 in [8]) and the fact that ks = kcos@ combining with (Z18) and (ZIR) below. The
referee kindly informed the author that a normal form theorem, similar to us, also appeared in
K. Saji’s recent paper ([13]). He described the configurations of asymptotic lines and curvature
lines, for example. We see below that one can recover such results in our computation.

Ry = —C20, HMc= Ts = 2bl,l~

2.4 Asymptotic lines

The equation of the asymptotic directions is
((6270 — 6172)1) + O(2))du2 — (20270u — 210 + O(2))du dv — (0270 + 21U + €3,0v + O(2))d1)2 =0.

We observe that the coefficient of u? du? is ¢z 0.

When the singularity of f is swallowtail (i.e., ¢12 — ca0 # 0), we conclude that there
is a homeomorphism of (R? 0) which sends solution curves of the equation above to that of
folded saddle (resp. folded node, folded focus), if co0(3ca0 + c12) > 0, (resp. %(02,0 —c19)? <
c20(3c20 + c12) <0, c20(3c20 + c12) < %(0270 — ¢12)?). Use Lemma B2 in subsection B2, to
show this assertion.

2.5 Curvature lines

Since the equation of the principal directions is
u? +0v2p? L dv?
U M —dudv| =0,
1 N  du?

we have

o[(0)du? + (1 — a0+ O(1))dudv + (622—1 +0(1))de?| =0,

It defines two transvese directions in the source in the region v # 0 and it extends on v = 0 as
two transvese directions, when the singularity of f is swallowtail (i.e., ¢12 — ca0 # 0).
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2.6 Ridge and subparabolic lines

We show here computational experiences. Since principal vectors, on v # 0, are represented by

C2,1 C2,1U
v—(—————+0 >%+<L— ’ +02)@
'\ 2, 00— C12 (1) 2(co0 — c12) 2)
1
_ 01)@ (— ()2y%
v2 (bmv +0(1) * 1,1V +0@)
we obtain
3 Cg 1
P e O(1
V1R = FPp—— cs0 + O(1),
L[ ¢
=—|——=4+0(1
VoK1 v [ b1 . + ( ):|
1 C12 —C2p
Viky =3 [T + O(l)] ;
1 1 3b1a(cag — ¢
Voko = 3 <(CQ7O — 0172)u — |:(C1’3 — 30271) + 1’2( 2210 172):|U) + O(l) .
3107, bi1
Thus we have the following:
C2
A wv;-ridge line is arriving at swallowtail, only if 3 Toramay = C30-

A wy-subparabolic line is arriving at swallowtail, only if co1 = 0.
No vy-subparabolic line is arriving at swallowtail.
Exactly one vy-ridge line is arriving at swallowtail.

2.7 Cuspidal edge nearby swallowtail

Suppose that there is a coordinate (u,v) with

<fu7fu> = ’LL2 +f02§02 + O(p)> <fu>.fv> =u-+ O(p)a <fv7fv> =1+ O(p)>

for any p. The goal of this sebsection is to obtain asymptotic expansions of differential geo-
metric invariants of cuspidal edge. They are functions on X(f) \ {(0,0)} near (0,0), that is,
as meromorphic functions in u. Here u is a parameter of the singular curve X(f) so that u?/2
is an arc length parameter of X(f). The statements of asymptotic expansions of differential
geometric invariants of cuspidal edge, defined in (I4) and (I=3), are as follows.

Theorem 2.22. Let f : (R%0) — (R3,0) be a map as in the first paragraph of this section
with conditions (iv) and (v) of Lemma Z3. The asymptotic expansions of k, T, 0, by are given
as follows:

2

K Tl [bl 1+ bisu+ (bl,g + b3, + ﬁ) % + O(u?’)} : (2.16)
:l [01 2 51,101,3 - 2b1.201,2
b]_ 1 2b%71
2c12(302 , — 2 3(b b 2
%1ﬂf mt(w&jww+2—%mﬁ—mWﬂ (2.17)
b171 b171 bl 1 2
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2 2
CoU c2,0(b1220 — b11C21) 4

9 9 bl 9 bl 3 4
COS@:_l—i—E?_ o u” + O(u"), (2.18)
-1 2(c10 — cC Bee 1 — 2¢ b1a(cag — ¢
by =——— ( (12 = cz0) ( 2= 2 bl 2 1’2)>u+0(u2)). (2.19)
by 1ulz b1 b1 1 bi 4

Proof of (218), (ZI4). Since s = u?/2 is an arc length parameter of 3(f), we have

dgo :dgl/du _ 1dg, —g d’gy :d91 _ 1dg,
ds ds/du  u du v ds> ds  udu

We thus obtain an asymptotic expansion of n, x, 7 as follows:

dg,/du ~bia _bLgc u?
S VAL +{ 0 Jur| “Mi—7 | S0, (2.20)
’dgl/du’ 0 €12 b1,1c1,3—2b1, 21 2 2
b1,1 T
d d 1 2\ u?
ool = el = (s (b 2) 5 00),
|90 90 90 _ |91 g g/ _ l [2 n biici3 — 2b12¢1 2
g g "2 u\g g/ 2 u b1 1 2b2

0 1 91 , 11

21 9(3b%, — 2 3(b1.5¢19 + by oc c u?
+( 1.2( g,z 12) ~ 3(bis 1,22 1,2€13) LG 2b11012) X O(u3)]. u

Set ® = (f, —uf,)/v. We have |®| = ¢, since

|fu = uwfol? = (fu = wfo, fu = wfo) = (fur fu) = 20(fu, fo) + 02 {fo, fo) = V70
Since (fu, fu — wfo) = (fu, fu) — u(fu, fo) = V*¢%,

<fu;fu_ufy> _ |U|gp
|fu”fu_ufv| (u2—|—1}2(p2)1/2

whenever u # 0. Thus we conclude that the three vectors

X ¢ X fu
al—hmﬁ a, = — lim —, 3= —lim f—:imfu /
v—0 u v—0 @ v—0 up v—0 (310%)

cos Z(fu, ®) =

+O(p) — 0 (v —0),

form an orthonormal frame along ¥(f). We also have

1 0 —b2 —b11b
(1,0 L1 o2 11013\ 3
a = f <u ) =0 + 6171 u + b172 3 + 5173 E + O(U4)
0 0 C1,2 €13
Since
0 —bil 3011012 w2
11}1&1] b = b1’1 + b172 U+ b173 + W E + O(u?’), (2 21)
0 C1,2 — Ca c13 — 2C21
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and by by ; > 0, we obtain

fu B va
a, =— ——(u,0)
‘fu - ufv’
0 bl’l 2 ?611722—62 0)? w2
=[-1]+ 0 u+ big+ = — +O0(v?), (2.22)
_4,27¢0 b T c13—2c
0 b1,1 —2%(02,0 - 01,2) - %
— 2c
0 0 C1,2 2,0
o 0—c 2b1,2(c1,2—¢c2,0) c2,1—c1, 2
ay=a;xap= [ 0 | —[20a2 )y | TEE S LD oW, (2.23)
> ’ 2 2
-1 0 (c2,0—c1,2)
b% 4
Proof of (218). A Direct computation based on (2220) and (2222) shows
2 2
Co0U c2.0(b12C20 — b11C
cosf = (n,az) = —1+ %— — 20(b1.2 Q’g L1 2’1)u3 + O(ut),
by, 2 by,
which completes the proof. O]

Set u = po +tP, v =1tQ where P = ™, p;(s)t""1/il, Q@ = £ qi(s)t'/i!. We take P, Q so
that

(fs(5,0), fils, 1)) =0, (fi(s,1), fuls, 1)) =t*.
When we set f(s,t) = > o Fu(s)tF/k! + O(m + 1), we have

k

fo(5,0) = Fo(s), fuls.t) = zml()t +o(m).

We obtain
fi(s) =0, fo(s) = aa(s), (fo(s), fir(s)) = 0. (2.24)
Since f, = axas + bras, we have ay = (f, az), by = (f;, as), and
<Cl2, f3> 0, %(an f4> l<f3’ f3> =0, %(an f5> + %<f37 f4> =0, (2'25)
< ( '<S +Z fz+12' fk z+1( )) —0 (k > 6) (226)

We obtain that az = 0, as/3+b3/4 =0, as/2 + bzby = 0, ans so on. Since (f;, a;) is degree one
in g, and a = (f}, az) is degree one in py_1, the conditions (2224) and (224), (228) determine
Pr—1, qr inductively.

Lemma 2.23. We have the following:

fo f(p07 )7

1 =p1.fu(®0,0) + ¢1.f5(p0,0),

fo =p2fu(P0,0) + ¢2fu(D0, 0) + DT fuu(P0, 0) + 2D1¢1 fun (P0, 0) + ¢ fou (P, 0),

f3 =p3fu(Po, 0) + g3fs (o, 0) + 3[p1p2 fuu(Po, 0) + (P1g2 + @1P2) fuv (P, 0) + q1G2.fuu(Po, 0)]
+ P} fuun (0, 0) + 39701 funw (0, 0) + 3163 fuve (D0, 0) + & fuve(p0, 0).
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Proof. Consequences of the following identity:

k
5 (o) + O0m) =h(s.8) = G ulov) + LA (w0)
= ) ) + 5 g5 ) +Om). O
=0 =0 :

Lemma 2.24. We have that p1 = |pop(po,0)|™/2, and q1 = —po|pow(po,0)| /2.
Proof. We show that pipy + ¢1 = 0 and p1¢1(po, 0) + 1 = 0. Since

0=f, = (p1fu+q1fo)(po,0) = lim [(Pl-i- )fu(z?o, )—%(w)@o,v)}

u—po,v—0 u

az] = (p1po + ¢1) a1,

= lim [(plu—l—ql)

u—po,v—0

we have pi1py + ¢1 = 0. By Lemma P23,

f2 :[pru + CIva +p%fuu + 2p1q1fuv + Q%fvv](p& O)

. v u— UJy
= lim |:<p2 + )fu - ﬂ(u) +p?fuu + 2p1Q1fuv + Q%fvv
u—po,v—0 v
:(p2p0 + Q2)Cll + [plfuu + 2p1q1fuv + Q%fvapOu O) (227)

By Lemma 223 below, we have

Juu(Po, 0) =a1 — po(po, 0)as + L(po, 0)as,
Juv(P0,0) = — ©(po, 0)as + M (po, 0)as,
fvv<p07 O) :N(p07 O)Clg,

and we conclude that

1= <f27 32> = —p%pOSO(Poao) - 229161180(17070) = —QO(po,O)pl(plpo + 2%) = _80(]90,0)19191. [

Let us consider a frame

A1:&> A2:—?, A3:A1XA2:qufU:V
u ® v

defined on u # 0. These are extensions of a;, as, and as. We remark that

A L0 0\ [f fu w 0 0\ [A;
A= = ol(n]. (n]=1 = o]|a
As 0 0 1 v v 0 0 1/ \A;
Since f, — uf, = v®, we have
L—uM =vl, M — uN =vM;,

where Ly = (®,,v) and M; = (®,,v). By (E02) and (Z13), we have that

hatgazeanl)y | (B2 4 g — g — a0+ O(2).

Ly =cy0—c12+ (202,1 —C13— b
(2.28)
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We observe that

(A1, Ay) :—<f7;fu> 1+2 @ +O0(p—2),
<A1,A2> _ {furfu)—ulfu, fv> _ _uw40*e?—u?40(p) _ _%0 + O(p _ 1)7

uvp uvPp -

Lemma 2.25. We have

fuu =[1 —vo(p +vpy)] A — [v(cpu — %) + (u + #)(g& + Ug0v>]A2 + LA,
fuv = - (SO + ngv)AZ + MA37
fvv :NAS

Proof. Since f, = uAy, f, = Ay + =% Ay, we obtain that

Juu =y fu + oy fo + Lv = (ul'y, +17,) AL + =217 Ay + L,
fuv :Fvau + Fva'U + Mv = (UPZu + FZ’L})AI + %FZUA2 + MU7
Joo =L fu + Ty fo + Nv = (ul'y, +17,) Ay + 2217 Ay + Nv.
We then conclude the lemma, by (E13). O

Proof of (ZZ19). The asymptotic expansion of b is obtained by (EZ28) and (214), because of
the following Proposition 2Z—28. O]

Proposition 2.26. by = —u~'/2073/2(2L; — uN, + u*N,)(po, 0).
Before the proof of this proposition, we need some preliminary

Lemma 2.27. We have

B, = — (9 + v9,) A1 — (pu + £ (0 + vp,)) Az + L1 As,
q)v (;DUAQ + <q)vaV>A37
A), = %*”‘P”)A ((1+”2¢2)(¢+vwv)+W)A2+§A3v

(A1)

(A2)u =(p +vp,) (A1 + %2 Ay) — 2L A3,
(A3)y = — MA; + (L1 — UM—@)A%
(A1)y =
(Az)y =
(As)

Al v MA + A37
A2 v A37
Agv——NAlJr( — 2T A,

u

Proof. The formula for ¢, and &, can be concluded as follows:

D, :(frufv)u _ furugurfv

v

=11 —velp + vp) A1 = (vpu = £) + (u+ 55) (0 + v,)) Az + LAy
- %[_(90 + 'USDU)A2 + MAg] — %Al — %Ag

= — 0P + v A1 — (pu + 2 (0 + v9u) As + L1 Ag,
¢’U :(fu_ufv) — Suv—ufovo _ fu—ufov — Sfuv—Fov _ @

v v v2 v v
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= - %AQ + <(I)1,, V>A3 + %AQ = —QDUAQ + <(I)v, V>A3.
We compute the differentials of A;, Ay as follows:
(A =(fufu)u = L2 = Ly
= L[ = vplp + vpn)Ar — (v(pu — £) + (u+ 22) (0 +vp,)) Az + LAs| — 14,
= - mlene) g, (14 28) (0 +up) + 22550 4, 1 LA,

u u

(= (2, ==t 22
=1[o(p + vp,) A1 + (0u + 2 (p + vpy)) Az — L1 As] — £2 Ay

=(p +vpy) A1 + 22 (p +vip,) Az — HL Ay,
(Ay)y =(Lr), = Lo = —tven Ay 4 M Ay

u

(AQ)U:—(Q)U:—%nL%@:%A2+MA3—%A2:—MA3,

N4
® ® ®

Settmg (Ag)u = Sl,lAl -+ SLQAQ, (Ag)v = 8271A1 -+ 82’2A2, we have

0=(A1, Ag)y = ((A1)u, A3) + (A1, (A3)u) = % + 51114+ 55) — 51277,
0 =(Az, As)y = ((As)u, As) + (A3, (Ag)y) = =2 — 51,12 + 515,
0=(Ay, Ay), = (A1), As) + (A1, (Ag),) = M 455, (1+ 28) — 55,22,
0 =(Ay, Ag), = ((A2)y, As) + (Az, (A3),) = =2 — 551 % + 55,

we have

<31,1 51,2) (—L/U L1/S0>< 1 U@/;@)
52,1 522 ~M/u Mi/p) \ve/u 1+ =%
C%Wm%w>«%m+e %Ww&
(= fu + 0Dy, ) (— fun + (L + %

(—M <—%fw+¢<bu,u>>

N (=% fp+ 2Py, v) )

and we obtain the result.

Thus we conclude that, on v = 0,

Fuww = — w(uN? + Py + (C2Y 920 —up,)as +u(Ly + 3N +ulN,)as,

®

fuow == (WN?* + @*)ay + (“B5 — ¢, ) a5 + (L1 + N +uN,)ag,
fvvu = uN2a1 + %aQ + Nua37

fvvv - N2a1 + MizNaZ + Nyas.
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Proof of Proposition Z2Z8. By Lemma 2723, we have

f3 =[psfu + @3 fo + 3(Pr02fuu + (P1G2 + @1P2) fuv + 162 fo0)] (R0, 0)
+ [pi)fuuu + 3p%q1fuuv + Splq%fuvv + q%fvvv](p& O)
= lim [(ps+%L)f, — vlul]

u—po,v—0 u v

N ( 3(p1pafuu + (102 + @1D2) fuv + ©1G2.fuv) ) (0.0)
+p?fuuu + 3p%¢]1fuuv + 3p1Q%fuvv + Q%fvvv ’

=(psu + g3)ar + [3(p1p2.fuu + (102 + ©1D2) fuw + 102 fov) (2.29)
+ pi’fuuu + 3p%qlfuuv + 3plq%fuvv + Q?fvvapO? 0)

We remark that

on {v =0}. We thus have

bs :<f3a a3> = 3N[P1P2P3 + (p1Q2 + Q1p2)po + C]1(12]
+ pipo(L1 4+ 3N + poNy,) + 3piqi(Ly + N + poN,) + 3p1gs Ny, + q?N’U|u:p0

=3N(p1po + ¢1)(P2po + q2) + (P1po + 3Q1)P%L1 + 329% (pipo + q1)N
+ p1(p3pd + 3popray + 3¢ Ny + GE N,

When ¢, = —p1pg, we have

bs = —2pipo(2L1 — poNu + Py Ny) (po, 0).

Since p; = |pow(po, 0)| /2, we obtain the result. O

A A quick review of surfaces in R?

Since a surface in R? is locally expressed as the image of a C*-map f : (R?,0) — (R30), it is
possible to investigate surfaces as a subject of singularity theory. We describe this idea briefly.
The first fundamental quantities F, F', G are defined by

E = <fu»fu>a F= <fu’fv>7 G: <f7”fv>'

The singular point of f is exactly defined by EG — F? = 0. A unit normal vector v is defined by
v = fuX fu/|fux fo| whenever the denominator is not zero. The second fundamental quantities
L, M, N are defined by

|fuu fu fv| |fuv fu fvl |fvv fu fv|
L= uwy = 7 . M = uv s = 7 _ 71 N = vV = T _ 75 -
R T A T N T
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A principal curvature x is a solution to

L —kE M—HF_O
M—kF N-—-kG|

If this equation defines two principal curvatures x; and ko, then the kernel fields of the matrix

L—rx;E M— kg F
(M — K,Z'F N — /ﬁ)iG
principal directions are also described by the solutions to

> represent the principal directions with respect to «;, ¢ = 1,2. The

E L dv?
F M —dudv|=0.
G N du?

A principal vector v; is a unit vector which represents the principal direction with respect
to k;. Integral curves of principal vectors are called curvature lines.

We say a point is v;-ridge if v;x; = 0 at this point. We say a point is v;-subparabolic if
v;k; = 0 at this point where j # 7.

Asymptotic directions are represented by the solutions to L du? +2M du dv + N dv? = 0.
Their integral curves are called by asymptotic lines.

The Gauss curvature K and the mean curvature H are defined by

LN — M? k1+ry EN+GL-2FM

K=rmr=po—pm H=""%5"="SGEc_m (A1)

A parabolic point is defined by K = 0 whenever EG — F? # 0 (i.e., f is nonsingular).
We consider Taylor expansion of f: f(u,v) = 377", hj(u);’—f + O(v™1). We have X(f) =
{v =0} if rank(hg h;) < 2 and |hgy x hy + h} X hy| # 0. The later condition also implies that

rank(hy h;) = 1. The normal vector v = % is continuously extendible on X(f) in this
case.
Since

LN = M2 |fuu fu follfon fu fol = fun fu fP
“EG—-F® (EG — F?)3/ ’

the notion of parabolic point is extended by p(u) = 0 on X(f) = {v = 0} when

fuu fu foll fou fu ol = Lfuo fu fol? = p(@)0]™ + O(o]™*Y),  p(u) # 0.

We have m = 1 in generic context, that is, |hy hy hi||hs h{ hi| — |h} hy hi|? is not identically
zero.

K

B Criteria of singularity types
B.1 Criteria of singularity types of singular surfaces

Assume that f : (R?,0) — (R3,0), (u,v) — f(u,v), has rank one singularity at 0 and an unit
normal vector is extended to v on the singular locus. Set A = det(f, f, v), ¥ = det(t nv v),
where t is a unit tanget vector, and 7 is a vector field whose restriction is null to the singular
locus. We have that (f,v) : (R*0) — (R® x R3 (0,(0))) is an embedding, if and only if

(0) 0.
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Lemma B.1. The singularity of f is

e cuspidal edge, if 1(0) # 0, nA(0) # 0;
o swallowtail, if 1(0) # 0, nA(0) = 0, n*X(0) # 0;

e cuspidal cross-cap, if ¥(0) = 0, nA(0) # 0, ¥'(0) # 0.
Proof. See [B, §1-2] and [2, §1]. O

Proof of Proposition T-d. In the notation in §1, n = §,. Setting f; = tv, A\ = |fs fi v| =
|fs tv v| =t x (unit),

1 0 0 b
P(s,0) =det(t,nv,v)(s,0) =10 0 1| = 53
0 —b3/2 0
So the criteria above shows the proposition. ]

Proof of Proposition Z13. In the notation in §2, we have n = 9, — u0,,

A= |fu fv V| = |fu/uufv_fu V| :U|A1 A, V| =,
n\ = (0, — ud,)v = u, and *\ = (9, — ud,)u = 1. So f is swallowtail if (f,v) : (R?0) —
(R® x R3,(0,(0))) is an embedding (i.e., cag # c12). O

B.2 Criteria of singularity types of differential equations

We consider the binary differential equation:

Ad:c2+2Bda:dy+Cdy2 =0, (B.1)
xiyj miyj
where A = Z ai7ji!_ﬂ + Z bl] ‘ ' + O( ) C = Z Ci’ji!_ﬂ + 0(3)
0<i+j<2 0<i+5<2 0<i+5<2

The solution curves of this equation is investigated by Davidov ([]).

Lemma B.2. We assume that apg = by = 0, co9 # 0. Then there is a homeomorphism of
(R%,0) which sends the solution curves of the equation (BI) to

e that of udu® + dv? = 0, folded reqular point, if a;o # 0;

o that of (Mu? + v)du® + dv? = 0 with A < 0 (resp. 0 < X\ < 1/16, 1/16 < \), folded
saddle (resp. folded node, folded focus), if a1 =0, ap1 # 0, A <0 (resp. 0 < X\ < 1/16,
1/16<)\) where A = 0,20600—&01b10—2b10)/2a01

W N =

folded regular point folded saddle  folded node folded focus

Proof (Sketch). First we remark that the gradient of the discriminant B?—AC' is —co0(ai0,a01)
at (x,y) = (0,0). This implies the discriminant defines a nonsingular curve near (0,0). Set

3

3
2 . o o

=3 ¢ jur’ +0(3), v = E piju't! +04), y=qo1v+ g ¢ ju v’ +O0(4).
i=0

i+j=1 i+j=2
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When a1 # 0, we can choose ¢;; (0 <i+j<2),p;; (1<i+75<3),¢; 2<i+j<3,
i # 0) so that

p(Adx® + 2B dx dy + C dy?) = (u+ O(3))du® + O(3)dudv + (1 + O(3))dv*.

We then see the contact form w = dv — pdu defines a regular curves on the surface S :
u+p*+ O(3) = 0 in (u,v,p)-space. The projection S — R? defines a 2-1 map on the set
defined by B* — AC > 0, and we conclude the proof in the case a; o # 0.

The case that a1 9 = 0 and ag; # 0 is similar. In this case, we can choose ¢; ; (0 <i+j < 2),
D20, P11, Gij (1 <i+7 <3,47#0) so that

p(Adz® + 2B dx dy + C dy?*) = (\® + v + O(3))du* + O(3)dudv + (1 + O(3))dv?.

On the surface A\u? +v + p*> + O(3) = 0 in (u, v, p)-space, we see the contact form w = dv — pdu
defines a saddle (resp. a node, a focus), if A < 0 (resp. 0 < A < 1/16, A > 1/16). O
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