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Abstract

We investigate contact type of a regular surface in Euclidean 3-space R3

with right circular cylinders. We present the conditions for existence of cylin-
ders with A1, A2, A3, A4, A5, D4, and D5 contacts with given surface. We
also investigate the kernel field of A≥3-contact cylinders on the surface. This
is defined by a cubic binary differential equation and we classify singularity
types of its flow in generic context.
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1 Introduction

In his celebrated book [19, page 96], R. Thom pointed out the similarities of the geo-
metric features of D4 singularities and umbilic of regular surface in R3. Inspired this
observation, I. Porteous ([16, 17]) showed that many differential geometric concepts
are rediscovered by looking the singularities of distance-squared functions. He found
new notion called by ridge which corresponds to A3-singularities. After J. Montaldi
([15]) defines the notion of contact between two submanifolds and established the
relation to K-equivalence, introduced by J. Mather ([14, §2]), in singularity theory,
this is justified as an investigation of contact of a surface with spheres. The con-
tact with plane is also recognized fundamental and the second fundamental form
plays crucial rule. See [3], for example, for several relations of singularities of height
function and differential geometric concepts,

A homogeneous surface in Euclidean 3-space R3 is an orbit of a certain subgroup
of Euclidean motion group O(3)⋊R3. They are planes, spheres or cylinders ([18]).

Investigating contacts of a surface with planes and spheres has produced a rich
field connecting differential geometry with singularity theory and this has been done
by many authors (see [9, 10] for typical research articles, [2] for a standard textbook,
[7, 8] for surveys, and their references). In this paper, we will investigate the contact
of a surface with cylinders, which has not been investigated in detail yet.

Our computation is based on Monge normal form and this is given in §2 with
definitions of several concepts. In §3, we define the notion of contact due to J. Mon-
taldi and quickly recall the conditions that a surface has a sphere or plane with
degenerate contact in generic context. Then we state our main theorem in §4.1.
The proof of main theorem will be given in §4.2.

On a surface in R3, there are many articles discussing direction fields defined
by quadratic differential equations (see e.g. [4] and its references), like principal
directions, asymptotic directions and characteristic directions. As far as we know,
there are no literatures concerning a natural direction fields on a surface in R3 defined
by a cubic differential equation in a geometric context. The kernel field of A2-
contact with spheres defines principal directions when the point is not umbilic. The
kernel field of A−

1 -contact with planes defines asymptotic directions in the hyperbolic
region. So it is natural to investigate kernel fields of A3-contact with cylinders. We
call them by cylindrical fields, and we show that they are defined by a cubic
differential equation.

The last section is dedicated to analysis of the singularities of integral curves of
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cylindrical fields in generic context. We show that singularities of flows of cylindrical
fields are on the discriminant of Monge cubic or parabolic lines. To do this, we
present a formula for Monge normal form at a non-umbilical point in a surface given
by Monge normal form in §5.1. We discuss several explicit method of determination
of singularity types of the flow.

2 Monge normal form

Let ⟨ , ⟩ denote Euclidean inner product. For any regular surface S in Euclidean
3-space R3 and for any point p on S, we can find an isometric coordinate change
T : (R3,p) → (R3, 0) so that T (S) is expressed by the image of the map

x : (R2, 0) → (R3, 0), (u, v) 7→ (u, v, f(u, v)), (2.1)

at least locally, where f(u, v) = 1
2
(k1u

2+k2v
2)+

∑k
s=3 cs+o(k), cs =

∑
i+j=s

ai,j
i!j!

uivj.

The expression (2.1) is called by Monge normal form and the coefficients k1, k2, ai,j
are differential-geometric invariants of S at p, at least when one assume that k1 < k2.
Remark that k1 and k2 are principal curvatures at (0, 0). We set v1 = ∂u and v2 = ∂v.
These are principal vectors at (0, 0) with respect to k1 and k2 respectively.

For a regular surface S in R3 defined by (2.1), the second fundamental form of
this surface at (0, 0) is the bilinear form defined by

(w,w′) 7→ II(w,w′) = k1w1w
′
1 + k2w2w

′
2

where w = w1∂u+w2∂v, w
′ = w′

1∂u+w′
2∂v. We say w is asymptotic if II(w,w) = 0.

We say (0, 0) is ridge with respect to v1 (resp.v2), if a30 = 0 (resp. a03 = 0).
This condition is equivalent that v1κ1 = 0 (resp. v2κ2 = 0) at (0, 0) where κi =
κi(u, v) is the principal curvature with κi(0, 0) = ki. We say the ridge is of the first
order if viκi(0, 0) = 0, v2

iκi(0, 0) ̸= 0, More generally, we say that (0, 0) is the k-th
order ridge with respect to vi if v

j
iκi(0, 0) = 0 if j ≤ k and vk+1

i κi(0, 0) ̸= 0.
We say (0, 0) is subparabolic with respect to vj if vjκi(0, 0) = 0 ({i, j} =

{1, 2}). This is equivalent that aij = 0.
When we assume that k1k2 ̸= 0, we can define the conjugate direction. The

conjugate direction of the direction generated by a vector w is the direction
generated by a non-zero vector w̄ with II(w, w̄) = 0. So if w = w1∂u + w2∂v, then
the conjugate direction is generated by k2w2∂u − k1w1∂v.

We often refer 6c3 as Monge cubic of S at (0, 0). We call c̄3(w) = 6c3(w̄) the
conjugate Monge cubic at (0, 0), and the root(s) of this cubic c̄3 cylindrical
direction(s) (or, generatrix direction(s)).

For a function φ(u, v), we set ∇φ(u, v) = φu(u, v)∂u + φv(u, v)∂v.
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3 Contact

3.1 Definition of contact type

According to [15], we define the notion of contact type. Given two pairs of subman-
ifold germs at the origin in Rn, the pairs have the same contact type if there is a
diffeomorphism-germ of (Rn, 0) taking one pair to the other.

Theorem 3.1 ([15]). For i = 1, 2, let gi : (Xi, xi) → (Rn, 0) be immersion-germs
and fi : (Rn, 0) → (Rp, 0) be submersion-germs with Yi = f−1

i (0). Then the pairs
(X1, Y1) and (X2, Y2) have the same contact type if and only if f1◦g1 and f2◦g2 are
K-equivalent.

Here we say that two map-germs f, g : (Rn, 0) → (Rp, 0) are K-equivalent if
there are a diffeomorphism ϕ : (Rn, 0) → (Rn, 0) and a smooth map A : (Rn, 0) →
GL(Rn) so that g(ϕ(x)) = A(x)f(x). In this paper, we consider the following contact
types corresponding to K-equivalence classes of (R2, 0) → (R, 0) represented by

Ak (or A±
k ) : x

2 ± yk+1, Dk (or D±
k ) : x(y

2 ± xk−2), (k ≥ 4).

We show below the zero set of these singularities. Remark that Ak singularities
define kernel field of Hessian when k ≥ 2.

A+
1 A−

1 A2 A+
3 A−

3 D+
4 D−

4 D5

3.2 Contact with spheres

Since spheres in Euclidean 3-space are determines by their centers and radii the
moduli space of spheres is of four dimensional. So we expect that there are A1, A2,
A3, A4, D4-contact spheres for a generic surface.

In [16, 17], I. Porteous had investigated the singularities of distance squared
functions on the surface and these functions measure the contact with sphere. We
quickly recall some of his results here.

Let Sa,b,c denote the sphere centred at (a, b, c) with radius
√
a2 + b2 + c2. For a

regular surface S in R3 defined by (2.1), we have the following.

1. The sphere Sa,b,c is A≥1-contact with S at (0, 0, 0) when (a, b, c) is on the
normal line.

2. The sphere Sa,b,c is A≥2-contact with S at (0, 0, 0) when (a, b, c) is on the focal
set of S on the normal line, (i.e., the distance between (a, b, c) and (0, 0, 0) is
1/ki). This sphere is often referred as a curvature sphere with respect to ki.

3. If (0, 0) is ridge with respect to vi (i.e., viκi(0, 0) = 0), the surface S is A≥3-
contact with the curvature sphere Sa,b,c with respect to ki at (0, 0, 0).
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4. If (0, 0) is at least second order ridge with respect to vi (i.e., viκi(0, 0) =
v2
iκi(0, 0) = 0), the surface S is A≥4-contact with the curvature sphere Sa,b,c

with respect to ki at (0, 0, 0).
5. If (0, 0) is an umbilic, the curvature sphere Sa,b,c has D≥4-contact with S at

(0, 0, 0).

Remark that the kennel field of A≥2-contact with sphere is defined except umbilics
and it defines principal fields. Classification of singularity types of the curvature
curves at generic umbilics are known as Darboux classification ([5, Note VII]).

star monstar lemon

3.3 Contact with planes

Since planes in Euclidean 3-space are defined by ax+ by+ cz = d, the moduli space
of planes is of three dimensional. So we expect that there are A1, A2, A3-contact
planes for a generic surface.

To investigate height functions on the surface, we measure contact with planes.
We also recall it quickly. Let πa,b,c denote the plane defined by ax + by + cz = 0
with a2 + b2 + c2 = 1.

For a regular surface S in R3 defined by (2.1), we have the following.

1. The plane πa,b,c is A≥1-contact with S at (0, 0, 0) when (a, b, c) is on the normal
line.

2. The plane πa,b,c is A≥2-contact with S at (0, 0, 0) when (0, 0, 0) is parabolic.
3. If (0, 0) is parabolic (i.e., ki = 0) and ridge with respect to vi (i.e., viκi(0, 0) =

0), the surface S is A≥3-contact with the plane πa,b,c at (0, 0, 0).

Remark that the kernel field of A−
1 -contact with plane is defined in hyperbolic region

and it defines asymptotic directions.
Classification of singularity types of asymptotic curves are given by [1] as follows.

folded saddle folded node folded focus

4 Contact with cylinders

Now we consider the contact type of a regular surface with cylinders. Since cylinders
in Euclidean 3-space are determines by their central axes and radii, and central axes
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are elements of Grassmannian, the moduli space of cylinders is of five dimensional.
So we expect that there are A1, A2, A3, A4, A5, D4, D5-contact cylinders for a
generic surface.

It is clear that a regular surface S and a cylinder C meet transversely at a point
P if they do not have the common normal line at P . So we consider the contact of
S and C with common normal line at P ∈ S ∩ C.

4.1 Main results

For a unit vector w = w1∂u + w2∂v, we consider the orthogonal projection

Pw : (R2, 0) → (R2, 0), (u, v) 7→ (w2u− w1v, f(u, v)).

When (0, 0) is ridge with respect to a principal vector w = vi. The critical locus of
Pw has a local branch whose tangent is the line generated by w. Let D′

w denote its
image by Pw.

The main results are stated as follows.

Theorem 4.1. Let S be a regular surface defined by (2.1). Let Cw,λ denote the
cylinder which contains (0, 0, 0) and whose central axis is parallel to a unit vector
w, and contains a point (0, 0, λ), λ ̸= 0.

1. The cylinder Cw,λ has A1-contact with S at (0, 0, 0) if and only if k1k2λ ̸=
κn(w) where κn(w) = II(w,w).

2. The cylinder Cw,λ has A2-contact with S at (0, 0, 0) if and only if one of the
following conditions hold.

(A2a) (0, 0) is not parabolic (i.e., k1k2 ̸= 0), w is not cylindrical, and 1/λ is
the cylindrical curvature with respect to w (i.e., λ = κn(w)/(k1k2), see
the definition at the beginning of subsection 4.2.1).

(A2b) (0, 0) is parabolic but not umbilic (i.e., ki = 0, kj ̸= 0, i ̸= j), wj = 0,
λ ̸= 1/kj, and (0, 0) is not ridge with respect to vi.

(A2c) (0, 0) is a flat umbilic (i.e., k1 = k2 = 0), and c3(w) ̸= 0.

3. The cylinder Cw,λ has A3-contact with S at (0, 0, 0) if and only if one of the
following conditions hold.

(A3a) (0, 0) is not parabolic (i.e., k1k2 ̸= 0), w is cylindrical, 1/λ is cylindrical
curvature with respect to w, and the critical value set of the orthogonal
projection with respect to w is nonsingular and is the first order vertex
(there is a circle with 4-point contact).

(A3b) (0, 0) is parabolic but not umbilic (i.e., ki = 0, kj ̸= 0, i ̸= j), w is
parallel to the principal vector vi (i.e., wj = 0), 1/λ is not a principal
curvature (i.e., 1/λ ̸= kj), (0, 0) is ridge with respect to vi, and

• the line generated by w has 4-point contact with S, and 1/λ is not
the limit of curvature D′

w at (0, 0), or
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• the line generated by w has at least 5-point contact with S, and (0, 0)
is not vj-subparabolic.

(A3c) (0, 0) is a flat umbilic (i.e., k1 = k2 = 0), c3(w) = 0, and 2c4(w) +
λ⟨Jw,∇c3(w)⟩2 ̸= 0 where Jw = w2∂u − w1∂v.

Remark 4.2. It is worth to point out that there are no flat umbilics for general
surfaces. This means that flat umbilics disappear under small perturbation. In other
words, being a flat umbilics is not a generic conditions.

Theorem 4.3. The cylinder Cw,λ has D4-contact with S at (0, 0, 0) if and only if
(0, 0) is parabolic but not umbilic (i.e., ki = 0, kj ̸= 0, i ̸= j), w is parallel to
the principal vector vi (i.e., wj = 0), 1/λ is the other principal curvature (i.e.,
1/λ = kj), and c3 does not have multiple roots.

Theorem 4.4. The cylinder Cw,λ has D5-contact with S at (0, 0, 0) if (0, 0) is
parabolic but not umbilic (i.e., ki = 0, kj ̸= 0, i ̸= j), w is parallel to the principal
vector vi (i.e., wj = 0), 1/λ is the other principal curvature (i.e., 1/λ = kj), c3 has
a double root (p0, q0), and 8c4(p0, q0) ̸= k3

1p
4
0 + k3

2q
4
0.

Theorem 4.5. The cylinder Cw,λ has A4-contact with S at (0, 0, 0) if and only if
one of the following conditions hold.

(A4a) (0, 0) is not parabolic (i.e., k1k2 ̸= 0), w is cylindrical, 1/λ is cylindrical
curvature with respect to w, the critical value set of the orthogonal projection
with respect to w is nonsingular and the second order vertex (there is a circle
with 5-point contact) there.

(A4b) (0, 0) is parabolic but not umbilic (i.e., ki = 0, kj ̸= 0, i ̸= j), w is parallel
to the principal vector vi (i.e., wj = 0), 1/λ is not a principal curvature (i.e.,
λ ̸= 1/kj), (0, 0) is ridge with respect to vi, and

• the line generated by w has 4-point contact with S, the branch D′
w has

(2, 5) cusp and 1/λ is the limit of its curvature at (0, 0), or
• the line generated by w has 5-point contact with S, and (0, 0) is vj-
subparabolic.

(A4c) (0, 0) is flat umbilic (i.e., k1 = k2 = 0), c3(w) = 0,

2c4(w) + λ⟨Jw,∇c3(w)⟩2 = 0, and

c5(w) + λ⟨Jw,∇c3(w)⟩⟨Jw,∇c4(w)⟩+ λ2⟨w,∇c3(Jw)⟩⟨Jw,∇c3(w)⟩2 ̸= 0.

Theorem 4.6. The cylinder Cw,λ has A5-contact with S at (0, 0, 0) if and only if
one of the following conditions hold.

(A5a) (0, 0) is not parabolic (i.e., k1k2 ̸= 0), w is cylindrical, 1/λ is cylindrical
curvature with respect to w, the critical value set of the orthogonal projection
with respect to w is nonsingular and the third order vertex (there is a circle
with 6-point contact) there.
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(A5b) ki = 0, kj ̸= 0, i ̸= j, wj = 0, λ ̸= 1/kj, (0, 0) is ridge with respect to vi.

• the line generated by w has 4-point contact with S, D′
w has (2, 7) cusp

or worse at (0, 0), 1/λ is the limit of its curvature at (0, 0) of D′
w, and

the derivative of the curvature of D′
w by the arc length parameter of D′

w

does not tend to zero at (0, 0), or

• the line generated by w has at least 6-point contact with S, and

∗ a60 − 10a231(k2 − 1/λ) ̸= 0, if k1 = 0,

∗ a06 − 10a213(k1 − 1/λ) ̸= 0, if k2 = 0.

(A5c) (0, 0) is a flat umbilic (i.e., k1 = k2 = 0), c3(w) = 0,

2c4(w) + λ⟨Jw,∇c3(w)⟩2 = 0,

c5(w) + λ⟨Jw,∇c3(w)⟩⟨Jw,∇c4(w)⟩+ λ2⟨w,∇c3(Jw)⟩⟨Jw,∇c3(w)⟩2 = 0, and

2c6(w) + λ(⟨Jw,∇c4(w)⟩2/2 + ⟨Jw,∇c5(w)⟩⟨Jw,∇c4(w)⟩)
+ λ2⟨Jw,∇c3(w)⟩(b22⟨Jw,∇c3(w)⟩+ ⟨Jw,∇c4(w)⟩⟨w,∇c3(Jw)⟩)
+ λ3⟨w,∇c3(Jw)⟩2(2⟨w,∇c3(Jw)⟩2 + c3(Jw)⟨w,∇c3(Jw)⟩) ̸= 0,

where b22 =
w2

2

2
(c4)uu(w)− w1w2(c4)uv(w) +

w2
1

2
(c4)vv(w).

Remark 4.7. Similar to Remark 4.2, there are no A4, A5-contact cylinder at a
point in a parabolic line on a generic surface.

4.2 Contact map with cylinders and its singularity type

First we show Monge normal form of cylinders Cw,λ.

Proposition 4.8. Monge normal form of the cylinder which contains (0, 0, 0) and
whose central axis contains (0, 0, λ) is given by

(u, v) 7→
(
u, v,

∞∑
n=1

(−1)n−1

(
1/2

n

)
(w1v − w2u)

2n

λ2n−1

)
(4.1)

where w denotes a unit vector parallel to the central axis of the cylinder.

Proof. Set x1 = w1v − w2u, y1 = w1u + w2v. Then (x1, y1, z) form an orthonormal
coordinate system, and the cylinder is defined by x1

2+(z−λ)2 = λ2. We thus have

z =λ
[
1± (1− (x1/λ)

2
] 1

2 = λ

(
1±

(
1 +

∞∑
n=1

(−1)n
(
1/2

n

)
(x1/λ)

2n
))

,

and we obtain the result.
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We investigate contact of a surface given by (2.1) with the cylinder (4.1). To do
this, we consider the difference of the third components of (2.1) and (4.1), namely,
the contact map defined by

Fw,λ = f(u, v)−
∞∑
n=1

(−1)n−1

(
1/2

n

)
(w1v − w2u)

2n

λ2n−1
.

Remark that Hesse matrix of Fw,λ at (0, 0) is(
k1 − w2

2

λ
w1w2

λ
w1w2

λ
k2 − w1

2

λ

)
. (4.2)

Moreover, the k-jet of Fw,λ at (0, 0) is

1

2

(
(k1 −

w2
2

λ
)u2 + 2

w1w2

λ
uv + (k2 −

w2
1

λ
)v2

)
+

k∑
i+j=3

ai,j
i!j!

uivj −
2n≤k∑
n=2

(−1)n
(
1/2

n

)
(−w2u+ w1v)

2n

λ2n−1

Proposition 4.9. The following conditions are equivalent.

• The function Fw,λ has a non-degenerate critical point at (0, 0).
• k1k2λ ̸= κn(w).

Proof. They are equivalent that the determinant of (4.2) is not zero.

Corollary 4.10. Hesse matrix (4.2) is 0, if and only if

• k1 = 0, k2 ̸= 0, w = ±∂u, λ = 1/k2, or
• k2 = 0, k1 ̸= 0, w = ±∂v, λ = 1/k1.

So Hesse matrix is rank one if one of the following conditions hold.

(a) k1k2 ̸= 0, λ = κn(w)
k1k2

.
(b) ki = 0, kj ̸= 0, wj = 0, λ ̸= 1/kj (i ̸= j).
(c) k1 = k2 = 0.

When Hesse matrix is of rank 1, its kernel direction is the conjugate direction of
w1∂u + w2∂v, which is generated by k2w2∂u − k1w1∂v, when (k1, k2) ̸= (0, 0). When
k1 = k2 = 0, the kernel direction is generated by w2∂u − w1∂v.

Proof. Consequence of the expression (4.2).

To show the results in §4.1, it is enough to investigate the conditions that the
contact map Fw,λ has a singularities of type A2, A3, A4, A5, D4 and D5 for cases
(a), (b) and (c). For convenience to refer, we remark that

Fw,λ(u, v) =


(k1w1u+k2w2v)2

2κn(w)
+ o(2) (k1k2 ̸= 0, λ = κn(w)

k1k2
),

1
2
(k2 − 1

λ
)v2 + o(2) (k1 = 0,w = (1, 0)),

−1
2
(w2u− w1v)

2 + o(2) (k1 = k2 = 0).
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4.2.1 Case (a): k1k2 ̸= 0, λ = κn(w)
k1k2

.

When k1k2 ̸= 0, we call λ = κn(w)/(k1k2) cylindrical radius and 1/λ cylindrical
curvature with respect to the direction w. The cylindrical radius λ is given by

λ =
w2

2

k1
+

w2
1

k2
=

1− cos 2θ

2k1
+

1 + cos 2θ

2k2
=

1/k1 + 1/k2
2

− 1/k1 − 1/k2
2

cos 2θ

where w1 = cos θ, w2 = sin θ. We thus have the following properties.

• If (0, 0) is not umbilic (i.e., k1 ̸= k2) and is not parabolic point, then the
principal directions attain the maximum and the minimum of the cylindrical
curvatures.

• If (0, 0) is umbilic (i.e., k1 = k2) and not flat, then the cylindrical curvature
does not depend on the tangent vector w.

Assume that k1k2 ̸= 0, κn(w) ̸= 0 and λ = κn(w)/(k1k2). Remark that
κn(w) ̸= 0 since λ ̸= 0. We have

Fw,λ =
(k1w1u+ k2w2v)

2

2κn(w)
+

k∑
s=3

cs −
∞∑
n=2

(−1)n−1

λ2n−1
(w1v − w2u)

2n + o(k).

Proposition 4.11. Fw,λ has a singularity of type A2 at (0, 0) if c3(w̄) ̸= 0.

Proof. Setting t = k1w1u+ k2w2v, and s = w1v − w2u, we have

u =
1

κn(w)
(w1t− k2w2s), v =

1

κn(w)
(w2t+ k1w1s).

Set ĉs(t, s) = cs(
1

κn(w)
(w1t− k2w2s),

1
κn(w)

(w2t+ k1w1s)). We obtain that

Fw,λ =
t2

2κn(w)
+ ĉ3(t, s) + o(3).

This singularity is of type A2 if ĉ3(0, 1) ̸= 0. This condition is equivalent that
c3(k2w2,−k1w1) ̸= 0 and we conclude the proof.

This shows that the contact map Fw,λ has a singularity of type A3 or worse when
c3(w̄) = 0.

Since κn(w) is the normal curvature k1w1
2+k2w2

2 with respect to the direction
w = w1∂u + w2∂v, the cylindrical curvature times the normal curvature κn(w) is
Gauss curvature k1k2. This implies the cylindrical curvature is the curvature of the
critical value locus of the orthogonal projection to the orthogonal plane to w by
Koendrink’s theorem ([12, Appendix], [13, page 433]).

Proposition 4.12. Assume that κn(w) ̸= 0. The critical value set has a circle
with (k + 1)-point contact (i.e., (k − 2)-th order vertex) if and only if Fw,λ has Ak

singularities at (0, 0).
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Proof. First we remark that the critical locus of the orthogonal projection (u, v) 7→
(w1v − w2u, f(u, v)) is zero of

− det(xu xv w) = w1fu + w2fv = k1w1u+ k2w2v +
k∑

j=3

⟨w,∇cj⟩+ o(k).

Set ξ = ⟨w,∇f⟩, η = w1v − w2u. Since

J =

∣∣∣∣ ∂ξ∂u ∂ξ
∂v

∂η
∂u

∂η
∂v

∣∣∣∣ = ∣∣∣∣w1fuu + w2fuv w1fuv + w2fvv
−w2 w1

∣∣∣∣ = w2
1fuu + 2w1w2fuv + w2

2fvv

(ξ, η) form a local coordinate at (0, 0), whenever J0 = κn(w) ̸= 0. Since(∂u
∂ξ

∂u
∂η

∂v
∂ξ

∂v
∂η

)
=

(
∂ξ
∂u

∂ξ
∂v

∂η
∂u

∂η
∂v

)−1

=
1

J

(
∂η
∂v

− ∂ξ
∂v

− ∂η
∂u

∂ξ
∂u

)
=

1

J

(
w1 −w1fuv − w2fvv
w2 w1fuu + w2fuv

)
,

we obtain ∂ξ = ∂u
∂ξ
∂u + ∂v

∂ξ
∂v = 1

J
(w1∂u + w2∂v). Setting f = 1

2
(k1u

2 + k2v
2) + H,

H1 = ⟨w,∇H⟩, H2 = w2
1Huu+2w1w2Huv+w2

2Hvv, we obtain ∂ξH = H1

J
, ∂ξH1 =

H2

J
,

and J = J0 +H2.
Since ξ = k1w1u+ k2w2v +H1, we have

Fw,λ =
(ξ −H1)

2

2J0
+H −

∞∑
n=2

(−1)n−1

(
1/2

n

)
η2n,

and we obtain that

∂ξFw,λ =
(ξ −H1)(1− ∂ξH1)

J0
+ ∂ξH =

(ξ −H1)(1−H2/J)

J0
+

H1

J

=
(ξ −H1)(J −H2)

J0J
+

H1

J
=

ξ −H1

J
+

H1

J
=

ξ

J
.

Thus ∂ξFw,λ|ξ=0 is zero. Now consider Taylor expansion of Fw,λ in the coordinate
(ξ, η):

Fw,λ =
∑
i,j

ci,jξ
iηj.

We have c20 =
1

2J0
and c1,j = 0 for all j. So the singularity type of Fw,λ at (0, 0) is

Ak if and only if c0,i = 0, i = 1, 2, . . . , k, c0,k+1 ̸= 0. This is equivalent that Fw,λ|ξ=0

is a unit multiple of ηk+1, which means that the critical value set has a circle with
(k + 1)-points contact.

4.2.2 Case (b): k1 = 0, k2 ̸= 0, w = ∂u.

In this case, we have

Fw,λ =
1

2

(
k2 −

1

λ

)
v2 + h(u, v) +

∞∑
n=2

(−1)n
(
1/2

n

)
v2n

λ2n−1

11



where h(u, v) = f(u, v)− 1
2
k2v

2.
Assume that λ ̸= 1/k2. We see the singularity type of Fw,λ is A2 if a30 ̸= 0, since

the coefficient of u3 of Fw,λ is a30/6. This shows the condition (A2b) of Theorem
4.1.

Replacing v by v − a21u
2/2(k2λ− 1), the coefficients of u2v, u4 become

0,
a40
24

− a221
8(k2 − 1/λ)

,

respectively. We see the singularity type of Fw,λ is A3 if a40(k2 − 1/λ) ̸= 3a221. If
the line generated by w has at least 5-point contact with S (i.e., a40 = 0), then this
condition becomes a21 ̸= 0, that is, (0, 0) is not v2-subparabolic. If the line generated
byw has 4-point contact with S (i.e., a40 ̸= 0), then this becomes 1/λ ̸= k2−3a221/a40
and the right hand side is the limit of curvature of D′

w at (0, 0). This shows the
condition (A3b) of Theorem 4.1.

When a40(k2 − 1/λ) = 3a221 and a21 ̸= 0, the coefficient of u4 is zero and we see
the coefficient of u5 is

a50
120

+
a40(a40a12 − 2a31a21)

72a221
.

This shows the condition (A4b) of Theorem 4.5.
Replacing v by v−a40(a40a12−a31a21)u

3/8a321, the coefficients of u3v, u6 become

0,
a60a421 − 45a41a40a321 − 5a340a21a03 − 30a340a

2
12 − 30a40a231a

2
21 + 45a240a22a

2
21 + 60a240a31a21a12

6480a421
,

respectively. So the singularity type of Fw,λ is A5 if the later number is non zero.
To complete the proof, we describe the branch D′

w. A parametrization of the
branch of critical set of Pw whose tangent is generated by w is given by t 7→
(
√

±6a21/a40t+ o(1),±t2), and thus D′
w is parametrized by

t 7→
(
∓t2,

a40k2 − 3a221
2a40

t4 +
[
∓3a21
2a540

] 1
2 3a221a50 + 5a12a

2
40 − 10a21a31a40
5

t5 + o(5)
)

whenever a40 ̸= 0. This shows the limit of the curvature of D′
w is k2 − 3a221/a40 at

(0, 0) and D′
w has (2, 5) cusp when 3a221a50 + 5a12a

2
40 − 10a21a31a40 ̸= 0, which shows

Condition (A4b) in case a21 ̸= 0. Remark that the coefficient of t6 in the second
component is

−1

240a21a440

[
8a40(a60a

4
21 − 45a41a40a41 − 30a40a

2
31a

2
21 + 45a240a22a

2
21 + 60a240a31a21a12)

−15(3a50a
2
21 + 5a240a12 − 10a40a31a21)(3a50a

2
21 − 3a240a12 − 2a40a31a21)

]
.

which shows Condition (A5b) in case a21 ̸= 0.
When a40(k2 − 1/λ) = 3a221 and a21 = 0, we have a40 = 0. Thus we have that

Fw,λ =
k2 − 1/λ

2
v2 +

a50
120

u5 +
a60 − 10a231(k2 − 1/λ)

720
u6 + · · · ,

and the singularity type of Fw,λ is A4 (resp.A5) if a50 ̸= 0 (resp. a50 = 0, a60 −
10a231(k2 − 1/λ) ̸= 0).
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Proposition 4.13. Assume that λ = 1/k2.

• If c3 does not have multiple roots, then Fw,λ has a singularity of type D4 at
(0, 0).

• If c3 has a double root (p0, q0) and a single root (p1, q1), then Fw,λ has a sin-

gularity of type D5 at (0, 0), whenever c4(p0, q0) ̸= k32
8
q40.

Proof. When λ = 1/k2, observe that

Fw,λ =
k∑

s=3

cs(u, v)−
∞∑
n=2

(−1)n
(
1/2

n

)
k2

2n−1v2n + o(k).

The first statement is well-known. In the second case we may assume that c3 =
(q0u− p1v)

2(q1u− p1v). Setting u = −p1x+ p0y, v = −q1x+ q0y, we have

Fw,λ = δ3x2y + [c4(p0, q0)− k32
8
q40]y

4 + · · ·

where δ = p0q1 − q0p1. We thus conclude the proof.

4.2.3 Case (c): k1 = k2 = 0.

In this case, we have

Fw,λ = −(w1v − w2u)
2

2λ
+ f(u, v)−

∞∑
n=2

(−1)n−1

(
1/2

n

)
(w1v − w2u)

2n

λ2n−1
.

Setting u = w1s− w2t, v = w2s+ w1t. we have

Fw,λ = − t2

2λ
+ f(w1s− w2t, w2s+ w1t)−

∞∑
n=2

(−1)n−1

(
1/2

n

)
t2n

λ2n−1
.

When we write f(w1s− w2t, w2s+ w1t) =
∑i+j≤k

i,j bi,js
itj + o(k), we conclude that

b30 = c3(w), b21 = ⟨Jw,∇c3(w)⟩, b12 = ⟨w,∇c3(Jw)⟩, b03 = c3(Jw), b40 = c4(w),

b31 = ⟨Jw,∇c4(w)⟩, b22 =
w2

2

2
(c4)uu(w)− w1w2(c4)uv(w) +

w2
1

2
(c4)vv(w), . . . ,

b50 = c5(w), b41 = ⟨Jw,∇c5(w)⟩, . . . , b60 = c6(w), . . . , where Jw = w2∂u −w1∂v.
The condition (A2c) of Theorem 4.1 follows to see the coefficient b30.

Replacing t by t + λb21s
2, the coefficient of s2t and s4 become 0, b40 + λb221/2,

respectively. The condition (A3c) follows from Theorem 4.1.
Observe the coefficient of s5 is b50+λb31b21+λ2b12b

2
21, which shows the condition

(A4c) of Theorem 4.5.
Replacing t by t + λ(b31 + b221λ)s

3, we obtain that the coefficients of s3t and s6

become

0, b60 + λ(b231/2 + b41b21) + λ2b21(b22b21 + 2b31b12) + λ3b221(2b
2
12 + b03b21),

respectively. This concludes the condition (A5c) of Theorem 4.6
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5 Cylindrical directions

In Theorem 4.1, we observe that the kernel field of A≥3-contact with cylinders is
cylindrical directions whenever k1k2 ̸= 0, These are also defined at nearby points,
and we express it in terms of Monge normal form. This field is defined by C̄(du, dv) =
0 where C̄(du, dv) = C(κ2dv,−κ1du), and this can be considered as a counterpart
of principal fields. Here C(p, q) denote Monge cubic defined in Proposition 5.2. This
section is dedicated to analysis of this field.

Let [p : q] denote the homogeneous coordinate of the real projective line P 1. Let
M denote the subset defined by C(p, q) = 0 in R2 × P 1, π : M → R2 the natural
projection, and ω̄ = pκ1du+ qκ2dv.

Theorem 5.1. Assume that (0, 0) is not an umbilic of x (i.e., k1 ̸= k2). The flows
of C̄(du, dv) = 0 is obtained by the projection image of the flows of 1-form ω̄|M by
the natural projection M → R2. The 1-form ω̄|M is singular at (0, 0)× [p0, q0] ∈ M
if and only if one of the following conditions holds.

1. (p0, q0) is a single root of C(p, q) = 0 at (u, v) = (0, 0), and

(a) κ1(0, 0) = 0, (0, 0) is ridge with respect to v1, and (p0, q0) represents the
principal direction v1 (i.e., a3,0 = 0, q0 = 0), or

(b) κ2(0, 0) = 0, (0, 0) is ridge with respect to v2, and (p0, q0) represents the
principal direction v2 (i.e., a0,3 = 0, p0 = 0).

2. (p0, q0) is a multiple root of C(p, q) = 0 at (u, v) = (0, 0), that is, is in the
discriminant set D of C(p, q) = 0 (i.e., Cp(p0, q0) = Cq(p0, q0) = 0), and

(a) D is nonsingular at (0, 0) and the tangent direction of D at (0, 0) is
conjugate to (p0, q0), or

(b) α = β = 0 (in particular, D is singular at (0, 0)) where

α = Cu(p0, q0)|(u,v)=(0,0), β = Cv(p0, q0)|(u,v)=(0,0).

We conclude that the position of singular points of ω̄|M is determined by 3-jet
(resp. 4-jet) of Monge normal form (2.1) in Case 1 (resp. Case 2). In generic context,
these singularity types are saddle, node or focus, which are determined by 4-jet (resp.
5-jet) of Monge normal form (2.1) in Case 1 (resp. Case 2). The phase portraits of
singularities of the flows of the equation C̄(du, dv) = 0, in the generic context, will
be also given. See pictures after Propositions 5.7, 5.11, and Remark 5.9.

5.1 Monge normal form of a surface given by Monge normal
form

We consider the Monge normal form of the surface defined by (2.1) at the point
(u, v, f(u, v)).
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Proposition 5.2. Monge normal form of x at (u, v, f(u, v)) is given by

z = κ1
x2

2
+ κ2

y2

2
+ C(x, y) + o(x, y)3 (5.1)

where

κ1 = k1 + c3,uu(u, v) + c4,uu(u, v)− (3k21u
2 + k22v

2) +
2c3,uv(u, v)

2

k1 − k2
+ o(u, v)2,

κ2 = k2 + c3,vv(u, v) + c4,vv(v, v)− (k21u
2 + 3k22v

2)− 2c3,uv(u, v)
2

k1 − k2
+ o(u, v)2,

C(x, y) = c3(x, y) + c4,u(x, y)u+ c4,v(x, y)v +
c3,uv(u, v)

2(k1 − k2)
C1

+ c5,uuu(u, v)
x3

6
+ c5,uuv(u, v)

x2y

2
+ c5,uvv(u, v)

xy2

2
+ c5,vvv(u, v)

y3

6

+
c3,uv(u, v)

4(k1 − k2)2
(Pu+Qv)− Y1

4
+

X + Y2
4(k1 − k2)

− (k21ux+ k22vy)
k1x

2 + k2y
2

2

+ o(u, v)2,

C1 = a21x
3 + (2a12 − a30)x

2y + (a03 − 2a21)xy
2 − a12y

3

P = a21(4a12 − 3a30)x
3 + (4a212 + 2a03a21 − 7a221 − 6a12a30 + 2a230)x

2y

+ (2a03a12 − 11a12a21 − 2a03a30 + 6a21a30xy
2 + (−2a212 − a03a21 + 2a221 + 2a12a30)y

3,

Q = (2a212 + 2a03a21 − 2a221 − a12a30)x
3 + (6a03a12 − 11a12a21 − 2a03a30 + 2a21a30)x

2y

+ (2a203 − 7a212 − 6a03a21 + 4a221 + 2a12a30)xy
2 − a12(3a03 − 4a21)y

3,

X = [3a21a31u
2 + 2(2a21a22 + a12a31)uv + (a13a21 + 2a12a22)v

2]x3

+
 (4a21a22 + 2a12a31 − a30a31 − 2a21a40)u

2

+2(2a13a21 + 4a12a22 − a22a30 − a21a31

−a12a40)uv + (6a12a13 − a13a30 − 2a12a31)v
2

x2y +
 (2a13a21 + a03a31 − 6a21a31)u

2
+ 2(a12a13

+a04a21 + a03a22 − 4a21a22 − 2a12a31)uv

+(2a04a12 + a03a13 − 2a13a21 − 4a12a22)v
2

xy2

+ [(−2a21a22 − a12a31)u
2 − 2(a13a21 + 2a12a22)uv − 3a12a13v

2]y3,

Y1 = 19a30k
2
1u

2x3 + 3(3a03k1k2 + 4a21k
2
2)v

2x2y + 3(4a12k
2
1 + 3a30k1k2)u

2xy2 + 19a03k
2
2v

2y3,

Y2 = [−6a21k
2
1(3k1 − k2)uv + (−3a12k

3
1 − 3a12k

2
1k2 − a30k1k

2
2 + a30k

3
2)v

2]x3

+ [−3a21k1(3k
2
1 − 4k1k2 − k22)u

2 + 6k2(3a12k
2
1 − 2a12k1k2 − a30k

2
2)uv]x

2y

+ [−6k1(a03k
2
1 + 2a21k1k2 − 3a21k

2
2)uv − 3a12k2(k

2
1 + 4k1k2 − 3k22)v

2]xy2

+ [(−a03k
3
1 + a03k

2
1k2 + 3a21k1k

2
2 + 3a21k

3
2)u

2 − 6a12(k1 − 3k2)k
2
2uv]y

3.

Remark that

• 1(resp. 2)-jet of κi is determined by 3(resp. 4)-jet of Monge normal form (2.1),
and

• 1(resp. 2)-jet of C is determined by 4(resp. 5)-jet of Monge normal form (2.1).

We call the cubic form C(x, y) Monge cubic. To show this proposition, we define
an orthonormal frame by

e1(u, v) =
xu(u, v)

∥xu(u, v)∥
,
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e2(u, v) =
[xu(u, v)× xu(u, v)]× xu(u, v)

∥[xu(u, v)× xv(u, v)]× xu(u, v)∥
,

e3(u, v) =
xu(u, v)× xv(u, v)

∥xu(u, v)× xv(u, v)∥
.

These can be written in the following explicit forms:

e1(u, v) =
1√

1 + fu(u, v)2
(1, 0, fu(u, v)),

e2(u, v) =
(−fu(u, v)fv(u, v), 1 + fu(u, v)

2, fv(u, v))√
1 + fu(u, v)2

√
1 + fu(u, v)2 + fv(u, v)2

e3(u, v) =
(−fu(u, v), −fv(u, v), 1)√
1 + fu(u, v)2 + fv(u, v)2

Setting

x̄ =⟨x(u+ ū, v + v̄)− x(u, v), e1(u, v)⟩,
ȳ =⟨x(u+ ū, v + v̄)− x(u, v), e2(u, v)⟩,
z =⟨x(u+ ū, v + v̄)− x(u, v), e3(u, v)⟩,

we obtain

x̄ =
ū+ [f(u+ ū, v + v̄)− f(u, v)]fu(u, v)√

1 + fu(u, v)2
, (5.2)

ȳ =
−ūfu(u, v)fv(u, v) + v̄[1 + fu(u, v)

2] + [f(u+ ū, v + v̄)− f(u, v)]fv(u, v)√
1 + fu(u, v)2

√
1 + fu(u, v)2 + fv(u, v)2

,

(5.3)

z =
−ūfu(u, v)− v̄fv(u, v) + [f(u+ ū, v + v̄)− f(u, v)]√

1 + fu(u, v)2 + fv(u, v)2
. (5.4)

By inverse mapping theorem, (ū, v̄) are determined by (x̄, ȳ) when |(ū, v̄)| < ε ≪ 1.

Lemma 5.3. Setting fi,j = fuivj(u, v), we have

x̄ =
√
1 + f 2

10ū+
f10f01√
1 + f 2

10

v̄ +
f10√
1 + f 2

10

k∑
i+j≥2

fi,j
i!j!

ūiv̄j + o(ū, v̄)k,

ȳ =

√
1 + f 2

10 + f 2
01√

1 + f 2
10

v̄ +
f01√

1 + f 2
10

√
1 + f 2

10 + f 2
01

k∑
i+j≥2

fi,j
i!j!

ūiv̄j + o(ū, v̄)k.

Proof. By (5.2) and (5.3), we have

x̄ū =1+fu(u+ū,v+v̄)fu(u,v)√
1+fu(u,v)2

, ȳū = fv(u,v)(−fu(u,v)+fu(u+ū,v+v̄))√
1+fu(u,v)2

√
1+fu(u,v)2+fv(u,v)2

,
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x̄v̄ =
fv(u+ū,v+v̄)fu(u,v)√

1+fu(u,v)2
, ȳv̄ =

[1+fu(u,v)2]+fv(u+ū,v+v̄)fv(u,v)√
1+fu(u,v)2

√
1+fu(u,v)2+fv(u,v)2

,

and, for (i, j) with i+ j ≥ 2,

x̄ūiv̄j =
f
uivj

(u+ū,v+v̄)fu(u,v)√
1+fu(u,v)2

, ȳūiv̄j =
f
uivj

(u+ū,v+v̄)fv(u,v)√
1+fu(u,v)2

√
1+fu(u,v)2+fv(u,v)2

.

These imply the lemma.

Lemma 5.4. We have

ū =
1√

1 + f 2
10

x̄− f10f01√
1 + f 2

10

√
1 + f 2

10 + f 2
01

ȳ

− f10
(1 + f 2

10)(1 + f 2
10 + f 2

01)

(f11
2
x̄2 +

(1 + f 2
10)f11 − f10f01f20√
1 + f 2

10 + f 2
01

x̄ȳ

+
f 2
10f

2
01f20 − 2f10f01(1 + f 2

10)f11 + (1 + f 2
10)f02

2(1 + f 2
10 + f 2

01)
ȳ2
)
+ o(x̄, ȳ)2,

v̄ =

√
1 + f 2

10√
1 + f 2

10 + f 2
01

ȳ

+
f01

(1 + f 2
10)(1 + f 2

10 + f 2
01)

(f20
2
x̄2 +

−f10f01f20 + (1 + f 2
10)f11√

1 + f 2
10 + f 2

01

x̄ȳ

+
f 2
10f

2
01f20 − 2(1 + f 2

10)f11 + (1 + f 2
10)

2f02
2(1 + f 2

10 + f 2
01)

ȳ2
)
+ o(x̄, ȳ)2.

Proof. When we write

x̄ =
k∑

i+j≥1

xi,j
ūiv̄j

i!j!
+ o(ū, v̄)k, ȳ =

k∑
i+j≥1

yi,j
ūiv̄j

i!j!
+ o(ū, v̄)k, (5.5)

ū =
k∑

i+j≥1

ūi,j
x̄iȳj

i!j!
+ o(ū, v̄)k, v̄ =

k∑
i+j≥1

v̄i,j
x̄iȳj

i!j!
+ o(ū, v̄)k, (5.6)

we obtain that

u10 =
y01

x10y01 − x01y10
v10 =

−y10
x10y01 − x01y10

u01 =
−x01

x10y01 − x01y10
v01 =

x10

x10y01 − x01y10
.

Moreover, we have(
x10I3 x01I3
y10I3 y01I3

)(
U2

V2

)
+

(
∆2 0
0 ∆2

)(
X2

Y2

)
= 0
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where

X2 =

x20

x11

x02

 , Y2 =

y20
y11
y02

 , U2 =

u20

u11

u02

 , V2 =

v20
v11
v02

 ,

∆2 =

 u2
10 2u10v10 v210

u10u01 u10v01 + u01v10 v10v01
u2
01 2u01v01 v201

 .

Since v10 = y10 = 0, we obtain that

u20 =
x01y20−x20y01

x3
10y01

, u11 =
−x10x11y01+x01x20y01+x01x10y11−x2

01y20
x3
10y

2
01

u02 =
−x02x2

10y01+x01(2x10x11y01−x01x20y01+x2
10y02−2x01x10y11+x2

01y20)

x3
10y

3
01

,

v20 =
−y20
x2
10y01

, v11 =
x01y20−x10y11

x2
10y

2
01

, v02 = −x2
10y02−2x01x10y11+x2

01y20
x2
10y

3
01

.

These conclude the proof.

Proof of Proposition 5.2. By Taylor’s theorem, we have

f(u+ ū, v + v̄)− f(u, v) =
k∑

i+j≥1

fi,j
i!j!

ūiv̄j + o(ū, v̄)k,

and thus, by (5.4),

z =
1√

1 + f 2
10 + f 2

01

k∑
i+j≥2

fi,j
i!j!

ūiv̄j + o(ū, v̄)k.

By (5.6) and v10 = 0, we have

z = 1√
1+f2

10+f2
01

(
f20u2

10

2
x̄2 + u10(u01f20 + v01f11)x̄ȳ +

u2
01f20+2u01v01f11+v201f02

2
ȳ2

+
u10(f3,0u2

10+3f20u20+3f11v20
6

x̄3

+
f3,0u01u2

10+f2,1u2
10v01+f20(2u10u11+u01u20)+f11(u20v01+2u10v11+u01v20)+2f02v01v20

2
x̄2ȳ

+

f3,0u2
01u10 + 2f2,1u01u10v01 + f1,2u10v201
+f20(u02u10 + 2u01u11) + f11(2u11v01 + u10v02 + 2u01v11) + 4f02v01v11

2
x̄ȳ2

+
f3,0u3

01+3f2,1u2
01v01+3f1,2u01v201+f0,3v301+3f20u01u02+3f11(u02v01+u01v02)+6f02v01v02

6
ȳ3
)

+ o(x̄, ȳ)3

We take an orthonormal matrix

T =
(
1− c3,uv(u, v)

2

2(k1 − k2)2
+ o(u, v)2

)(
1 0
0 1

)
+ c

(
0 −1
1 0

)
18



where c = c3,uv(u,v)

k1−k2
+

a2,1a1,2(u2−v2)+(a22,1−a21,2+a3,0a1,2−a2,1a0,3)uv

(k1−k2)2
+

c4,uv(u,v)−k21k2
(k1−k2)

+o(u, v)2.
Composing the rotation (

x̄

ȳ

)
= T

(
x

y

)
,

we obtain the result.

5.2 Monge cubic

We assume that k1 ̸= k2 and that Monge cubic is expressed in a neighbourhood of
(0, 0) as follows:

C(x, y) = A3,0x
3 + 3A2,1x

2y + 3A1,2x y
2 + A0,3y

3. (5.7)

Remember that D denote the discriminant set of C, that is, the zero set of

∆ =

∣∣∣∣∣∣∣∣
A3,0 2A2,1 A1,2 0
A2,1 2A1,2 A0,3 0
0 A3,0 2A2,1 A1,2

0 A2,1 2A1,2 A0,3

∣∣∣∣∣∣∣∣ . (5.8)

Let Σ(M) denote the singular set of M .

Lemma 5.5. The following conditions are equivalent.

• (0, 0)× [p0 : q0] ∈ Σ(M).
• Cu = Cv = Cp = Cq = 0 at (0, 0)× [p0 : q0], that is, α = β = 0,

A3,0p
2
0 + 2A2,1p0q0 + A1,2q

2
0 = A2,1p

2
0 + 2A1,2p0q0 + A0,3q

2
0 = 0 (5.9)

at (0, 0).

Proof. A consequence of the implicit function theorem.

The second condition in the lemma holds for some [p0 : q0] if and only if

rank



∂uA3,0 3∂uA2,1 3∂uA1,2 ∂uA0,3 0
∂vA3,0 3∂vA2,1 3∂vA1,2 ∂vA0,3 0

0 ∂uA3,0 3∂uA2,1 3∂uA1,2 ∂uA0,3

0 ∂vA3,0 3∂vA2,1 3∂vA1,2 ∂vA0,3

A3,0 2A2,1 A1,2 0 0
A2,1 2A1,2 A0,3 0 0
0 A3,0 2A2,1 A1,2 0
0 A2,1 2A1,2 A0,3 0
0 0 A3,0 2A2,1 A1,2

0 0 A2,1 2A1,2 A0,3


< 5 at (0, 0), (5.10)
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because of the result of [11]. Let I denote the ideal generated by maximal minors of

y0 y1 y2 y3 0
z0 z1 z2 z3 0
0 y0 y1 y2 y3
0 z0 z1 z2 z3
x0 2x1 x2 0 0
x1 2x2 x3 0 0
0 x0 2x1 x2 0
0 x1 2x2 x3 0
0 0 x0 2x1 x2

0 0 x1 2x2 x3


in the ring R = R[xi, yi, zi; i = 0, 1, 2, 3]. By computation using Singular, we see the
height of I is 3. This means that, for a generic choice of the coefficients in Monge
normal form, we do not have (5.10).

We assume that the rank of the matrix in (5.10) is 5. To investigate the equation
C(du, dv) = 0, we consider the foliation defined by the restriction of the 1-form
ω = q du − p dv to M . The singularity of ω|M is defined by pCu + qCv = 0,
Cp = Cq = 0. Thus the induced flow on M is singular at (0, 0)× [p0 : q0] if and only
if (5.9) holds, and

αp0 + βq0 = 0 at (0, 0). (5.11)

Remember that D is the discriminant set of the cubic C which is zero of ∆ defined
by (5.8). We assume (0, 0) ∈ D. Then there is a non-zero (p0, q0) with (5.9), i.e.,

p20(p0A3,0 + q0A2,1) = −p0q0(p0A2,1 + q0A1,2) = q20(p0A1,2 + q0A0,3) (5.12)

at (0, 0).
Let Σ(D) denote the singular set of D and let Σ1 denote the set defined by

rank

(
A3,0 A2,1 A1,2

A2,1 A1,2 A0,3

)
< 2. (5.13)

Remark that (5.13) holds if and only if (5.12) is zero for some non-zero (p0, q0).

Lemma 5.6. • If (0, 0) ∈ D \ Σ(D), we have (α, β) ̸= (0, 0), and β∂u − α∂v is
tangent to D at (0, 0).

• Σ(D) = Σ1 ∪ π(Σ(M)).
• Suppose that (0, 0) ∈ Σ(D) \ π(Σ(M)). Then, the singularity type of Σ(D) at
(0, 0) is cusp if and only if∣∣∣∣∣∣∣∣

∂uA3,0 ∂uA2,1 ∂uA1,2 ∂uA0,3

∂vA3,0 ∂vA2,1 ∂vA1,2 ∂vA0,3

q20 −2p0q0 p20 0
0 q20 −2p0q0 p20

∣∣∣∣∣∣∣∣+ 2p20q
2
0A ̸= 0 at (0, 0) (5.14)

where A = −∂uA3,0∂vA0,3 + ∂uA2,1∂vA1,2 − ∂vA2,1∂uA1,2 + ∂uA0,3∂vA3,0.
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Proof. Since the linear terms of (5.8) is

− 4(p0q1 − p1q0)
3

27
(αu+ βv) (5.15)

we have the first assertion. (0, 0) ∈ Σ(D) if and only if (5.13) or (α, β) = (0, 0) hold.
When (α, β) = (0, 0) holds, then we have (0, 0) × [p0 : q0] ∈ Σ(M) by (5.9). This
shows the second result. We assume that (5.13) holds. Then the constant term of C
is a constant multiple of (q0du− p0dv)

3. We observe that the quadric part of (5.8)
is

−(αu+ βv)2

and the kernel direction for Hesse matrix is generated by β∂u − α∂v. If we evaluate
the cubic part of (5.8) over this vector, we obtain a constant multiple of the left
hand side of the cube of (5.14), which shows the last result.

5.3 Conjugate Monge cubic

Assume that k1 ̸= k2. Let C̄(p, q) denote the conjugate Monge cubic defined by
C̄(p, q) = C(κ2q,−κ1p), i.e.,

C̄(p, q) = A3,0κ2
3q3 − 3A2,1κ1κ2

2p q2 + 3A1,2κ1
2κ2p

2q − A0,2κ1
3p3.

We call C̄(du, dv) = 0 the cylindrical cubic differential equation. Let D̄ denote
the discriminant of C̄, that is, the zero of

∆̄ =

∣∣∣∣∣∣∣∣
−A0,3κ1

3 2A1,2κ1
2κ2 −A2,1κ1κ2

2 0
A1,2κ1

2κ2 −2A2,1κ1κ2
2 A3,0κ2

3 0
0 −A0,3κ1

3 2A1,2κ1
2κ2 −A2,1κ1κ2

2

0 A1,2κ1
2κ2 −2A2,1κ1κ2

2 A3,0κ2
3

∣∣∣∣∣∣∣∣ = (κ1κ2)
6∆.

Then D̄ = P1 ∪ P2 ∪ D where Pi denote parabolic line defined by κi = 0. We
expect the behavior of the flow could be very degenerate along P1 and P2, since the
discriminant ∆̄ is divisible by (κ1κ2)

6

We assume that the rank of the matrix in (5.10) is 5. To investigate the equation
C̄(du, dv) = 0, we consider the foliation defined by the restriction of the 1-form
ω̄ = pκ1du+ qκ2dv to M . The image of a flow of ω̄|M by the projection π is a flow
of C̄(du, dv) = 0.

Proof of Theorem 5.1. We show the assertion at a point in M∩{p ̸= 0}. The case at
a point in M ∩{q ̸= 0} is similar and we omit the details. The equation C(1, η) = 0
is an affine equation for M ∩ {p ̸= 0} where η = q/p, and this defines

• a function u of (v, η) by the implicit function theorem when Cu(1, η) ̸= 0, and
we have

uv = −Cv(1, η)/Cu(1, η), uη = −Cq(1, η)/Cu(1, η).
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• a function v of (u, η) by the implicit function theorem when Cv(1, η) ̸= 0, and
we have

vu = −Cu(1, η)/Cv(1, η), vη = −Cq(1, η)/Cv(1, η).

Since Cu(ξ, 1)du+ Cv(ξ, 1)dv + Cp(ξ, 1)dξ = 0, we have

ω̄

p
=κ1du+ ηκ2dv

=

{
1

Cu(1,η)
[(Cu(1, η)ηκ2 − Cv(1, η)κ1)dv − Cq(1, η)κ1dη] Cu(1, η) ̸= 0

1
Cv(1,η)

[(Cv(1, η)κ1 − Cu(1, η)ηκ2)du− Cq(1, η)ηκ2dη] Cv(1, η) ̸= 0
(5.16)

So if (p0, q0) is a multiple root of C(p, q) = 0 at (u, v) = (0, 0) (i.e., Cp(p0, q0) =
Cq(p0, q0) = 0 at (u, v) = (0, 0)), ω̄|M is singular at (0, 0) × (p0, q0) if and only if
αq0κ2−βp0κ1 = 0. So we obtain the condition 2. If (p0, q0) is not a multiple root of
C(p, q) = 0, we have Cq(p0, q0) ̸= 0. Now it is easy to conclude the condition 1.

Let us consider the case that (0, 0) is parabolic (say k1 = 0). Then the tangent
of the flow tend to the direction generated by ∂u. Remark that ∂u is not tangent to
the parabolic line P1 whenever a30 ̸= 0. If one writes the flow by t 7→ (t, ct2 + · · · ),
we obtain that

a30(k
3
2c

3 − 3k2
2a21c

2 + 3k2a12a30c− a03a
2
30) = 0.

Observe that this has a multiple root when (0, 0) ∈ D.

Proposition 5.7. Consider the case k1 = 0 and k2 ̸= 0. Assume that (0, 0) is ridge
with respect to v1 (i.e.,a30 = 0). We assume that (0, 0) is not on the discriminant
(i.e., ∆0 = −a21

2(3a12
2 − 4a03a21) ̸= 0), For a single root (p0, q0) of c3(p, q) = 0, we

have the following.

• If 3a21
2 < k2a40, then ω̄|M has a saddle at (0, 0)× [p0 : q0].

• If 3a21
2 > k2a40, and 2(k2a40/2 − 3a221)

2 < (k2a40)
2, then ω̄|M has a node at

(0, 0)× [p0 : q0].
• If 2(k2a40/2− 3a221)

2 > (k2a40)
2, then ω̄|M has a focus at (0, 0)× [p0 : q0].

Proof. Suppose that p ̸= 0, Cu(p0, q0) ̸= 0. Then uv(0, 0) = −β/α, uη(0, 0) =
−Cq(1, η)/α. We then observe

Cu(1, η)ηκ2 − Cv(1, η)κ1 =
a21
k2

(3a21a12 − k2a31)v + (k2a40 − 3a221)η + o(1)

−Cq(1, η)κ1 =− 3a221v + o(1).

The assertions are now concluded using the Lemma below, remarking the following:

δ =3a221(3a
2
21 − k2a40), τ = k2a40/2,

δ − τ 2 =3a221(3a
2
21 − k2a40)− k2

2a
2
40/4 = (k2a40/2− 3a21

2)2 − (k2a40)
2/2.
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Lemma 5.8. Consider 1-form ω = a(x, y)dx + b(x, y)dy on xy plane. Assume
that a(0, 0) = b(0, 0) = 0. Set δ = (axby − bxay)(0, 0) and τ = ((ay − bx)/2)(0, 0).
Then the singularity type of ω at (0, 0) is saddle (resp. node, focus) if δ < 0 (resp.
0 < δ < τ 2, τ 2 < δ).

Proof. It is enough to consider the singularity type of −b(x, y)∂x + a(x, y)∂y. We
just compute the eigenvalue of the matrix(

−bx −by
ax ay

)
(0, 0)

and we have the result.

We show below phase portraits of flows in uv plane.

∆0 > 0

∆0 < 0

k1 = 0, a30 ̸= 0
k1 = 0, a30 = 0
0 < 3a21

2 < k2a40

k1 = 0, a30 = 0
0 < 3a21

2 > k2a40
(
k2a40

2
− 3a2

21)
2 <

(k2a40)2

2

k1 = 0, a30 = 0
(
k2a40

2
− 3a2

21)
2 >

(k2a40)2

2

Remark 5.9. We need to look the intersection of the parabolic line with the dis-
criminant, since this can be considered as a degenerate point of cylindrical directions
on the surface. We assume that (0, 0) ∈ P1 ∩D, that is, k1 = 0 and

a30 = q20q1, a21 = −1

3
q0(p1q0 + 2p0q1), a12 =

1

3
p0(p0q1 + 2p1q0), a03 = −p20p1.

Whenever Cu(1, η0) ̸= 0, u is a function of (v, η) by C(1, η) = A30+3A21η+3A12η
2+

A03η
3 = 0. By (5.16), we have

Cu(1, η)
ω̄

p
=[Cu(1, η)ηκ2 − Cv(1, η)κ1]dv − Cq(1, η)κ1dη

=Cu(1, η)ηκ2dv + o(1).
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A solution curve tending (0, 0) is expressed as

t 7→
(
t, −p1q0

2

2k2
t2 + · · ·

)
,

or, setting ϵ = sign c4,u(p0,q0)

p0q1−p1q0
,

t 7→
(
−ϵt2, −p0q0q1

2k2
t4 +

2q1
5k2

√∣∣∣∣ c4,u(p0, q0)p0q1 − p1q0

∣∣∣∣ t5 + · · ·
)
.

A phase portrait is given as follows.

Remark 5.10. Using Lemma 5.8, it should be possible to determine singularity
types of ω̄|M at points (0, 0)×[p0 : q0] where [p0 : q0] are multiple roots of C(p, q) = 0.

Consider the equation Cq(1, η0) = 0, η0 = q0/p0. We have

∂v(Cu(1, η)ηκ2 − Cv(1, η)κ1)

=(−(Cv/Cu)Cuu(1, η) + Cuv(1, η))ηκ2 + Cu(1, η)η((−Cv/Cu)κ2,u + κ2,v)

− (−(Cv/Cu)Cuv(1, η) + Cvv(1, η))κ1 − Cv(1, η)((−Cv/Cu)κ1,u + κ1,v)

=(−(β/α)Cuu + Cuv)(1, η0)η0k2 − Cu(1, η0)η0(−a12β/α + a03)

− (−Cuvβ/α + Cvv)(1, η0)k1 − β((−β/α)a30 + a21) + o(0),

∂η(Cu(1, η)ηκ2 − Cv(1, η)κ1)

=Cu(1, η)κ2 + (−(Cq/Cu)Cu,u(1, η) + Cuq(1, η))ηκ2 − Cu(1, η)η(Cq/Cu)κ2,u

− (−(Cq/Cu)Cuv(1, η) + Cvq(1, η))κ1 − Cv(1, η)(Cq/Cu)κ1,u

=αk2 + Cuq(1, η0)η0k2 + αη0a03 − Cvq(1, η0)k1 + o(0),

∂v(−Cq(1, η)κ1) =− [−(Cv/Cu)Cuq(1, η0) + Cvq(1, η0)]κ1 + Cq(1, η0)∂vκ1

=− (−(β/α)Cuq + Cvq)(1, η0)k1 + o(0),

∂η(−Cq(1, η)κ1) =− (−(Cq/Cu)Cuq + Cqq)(1, η0)κ1 + Cq(1, η0)∂ηκ1

=− Cqq(1, η0)k1 + o(0).

So we obtain that

δ =− [(−(β/α)Cuu + Cuv)(1, η0)η0k2 − Cu(1, η0)η0(−a12β/α + a03)
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− (−Cuvβ/α + Cvv)(1, η0)k1 − β((−β/α)a30 + a21))]Cqq(1, η0)k1 + Cvq(1, η0)k1

+ [(−(β/α)Cuq + Cvq)(1, η0)k1αk2 + Cuq(1, η0)η0k2 + αη0a03](−(β/α)Cuq,

τ =(α + Cuq(1, η0))k2 + αη0a03 − (β/α)Cuq(1, η0)k1.

Now we can apply Lemma 5.8 to have a criterion for singularity types of ω̄|M . But
writing down the explicit conditions would be very complicated unfortunately. It
could be better to discuss the normal form of jet and we discuss this method in
the next subsection, which works in the generic context of cubic binary differential
equations.

5.4 Reduction of jets of cubic differential equations

Now we discuss the reduction of jet of cubic binary differential equation Ĉ(du, dv) =
0 where

Ĉ(p, q) = P (u, v)p3 + 3Q(u, v)p2q + 3R(u, v)pq2 + S(u, v)q3

where P =
∑

i,j
pij
i!j!

uivj, Q =
∑

i,j
qij
i!j!

uivj, R =
∑

i,j
rij
i!j!

uivj, S =
∑

i,j
sij
i!j!

uivj. Set

∆0 =∆(0, 0), ∆ =

∣∣∣∣∣∣∣∣
P 2Q R 0
Q 2R S 0
0 P 2Q R
0 Q 2R S

∣∣∣∣∣∣∣∣ .
Proposition 5.11.

1. If ∆0 > 0 (resp. ∆0 < 0), then the equation Ĉ(du, dv) = 0 reduces to
dx(dx2 + 3dy2) + o(0) = 0 (resp. dx(dx2 − 3dy2) + o(0) = 0).

2. When ∆0 = 0, then the constant term of Ĉ(du, dv) is (q0du − p0dv)
2(q1du −

p1dv). Now we set

σ0 = αp0 + βq0, σ1 = αp1 + βq1, σ2 = p0q1 − p1q0,

where α = Ĉu(p0, q0)|(u,v)=(0,0) and β = Ĉv(p0, q0)|(u,v)=(0,0).

(a) When σ0 ̸= 0, σ1 ̸= 0, and σ2 ̸= 0, the equation reduces to

[dx2 + (x+ y)dy2]dy + o(1) = 0. (5.17)

(b) When σ0 ̸= 0, σ1 = 0, and σ2 ̸= 0, the equation reduces to

[dx2 + (ax2 + y)dy2]dy + o(2) = 0. (5.18)

When a ̸= 0, the discriminant has the first order tangent to the foliation
corresponding to the single root of the cylindrical equation. The sign of
a coincides with the sign of (5.22) in the proof.
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(c) When σ0 = 0, σ1 ̸= 0, and σ2 ̸= 0, the equation reduces to

[dx2 + (x+ by2)dy2]dy + o(2) = 0. (5.19)

The equation (5.19) defines folded saddle (resp. folded node, folded fo-
cus) if b < 0 (resp. 0 < b < 1/16, b > 1/16). Remark that b is given by
(5.23).

3. If ∆0 = σ2 = 0, then the equation reduces to

dx3 + 3(kx+ ly)dx dy2 + (ax+ by)dy3 + o(1) = 0 (5.20)

and the singularity type of the discriminant is cusp if al − bk ̸= 0, or equiva-
lently ∣∣∣∣∣Ĉup(p0, q0) Ĉvp(p0, q0)

Ĉuq(p0, q0) Ĉvq(p0, q0)

∣∣∣∣∣ ̸= 0. (5.21)

As we will see in the proof, explicit formulas for a in (5.18) and for b in (5.19) are
very complicate when we express them in terms of the coefficients of Monge normal
form (2.1).

Proof. By a suitable linear change of coordinates, the 0-jet of Ĉ reduces to dx(dx2+
3dy2) (resp. dx(dx2 − 3dy2)) when ∆0 > 0 (resp. ∆0 < 0). If this determinant is 0,
we can assume that the 0-jet of the equation is (q0du− p0dv)

2(q1du− p1dv) and we
reduce the 0-jet to 3σ2

3t0
2t1dx

2dy by a coordinates change given by

u = t1p1x+ t0p0y + o(1), v = t1q1x+ t0q0y + o(1),

whenever σ2 ̸= 0. Here t0, t1 are non-zero constants. Multiplying the equation by
1/(3σ2

3t0
2t1), we reduce the constant term of the coefficient of dx2dy is 1. In this

case, by a suitable choice of quadratic parts of coordinate change, we are able to
reduce the equation to

[dx2 + (a1x+ a2y)dy
2]dy + o(1) = 0

where a1 = t0
2σ1/(3t1σ

3
2), a2 = t0

3σ0/(3t1
2σ3

2). When σ0 ̸= 0, σ1 ̸= 0, we reduce
this equation to (5.17) setting (t0, t1) = (3σ0σ

5
2/σ

3
1)(1, σ0σ

2
2). Remark also that, if

a1 ̸= 0, then we reduce the coefficient of x dy3 to 1 setting t1 = t0
2σ1/(3σ

3
2).

When σ0 ̸= 0, σ1 = 0 (i.e., a1 = 0, a2 ̸= 0), we need to look the coefficients of
x2dy3 which is expressed as follows:

t0
2
[3(Ĉuu(p0, q0)p

2
1 + 2Ĉuv(p0, q0)p1q1 + Ĉvv(p0, q0)q

2
1)

4σ3
2

− Q̂

12σ6
2

]
(5.22)

where Q̂ =
∑

i,j Qij p0
4−jq0

j p1
4−iq1

i, Q00 = 25p210,

Q01 =37p01p10 + 63p10q10, Q02 = 12p201 + 30p10q01 + 57p01q10 + 9q210 + 42p10r10,
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Q03 =24p01q01 + 18q01q10 + 9p10r01 + 36p01r10 + 13p10s10,

Q04 =9q201 + 3p01r01 + 2p10s01 + 11p01s10, Q10 = 13p01p10 + 87p10q10,

Q11 =13p201 + 114p10q01 + 60p01q10 + 171q210 + 42p10r10,

Q12 =87p01q01 + 225q01q10 + 75p10r01 + 48p01r10 + 162q10r10 + 3p10s10,

Q13 =54q201 + 81p01r01 + 63q10r01 + 144q01r10 + 14p10s01 + 5p01s10 + 39q10s10,

Q14 =45q01r01 + 16p01s01 + 6q10s01 + 33q01s10,

Q20 =6p10q01 + 33p01q10 + 45q210 + 66p10r10,

Q21 =39p01q01 + 207q01q10 + 60p10r01 + 33p01r10 + 243q10r10 + 18p10s10,

Q22 =162q201 + 27p01r01 + 324q10r01 + 162q01r10 + 162r210 + 18p10s01 + 18p01s10 + 27q10s10,

Q23 =243q01r01 + 207r01r10 + 18p01s01 + 60q10s01 + 33q01s10 + 39r10s10,

Q24 =45r201 + 66q01s01 + 6r10s01 + 33r01s10,

Q30 =6p10r01 + 33p01r10 + 45q10r10 + 16p10s10,

Q31 =39p01r01 + 63q10r01 + 144q01r10 + 54r210 + 14p10s01 + 5p01s10 + 81q10s10,

Q32 =162q01r01 + 225r01r10 + 3p01s01 + 75q10s01 + 48q01s10 + 87r10s10,

Q33 =171r201 + 42q01s01 + 114r10s01 + 60r01s10 + 13s210, Q34 = 87r01s01 + 13s01s10,

Q40 =9r210 + 2p10s01 + 11p01s10 + 3q10s10,

Q41 =18r01r10 + 13p01s01 + 9q10s01 + 36q01s10 + 24r10s10, Q44 = 25s201,

Q42 =9r201 + 42q01s01 + 30r10s01 + 57r01s10 + 12s210, Q43 = 63r01s01 + 37s01s10.

By a suitable choice of cubic parts of the coordinate change we are able to reduce
the equation to (5.18). Remark that this coordinate change does not change the
coefficient of x2dy3. We also remark that the possible singularity of ω|M over (0, 0)
is [p0, q0] = [0 : 1] only if a2 = 0.

We consider the case σ0 = 0 and σ1 ̸= 0 (i.e., a1 ̸= 0, a2 = 0). We need to look
the coefficients of y2dy3 which is expressed as follows:(t02

t1

)2[Ĉuu(p0, q0)p
2
0 + 2Ĉuv(p0, q0)p0q0 + Ĉvv(p0, q0)q

2
0

6σ3
2

− R̂

4σ6
2

]
where R̂ =

∑
i,j Rij p0

6−jq0
j p1

2−iq1
i,

R00 =4p210, R01 = 3p10(7p01 + q10), R02 = 17p201 + 28p10q01 + 43p01q10 − 24q210 − 4p10r10,

R03 =68p01q01 + 30q01q10 + 7p10r01 + 37p01r10 − 63q10r10 + p10s10,

R04 =3(18q201 + 16p01r01 − 9q10r01 + 6q01r10 − 12r210 + 5p01s10 − 4q10s10),

R05 =54q01r01 − 33r01r10 + 14p01s01 − 14q10s01 + 16q01s10 − 13r10s10,

R06 =3r201 + 14q01s01 − 14r10s01 + r01s10,

R10 =− p10(13p01 − 21q10), R11 = −13p201 + 10p10q01 −20 p01q10 + 57q210 + 14p10r10,

R12 =− 31p01q01 + 75q01q10 + 31p10r01 − 29p01r10 + 81q10r10 − 7p10s10,

R13 =2(9q201 − 6p01r01 + 63q10r01 + 18q01r10 + 9r210 + 4p10s01 − 11p01s10 − 6q10s10),
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R14 =81q01r01 + 75r01r10 − 7p01s01 + 31q10s01 − 29q01s10 − 31r10s10,

R15 =57r201 + 14q01s01 + 10r10s01 − 20r01s10 − 13s210, R16 = s01(21r01 − 13s10),

R20 =− 14p10q01 + p01q10 + 3q210 + 14p10r10,

R21 =− 13p01q01 − 33q01q10 − 14p10r01 + 16p01r10 + 54q10r10 + 14p10s10,

R22 =− 3(12q201 + 4p01r01 + 9q10r01 − 6q01r10 − 18r210 − 5p01s10 − 16q10s10),

R23 =− 63q01r01 + 30r01r10 + p01s01 + 7q10s01 + 37q01s10 + 68r10s10,

R24 =28r10s01 + 43r01s10 + 17s210 − 24r201 − 4q01s01, R25 = 3s01(r01 + 7s10), R26 = 4s201.

We assume that a1 = 1, since we can choose (t0, t1) with t0
2/t1 = 3σ3

2/σ1. Then
the coefficient of y2dy3 becomes

9

σ1
2

[σ2
3(Ĉuu(p0, q0)p

2
0 + 2Ĉuv(p0, q0)p0q0 + Ĉvv(p0, q0)q

2
0)

6
− R̂

4

]
. (5.23)

By a suitable choice of cubic parts of the coordinate change, we are able to reduce
the equation to (5.19). Remark that this coordinate change does not change the
coefficient of y2dy3. Now we can apply Lemma 5.8 to have a criterion for singularity
types of the restriction of 1-form pdu−qdv to the subset Ĉ(p, q) = 0 in (R2, 0)×P 1.

Remark that the linear term of ∆ is 4
27
σ2

3(a1x + a2y) and (0, 0) ∈ ΣD if and
only if σ2 = 0 or a1 = a2 = 0.

In the case σ2 = 0, the constant part of Ĉ(du, dv) is a constant multiple of
(v0du − u0dv)

3 and we are able to reduce the 0-jet of the equation to dx3. By a
suitable choice of quadratic parts of coordinate change, we are able to reduce the
equation to (5.19). We remark that

k =− p0
−3t−1Ĉvq(p0, q0), l =− p0

−3t−2[Ĉuq(p0, q0)p0 + Ĉvq(p0, q0)q0],

a =− p0
−3t−2Ĉv(p0, q0), b =− p0

−3t−3[Ĉu(p0, q0)p0 + Ĉv(p0, q0)q0]

(or k =q0
−3t−1Ĉuq(p0, q0), l =q0

−3t−2[Ĉuq(p0, q0)p0 + Ĉvq(p0, q0)q0],

a =q0
−3t−2Ĉu(p0, q0), b =q0

−3t−3[Ĉu(p0, q0)p0 + Ĉv(p0, q0)q0]),

by a suitable change of coordinate

u = p0y + o(1), v = tx+ q0y + o(1) (or u = tx+ p0y + o(1), v = q0y + o(1))

and the 3-jet of the discriminant is (ax+ by)2 + (kx+ ly)3. So the singularity type
of the discriminant is cusp if al − bk ̸= 0, which is equivalent to (5.21).

The phase portraits of singularities of the flows are shown by the pictures below.

1. ∆0 < 0 1. ∆0 > 0 2. (a)
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2. (b)
a < 0

2. (b)
a > 0

2. (c)
b < 0

2. (c)
0 < b < 1

16

2. (c)
1
16

< b

3. 3.
We can apply Proposition 5.11 to determine the singularity type of the equation

C̄(du, dv) = 0,

whenever k1k2 ̸= 0.
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[5] G. Darboux, Leçons sur la théorie générale des surfaces, IV, Gauthier-Villars,
Paris, 1896.

[6] T. Fukui and M. Hasegawa, Singularities of parallel surfaces, Tohoku Math. J.
(2) 64 (2012), no. 3, 387–408. 2015/1/30

[7] S. Izumiya, Differential geometry from the viewpoint of Lagrangian or Legen-
drian singularity theory, in Singularity theory, Proceedings of the Singularity
school and conference, Marceille, 2005 (D. Chéniot, N. Dutertre, C. Murolo,
D. Trotman and A. Pichon) World Scientific Pub Co Inc 2007.

29



[8] S. Izumiya, M. C. Romero Fuster, M. A. Ruas, and F. Tari, Differential geome-
try from singularity theory viewpoint, World Scientific Pub Co Inc (2015/1/30).

[9] D. K. H. Mochida, M. C. Romero Fuster, and M. A. Ruas, The geometry of
surfaces in 4-space from a contact viewpoint. Geometriae Dedicata 54 (1995),
323–332.

[10] R. A. Garcia, D. K. H. Mochida, M. C. Romero Fuster and M. A. Ruas, Inflec-
tion points and topology of surfaces in 4-space, Trans. Amer. Math. Soc. 352
(2000), 3029–3043.
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Toshizumi Fukui,
Department of Mathematics, Faculty of Science, Saitama University, Saitama, 338-8570, Japan

E-mail address: tfukui@rimath.saitama-u.ac.jp

Masaru Hasegawa,
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