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Abstract We investigate the local differential geometric invariants of cuspidal edge and
swallowtail from the view point of singularity theory. We introduce finite type invariants
of such singularities (see Remark 1.5 and Theorem 2.11) based on certain normal forms
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respect to Gauss curvatures and mean curvature.
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Typical examples of wave fronts are parallel surfaces of a regular surface in the 3-dimensional
Euclidean space, and it is well-known that such surfaces may have several singularities like
cuspidal edge and swallowtail. Singularity types of parallel surfaces are investigated in [3], and
the next interest is to investigate local differential geometries of such singularities. There are
several attempts to describe them. For instance, K. Saji, M.Umehara, and K.Yamada ([12])
defined the notion of singular curvature κs and normal curvature κν of cuspidal edge, and, later,
K. Saji and L.Martins ([7]) described all invariants up to order 3. It is clear that there are more
differential geometric invariants in higher order terms, and to describe all such invariants up to
finite order is one motivation of the paper.

Since Gauss curvature and mean curvature are often diverge at singularities and we are
interested in their asymptotic behaviors near a singularity in terms of our invariants. We are
going to describe their asymptotic behaviors of our local differential geometric invariants of
cuspidal edge near swallowtail.

An ideas of singularity theory is to reduce a given map-germ (R2, 0) → (R3, 0) to certain
normal form (see [9], for example). Their normal forms are obtained up to A-equivalence where
A is the group of coordinate changes of the source and the target. In that context, we reduce a
given map-germ to one of normal forms in the list there, composing certain coordinate changes
of the source and the target. For differential geometric purpose, general coordinate changes of
the target are too rough, since they do not preserve differential geometric properties, and we
should restrict the coordinate change of the target to the motion group. From this point, we
will consider the product group of coordinate change of the source with the motion group of the
target (the rotation group when we consider map-germs) and we introduce a normal form for
cuspidal edge (see (1.1)) and swallowtail (Theorem 2.4) by the equivalence relation defined by
this group. We believe that this is a powerful method to investigate singular surfaces, since this
unable us to describe all differential geometric properties in terms of them. The purpose of the
paper is to investigate them in a reasonably complete form for cuspidal edge and swallowtail.
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The paper is organized as follows. In §1, we investigate cuspidal edge as moving cusps
with introducing a normal form (1.1) with conditions (i), (ii), (iii) there. We describe the
first fundamental form and the second fundamental form, and conclude an asymptotic formula
(Theorem 1.9) of Gauss curvature, the mean curvature and thus the principal curvatures. We
also investigate the singularity of asymptotic lines at a non parabolic point (subsection 1.5)
and curvature lines (subsection 1.6) in a generic context. In §2, we investigate swallowtail with
introducing a normal form (Theorem 2.4). We describe the first fundamental form and the
second fundamental form in terms of this normal form, and conclude an asymptotic formula
(Theorem 2.20) of Gauss curvature, the mean curvature and the principal curvatures. We also
investigate the singularity of asymptotic lines (subsection 2.4) and curvature lines (subsection
2.5) in a generic context. Asymptotic behaviors of several invariants of cuspidal edge nearby
swallowtail is also investigated in subsection 2.7. In Appendix A, we quickly review several
basic notions of a surface in the 3-dimensional Euclidean space for convenience of reference. In
Appendix B, we review criteria of singularity types.

The author would like to thank Kentaro Saji, who organized an opportunity to talk about
this topic in June 2016, A.Honda, M.Umehara, and K.Yamada, who have informed the author
several application of computation in §1 to the construction of isomers of surfaces with cuspidal
edges ([5]) in March 2019, and the anonymous referee for several comments for the earlier version
of the paper. The author also thanks to JSPS (Grant-in-Aid for Scientific Research (C), no.
15K04867) and the Research Institute for Mathematical Sciences for their supports (a Joint
Usage/Research Center located in Kyoto University) for their support.
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Throughout the paper, we use the following notation

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),

which form a basis of the 3-dimensional Euclidean space R3. We sometimes (in §2) express
elements in R3 using column vectors to shorten the expressions.

By custom, one writes f(u, v) = O(g(u, v)), if and only if there exist positive numbers
δ and M such that |f(u, v)| ≤ M |g(u, v)| when |(u, v)| < δ. For shortness, one also writes
f(u, v) = O(p) when f(u, v) = O(|(u, v)|p).

1 Cuspidal edge

1.1 Cuspidal edge as moving cusps

Let γ : (R, 0) → (R3, 0), s 7→ γ(s), be a regular curve with arc length parameter s. Let
t, n, b denote its Frenet-Serre frame. We consider a map-germ f : (R2, 0) → (R3, 0) as a
singular surface with the following conditions: There is a sequence {fk : (R, 0) → (R3, 0), s 7→
fk(s)}k=1,2,... of C

∞-maps so that

(o) for any positive integer m we have

f(s, t) = γ(s) +
m∑
k=1

fk(s)
tk

k!
+O(tm+1), (1.1)

(i) the singular set Σ(f) = {t = 0}.
(ii) ⟨fk(s), t(s)⟩ = 0 for k = 1, 2, . . . , and
(iii) t2/2 is an arc length parameter of the section of the plane spanned by n and b, that is,

⟨ft(s, t), ft(s, t)⟩ = t2.

Remark that fk(s) = ∂kf
∂tk

|t=0, ⟨fs, fs⟩|t=0 = 1, ⟨fs(s, 0), ft(s, t)⟩ = 0, and ⟨ft, ft⟩ = t2. The
condition (ii) implies that t is a parameter of the singular curves which are sections of the
surface with the planes spanned by n(s) and b(s). If these curves are of multiplicity 2, we can
take parameter t with the condition (iii). We remark that

fs =t+
m−1∑
k=1

f′k
tk

k!
+O(tm), ft =

m−1∑
k=0

fk+1

tk

k!
+O(tm),

and fs|t=0 = t, ft|t=0 = f1(s). By the condition (iii), we have ⟨ft(s, 0), ft(s, 0)⟩ = 0, and
conclude that f1(s) = 0. We remark that η = ∂t represents a null vector on Σ(f), i.e., df(η) = 0
on Σ(f).

Throughout this section we consider the map f : (R2, 0) → (R3, 0) with the properties
above.

We here recall the notion of multiplicities of curves γ ([4]). We say that γ : (R, 0) → (R3, 0)
is of multiplicity m at t = 0 if there is a C∞-map γ̃ : (R, 0) → R3 with the following property:

γ(t) =
tm

m
γ̃(t), γ̃(0) ̸= 0.
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Remark 1.1. A typical singularity of a map with the conditions above is cuspidal edge, a map
f : (R2, 0) → (R3, 0) which is A-equivalent to the map represented by

(u, v) 7→ (u, v2, v3). (1.2)

Another example is cuspidal crosscap, a map which is A-equivalent to the map represented by

(u, v) 7→ (u, v2, uv3). (1.3)

Remark 1.2. S. Shiba and M.Umehara ([14]) has analyzed (2, 3) cusp (3/2-cusp, in their
terminology) in the plane R2 using the square root of an arc length parameter as a parameter
(they call it the half-arclength parameter). For a curve with multiplicity 2 in Rn, there exists a
parameter t so that t2/2 is an arc length parameter ([4, Theorem 1.1]).

When the curvature κof γ is not zero, we have the following Frenet-Serret formula for γ: t′

n′

b′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 t
n
b

 (1.4)

where ′ denote derivative by the arc length parameter s. Let us define θ (0 ≤ θ ≤ π) and bk by

cos θ = |t f2 b|, bk = |t f2 fk|. (1.5)

We use the orthnormal frame defined by a1 = t, a2 = f2, and a3 = t × f2. When we write
a2 = cos θn − sin θ b, and a3 = γ ′ × f2 = sin θn + cos θ b, we have cos θ = |t f2 b| = ⟨a3,b⟩,
and thus

n(s) = cos θa2(s) + sin θa3(s), b(s) = − sin θa2(s) + cos θa3(s), (1.6)

and

cos θ =⟨a3,b⟩ =
⟨fs × ft, fs × fss⟩
|fs × ft||fs × ftt|

∣∣∣∣
t=0

=
⟨fs, fs⟩⟨ft, fss⟩ − ⟨fs, ft⟩⟨fs, fss⟩

|fs × ft||fs × fss|

∣∣∣∣
t=0

.

Lemma 1.3. Assume that κ ̸= 0. We havea′
1

a′
2

a′
3

 =

 0 κ cos θ κ sin θ
−κ cos θ 0 τ − θ′

−κ sin θ θ′ − τ 0

a1

a2

a3

 .

Proof. Since

(
a2

a3

)
=

(
cos θ − sin θ
sin θ cos θ

)(
n
b

)
, we have(

a′
2

a′
3

)
=θ′

(
− sin θ − cos θ
cos θ − sin θ

)(
n
b

)
+

(
cos θ − sin θ
sin θ cos θ

)(
n′

b′

)

=− θ′
(

sin θ cos θ
− cos θ sin θ

)(
n
b

)
+

(
cos θ − sin θ
sin θ cos θ

)(
−κ 0 τ
0 −τ 0

) t
n
b


=θ′

(
0 −1
1 0

)(
a2

a3

)
+

(
−κ cos θ 0 τ
−κ sin θ −τ 0

)a1

a2

a3


=− κ

(
cos θ
sin θ

)
a1 + (τ − θ′)

(
0 1
−1 0

)(
a2

a3

)
.
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We can write fk as a linear combination of a2 and a3:

fk = aka2 + bka3, ak = ⟨fk,a2⟩, (1.7)

and we have f3 = |a1 a2 f3|a3 (i.e., a3 = 0). Remark that f = γ(s) + aa2 + ba3 where

a =a(s, t) =
t2

2
+

m∑
k=3

ak(s)
tk

k!
+O(tm+1),

b =b(s, t) =
m∑
k=3

bk(s)
tk

k!
+O(tm+1).

Lemma 1.4. The coefficient ak (k ≥ 3) are determined by the lower order terms inductively.
Precisely speaking, ak is determined by b2, b3, . . . , bk−1.

Proof. Under the condition (i) we have

t2 = ⟨ft, ft⟩ =
∑
k

tk
∑
i+j=k

⟨fi+1, fj+1⟩
i!j!

,

and we obtain that |f2| = 1, ⟨f2, f3⟩ = 0, 1
3
⟨f2, f4⟩+ 1

4
⟨f3, f3⟩ = 0,

1
24
⟨f2, f5⟩+ 1

12
⟨f3, f4⟩ = 0,

2⟨f2, fk⟩
(k − 1)!

+
k−2∑
i=2

⟨fi+1, fk−i+1⟩
i!(k − i)!

= 0 (k ≥ 6).

Since ak = ⟨f2, fk⟩, ak (k ≥ 3) are determined by b2, b3, . . . , bk−1.

Remark 1.5. It is clear that (dibk/ds
i)(0) (k ≥ 3) are invariants of the maps, under the

actions by orientation preserving diffeomorphisms of the source preserving the singular curves
with their orientation and rotations of R3.

Proposition 1.6. Let f : (R2, 0) → (R3, 0) be a map as in the first paragraph in this section.
We have that

• the singularity of f is cuspidal edge if b3(0) ̸= 0, and
• the singularity of f is cuspidal cross-cap if b3(0) = 0, b′3(0) ̸= 0,

where b3 is the invariant defined in (1.5)

Proof. See Appendix B.1.

1.2 The first order derivatives and the first fundamental form

Since

ft =ata2 + bta3 =
(
t+

m−1∑
k=3

ak+1
tk

k!
+O(tm)

)
a2 +

(∑
k≥2

bk+1
tk

k!
+O(tm)

)
a3, (1.8)

fs =a1 + asa2 + aa′
2 + bsa3 + ba3

′
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=a1 + asa2 + bsa3 + a(−κ cos θa1 + (τ − θ′)a3) + b(−κ sin θa1 + (θ′ − τ)a2)

=(1− κ(a cos θ + b sin θ))a1 + (as + b(θ′ − τ))a2 + (bs + a(τ − θ′))a3, (1.9)

we obtain the following expressions of the first fundamental quantities:

⟨fs, fs⟩ =(1− κ(a cos θ + b sin θ))2 + (as + b(θ′ − τ))2 + (bs + a(τ − θ′))2

=1− (κ cos θ)t2 − b3κ sin θ

3
t3 +O(t4),

⟨fs, ft⟩ =at(as + b(θ′ − τ)) + bt(bs + a(τ − θ′)) =
b3
2
(τ − θ′)

t3

6
+O(t4),

⟨ft, ft⟩ =a2t + b2t = t2.

The last relation is expressed by

t2 =(t+
∑
i≥3

ai+1t
i/i!)2 + (

∑
j≥2

bj+1t
j/j!)2, and thus

1 =(1 +
∑
i≥2

ai+2t
i/i!)2 + (

∑
j≥1

bj+2t
j/j!)2.

Comparing the coefficients of tk in both sides, we easily see that ak is determined by a3, . . . ,
ak−1, b3, . . . , bk−1 and bk. By induction, we conclude that ak is determined by b2, . . . , bk. We
also remark that

⟨fs, fs⟩⟨ft, ft⟩ − ⟨fs, ft⟩2 = t2(1− t2κ cos θ + · · · ).

1.3 Unit normal vector ν

Lemma 1.7. We have the following asymptotic expansion of the unit normal vector ν:

ν =
fs × ft

t

|fs × ft
t
|
=
[
(θ′ − τ)

t2

2
+O(t3)

]
a1 +

[
−b3

2
t+O(t3)

]
a2 +

[
1− b23

8
t2 +O(t3)

]
a3.

Proof. Since

fs ×
ft
t
= (a1 + a′

2

t2

2
+ · · · )× (a2 + f3

t

2
+ · · · ) = a3 − b3a2

t

2
+ (a′

2 × a2)
t2

2
+O(t3),

we have
|fs × (ft/t)|−1 = 1− 1

8
(b3t)

2 +O(t3).

Since
a′
2 × a2 = (−κ cos θ a1 + (τ − θ′)a3)× a2 = −κ cos θ a3 − (τ − θ′)a1,

we have
fs × (ft/t) = a3 − (b3/2)a2t− (κ cos θ a3 + (τ − θ′)a1)(t

2/2) +O(t3),

and we obtain the expression of ν.

Lemma 1.8. The map (f,ν) : (R2, 0) → (R3×R3, (0,ν(0))) is an embedding germ, if and only
if b3 ̸= 0.

Proof. This is a consequence of the following:

df(s, 0) =

(
a1

0

)
, dν(s, 0) =

(
−κ sin θ θ′ − τ 0

0 −b3/2 0

)a1

a2

a3

 .
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1.4 The second order derivatives and the second fundamental form

Let us first compute Christoffel symbols Γs
ss, Γ

t
ss, Γ

s
st, Γ

t
st, Γ

s
tt, Γ

t
tt defined by

fss =Γs
ssfs + Γt

ttft + Lν, fst =Γu
stfs + Γv

stft +Mν, ftt =Γu
ttfs + Γv

stft +Nν.

Since

⟨fs, fs⟩s =2⟨fss, fs⟩, ⟨fs, ft⟩s =⟨fss, ft⟩+ ⟨fst, ft⟩, ⟨fs, fs⟩t =2⟨fst, fs⟩,
⟨fs, fs⟩t =2⟨fst, fs⟩, ⟨fs, ft⟩t =⟨fst, ft⟩+ ⟨fs, ftt⟩, ⟨ft, ft⟩t =2⟨ftt, ft⟩,

we obtain

1

2

(
⟨fs, fs⟩ ⟨fs, ft⟩
⟨ft, fs⟩ ⟨ft, ft⟩

)(
Γs
ss Γs

st Γs
tt

Γt
ss Γt

st Γt
tt

)
=

(
⟨fss, fs⟩ ⟨fst, fs⟩ ⟨ftt, fs⟩
⟨fss, ft⟩ ⟨fst, ft⟩ ⟨ftt, ft⟩

)
=

(
⟨fs, fs⟩s ⟨fs, fs⟩t 2⟨fs, ft⟩t − ⟨ft, ft⟩s

2⟨fs, ft⟩s − ⟨fs, fs⟩t ⟨ft, ft⟩s ⟨ft, ft⟩t

)
=

1

2

(
⟨fs, fs⟩s ⟨fs, fs⟩t 2⟨fs, ft⟩t

2⟨fs, ft⟩s − ⟨fs, fs⟩t 0 t

)
,

and we obtain that

fss =O(t
2)a1 + [κ cos θ +O(t2)]a2 − [κ sin θ +O(t2)]a3, (1.10)

fst =[(−κ cos θ)t+O(t2)]a1 + [(τ − θ′)t+O(t2)]a2 + (τ − θ′)ta3, (1.11)

ftt =O(t
2)a1 + [1 +O(t2)]a2 + [b3t+O(t2)]a3. (1.12)

We thus obtain the following expressions of the second fundamental quantities:

⟨fss,ν⟩ =κ sin θ −
b3κ cos θ

2
t+O(t2),

⟨fst,ν⟩ =(τ − θ′)t+
b′3
2
t2 +O(t3),

⟨ftt,ν⟩ =
b3
2
t+

b4
3
t2 + (a5 −

a33
2
)
t3

8
+O(t4).

Theorem 1.9. We consider a map f : (R2, 0) → (R3, 0) as in the first paragraph of this section.
The asymptotic expansions of Gauss curvature K and the mean curvature H are expressed as
follows:

K =
1

t

(
b3κ sin θ

2
+
[
κ
(b4 sin θ

3
− b23 cos θ

4

)
− (τ − θ′)2

]
t+O(t2)

)
, and

H =
1

t

(
b3
4
+
(b4
6
+
κ sin θ

2

)
t+O(t2)

)
where κ and τ are the curvature and the torsion of γ defined in (1.4), and θ, bk are the invariants
defined in (1.5). If the singularity of f is cuspidal edge (i.e., b3 ̸= 0), then the principal
curvatures are given by

κ1 = κ sin θ − b23κ cos θ + 4(τ − θs)
2

2b3
t+O(t2), κ2 =

1

t

(b3
2
+
b4
3
t+

2(τ − θs)
2

b3
t2 +O(t3)

)
.
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Proof. Since

⟨fss,ν⟩⟨ftt,ν⟩ − ⟨fst,ν⟩2 =
b3κ sin θ

2
t+
(b4
3
κ sin θ − b23

4
κ cos θ − (τ − θ′)2

)
t2 +O(t3),

we obtain the expression for K. Since

⟨fs, fs⟩⟨ftt,ν⟩ − 2⟨fs, ft⟩⟨fst,ν⟩+ ⟨ft, ft⟩⟨fss,ν⟩ =
b3
2
t+
(b4
3
+ κ sin θ

)
t2 +O(t3),

we obtain the expression for H. The assertion for principal curvatures are obtained by solving
the equation λ2 − 2Hλ+K = 0.

We assume that b3 ̸= 0, that is, t 7→ f(s, t) define a (2, 3)-cusp. Then we have the following:

• If κ sin θ ̸= 0, then one side of the singular locus is hyperbolic (i.e., K < 0) and the other
side of the singular locus is elliptic (i.e., K > 0) nearthe singular locus.

• If κ ̸= 0 and θ ≡ 0 modπ, then K = −κb23/4− (τ − θ′)2 +O(2).

Remark 1.10. Several geometric invariants for cuspidal edge were already defined. Here is a
list for these invariants:

• normal curvature κν and singular curvature κs in [12],
• cuspidal curvature κc in [8], and
• cusp-directional torsion κt and edge inflectional curvature κi in [7].

We express them in terms of §1:

κs =|fs fss a3|t=0 = κ cos θ, κν =fss · ν|t=0 = κ sin θ, κc = |fs ftt fttt|t=0 = b3,

κt =|fs ftt fstt|t=0 = τ − θ′, κi =|fs ftt fsss|t=0 = κτ cos θ + κ′ sin θ.

To check them we need to look the mid terms closely, using (1.9), (1.8), (1.10), (1.11), (1.12),
and

fstt = −κ(cos θ + att sin θ)a1 + (θ′ − τ)a2 + (τ − θ′)a3, fttt = b3a3, on t = 0.

1.5 Asymptotic lines

The equation for asymptotic directions is defined by[
κ sin θ − b3κ cos θ

2
t+O(t2)

]
ds2 + 2[(τ − θ′)t+O(t2)]ds dt+

[b3
2
t+O(t2)

]
dt2 = 0 (1.13)

in the region defined by K = b3κ sin θ
t

+ · · · ≤ 0. Assume that the singularity of f is cuspidal
edge (i.e., b3 ̸= 0). We say that a point in cuspidal edge (i.e., a point in the locus defined by
t = 0) isparabolic if it is in the closure of the set of parabolic points in the regular locus.
Theparabolic cuspidal edge is defined by κ sin θ=0 in the generic context, that is, κ sin θ is not
identically zero (see the end of Appendix A). If κ sin θ > 0 (or < 0), the equation (1.13) defines
asymptotic directions in the region t ≤ 0 (or t ≥ 0), and there is a homeomorphism of (R2, 0)
which sends solution curves of (1.13) to that of folded regular point (see Appendex B.2). The
singularities of asymptotic curves near a parabolic cuspidal edge point (i.e., t = κ sin θ = 0) are
degenerate, and we do not consider them here.

8



1.6 Curvature lines

The equation for principal directions is∣∣∣∣∣∣
1− (κ cos θ)t2 +O(t3) κ sin θ − b3κ cos θ

2
t+O(t2) dt2

O(t3) (τ − θ′)t+O(t2) −ds dt
t2 b3

2
t+O(t2) ds2

∣∣∣∣∣∣ = 0.

This reduces to[
(τ − θ′) +

t

2
b′3 + · · ·

]
ds2 +

[b3
2
+ t
(b4
3
− κ sin θ

)
+ · · ·

]
ds dt−

[
t2(τ − θ′) + · · ·

]
dt2 = 0.

Assume that (f,ν) is an embedding (i.e., b3 ̸= 0). This defines two nonsingular transverse flows
at any point near t = 0. This fact is already recognized in [10, Lemma 1.3]. The author thanks
the referee to let him know this paper.

1.7 Ridge and subparabolic lines

By the equation for principal directions in the previous subsection, we obtain the following
expression of the principal vectors near cuspidal edge.

v1 =
(
1− 2(τ − θ′)2t2

b23
+O(t3)

)
∂s +

(2(θ′ − τ)

b3
+O(t)

)
∂t,

v2 =
(2(τ − θ′)t

2
+O(t2)

)
∂s +

(1
t
− 2(τ − θ′)2t

b23
+O(t2)

)
∂t.

So the ridge lines are defined by zero of

v1κ1 =
b23 (κ

′ sin θ + κτ cos θ) + 4(τ − θ′)3

b23
+O(t), or v2κ2 =− b3

2t3
+O(t0).

Similarly the subparabolic lines are defined by zero of

v2κ1 =− b23κ cos θ + 4(τ − θ′)2

2tb3
+O(t0), or v1κ2 =

τ − θ′

t2
+O(t−1).

1.8 Moving cusps along a straight line

Since Lemma 1.3 requires the assumption κ ̸= 0, we need to consider separately the case that
the curvature κ is identically zero. At this case γ(s) is a part of line, and a1 = t = γ′, a2 = f2,
a3 = t× f2 form an orthonormal frame. One can define κ̄ bya′

1

a′
2

a′
3

 =

0 0 0
0 0 κ̄
0 −κ̄ 0

a1

a2

a3

 .

For f(s, t) = γ(s)+ aa2+ ba3, a = t2/2− b23t
4/32+O(t5), b = b3t

3/6+ b4t
4/24+O(t4), we have

fs = a1 + (as − bκ̄)a2 + (bs+aκ̄)a3, ft = ata2 + bta3, and

⟨fs, fs⟩ = 1 + κ̄2t4/4 +O(t5), ⟨fs, ft⟩ = b3t/12 +O(t5), ⟨ft, ft⟩ = t2.

9



Since fs × ft = (asbt − atbs − (aat+bbt)κ̄)a1 − bta2 + ata3, we have

ν = (−κ̄(t2/2) +O(t3))a1 + (−b3t/2− b4(t
2/6) +O(t3))a2 + (1− b23(t

2/8) +O(t3))a3.

The vector η = ∂t represents a null vector along Σ(f). Since λ = det(fs ft ν) = t + O(t3),
ψ = det(t ην ν) = − b3

2
− b4

4
t + O(t2), the singularity of f at (0, 0) is cuspidal edge (resp.

a cuspidal crosscap) if b3(0) ̸= 0 (resp. b3(0) = 0 and b′3(0) ̸= 0). We also remark that
(f,ν) : (R2, 0) → R3 × R3 is an embedding if b3(0) ̸= 0.

Moreover, we have fss = (ass − 2bsκ̄− aκ̄2 − bκ̄′)a2 + (bss + κ̄(2as − bκ̄)+aκ̄′)a3, fst =
(ast − btκ̄)a2 + (bst+atκ̄)a3, ftt = atta2 + btta3, and

⟨fss,ν⟩ = κ̄′
t2

2
+O(t3), ⟨fst,ν⟩ = κ̄t+ b′3

t2

2
+O(t3), ⟨ftt,ν⟩ =

b3
2
t+

b4
3
t3 +O(t3).

We thus conclude the asymptotic expansions of Gauss curvature K and the mean curvature H
as follows:

K =− κ̄2 +
1

4
(b3κ̄

′ − 4b′3κ̄)t+O(t2), H =
1

t

(b3
4
+

1

6
b4t+O(t2)

)
.

Moreover, we obtain the asymptotic expansions of the principal curvatures:

1

t

(b3
2
+
b4
3
t+O(t2)

)
, t

(2κ̄2
b3

+
( κ̄′
2
− b′3κ̄

b3
+

4b4κ̄
2

3b23

)
t+O(t2)

)
.

The configuration of asymptotic lines is folded regular point if b3(0) ̸= 0 and κ̄′(0) ̸= 0. The
equation for principal directions is(

κ̄+
b′3
2
t+O(t2)

)
ds2 +

(b3
2
+
b4
3
t+O(t2)

)
ds dt+ (−κ̄t2 +O(t3))dt2 = 0,

which defines two transverse directions whenever b3(0) ̸= 0.

2 Swallowtails

2.1 Normal form theorem

Throughout this section, we consider a C∞-map

f : (R2, 0) → (R3, 0), (u1, v1) 7→ f(u1, v1),

with the following conditions:

(i) The singular locus Σ(f) = {v1 = 0}.
(ii) f(Σ(f)) is a curve of multiplicity 2 at u1 = 0 with an arc length parameter (u1)

2/2.
(iii) The Jacobi matrix of f |Σ(f) is of rank 1.

Remark 2.1. A typical singularity of a map with these conditions is swallowtail, a map f :
(R2, 0) → (R3, 0) which is A-quivalent to

(u, v) 7→ (3u4 + u2v, 4u3 + 2uv, v). (2.1)
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We are going to change f a normal form under the action of the product group of coordinate
change of the source with the rotation group as we explained in Introduction.

We can assume that there is a sequence {gk : (R, 0) → (R3, 0)), u1 7→ gk(u1)}k=0,1,2,... of
C∞-maps so that

f(u1, v1) =
m∑
k=0

gk(u1)
(v1)

k

k!
+O(v1

m+1) for any positive integer m. (2.2)

We express Taylor expansions of gk as follows.

gk(u1) =
m−k∑
i=2

ak,ibk,i
ck,i

 (u1)
i

i!
+O(um−k+1

1 ) (k = 1, 2, . . . ,m).

Lemma 2.2. Without loss of generality, we can assume the following condition:

(iv) g′
0(u1) = u1g1(u1) and |g1(u1)| = 1.

(v) g1 and g1 satisfy the following:

g1(u1) =

1 + a1,1u1
b1,1u1
0

+
m∑
i=2

a1,ib1,i
c1,i

 (u1)
i

i!
+O(um+1

1 ), (2.3)

g0(u1) =

 (u1)
2/2

b1,1(u1)
3/3

0

+

 −b21,1
b1,2 − 2a1,1b1,1

c1,2

 (u1)
4

8
+O

(
(u1)

5
)
. (2.4)

Proof. Since df(u1, 0) = (g′
0(u1),g1(u1)), the condition (i) implies g′

0(u1) and g1(u1) are linearly
dependent. By (ii), g′

0(0) = 0 and the condition (iii) implies g1(0) ̸= 0. So there is a function
g(u1) with g′

0(u1) = g1(u1)g(u1), g(0) = 0, g′(0) ̸= 0. Setting (u1, v1) = (u, v/|g1(u)|), we have

f(u1, v1) =
m∑
k=1

gk(u1)
(v1)

2

k!
+O(v1

m+1) =
m∑
k=1

gk(u)

|g1(u)|k
vk

k!
+O(vm+1).

So we can assume that |g1(u1)| = 1.
Rotating f(u1, v1) in R3, if necessary, we may assume (2.3). Since σ = (u1)

2/2 is an arc
length parameter of the curve u1 7→ g0(u1),

|g(u1)| = |g(u1)||g1(u1)| =
∣∣∣dg0

du1

∣∣∣ = ∣∣∣dg0

dσ

∣∣∣∣∣∣ dσ
du1

∣∣∣ = |u1|,

and we conclude that g(u1) = ±u1. We assume that g(u1) = u1. Then we have (2.4).

We can assume that b1,1 ≥ 0 changing the sign of u, if necessary.
Since the 1-jet of ν̃ = fu1 × fv1 is (0, 0, b1,1v1), ν = ν̃/|ν̃| is extendible continuously to

(u1, v1) = (0, 0), if b1,1 ̸= 0.

Remark 2.3. If b1,1 = 0, then the singularity of f cannot be swallowtail. In fact, when b1,1 = 0,
the coefficient of uv in the Taylor expansion of f is zero. But a map, which is swallowtail has
non zero uv term whenever its 1-jet is ve1.
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Theorem 2.4. Let f : (R2, 0) → (R3, 0) be a map as in the first paragraph of this section
with conditions (iv) and (v) of Lemma 2.2. If b1,1 ̸= 0, then there is a coordinate change,
(u, v) 7→ (u1, v1) = h(u, v) = (h1(u, v), h2(u, v)), of the source so that

(i) Σ(f ◦h) = {v = 0},
(ii) f(Σ(f ◦h)) is a curve of multiplicity 2 at u = 0 with an arc length parameter u2/2,
(iii) the Jacobi matrix of f ◦h|Σ(f◦h) is of rank 1, and
(iv) ⟨(f ◦h)u, (f ◦h)u⟩|v=0 = u2, ⟨(f ◦h)u, (f ◦h)v⟩ = u + O(p), and ⟨(f ◦h)v, (f ◦h)v⟩ = 1 + O(p)

for any positive integer p.

2.2 Proof of Theorem 2.4

The key of the proof of Theorem 2.4 is the following

Theorem 2.5. Let f : (R2, 0) → (R3, 0) be a map as in the first paragraph of this section with
conditions (iv) and (v) of Lemma 2.2. Let k be a positive integer and b1,1 > 0. There is a

coordinate system (uk, vk) so that u1 = uk + vkP̃k−1, v1 = vk(1 + Q̃k), where P̃k and Q̃k are
polynomials in (uk, vk) of degrees k − 1 and k, respectively, and

⟨fuk
, fuk

⟩ = u2k + b21,1v
2
k + vk O(2), ⟨fuk

, fvk⟩ = uk + vk O(k − 1), ⟨fvk , fvk⟩ = 1 +O(k).

For the coordinate system (uk, vk), we easily see the following conditions:

(i) Σ(f) = {vk = 0};
(ii) f(Σ(f)) is a curve of multiplicity 2 at uk = 0 with an arc length parameter (uk)

2/2;
(iii) The Jacobi matrix of f |Σ(f) is of rank 1.

Remark 2.6. If ⟨fu, fv⟩ = u and ⟨fv, fv⟩ = 1, then the curves v 7→ f(u, v) present geodesics,
since ⟨fvv, fv⟩ = 1

2
⟨fv, fv⟩v = 0, and ⟨fvv, fu⟩ = ⟨fu, fv⟩v − 1

2
⟨fv, fv⟩u = 0. This is a strong

evidence to expect the existence of a geodesic which reaches swallowtail singularity.

Corollary 2.7. Under the same assumption to the previous theorem, there exists a C∞-
coordinate system (u, v) so that the Taylor expansions of ⟨fu, fu⟩, ⟨fu, fv⟩ and ⟨fv, fv⟩ are given
by u2 + b21,1v

2 + vO(2), u, and 1, respectively.

Proof. Consequence of the previous theorem and Bott’s theorem ([11, §1.5]).

Lemma 2.8. Assume that b1,1 ̸= 0. If

p = − b2,0
2b1,1

, q0 = −a1,1 −
b2,0
2b1,1

, q1 = −a2,0
2

+
a1,1b2,0
2b1,1

−
b22,0
b21,1

, (2.5)

then j2f(0) =

u2

2
+ v

b1,1uv

c2,0
v2

2

 where u1 = u+ pv, v1 = v + v(q0u+ q1v).

Proof. Taylor expansion of f is

g0(u1) + g1(u1)v1 + g2(u1)
(v1)

2

2
+
∑
k≥3

gk(u1)
(v1)

k

k!
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=

(u1)
2/2
0
0

+ v1

1 + a1,1u1
b1,1u1
0

+
(v1)

2

2

a2,0b2,0
c2,0

+
∑
i+j≥3

ai,jbi,j
ci,j

 (u1)
j(v1)

i

i!j!

=

(u+ pv)2/2
0
0

+ v(1 + q0u+ q1v)

1 + a1,1(u+ pv)
b1,1(u+ pv)

0

+
v2(1 + q0u+ q1v)

2

2

a2,0b2,0
c2,0


+
∑
i+j≥3

ai,jbi,j
ci,j

 (u+ pv)j(v + v(q0u+ q1v))
i

i!j!

=

v + u2

2

0
0

+

a1,1 + p+ q0
b1,1
0

uv +
1

2

a2,0 + 2a1,1p+ p2 + 2q1
b2,0 + 2b1,1p

c2,0

 v2 +O(3).

By (2.5), we have

a1,1 + p+ q0 = 0, a2,0 + 2a1,1p+ p2 + 2q0 = 0, b2,0 + 2b1,1p = 0,

and we conclude the result.

By the lemma, we have

j2f(0) =

u2

2
+ v

b1,1uv

c2,0
v2

2

 , j1fu(0) =

 u
b1,1v
0

 , j1fv(0) =

 1
b1,1u
c2,0v

 ,

⟨fu, fu⟩ = u2 + b21,1v
2 + v O(2), ⟨fu, fv⟩ = u+ v O(1), ⟨fv, fv⟩ = 1 +O(2).

This shows Theorem 2.5 when k = 2.

Lemma 2.9. Set f(u, v) =
∑p

k=1 gk(u)v
k/k! + O(vp+1). Assume that g′

0(u) = g(u)g1(u). If
⟨fv, fv⟩ = 1 +O(uk)v +O(v2), then

⟨fu, fv⟩ = u+O(uk)v +O(v2).

Proof. Since fv =
∑p−1

k=0 gk+1(u)v
k/k! +O(vp),

⟨fv, fv⟩ =
⟨p−1∑

i=0

gi+1

vi

i!
,
p−1∑
j=0

gj+1

vj

j!

⟩
+O(vp) =

p−1∑
k=0

∑
i+j=k

⟨gi+1,gj+1⟩
vk

i!j!
+O(vp)

=⟨g1,g1⟩+ 2⟨g1,g2⟩v + (⟨g2,g2⟩+ ⟨g1,g3⟩)v2 +O(v3). (2.6)

Since ⟨g1,g1⟩ = 1, and ⟨g1,g2⟩ = O(uk), we have

⟨g′
1,g1⟩+ ⟨g′

0,g2⟩ =
1

2
⟨g1,g1⟩u + g(u)⟨g1,g2⟩ = O(uk)

Since u2 = ⟨g′
0,g

′
0⟩ = g(u)2⟨g1,g1⟩ = g(u)2, we may assume that g(u) = u, and

⟨g′
0,g1⟩ = g(u)⟨g1,g1⟩ = u.

Since fu =
∑p−1

k=0 g
′
k(u)

vk

k!
+O(vp),

⟨fu, fv⟩ =
⟨p−1∑

i=0

g′
i

vi

i!
,
p−1∑
j=0

gj+1

vj

j!

⟩
+O(vp) =

p−1∑
k=0

∑
i+j=k

⟨g′
i,gj+1⟩

vk

i!j!
+O(vp)

=⟨g′
0,g1⟩+ (⟨g′

0,g2⟩+ ⟨g′
1,g1⟩)v +O(v2) = u+O(uk)v +O(v2). (2.7)
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We are looking for a coordinate system (u, v) with

⟨fu, fu⟩ = u2 + b21,1v
2 + v O(2), ⟨fu, fv⟩ = u+O(k), ⟨fv, fv⟩ = 1 +O(k)

where k is a positive integer. We consider tuples Hi(u, v) of homogeneous polynomials of degree
i in (u, v) so that f(u, v) =

∑k
i=1Hi(u, v) +O(k + 1). We have H1(u, v) = ve1, and

H2(u, v) =

 u2/2
b1,1uv
c2,0v

2/2

 , H3(u, v) =

 0
b1,1
0

 u3

3
+

 −b21,1 u
2v
2

− c22,0
v3

6

b1,2
u2v
2

+ b∗2,1
uv2

2
+ b∗3,0

v3

6

c1,2
u2v
2

+ c∗2,1
uv2

2
+ c∗3,0

v3

6

 .

where b∗2,1 = c2,0
b1,1

(c2,0 − c1,2), c
∗
2,1 = c2,1 +

b2,0(c2,0−c1,2)

b1,1
, b∗3,0 = c2,0c2,1

b1,1
− b2,0c2,0(c2,0−c1,2)

b21,1
, c∗3,0 =

c3,0 − 3a2,0c2,0 − 3b2,0c2,1
2b1,1

+ 3b2,0(x1,2−c2,0)

4b21,1
. So b1,1 and c2,0 are invariants of order 2, and b1,2, c1,2,

c∗2,1, and c
∗
3,0 are invariants of order 3.

Lemma 2.10. Let (uk, vk) be a coordinate system so that

f = vke1 +
k+1∑
i=2

Hi(uk, vk) + b1,1v
2
kPk−2(uk, vk)e2 +O(k + 2), (2.8)

⟨fuk
, fuk

⟩ =u2k + b21,1v
2
k + vk O(2),

⟨fuk
, fvk⟩ =uk + vkAk−1 + b1,1v

2
kPk−2(uk, vk) + vk O(k),

⟨fvk , fvk⟩ =1 +Bk +O(k + 1),

where Ak−1 and Bk are homogeneous polynomials in (uk, vk) of degrees k−1 and k, respectively.
Setting uk = uk+1 + vk+1Pk−1(uk+1, vk+1), vk = vk+1(1 + Qk(uk+1, vk+1)) where Pk−1(u, v) and
Qk(u, v) are homogeneous polynomials of degrees k − 1 and k in (u, v), respectively, we have

f = vk+1e1 +
k+1∑
i=2

Hi(uk+1, vk+1) + b1,1v
2
k+1Pk−2(uk+1, vk+1)e2

+

uvPk−1(uk+1, vk+1) + vQk(uk+1, vk+1)
b1,1v

2Pk−1(uk+1, vk+1)
c2,0vQk(uk+1, vk+1)

+O(k + 2),

and, for a suitable choice of Pk−2 and Qk, we conclude that

⟨fuk+1
, fuk+1

⟩ =u2k+1 + b21,1v
2
k+1 + vk+1O(2),

⟨fuk+1
, fvk+1

⟩ =uk+1 + vk+1O(k),

⟨fvk+1
, fvk+1

⟩ =1 +O(k + 1).

Proof. Setting uk = u+ vPk−1, vk = v(1 +Qk), we have vke1 = v(1 +Qk)e1,

H2(uk, vk) =

 u2k/2
b1,1ukvk
c2,0v

2
k/2

 =

 u2/2
b1,1uv
c2,0v

2/2

+

 uvPk−1

b1,1v
2Pk−1

c2,0vQk

+O(k + 2).

Since

(u+ vPk−1)
ivj(1 +Qk)

j =
i∑

s=0

j∑
t=0

(
i

s

)(
j

t

)
ui−svsP s

k−1v
jQt

k,
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we have Hi(uk, vk) = Hi(u, v) +O(k + 2), i = 3, 4, . . . , k + 1. We thus have

f = ve1+

 u2/2
b1,1uv
c2,0v

2/2

+
k+1∑
i=3

Hi(u, v)+ b1,1v
2Pk−2(u, v)e2+

uvPk−1 + vQk

b1,1v
2Pk−1

c2,0vQk

+O(k+2). (2.9)

Then we obtain that

fu =

 u
b1,1v
0

+
k+1∑
i=3

(Hi)u + b1,1(v
2Pk−2)ue2 +

(uvPk−1 + vQk)u
b1,1v

2(Pk−1)u
c2,0(vQk)u

+O(k + 1),

fv =e1 +

 0
b1,1u
c2,0v

+
k+1∑
i=3

(Hi)v + b1,1(v
2Pk−2)ve2 +

(uvPk−1 + vQk)v
b1,1(v

2Pk−1)v
c2,0(vQk)v

+O(k + 1).

Remark that the homogeneous part of degree k of ⟨fv, fv⟩ is

2(uvPk−1 + vQk)v + 2b21,1u(v
2Pk−2)v +

k∑
i=2

⟨(Hi)v, (Hk+2−i)v⟩+ 2⟨(Hk+1)v, e1⟩. (2.10)

We choose a homogeneous polynomial Rk+1 of degree k + 1 so that

(Rk+1)v =
1

2

k∑
i=2

⟨(Hi)v, (Hk+2−i)v⟩, (Rk+1 + ⟨Hk+1, e1⟩)|v=0 = 0.

Since Rk+1+⟨Hk+1, e1⟩ is divisible by v, we can choose a homogeneous polynomial Qk of degree
k so that

uvPk−1 + vQk + b21,1uv
2Pk−2 +Rk+1 + ⟨Hk+1, e1⟩ = 0.

Then (2.10) is zero and the first component of (2.9) does not depend on Pk−1. Moreover, we
have that the degree k-part of ⟨fu, fv⟩ is equal to

k∑
i=2

⟨(Hi)u, (Hk+2−i)v⟩+ (uvPk−1 + vQk)u + ⟨(Hk+1)u, e1⟩+ b21,1kv
2Pk−2

=
k∑

i=2

⟨(Hi)u, (Hk+2−i)v⟩ − (Rk+1)u + b21,1v
2[kPk−2 − (uPk−2)u], (2.11)

since (uvPk−1 + vQk)u + b21,1(uv
2Pk−2)u + (Rk+1)u + ⟨(Hk+1)u, e1⟩ = 0. We finish the proof if

we choose Pk−2 so that (2.11) is zero. Setting Pk−2 =
∑k−2

i=0 piu
ivk−i−2, the equation becomes

k∑
i=2

⟨(Hi)u, (Hk+2−i)v⟩ − (Rk+1)u + b21,1

k−2∑
i=0

(k − i)piu
ivk−i = 0,

which is possible to solve inductively by Lemma 2.9.

2.3 Computation based on the normal form

From now on, we assume that the C∞-map

f : (R2, 0) → (R3, 0), (u, v) 7→ f(u, v),
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as in the first paragraph of this section with conditions (iv) and (v) of Lemma 2.2. Let

Hk(u, v) =
∑
i+j=k

ai,jbi,j
ci,j

 ujvi

i!j!
(k = 1, 2, . . . )

be homogeneous polynomials with f(u, v) = ∑p
k=1Hk(x, y) + O(p + 1) for any positive integer

p. Remark that

H1 =

v0
0

 , H2 =

 u2/2
b1,1uv
c2,0v

2/2

 , and H3 =

 0
b1,1
0

 u3

3
+

a1,2 u2v
2

+ a2,1
uv2

2
+ a3,0

v3

6

b1,2
u2v
2

+ b2,1
uv2

2
+ b3,0

v3

6

c1,2
u2v
2

+ c2,1
uv2

2
+ c3,0

v3

6

 .

We first see the following

Theorem 2.11. Let f be as in the previous paragraph. The coefficients ai,j, bi,j, ci,j are
invariants under the action of orientation preserving diffeomorphisms of the source preserving
the singular curves with their orientation.

Proof. Assume that there is another coordinate (u′, v′) with conditions (i)–(iv). We can assume
that u′ = u + vψ1(u, v) and v′ = v(1 + ψ2(u, v)), by (i) and (ii). It is enough to show that
both ψ1(u, v), ψ2(u, v) are flat functions, that is, all partial derivatives, including higher order’s,
are zero at 0. Let us assume the contrary. Then there exist ϕ1(u, v), ϕ2(u, v) homogeneous
polynomials (possibly zero) of degree k − 1, k, respectively, so that ϕ1 ̸= 0 or ϕ2 ̸= 0 and
ψ1 = ϕ1 +O(k), ψ2 = ϕ2 +O(k + 1). We can assume that k ≥ 2. Since

fu =(1 + (vψ1)u)fu′ + (vψ2)ufv′ , fv =(vψ1)vfu′ + (1 + (vψ2)v)fv′ ,

we obtain

⟨fu, fv⟩ =(1 + (vψ1)u)(vψ1)v⟨fu′ , fu′⟩+ [(1 + (vψ1)u)(1 + (vψ2)v) + (vψ2)u(vψ1)v]⟨fu′ , fv′⟩
+ (vψ2)u(1 + (vψ2)v)⟨fv′ , fv′⟩,

⟨fv, fv⟩ =(vψ1)
2
v⟨fu′ , fu′⟩+ 2(vψ1)v(1 + (vψ2)v)⟨fu′ , fv′⟩+ (1 + (vψ2)v)

2⟨fv′ , fv′⟩.

Comparing degree k parts of them, we obtain that

0 = (vϕ1)uu+ vϕ1 + (vϕ2)v, (vϕ1)vu+ (vϕ2)v = 0

and thus (vϕ1)vu = (vϕ1)uu+ vϕ1. When ϕ1 =
∑k−1

i=0 aiu
ivk−1−i, we have

k−1∑
i=0

(k − i)aiu
i+1vk−i−1 =

k−1∑
i=0

(i+ 1)aiu
ivk−i.

This implies ϕ1 = 0, and ϕ2 = 0 also.

Remark that we have b2,1 = c2,0(c2,0 − c1,2)/b1,1, b3,0 = −c2,0c2,1/(2b1,1). Actually, we have
the following

Proposition 2.12. The coefficients ai,j (i ≥ 1), bi,j (i ≥ 2) are determined by the lower order
terms and cp,i+j−p, 0 ≤ p ≤ i+j, inductively. Precisely speaking, a1,k, a2,k−1, . . . , ak+1,0, b2,k−2,
b3,k−3, . . . , bk,0 are determined by b1,1, b1,2, . . . , b1,k−1, and cp,q (p+ q ≤ k).
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Remark 2.13. This proposition implies that the coefficients in the first components of Taylor
expansions of gi(u) (i ≥ 1) and the coefficients in the second components of Taylor expan-
sions of gi(u) (i ≥ 2) are determined by the lower order terms. Remark that the orthogonal
projection of the singular curve g0(u) to y-axis (the principal normal line of g0(u) at u = 0)
determines b1,j and the orthogonal projection of f(u, v) to z-axis (the binormal line of g0(u) at
u = 0), determines ci,j. By Proposition 2.12, these informations determine all our finite order
invariants.

Proof of Proposition 2.12. By (2.4), we obtain

1 =⟨g1,g1⟩ = 1 + 2a1,1u+ (a1,2 + a21,1 + b21,1)u
2

+

p∑
k=3

(2a1,k
k!

+
k−2∑
i=2

a1,ia1,k−i + b1,ib1,k−i + c1,ic1,k−i

i!(k − i)!

)
uk +O(up+1),

and a1,k is determined by b1,1, b1,2, . . . , b1,k−1, c1,1, c1,2, . . . , c1,k−1. Since

fu =

 u
b1,1v
0

+

p∑
i=3

(Hi)u +O(p+ 1), fv =e1 +

 0
b1,1u
c2,0v

+

p∑
i=3

(Hi)v +O(p+ 1),

for k ≥ 2, the conditions imply that

0 =the degree k-part of ⟨fu, fv⟩ =
k∑

i=2

⟨(Hi)u, (Hk+2−i)v⟩+ ⟨(Hk+1)u, e1⟩

=

⟨ u
b1,1v
0

 , (Hk)v

⟩
+

k−1∑
i=3

⟨(Hi)u, (Hk+2−i)v⟩+

⟨
(Hk)u,

 0
b1,1u
c2,0v

⟩+ ⟨(Hk+1)u, e1⟩

=u⟨e1, (Hk)v⟩+
k−1∑
i=3

⟨(Hi)u, (Hk+2−i)v⟩+ c2,0v⟨(Hk)u, e3⟩+ b1,1k⟨e2, Hk⟩+ ⟨(Hk+1)u, e1⟩,

0 =the degree k-part of ⟨fv, fv⟩ =
k∑

i=2

⟨(Hi)v, (Hk+2−i)v⟩+ 2⟨(Hk+1)v, e1⟩

=
k−1∑
i=3

⟨(Hi)v, (Hk+2−i)v⟩+ 2

⟨ 0
b1,1u
c2,0v

 , (Hk)v

⟩
+ 2⟨(Hk+1)v, e1⟩

=
k−1∑
i=3

⟨(Hi)v, (Hk+2−i)v⟩+ 2c2,0v⟨e3, (Hk)v⟩+ 2b1,1u⟨e2, (Hk)v⟩+ 2⟨(Hk+1)v, e1⟩.

In other words, we have

b1,1k⟨e2, Hk⟩+ ⟨(Hk+1)u, e1⟩ =− u⟨e1, (Hk)v⟩ −
k−1∑
i=3

⟨(Hi)u, (Hk+2−i)v⟩ − c2,0v⟨(Hk)u, e3⟩,

b1,1u⟨e2, (Hk)v⟩+ ⟨(Hk+1)v, e1⟩ =− 1

2

k−1∑
i=3

⟨(Hi)v, (Hk+2−i)v⟩ − c2,0v⟨e3, (Hk)v⟩.

These equations can be written in the following forms:∑
i+j=k

(b1,1kbj,i + aj,i+1)
uivj

i!j!
=
∑
i+j=k

pj,i
uivj

i!j!
,
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∑
i+j=k

(b1,1bj+1,i−1 + aj+1,i)
uivj

i!j!
=
∑
i+j=k

qj,i
uivj

i!j!
.

Setting b = b1,1, we have

0 1 · · · 0 bk · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · bk
1 0 · · · 0 0 · · · 0

0 1
. . .

... b · · · 0
...

. . . . . . 0
...

. . .
...

0 · · · 0 1 0 · · · b





ak+1,0

ak,1
...

a2,k−1

bk,0
bk−1,1

...
b2,k−2


=



pk,0
pk−1,1

...
p2,k−2

qk,0
qk−1,1

...
q1,k−1


and this determines ak+1,0, ak,1, . . . a2,k−1, bk,0, bk−1,1, . . . , b2,k−2.

Remark 2.14. Let us assume that the coordinate (u, v) satisfies that

⟨fu, fu⟩ = u2 + vO(2), ⟨fu, fv⟩ = u+ vO(k − 1), ⟨fv, fv⟩ = 1 +O(k),

for any k. Since ⟨g1,g1⟩ = 1, we have ⟨fu, fv⟩ = u+ v2O(k) for any positive integer k by (2.7).
Since

⟨fu, fu⟩ = u2 + 2u⟨g1,g
′
1⟩v +O(v2) = u2 +O(v2),

we obtain ⟨fu, fu⟩ = u2 + v2φ2 where φ is a non-zero function whose Taylor expansion is the
same as that of |(fu × fv)/v|. The first few terms of Taylor expansion of φ is given by

φ = b1,1 + b1,2u+
c2,0(c2,0−c1,2)

2b1,1
v +

( c21,2−c22,0
b1,1

+ b1,3 + b31,1
)
u2

2

+
( b1,2c2,0(c1,2−c2,0)

b21,1
− 2c1,3c2,0+2c1,2c2,1−7c2,0c2,1

4b1,1

)
uv

+ (− c22,0(c1,2−c2,0)2

6b31,1
+ b1,2c2,0c2,1

6b21,1
+ 1

12
c22,1 − 1

6
c2,0c2,2 − 1

3
c1,2c3,0 +

1
2
c2,0c3,0 − 1

3
c22,0b1,1)

v2

2
+O(3).

Lemma 2.15. A unit normal ν is expressed by

ν =

 0
0
−1

+

 0
c1,2−c2,0

b1,1

0

u+

 c2,0
c2,1
2b1,1

0

 v +

 2c2,0 − c1,2
2b1,2(c2,0−c1,2)

b21,1
+ c1,3−2c2,1

b1,1
(c1,2−c2,0)2

b21,1

 u2

2

+

 c2,1/2
c2,0(c1,2−c2,0)2

2b31,1
− b1,2c2,1

2b21,1
+ c2,2−c3,0

2b1,1
+ c2,0b1,1

(c1,2−c2,0)c2,1
2b21,1

uv +


c3,0

c2,0c2,1(c1,2−c2,0)

2b31,1
+ c3,1

3b1,1
c22,1
4b21,1

+ c22,0

 v2

2
+O(3).

In particular, (f,ν) is an embedding, if and only if c2,0 ̸= c1,2.

Proof. Since

(fu × fv)/v = (0, 0,−b1,1) + (b1,1c2,0, (c1,2 − c2,0)u+ c2,1v/2,−b1,2u− c2,0(c2,0 − c1,2)v/2) +O(2),
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we obtain |(fu × fv)/v|−1/2 = 1
b1,1

− b1,2u+b2,1v/2

b21,1
+ O(2), and we conclude the formula up to

order 2. The second order part is obtained similarly. The last assertion is a consequence of the
following:

d(f,ν)(0, 0) =

(
0 0 0 0 c1,2−c2,0

b1,1
0

1 0 0 c2,0
c2,1
2b1,1

0

)
.

Thus the initial terms of the second fundamental quantities are given by

L =⟨fuu,ν⟩ = (c2,0 − c1,2)v − c2,0u
2 +

( b1,2(c1,2−c2,0)

b1,1
+ 3

2
c2,1 − c1,3

)
uv

+
( b1,2c2,1

2b1,1
− 1

2
c2,2 +

1
2
c3,0 − c2,0b

2
1,1

)
v2 +O(3), (2.12)

M =⟨fuv,ν⟩ = −c2,0u− c2,1v/2− c2,1u
2 −

( c2,0(c2,0−c1,2)2

2b21,1
+ c3,0+c2,2

2

)
uv

+
( c2,0c2,1(c2,0−c1,2)

4b21,1
− c3,1

3

)
v2 +O(3), (2.13)

N =⟨fvv,ν⟩ = −c2,0 − c2,1u− c3,0v −
( c2,0(c2,0−c1,2)2

b211
+ c2,2

)
u2

2

+
( c2,0c2,1(c2,0−c1,2)

2b211
− c3,1

)
uv −

( c2,0c22,1
8b21,1

+ 1
2
(c32,0 + c4,0)

)
v2 +O(3). (2.14)

We will use Christoffel symbols Γu
uu, Γ

v
uu, Γ

u
uv, Γ

v
uv, Γ

u
vv, Γ

v
vv defined by

fuu =Γu
uufu + Γv

uufv + Lν,

fuv =Γu
uvfu + Γv

uvfv +Mν, (2.15)

fvv =Γu
vvfu + Γv

vvfv +Nν.

Lemma 2.16. For any positive integer p, we have

(
Γu
uu Γu

uv Γu
vv

Γv
uu Γv

uv Γv
vv

)
=

1

vφ

 uφ+ uvφv + vφu φ+ vφv 0(
vφ− u2φ− u2vφv

−uvφu − v2φ3 − v2φ2φv

)
−u(φ+ vφv) 0

+O(p).

Proof. Since

2(u+ v2φφu) +O(p) = ⟨fu, fu⟩u = 2⟨fuu, fu⟩, 2(vφ2 + v2φφv) +O(p) = ⟨fu, fu⟩v = 2⟨fuv, fu⟩
1 +O(p) = ⟨fu, fv⟩u = ⟨fuu, fv⟩+ ⟨fu, fuv⟩, O(p) = ⟨fu, fv⟩v = ⟨fuv, fv⟩+ ⟨fu, fvv⟩,
O(p) = ⟨fv, fv⟩u = 2⟨fuv, fv⟩, O(p) = ⟨fv, fv⟩v = 2⟨fvv, fv⟩,

we obtain

⟨fuu, fu⟩ =u+ v2φφu +O(p), ⟨fuv, fu⟩ =v(φ2 + vφφv) +O(p), ⟨fvv, fu⟩ =O(p),
⟨fuu, fv⟩ =1− v(φ2 + vφφv) +O(p), ⟨fuv, fv⟩ =O(p), ⟨fvv, fv⟩ =O(p).

Since(
⟨fu, fu⟩ ⟨fu, fv⟩
⟨fu, fv⟩ ⟨fv, fv⟩

)(
Γu
uu Γu

uv Γu
vv

Γv
uu Γv

uv Γv
vv

)
=

1

2

(
⟨fu, fu⟩u ⟨fu, fu⟩v 2⟨fu, fv⟩v − ⟨fv, fv⟩u

2⟨fu, fv⟩u − ⟨fu, fu⟩v ⟨fv, fv⟩u ⟨fv, fv⟩v

)
,
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we have(
u2 + v2φ2 +O(p) u+O(p)

u+O(p) 1 +O(p)

)(
Γu
uu Γu

uv Γu
vv

Γv
uu Γv

uv Γv
vv

)
=

(
u+ v2φuφ vφ2 + v2φφv 0

1− vφ2 − v2φφv 0 0

)
+O(p),

and thus(
Γu
uu Γu

uv Γu
vv

Γv
uu Γv

uv Γv
vv

)
=

1

v2φ2

(
1 −u
−u u2 + v2φ2

)(
u+ v2φuφ vφ2 + v2φφv 0

1− vφ2 − v2φφv 0 0

)
+O(p)

=
1

vφ

 uφ+ uvφv + vφu φ+ vφv 0(
vφ− u2φ− u2vφv

−uvφu − v2φ3 − v3φ2φv

)
−u(φ+ vφv) 0

+O(p).

Lemma 2.17. The Gauss curvature K is given by

K = −2φv + vφvv

vφ
+O(p).

Proof. Since A = (⟨fu, fu⟩⟨fv, fv⟩ − ⟨fu, fv⟩2)1/2 = |v|φ+O(p), we have

K =
1

A

[( AΓu
vv

⟨fv, fv⟩

)
u
−
( AΓu

uv

⟨fv, fv⟩

)
v

]
=

1

|v|φ
[(0)u − (±(φ+ vφv))v] +O(p)

=− 2φv + vφvv

vφ
+O(p).

Remark 2.18. The formula in the previous lemma is equivalent to Gauss’s equations. Minardi-
Coddazi equations ⟨(fuu)v,ν⟩ = ⟨(fuv)u,ν⟩, ⟨(fuv)v,ν⟩ = ⟨(fvv)u,ν⟩ are stated as follows:

Lv −Mu +
L−2uM+(u2+φ2/v2)N

vφ
(φ+ vφv) +

Mφu+N(φ−uφu)
φ

= O(p),

Mv −Nu +
M−uN

vφ
(φ+ vφv) = O(p).

Proposition 2.19. The singularity of f is swallowtail, if

(f,ν) : (R2, 0) →
(
R3 × R3, (0,ν(0))

)
is an embedding (i.e., c2,0 ̸= c1,2).

Proof. See Appendix B.1.

Theorem 2.20. Let f : (R2, 0) → (R3, 0) be a map as in the first paragraph of this section with
conditions (iv) and (v) of Lemma 2.2. If the singularity of f is swallowtail (i.e., c2,0 ̸= c1,2),
then the asymptotic expansions of Gauss curvature K and the mean curvature H are given by

K =
1

v

[c2,0(c2,0 − c1,2)

b21,1
+
(3c2,0b1,2(c2,0 − c1,2)

b311
+
c2,0c1,3 + c2,1c1,2 − 7

2
c2,0c2,1

b21,1

)
u

−
(c22,0(c2,0 − c1,2)

2

b41,1
− b1,2c2,0c2,1

2b31,1
−
c22,1 − 2c2,0c2,2 − 4c1,2c3,0 + 6c2,0c3,0

4b21,1
+ c22,0

)
v +O(2)

]
,
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H =
1

v

[c2,0 − c1,2
2b21,1

+
(3b1,2(c1,2 − c2,0)

2b31,1
+

5c2,1 − 2c1,3
4b21,1

)
u

+
(−c2,0(c1,2 − c2,0)

2

2b41,1
+
b1,2c2,1
4b31,1

+
c3,0 − c2,2

4b21,1
− c2,0

)
v +O(2)

]
.

If the singularity of f is swallowtail (i.e., c2,0 ̸= c1,2), then the asymptotic expansions of the

principal curvatures are κ1 = −c2,0 − c2,1u+
(

c22,1
4(c1,2−c2,0)

− c3,0

)
v +O(2), and

κ2 =
1

v

[c1,2 − c2,0
b21,1

+
(3b1,2(c1.2 − c2,0)

b21,1
+

5c2,1 − 2c1,3
2b1,1

)
u+

(b1,2c2,1
2b31,1

− c2,2 − c3,0
2b21,1

− c2,0

)
v +O(2)

]
.

Proof. The assertions for K and H are followed by (A.1). The assertion for principal curvatures
is obtained by solving the equation λ2 − 2Hλ+K = 0.

Remark 2.21. In [8], L.Martins, K. Saji, M.Umehara, and K.Yamda define the limiting
normal curvature κν, the normalized cuspidal curvature µc, and the limiting singular curvature
τs for swallowtail. We have that

κν = −c2,0, µc =
c1,2 − c2,0

b21,1
, τs = 2b1,1.

The first equality is from (2.2) in [8]. We obtain the second comparing (4.6) in [8] with the
expression of H in Theorem 2.20. The last one is from the definition of τs (the last line of the
page 272 in [8]) and the fact that κs = κ cos θ combining with (2.16) and (2.18) below. The
referee kindly informed the author that a normal form theorem, similar to us, also appeared in
K. Saji’s recent paper ([13]). He described the configurations of asymptotic lines and curvature
lines, for example. We see below that one can recover such results in our computation.

2.4 Asymptotic lines

The equation of the asymptotic directions is

((c2,0 − c1,2)v +O(2))du2 − (2c2,0u− c2,1v +O(2))du dv − (c2,0 + c2,1u+ c3,0v +O(2))dv2 = 0.

We observe that the coefficient of u2 du2 is c2,0.
When the singularity of f is swallowtail (i.e., c1,2 − c2,0 ̸= 0), we conclude that there

is a homeomorphism of (R2, 0) which sends solution curves of the equation above to that of
folded saddle (resp. folded node, folded focus), if c2,0(3c2,0 + c1,2) > 0, (resp. 1

8
(c2,0 − c1,2)

2 <
c2,0(3c2,0 + c1,2) < 0, c2,0(3c2,0 + c1,2) <

1
8
(c2,0 − c1,2)

2). Use Lemma B.2 in subsection B.2, to
show this assertion.

2.5 Curvature lines

Since the equation of the principal directions is∣∣∣∣∣∣
u2 + v2φ2 L dv2

u M −du dv
1 N du2

∣∣∣∣∣∣ = 0,

we have
v
[
(O(1))du2 + (c1,2 − c2,0 +O(1))du dv +

(c2,1
2

+O(1)
)
dv2
]
= 0.

It defines two transvese directions in the source in the region v ̸= 0 and it extends on v = 0 as
two transvese directions, when the singularity of f is swallowtail (i.e., c1,2 − c2,0 ̸= 0).
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2.6 Ridge and subparabolic lines

We show here computational experiences. Since principal vectors, on v ̸= 0, are represented by

v1 =
( c2,1
2c2,0 − c1,2

+O(1)
)
∂u +

(
1− c2,1u

2(c2,0 − c1,2)
+O(2)

)
∂v

v2 =
( 1

b1,1v
+O(1)

)
∂u +

(
− u

b1,1v
+O(2)

)
∂v,

we obtain

v1κ1 =
3

4

c22,1
c1,2 − c2,0

− c3,0 +O(1),

v2κ1 =
1

v

[
−c2,1
b1,1

+O(1)

]
,

v1κ2 =
1

v2

[
c1,2 − c2,0

b21,1
+O(1)

]
,

v2κ2 =
1

v3

[
1

b31,1

(
(c2,0 − c1,2)u−

[
(c1,3 − 5

2
c2,1) +

3b1,2(c2,0 − c1,2)

b41,1

]
v
)
+O(1)

]
.

Thus we have the following:

• A v1-ridge line is arriving at swallowtail, only if 3
4

c22,1
c1,2−c2,0

= c3,0.

• A v2-subparabolic line is arriving at swallowtail, only if c2,1 = 0.
• No v1-subparabolic line is arriving at swallowtail.
• Exactly one v2-ridge line is arriving at swallowtail.

2.7 Cuspidal edge nearby swallowtail

Suppose that there is a coordinate (u, v) with

⟨fu, fu⟩ = u2 + v2φ2 +O(p), ⟨fu, fv⟩ = u+O(p), ⟨fv, fv⟩ = 1 +O(p),

for any p. The goal of this sebsection is to obtain asymptotic expansions of differential geo-
metric invariants of cuspidal edge. They are functions on Σ(f) \ {(0, 0)} near (0, 0), that is,
as meromorphic functions in u. Here u is a parameter of the singular curve Σ(f) so that u2/2
is an arc length parameter of Σ(f). The statements of asymptotic expansions of differential
geometric invariants of cuspidal edge, defined in (1.4) and (1.5), are as follows.

Theorem 2.22. Let f : (R2, 0) → (R3, 0) be a map as in the first paragraph of this section
with conditions (iv) and (v) of Lemma 2.2. The asymptotic expansions of κ, τ , θ, b3 are given
as follows:

κ =
1

|u|

[
b1,1 + b1,2u+

(
b1,3 + b31,1 +

c21,2
b1,1

)u2
2

+O(u3)
]
, (2.16)

τ =
1

u

[c1,2
b1,1

+
b1,1c1,3 − 2b1.2c1,2

2b21,1
u

+
(2c1,2(3b21,2 − c21,2)

b31,1
− 3(b1,3c1,2 + b1,2c1,3)

b21,1
+
c1,4
b1,1

− 2b1,1c1,2

)u2
2

+O(u3)
]
, (2.17)
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cos θ =− 1 +
c22,0
b21,1

u2

2
− c2,0(b1,2c2,0 − b1,1c2,1)

b31,1
u3 +O(u4), (2.18)

b3 =
−1

|b1,1u|
1
2

(
2(c1,2 − c2,0)

b1,1
+
(5c2,1 − 2c1,3

b1,1
+
b1,2(c2,0 − c1,2)

b21,1

)
u+O(u2)

)
. (2.19)

Proof of (2.16), (2.17). Since s = u2/2 is an arc length parameter of Σ(f), we have

dg0

ds
=
dg1/du

ds/du
=

1

u

dg0

du
= g1,

d2g0

ds2
=
dg1

ds
=

1

u

dg1

du
.

We thus obtain an asymptotic expansion of n, κ, τ as follows:

n =
dg1/du

|dg1/du|
=

0
1
0

+

−b1,1
0
c1,2
b1,1

u+


−b1,3

−b21,1 −
c21,2
b21,1

b1,1c1,3−2b1,2c1,2
b21,1

 u2

2
+O(u3), (2.20)

κ =
∣∣∣dg1

ds

∣∣∣ = 1

|u|

∣∣∣dg1

du

∣∣∣ = 1

|u|

(
b1,1 + b1,2u+

(
b1,3 + b31,1 +

c21,2
b1,1

)u2
2

+O(u3)
)
,

τ =
|g′

0 g′′
0 g′′′

0 |
|g′

0 g′′
0|2

=
|g1 g′

1 g′′
1|

u|g1 g′
1|2

=
1

u

[c1,2
b1,1

+
b1,1c1,3 − 2b1.2c1,2

2b21,1
u

+
(2c1,2(3b21,2 − c21,2)

b31,1
− 3(b1,3c1,2 + b1,2c1,3)

b21,1
+
c1,4
b1,1

− 2b1,1c1,2

)u2
2

+O(u3)
]
.

Set Φ = (fu − ufv)/v. We have |Φ| = φ, since

|fu − ufv|2 = ⟨fu − ufv, fu − ufv⟩ = ⟨fu, fu⟩ − 2u⟨fu, fv⟩+ u2⟨fv, fv⟩ = v2φ2.

Since ⟨fu, fu − ufv⟩ = ⟨fu, fu⟩ − u⟨fu, fv⟩ = v2φ2,

cos∠(fu,Φ) =
⟨fu, fu − ufv⟩
|fu||fu − ufv|

=
|v|φ

(u2 + v2φ2)1/2
+O(p) → 0 (v → 0),

whenever u ̸= 0. Thus we conclude that the three vectors

a1 = lim
v→0

fu
u
, a2 = − lim

v→0

Φ

φ
, a3 = − lim

v→0

fu × Φ

uφ
= lim

v→0

fu × fv
vφ

form an orthonormal frame along Σ(f). We also have

a1 =
fu(u, 0)

u
=

1
0
0

+

 0
b1,1
0

u+

−b21,1
b1,2
c1,2

 u2

2
+

−b1,1b1,3
b1,3
c1,3

 u3

6
+O(u4).

Since

lim
v→0

Φ =

 0
b1,1
0

+

 −b21,1
b1,2

c1,2 − c2,0

u+

 3b1,1b1,2
b1,3 +

2(c1,2−c2,0)c2,0
b1,1

c1,3 − 2c2,1

 u2

2
+O(u3), (2.21)
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and by b1,1 > 0, we obtain

a2 =− fu − ufv
|fu − ufv|

(u, 0)

=

 0
−1
0

+

 b1,1
0

− c1,2−c2,0
b1,1

u+

 b1,2

b21,1 +
(c1,2−c2,0)2

b21,1

−2 b1,2
b21,1

(c2,0 − c1,2)− c1,3−2c2,1
b21,1

 u2

2
+O(u3), (2.22)

a3 =a1 × a2 =

 0
0
−1

−

 0
c2,0−c1,2

b1,1

0

u−

 c1,2 − 2c2,0
2b1,2(c1,2−c2,0)

b21,1
+ c2,1−c1,3

b1,1
(c2,0−c1,2)2

b21,1

 u2

2
+O(u3). (2.23)

Proof of (2.18). A Direct computation based on (2.20) and (2.22) shows

cos θ = ⟨n,a2⟩ = −1 +
c22,0
b21,1

u2

2
− c2,0(b1,2c2,0 − b1,1c2,1)

b31,1
u3 +O(u4),

which completes the proof.

Set u = p0 + tP , v = tQ where P = ∑m
i=1 pi(s)t

i−1/i!, Q = ∑m
i=0 qi(s)t

i/i!. We take P , Q so
that

⟨fs(s, 0), ft(s, t)⟩ = 0, ⟨ft(s, t), ft(s, t)⟩ = t2.

When we set f(s, t) =
∑m

k=0 fk(s)t
k/k! +O(m+ 1), we have

fs(s, 0) = f′0(s), ft(s, t) =
m−1∑
k=0

fk+1(s)
tk

k!
+O(tm).

We obtain
f1(s) = 0, f2(s) = a2(s), ⟨f′0(s), fk(s)⟩ = 0. (2.24)

Since fk = aka2 + bka3, we have ak = ⟨fk,a2⟩, bk = ⟨fk,a3⟩, and

⟨a2, f3⟩ = 0, 1
3
⟨a2, f4⟩+ 1

4
⟨f3, f3⟩ = 0, 1

12
⟨a2, f5⟩+ 1

6
⟨f3, f4⟩ = 0, (2.25)

2⟨a2(s), fk(s)⟩
(k − 1)!

+
k−2∑
i=2

⟨fi+1(s), fk−i+1(s)⟩
i!(k − i)!

= 0 (k ≥ 6). (2.26)

We obtain that a3 = 0, a4/3+ b23/4 = 0, a5/2+ b3b4 = 0, ans so on. Since ⟨fk,a1⟩ is degree one
in qk and ak = ⟨fk,a2⟩ is degree one in pk−1, the conditions (2.24) and (2.25), (2.26) determine
pk−1, qk inductively.

Lemma 2.23. We have the following:

f0 =f(p0, 0),

f1 =p1fu(p0, 0) + q1fv(p0, 0),

f2 =p2fu(p0, 0) + q2fv(p0, 0) + p21fuu(p0, 0) + 2p1q1fuv(p0, 0) + q21fvv(p0, 0),

f3 =p3fu(p0, 0) + q3fv(p0, 0) + 3[p1p2fuu(p0, 0) + (p1q2 + q1p2)fuv(p0, 0) + q1q2fvv(p0, 0)]

+ p31fuuu(p0, 0) + 3p21q1fuuv(p0, 0) + 3p1q
2
1fuvv(p0, 0) + q31fvvv(p0, 0).
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Proof. Consequences of the following identity:

m−1∑
k=0

fk+1(s)
tk

k!
+O(m) =ft(s, t) =

∂u

∂t
fu(u, v) +

∂v

∂t
fv(u, v)

=
m−1∑
i=0

pi+1(s)
ti

i!
fu(u, v) +

m−1∑
i=0

qi+1(s)
ti

i!
fv(u, v) +O(m).

Lemma 2.24. We have that p1 = |p0φ(p0, 0)|−1/2, and q1 = −p0|p0φ(p0, 0)|−1/2.

Proof. We show that p1p0 + q1 = 0 and p1q1φ(p0, 0) + 1 = 0. Since

0 =f1 = (p1fu + q1fv)(p0, 0) = lim
u→p0,v→0

[(
p1 +

q1
u

)
fu(p0, v)−

vq1
u

(fu − ufv
v

)
(p0, v)

]
= lim

u→p0,v→0

[
(p1u+ q1)a1 +

vq1φ

u
a2

]
= (p1p0 + q1)a1,

we have p1p0 + q1 = 0. By Lemma 2.23,

f2 =[p2fu + q2fv + p21fuu + 2p1q1fuv + q21fvv](p0, 0)

= lim
u→p0,v→0

[(
p2 +

q2
u

)
fu −

vq2
u

(fu − ufv
v

)
+ p21fuu + 2p1q1fuv + q21fvv

]
=(p2p0 + q2)a1 + [p21fuu + 2p1q1fuv + q21fvv](p0, 0). (2.27)

By Lemma 2.25 below, we have

fuu(p0, 0) =a1 − p0φ(p0, 0)a2 + L(p0, 0)a3,

fuv(p0, 0) =− φ(p0, 0)a2 +M(p0, 0)a3,

fvv(p0, 0) =N(p0, 0)a3,

and we conclude that

1 = ⟨f2,a2⟩ = −p21p0φ(p0, 0)− 2p1q1φ(p0, 0) = −φ(p0, 0)p1(p1p0 + 2q1) = −φ(p0, 0)p1q1.

Let us consider a frame

A1 =
fu
u
, A2 = −Φ

φ
, A3 = A1 ×A2 =

fu × fv
vφ

= ν

defined on u ̸= 0. These are extensions of a1, a2, and a3. We remark thatA1

A2

A3

 =

 1
u

0 0
− 1

vφ
u
vφ

0

0 0 1

fufv
ν

 ,

fufv
ν

 =

u 0 0
1 vφ

u
0

0 0 1

A1

A2

A3

 .

Since fu − ufv = vΦ, we have

L− uM =vL1, M − uN =vM1,

where L1 = ⟨Φu,ν⟩ and M1 = ⟨Φv,ν⟩. By (2.12) and (2.13), we have that

L1 =c2,0 − c1,2 +
(
2c2,1 − c1,3 − b1,2(c1,2−c2,0)

b1,1

)
u+

( b1,2c2,1
b1,1

+ c3,0 − c2,2 − c2,0b
2
1,1

)
v +O(2).

(2.28)
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We observe that

⟨A1,A1⟩ = ⟨fu,fu⟩
u2 = 1 + v2φ2

u2 +O(p− 2),

⟨A1,A2⟩ =− ⟨fu,fu⟩−u⟨fu,fv⟩
uvφ

= −u2+v2φ2−u2+O(p)
uvφ

= −vφ
u
+O(p− 1),

⟨A2,A2⟩ = |Φ|2
φ2 = 1.

Lemma 2.25. We have

fuu =[1− vφ(φ+ vφv)]A1 −
[
v
(
φu − φ

u

)
+
(
u+ v2φ2

u

)
(φ+ vφv)

]
A2 + LA3,

fuv =− (φ+ vφv)A2 +MA3,

fvv =NA3.

Proof. Since fu = uA1, fv = A1 +
vφ
u
A2, we obtain that

fuu =Γu
uufu + Γv

uufv + Lν = (uΓu
uu + Γv

uu)A1 +
vφ
u
Γv
uuA2 + Lν,

fuv =Γu
uvfu + Γv

uvfv +Mν = (uΓu
uu + Γv

uv)A1 +
vφ
u
Γv
uvA2 +Mν,

fvv =Γu
vvfu + Γv

vvfv +Nν = (uΓu
vv + Γv

vv)A1 +
vφ
u
Γv
vvA2 +Nν.

We then conclude the lemma, by (2.15).

Proof of (2.19). The asymptotic expansion of b3 is obtained by (2.28) and (2.14), because of
the following Proposition 2.26.

Proposition 2.26. b3 = −u−1/2φ−3/2(2L1 − uNu + u2Nv)(p0, 0).

Before the proof of this proposition, we need some preliminary

Lemma 2.27. We have

Φu =− φ(φ+ vφv)A1 − (φu +
vφ2

u
(φ+ vφv))A2 + L1A3,

Φv =− φvA2 + ⟨Φv,ν⟩A3,

(A1)u =− vφ(φ+vφv)
u

A1 −
((
1 + v2φ2

u2

)
(φ+ vφv) +

v(uφu−φ)
u2

)
A2 +

L
u
A3,

(A2)u =(φ+ vφv)(A1 +
vφ
u
A2)− L1

φ
A3,

(A3)u =−MA1 +
(
L1

φ
− vMφ

u

)
A2,

(A1)v =− φ+vφv

u
A2 +

M
u
A3,

(A2)v =− M1

φ
A3,

(A3)v =−NA1 +
(
M1

φ
− vNφ

u

)
A2.

Proof. The formula for Φu and Φv can be concluded as follows:

Φu =
(
fu−ufv

v

)
u
= fuu−ufuv−fv

v

= 1
v

[
(1− vφ(φ+ vφv))A1 −

(
v(φu − φ

u

)
+
(
u+ v2φ2

u

)
(φ+ vφv)

)
A2 + LA3

]
− u

v
[−(φ+ vφv)A2 +MA3]− 1

v
A1 − φ

u
A2

=− φ(φ+ vφv)A1 − (φu +
vφ2

u
(φ+ vφv))A2 + L1A3,

Φv =
(
fu−ufv

v

)
v
= fuv−ufvv

v
− fu−ufv

v2
= fuv−fvv

v
− Φ

v
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=− φ+vφv

v
A2 + ⟨Φv, ν⟩A3 +

φ
v
A2 = −φvA2 + ⟨Φv,ν⟩A3.

We compute the differentials of A1, A2 as follows:

(A1)u =(fu/u)u = fuu
u

− fu
u2

= 1
u

[
(1− vφ(φ+ vφv))A1 −

(
v
(
φu − φ

u

)
+
(
u+ v2φ2

u

)
(φ+ vφv)

)
A2 + LA3

]
− 1

u
A1

=− vφ(φ+vφv)
u

A1 −
((
1 + v2φ2

u2

)
(φ+ vφv) +

v(uφu−φ)
u2

)
A2 +

L
u
A3,

(A2)u =−
(
Φ
φ

)
u
= −Φu

φ
+ φuΦ

φ2

= 1
φ

[
φ(φ+ vφv)A1 +

(
φu +

vφ2

u
(φ+ vφv)

)
A2 − L1A3

]
− φu

φ
A2

=(φ+ vφv)A1 +
vφ
u
(φ+ vφv)A2 − L1

φ
A3,

(A1)v =(fu
u
)v =

fuv
u

= −φ+vφv

u
A2 +

M
u
A3,

(A2)v =− (Φ
φ
)v = −Φv

φ
+ φv

φ2Φ = φv

φ
A2 +

⟨Φv ,ν⟩
φ

A3 − φv

φ
A2 = − ⟨Φv ,ν⟩

φ
A3.

Setting (A3)u = s1,1A1 + s1,2A2, (A3)v = s2,1A1 + s2,2A2, we have

0 =⟨A1,A3⟩u = ⟨(A1)u,A3⟩+ ⟨A1, (A3)u⟩ = L
u
+ s1,1(1 +

v2φ2

u2 )− s1,2
vφ
u
,

0 =⟨A2,A3⟩u = ⟨(A2)u,A3⟩+ ⟨A2, (A3)u⟩ = −L1

φ
− s1,1

vφ
u
+ s1,2,

0 =⟨A1,A3⟩v = ⟨(A1)v,A3⟩+ ⟨A1, (A3)v⟩ = M
u
+ s2,1(1 +

v2φ2

u2 )− s2,2
vφ
u
,

0 =⟨A2,A3⟩v = ⟨(A2)v,A3⟩+ ⟨A2, (A3)v⟩ = −M1

φ
− s2,1

vφ
u
+ s2,2.

Solving the equation(
s1,1 s1,2
s2,1 s2,2

)(
1 + v2φ2

u2 −vφ/u
−vφ/u 1

)
=

(
−L/u L1/φ
−M/u M1/φ

)
,

we have (
s1,1 s1,2
s2,1 s2,2

)
=

(
−L/u L1/φ
−M/u M1/φ

)(
1 vφ/u

vφ/u 1 + v2φ2

u2

)
=

(
⟨−fuu + vΦu,ν⟩ ⟨−vφ

u2 fuu + ( 1
φ
+ v2φ

u2 )Φu,ν⟩
⟨−fuv + vΦv,ν⟩ ⟨−vφ

u2 fuv + ( 1
φ
+ v2φ

u2 )Φv,ν⟩

)

=

(
−M ⟨−vφ

u
fuv +

1
φ
Φu,ν⟩

−N ⟨−vφ
u
fvv +

1
φ
Φv,ν⟩

)
,

and we obtain the result.

Thus we conclude that, on v = 0,

fuuu =− u(u2N2 + φ2)a1 +
(
u2L1N

φ
− 2φ− uφu

)
a2 + u(L1 + 3N + uNu)a3,

fuvu =− (u2N2 + φ2)a1 +
(
uL1N

φ
− φu

)
a2 + (L1 +N + uNu)a3,

fvvu =− uN2a1 +
L1N
φ

a2 +Nua3,

fvvv =−N2a1 +
M1N
φ

a2 +Nva3.
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Proof of Proposition 2.26. By Lemma 2.23, we have

f3 =[p3fu + q3fv + 3(p1p2fuu + (p1q2 + q1p2)fuv + q1q2fvv)](p0, 0)

+ [p31fuuu + 3p21q1fuuv + 3p1q
2
1fuvv + q31fvvv](p0, 0)

= lim
u→p0,v→0

[(
p3 +

q3
u

)
fu − vq2

u
fu−ufv

v

]
+

(
3(p1p2fuu + (p1q2 + q1p2)fuv + q1q2fvv)
+p31fuuu + 3p21q1fuuv + 3p1q

2
1fuvv + q31fvvv

)
(p0, 0)

=(p3u+ q3)a1 + [3(p1p2fuu + (p1q2 + q1p2)fuv + q1q2fvv) (2.29)

+ p31fuuu + 3p21q1fuuv + 3p1q
2
1fuvv + q31fvvv](p0, 0).

We remark that

⟨fuu,a3⟩ =p20N,
⟨fuv,a3⟩ =p0N,
⟨fvv,a3⟩ =N,
⟨fuuu,a3⟩ =p0(L1 + 3N + p0Nu),

⟨fuuv,a3⟩ =L1 +N + p0Nu,

⟨fuvv,a3⟩ =Nu, and

⟨fvvv,a3⟩ =Nv

on {v = 0}. We thus have

b3 =⟨f3,a3⟩ = 3N [p1p2p
2
0 + (p1q2 + q1p2)p0 + q1q2]

+ p31p0(L1 + 3N + p0Nu) + 3p21q1(L1 +N + p0Nu) + 3p1q
2
1Nu + q31Nv|u=p0

=3N(p1p0 + q1)(p2p0 + q2) + (p1p0 + 3q1)p
2
1L1 + 3p21(p1p0 + q1)N

+ p1(p
2
1p

2
0 + 3p0p1q1 + 3q21)Nu + q31Nv.

When q1 = −p1p0, we have

b3 = −2p31p0(2L1 − p0Nu + p20Nv)(p0, 0).

Since p1 = |p0φ(p0, 0)|−1/2, we obtain the result.

A A quick review of surfaces in R3

Since a surface in R3 is locally expressed as the image of a C∞-map f : (R2, 0) → (R3, 0), it is
possible to investigate surfaces as a subject of singularity theory. We describe this idea briefly.
The first fundamental quantities E, F , G are defined by

E = ⟨fu, fu⟩, F = ⟨fu, fv⟩, G = ⟨fv, fv⟩.

The singular point of f is exactly defined by EG−F 2 = 0. A unit normal vector ν is defined by
ν = fu×fv/|fu×fv| whenever the denominator is not zero. The second fundamental quantities
L, M , N are defined by

L = ⟨fuu,ν⟩ =
|fuu fu fv|
|fu × fv|

, M = ⟨fuv,ν⟩ =
|fuv fu fv|
|fu × fv|

, N = ⟨fvv,ν⟩ =
|fvv fu fv|
|fu × fv|

.
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A principal curvature κ is a solution to∣∣∣∣L− κE M − κF
M − κF N − κG

∣∣∣∣ = 0.

If this equation defines two principal curvatures κ1 and κ2, then the kernel fields of the matrix(
L− κiE M − κiF
M − κiF N − κiG

)
represent the principal directions with respect to κi, i = 1, 2. The

principal directions are also described by the solutions to∣∣∣∣∣∣
E L dv2

F M −du dv
G N du2

∣∣∣∣∣∣ = 0.

A principal vector vi is a unit vector which represents the principal direction with respect
to κi. Integral curves of principal vectors are called curvature lines.

We say a point is vi-ridge if viκi = 0 at this point. We say a point is vi-subparabolic if
viκj = 0 at this point where j ̸= i.

Asymptotic directions are represented by the solutions to Ldu2+2M dudv+N dv2 = 0.
Their integral curves are called by asymptotic lines.

The Gauss curvature K and the mean curvature H are defined by

K = κ1κ2 =
LN −M2

EG− F 2
, H =

κ1 + κ2
2

=
EN +GL− 2FM

2(EG− F 2)
. (A.1)

A parabolic point is defined by K = 0 whenever EG− F 2 ̸= 0 (i.e., f is nonsingular).

We consider Taylor expansion of f : f(u, v) =
∑m

j=0 hj(u)
vj

j!
+ O(vm+1). We have Σ(f) =

{v = 0} if rank(h′
0 h1) < 2 and |h′

0 × h2 + h′
1 × h1| ̸= 0. The later condition also implies that

rank(h′
0 h1) = 1. The normal vector ν = fu×fv

|fu×fv | is continuously extendible on Σ(f) in this
case.

Since

K =
LN −M2

EG− F 2
=

|fuu fu fv||fvv fu fv| − |fuv fu fv|2

(EG− F 2)3/2
,

the notion of parabolic point is extended by p(u) = 0 on Σ(f) = {v = 0} when

|fuu fu fv||fvv fu fv| − |fuv fu fv|2 = p(u)|v|m +O(|v|m+1), p(u) ̸≡ 0.

We have m = 1 in generic context, that is, |h′′
0 h′

0 h1||h2 h
′
0 h1| − |h′

1 h
′
0 h1|2 is not identically

zero.

B Criteria of singularity types

B.1 Criteria of singularity types of singular surfaces

Assume that f : (R2, 0) → (R3, 0), (u, v) 7→ f(u, v), has rank one singularity at 0 and an unit
normal vector is extended to ν on the singular locus. Set λ = det(fu fv ν), ψ = det(t ην ν),
where t is a unit tanget vector, and η is a vector field whose restriction is null to the singular
locus. We have that (f,ν) : (R2, 0) → (R3 × R3, (0,ν(0))) is an embedding, if and only if
ψ(0) ̸= 0.
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Lemma B.1. The singularity of f is

• cuspidal edge, if ψ(0) ̸= 0, ηλ(0) ̸= 0;
• swallowtail, if ψ(0) ̸= 0, ηλ(0) = 0, η2λ(0) ̸= 0;
• cuspidal cross-cap, if ψ(0) = 0, ηλ(0) ̸= 0, ψ′(0) ̸= 0.

Proof. See [6, §1–2] and [2, §1].

Proof of Proposition 1.6. In the notation in §1, η = ∂t. Setting ft = tv, λ = |fs ft ν| =
|fs tv ν| = t× (unit),

ψ(s, 0) = det(t, ην,ν)(s, 0) =

∣∣∣∣∣∣
1 0 0
0 0 1
0 −b3/2 0

∣∣∣∣∣∣ = b3
2
.

So the criteria above shows the proposition.

Proof of Proposition 2.19. In the notation in §2, we have η = ∂u − u∂v,

λ = |fu fv ν| = |fu/u ufv − fu ν| = v|A1 A2 ν| = v,

ηλ = (∂u − u∂v)v = u, and η2λ = (∂u − u∂v)u = 1. So f is swallowtail if (f,ν) : (R2, 0) →
(R3 × R3, (0,ν(0))) is an embedding (i.e., c2,0 ̸= c1,2).

B.2 Criteria of singularity types of differential equations

We consider the binary differential equation:

Adx2 + 2B dx dy + C dy2 = 0, (B.1)

where A =
∑

0≤i+j≤2

ai,j
xiyj

i!j!
+O(3), B =

∑
0≤i+j≤2

bi,j
xiyj

i!j!
+O(3), C =

∑
0≤i+j≤2

ci,j
xiyj

i!j!
+O(3).

The solution curves of this equation is investigated by Davidov ([1]).

Lemma B.2. We assume that a0,0 = b0,0 = 0, c0,0 ̸= 0. Then there is a homeomorphism of
(R2, 0) which sends the solution curves of the equation (B.1) to

• that of u du2 + dv2 = 0, folded regular point, if a1,0 ̸= 0;
• that of (λu2 + v)du2 + dv2 = 0 with λ < 0 (resp. 0 < λ < 1/16, 1/16 < λ), folded
saddle (resp. folded node, folded focus), if a1,0 = 0, a0,1 ̸= 0, λ < 0 (resp. 0 < λ < 1/16,
1/16 < λ) where λ = (a2,0c0,0 − a0,1b1,0 − 2b21,0)/2a

2
0,1.

folded regular point folded saddle folded node folded focus

Proof (Sketch). First we remark that the gradient of the discriminant B2−AC is −c0,0(a1,0, a0,1)
at (x, y) = (0, 0). This implies the discriminant defines a nonsingular curve near (0, 0). Set

ϕ =
2∑

i=0

ϕi,ju
ivj +O(3), x =

3∑
i+j=1

pi,ju
ivj +O(4), y = q0,1v +

3∑
i+j=2

ci,ju
ivj +O(4).
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When a1,0 ≠ 0, we can choose ϕi,j (0 ≤ i + j ≤ 2), pi,j (1 ≤ i + j ≤ 3), qi,j (2 ≤ i + j ≤ 3,
i ̸= 0) so that

ϕ(Adx2 + 2B dx dy + C dy2) = (u+O(3))du2 +O(3)du dv + (1 +O(3))dv2.

We then see the contact form ω = dv − p du defines a regular curves on the surface S :
u + p2 + O(3) = 0 in (u, v, p)-space. The projection S → R2 defines a 2-1 map on the set
defined by B2 − AC > 0, and we conclude the proof in the case a1,0 ̸= 0.

The case that a1,0 = 0 and a0,1 ̸= 0 is similar. In this case, we can choose ϕi,j (0 ≤ i+j ≤ 2),
p2,0, p1,1, qi,j (1 ≤ i+ j ≤ 3, i ̸= 0) so that

ϕ(Adx2 + 2B dx dy + C dy2) = (λu2 + v +O(3))du2 +O(3)du dv + (1 +O(3))dv2.

On the surface λu2+ v+ p2+O(3) = 0 in (u, v, p)-space, we see the contact form ω = dv− p du
defines a saddle (resp. a node, a focus), if λ < 0 (resp. 0 < λ < 1/16, λ > 1/16).
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