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Abstract. We describe singularities of distance squared functions on singular surfaces in R3

parameterized by smooth map-germs A-equivalent to one of Sk, Bk, Ck and F4 singularities
in terms of extended geometric language via finite succession of blowing-ups. We investigate
singularities of wave-fronts and caustics of such singular surfaces.

1. Introduction

Let f : (R2, 0) → (R3, 0) be a smooth map-germ which locally defines a surface S (possibly
with singularities) in R3. We consider the family D : (R2, 0) × R3 → R of functions on S
defined by

D(u, v,p) =
1

2
‖f(u, v)− p‖2,

where p ∈ R3. We define dp(u, v) = D(u, v,p), which is the distance squared function on S
from the point p. In principle, this function measures contact of S with spheres centered at
p, and the family D is 3-parameter unfolding of dp. We have investigated when D is K and
R+-versal for a regular surface [6] or a singular surface with a Whitney umbrella (cross cap)
[5]. It is important to study the K and R+-versality of D, since the number of parameters
of the unfolding determines diffeomorphism type of K and R+-versal unfoldings and thus
diffeomorphism type of the discriminant set and bifurcation set of D. Since the discriminant
sets of D are wave-fronts of S and the bifurcation sets of D are caustics of S, this enables us
to determine the diffeomorphism typs of the wave-fronts and the caustics. Next target is to
generalize these results for a singular surface which is the image of an A-simple map-germ.
A-simple map-germs are classified by Mond [16] and the list of the classification is given in
Table 1. In this paper, we investigate when D is K and R+-versal for such singular surfaces
except Hk.

Our main result (Theorem 3.1) is to describe singularities of the distance-squared functions
on our singular surfaces and conditions for their unfoldings being K and R+-versal in terms of
differential geometry of the singular surfaces. As a consequence, we obtain criteria (Theorem
4.3) for types of singularities of wave-fronts and caustics of our singular surfaces. To do this,
we introduce differential geometric language for such singular surfaces using finite succession
of blowing-ups. The notions we introduce are not enough to describe differential geometry
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Table 1. Classes of A-simple map-germs.

Name Normal form A-codim.

Immersion (x, y, 0) 0

Whitney umbrella (S0) (x, y2, xy) 2

S±
k (x, y2, y3 ± xk+1y), k ⩾ 1 k + 2

B±
k (x, y2, x2y ± y2k+1), k ⩾ 2 k + 2

C±
k (x, y2, xy3 ± xky), k ⩾ 3 k + 2

F4 (x, y2, x3y + y5) 6

Hk (x, xy + y3k−1, y3), k ⩾ 2 k + 2

(When k is even, S+
k is equivalent to S−

k , and C+
k to C−

k .)

for a singular surface with Hk and we think it is better to treat Hk case separately. We plan
to prepare another article for Hk case.

The paper is organized as follows. In Section 2, we investigate the differential geometric
information extended to singularities of our singular surfaces. In Section 3, we show the
criteria for singularities of wave-fronts and caustics of the singular surfaces and investigate
distance squared functions on the singular surfaces. In addition, we introduce focal loci which
should be considered as analogy of focal conics of Whitney umbrellas. In Appendix A, we
collect closed formulas for coefficients of differential geometric ingredients defined in Section
2, since these are often not short.

2. Differential geometry for singular surfaces

Whitney [27] showed that smooth maps of R2 into R3 can have singularities which are
not avoidable by small perturbation. Such a singularity is called a Whitney umbrella or
cross-cap (Figure 1). Since Whitney umbrellas are stable singularities, it is natural to seek
their geometry. The extrinsic differential geometry of the Whitney umbrella is investigated
in [2, 5, 7, 8, 9, 18, 19, 20, 23, 26], and in [10, 11] its intrinsic properties are considered.

Figure. 1. The Whitney umbrella, (u, v) → (u, uv, v2)

Two map-germs f, g : (R2, 0) → (R3, 0) are said to be A-equivalent if g = Φ ◦ f ◦ φ−1 for
some germs of diffeomorphisms φ and Φ of, respectively, the source and target. In [16], Mond
classified smooth map-germs (R2, 0) → (R3, 0) under A-equivalence and gave a list (Table 1)
of normal forms of the map-germs. Several authors tried to research in this direction, see for
example [14, 15, 20, 22].
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2.1. Normal forms of corank 1 singularities. To analyze the differential geometry of
a surface, relevant parameterizations of the surface are essential. However, we can not use
the normal forms given in Table 1 as its parameterization because local differential geometry
of the surfaces may not be preserved by diffeomorphisms in the target. So we construct a
parameterizasion by using changes of coordinates in the source and isometries in the target,
which preserve the geometry of the surface.

Given a map-germ (R2, 0) → (R3, 0) of corank 1 at the origin, we can make a change of
coordinates in the source and a rotation in the target and write the germ in the form

(u, v) 7→ (u, y(u, v), z(u, v)),

where y, z ∈ 〈u, v〉2E2 . Here, E2 is the local ring of smooth function germs of (R2, 0) → R.

Proposition 2.1. Let g : (R2, 0) → (R3, 0) be a map-germ of corank 1 at the origin. Then,
after using rotations in the target and changes of coordinates in the source, we can reduce g
to the form

(2.1)

(
u,

1

2
v2 +

k∑
i=2

bi
i!
ui +O(u, v)k+1,

1

2
a2,0u

2 +
k∑

m=3

∑
i+j=m

ai,j
i!j!

uivj +O(u, v)k+1

)
,

if j2g(0) is A-equivalent to (u, v2, 0), or

(2.2)

(
u, uv +

k∑
i=3

bi
i!
vi +O(u, v)k+1,

1

2
a2,0u

2 +
k∑

m=3

∑
i+j=m

ai,j
i!j!

uivj +O(u, v)k+1

)
,

if j2g(0) is A-equivalent to (u, uv, 0).

Proof. We may assume that

j2g(0) =

(
u,

1

2
b2,0u

2 + b1,1uv +
1

2
b0,2v

2,
1

2
a2,0u

2 + a1,1uv +
1

2
a0,2v

2

)
.

If j2g(0) is A-equivalent to (u, v2, 0), we can assume that (a0,2, b0,2) 6= (0, 0) and∣∣∣∣∣b1,1 b0,2

a1,1 a0,2

∣∣∣∣∣ = 0.

Let R be the orthogonal matrix defined by

R =

(
1 0

0 R1

)
where R1 =

1√
a20,2 + b20,2

(
b0,2 a0,2

−a0,2 b0,2

)
.

Then the 2-jet of Rg isu,
a2,0 b0,2 + a0,2 b2,0

2
√

a20,2 + b20,2

u2 +
a0,2 a1,1 + b2,0 b1,1√

a20,2 + b20,2

uv +

√
a20,2 + b20,2

2
v2,

a2,0 b0,2 − a0,2 b2,0

2
√

a20,2 + b20,2

u2

 .
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Substituting v by c1,0u + c0,1v and choosing suitable coefficients c1,0 and c0,1, we show that
the 2-jet of Rg is u,

1

2
b∗2,0u

2 +
1

2
v2,

a2,0 b0,2 − a0,2 b2,0

2
√
a20,2 + b20,2

u2

 .

This shows the first assertion for k = 2. We proceed by induction of k. Assume that g is in
the form (2.1). Substituting v by v +

∑
i+j=k ci,ju

ivj/(i!j!), the second component of g is

1

2
v2 +

bk+1,0

(k + 1)!
uk+1 +

∑
i+j=k

(
bi−1,j

(i− 1)!j!
+

ci,j
i!j!

)
ui+1vj +O(u, v)k+2

and we can choose ci,j so that the term uivj (i + j = k + 1, i ⩾ 1) are zero, which conclude
the first assertion. We skip the proof of the second assertion, because the proof is similar to
that of the first assertion. □
Proposition 2.2. Necessary and sufficient conditions for g given in (2.1) to be A-equivalent
to one of Sk, Bk, Ck, and F4 are as follows:

S1 : a2,1 6= 0
:::::::

, a0,3 6= 0,

Sk⩾2 : a2,1 = · · · = ak,1 = 0, ak+1,1 6= 0
::::::::::::::::::::::::::::::::

, a0,3 6= 0,

B2 : a0,3 = 0, a2,1 6= 0
:::::::

, 3a0,5 a2,1 − 5a21,3 6= 0,

Bk⩾3 : a0,3 = 0, a2,1 6= 0
:::::::

, 3a0,5 a2,1 − 5a21,3 = 0, ξ3 = · · · = ξk−1 = 0, ξk 6= 0,

Ck : a0,3 = 0, a2,1 = · · · = ak−1,1 = 0, ak,1 6= 0
::::::::::::::::::::::::::::::::

, a1,3 6= 0,

F4 : a0,3 = 0, a2,1 = 0, a3,1 6= 0
:::::::::::::::::

, a1,3 = 0, a0,5 6= 0,

where

ξn =
n∑

i=0

∑
j⩾1

ai,2j−1 c
m2
2 · · · cmk

n

m2! · · ·mk! (2j − 1)!
,

n∑
l=2

ml = i,
n∑

l=2

(l − 1)ml = n− j + 1

and c2, . . ., ck are constants determined by
n∑

i=1

∑
j⩾1

ai,2j−1 c
l2
2 cl33 · · · clnn

l2! l3! · · · ln! (2n− 1)!
= 0,

n∑
m=2

lm = i− 1,
n∑

m=2

(m− 1)lm = n− j, n = 2, . . . , k.

Remark 2.3. These criteria are also shown in [16, page 707]. However, their criterion are not
complete since they describe the criteria up to 4-jets. We obtained Proposition 2.2 without
knowing their result and feel better to present our proof for completeness.

Proof of Proposition 2.2. For S1 : We first remark that S1-singularity is 3-A-determined. The
left coordinate changes

ŷ = y −
3∑

i=2

bi
i!
xi, ẑ = z −

3∑
i=2

ai,0
i!

xi − a1,2

(
y −

3∑
i=2

bi
i
xi

)
(2.3)
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reduces j3g(0) to (
u,

1

2
v2,

1

2
a2,1u

2v +
1

6
a0,3v

3

)
,

and this implies that g is A-equivalent to S1 if and only if a2,1 6= 0 and a0,3 6= 0.
For S⩾2 : We first remark that Sk is (k + 2)-determined. By the left coordinate changes

like (2.3), we reduce jk+2g(0) to(
u,

1

2
v2,

k+1∑
i+2j=2

ai,2j+1

i!(2j + 1)!
uiv2j+1

)
, (i, j ⩾ 0).(2.4)

If g is A-equivalent to Sk, we may assume that a0,3 6= 0. Since a0,3 6= 0, we can choose c so
that the coefficients of uiv2j+3m (i + j ⩾ 1,m ⩾ 1) of the third component of (2.4) are zero
by the left coordinate change ẑ = z − cxiyjzm. Hence we reduce (2.4) to(

u,
1

2
v2,

k+1∑
i=2

ai,1
i!

uiv +
1

6
a0,3v

3

)
,

and we have a2,1 = · · · = ak,1 = 0 and ak+1,1 6= 0. On the other hand, if a2,1 = · · · = ak,1 = 0,
ak+1,1 6= 0 and a0,3 6= 0, then we can reduce (2.4) to(

u,
1

2
v2,

ak+1,1

(k + 1)!
uk+1v +

1

6
a0,3v

3

)
by the above left coordinate change ẑ = z − cxiyjzm, and this implies that g is A-equivalent
to S1-singularity.

For B2 : We first remark that B2-singularity is 5-A-determined. By the left coordinate
changes like (2.3), we reduce j5g(0) to

(
u,

1

2
v2,

1

2
a2,1u

2v +
1

6
a0,3v

3 +
1

6
a3,1u

3v +
1

6
a1,3uv

3 +
1

24
a4,1u

4v +
1

1, 2
a2,3u

2v3 +
1

120
a0,5v

5

)
.

(2.5)

If g is A-equivalent to B2, we may assume that a2,1 6= 0. Since a2,1 6= 0, substituting u by
u − a1,3v

2/(6a2,1), we reduce the coefficient of uv3 of the third component of (2.5) to zero.
Moreover, using the left coordinate change ẑ = z − cxiyjzm (i+ j ⩾ 1,m ⩾ 1) and choosing
a suitable coefficient c, we can reduce the coefficients of ui+2mv2j+m of the third component
of (2.5) to zero. Hence we reduce (2.5) to(

u,
1

2
v2,

1

2
a2,1u

2v +
1

6
a0,3v

3 +
3a2,1 a0,5 − 5a21,3

360a2,1
v5
)
,

and we have a0,3 = 0 and 3a2,1 a0,5 − 5a21,3 6= 0. On the other hand, if a2,1 6= 0, a0,3 = 0 and

3a2,1 a0,5 − 5a21,3 6= 0, then by the above changes of coordinate of the source and the target
we can reduce (2.5) to (

u,
1

2
v2,

1

2
a2,1u

2v +
3a2,1 a0,5 − 5a21,3

360a2,1
v5
)
,
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and we conclude that g is A-equivalent to B2.
For B⩾3 : First, we remark that Bk singularity is (2k+1)-determined. By the left coordinate

changes

x̂ = x, ŷ = y −
2k+1∑
i=2

bi
i!
xi, ẑ = z −

2k+1∑
i+2j=2

2ai,2j
i!(2j)!

xi

(
y −

2k+1∑
i=2

bi
i!
xi

)j

,

the coefficients ui of the second component and uiv2j of the third component of j2k+1f(0)
became to 0, and thus j2k+1f(0) reduces to

(2.6)

(
u,

1

2
v2,

a2,1
2

u2v +
a0,3
6

v3 +
2k∑

i+2j=3

ai,2j+1

i!(2j + 1)!
uiv2j+1

)
.

Remark that this coordinate changes does not change all coefficients of the third component
except coefficients uiv2j.

Assume that f is A-equivalent to Bk singularity. From (2.6), we have a2,1 6= 0 and a0,3 = 0.

Replacing u by u+
∑k

i=2 civ
2(i−1), we write j2k+1f(0) as(

u+
k∑

i=2

civ
2(i−1),

1

2
v2,

1

2
a2,1u

2v +
2k+1∑
i+j=4

âi,ju
ivj

)
.(2.7)

Since a2,1 6= 0, we can choose c2, . . ., ck so that the coefficients of uv3, . . ., uv2k−1 of the third
component of (2.7) became to zero. In fact, since the coefficients â1,3, . . ., â1,2k−1 of uv

3, . . .,
uv2k−1 of the third component are give by

â1,3 =
a1,3
3!

+
a2,1
2!

2!

1!1!
c2,(2.8)

â1,5 =
a1,5
5!

+
a2,1
2!

2!

1!1!
c4 +

a2,3
2!3!

2!

1!1!
c2 +

a3,1
3!

3!

1!2!
c22,(2.9)

...

â1,2k−1 =
k∑

i=1

∑
j⩾1

ai,2j−1 c
l2
2 cl33 · · · clkk

l2! l3! · · · lk! (2k − 1)!

(
k∑

m=2

lm = i− 1,
k∑

m=2

(m− 1)lm = k − j

)
,

(2.10)

c2, . . ., ck are determined by â1,3 = · · · = â1,2k−1 = 0. In particular, c2 = −a1,3/(6a2,1). The
coefficients of â0,5, . . ., â0,2k+1 of v5, . . ., v2k+1 of the third component are given by

â0,5 =
a0,5
5!

+
a1,3
3!

1!

1!
c12 +

a2,1
2!

2!

2!
c22,(2.11)

â0,7 =
a0,7
7!

+
a1,3
3!

1!

1!
c13 +

a1,5
5!

1!

1!
c12 +

a2,1
2!

2!

1!1!
c12c

1
3 +

a2,3
2!3!

2!

2!
c22 +

a3,1
3!

3!

3!
c32,(2.12)

...

â0,2k+1 =
k∑

i=0

∑
j⩾1

ai,2j−1 c
m2
2 · · · cmk

k

m2! · · ·mk! (2j − 1)!

(
k∑

l=2

ml = i,

k∑
l=2

(l − 1)ml = k − j + 1

)
.(2.13)
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In particular, â0,5 = (3a0,5 a2,1 − 5a21,3)/(360a2,1). By the left change of coordinates

ˆ̂x = x̂−
k∑

i=2

2i−1ciŷ
i−1, ˆ̂y = ŷ, ˆ̂z = ẑ −

∑
ci,j,m

(
x̂−

k∑
i=2

2i−1ciŷ
i−1

)i

ŷj ẑm,

coefficients of u2, . . ., u2(k−1) of the first component became to zero. Moreover, since a2,1 6= 0,
we can choose ci,j,m so that the coefficients of ui+2mv2j+m (i ⩾ 0, j ⩾ 0, m ⩾ 1, 4 ⩽ i+ 2j +
3m ⩽ 2k+1) of the third component became to zero, and thus the third component reduces
to

1

2
a2,1u

2v+â0,5v
5+

k∑
m=3

m−1∑
i=2

â0,2i−1c1,m−i−1,1uv
2m−1+

k∑
m=3

(
â0,2m+1 +

m∑
i=3

â0,2i−1c0,m−i+1,1v
2m+1

)
.

Setting â0,2n+1 = ξn, we obtain ξ2 = ξ3 = · · · = ξk−1 = 0, ξk 6= 0.
Conversely, if a2,1 6= 0, a0,3 = ξ2 = · · · = ξk = 0, and ξk 6= 0, then by the above changes of

coordinate of the source and the target we can reduce (2.6) to(
u,

1

2
v2,

1

2
a2,1u

2v + ξkv
2k+1

)
.

Hence, f is A-equivalent to Bk.
For C⩾4 : We first remark that Ck-singularity is (k+1)-A-determined. If g is A-equivalent

to Ck, we may assume that a1,3 6= 0. Since a1,3 6= 0, substituting u by u − 6a0,2i+3

(2i+3)! a1,3
v2i

(i ⩾ 1), we reduce the coefficient of v2i+3 of the third component of jk+1g(0). Moreover, we
can choose c so that the coefficients of ui+mv2j+3m (i+ j ⩾ 1,m ⩾ 1) of the third component
of jk+1g(0) are zero by the left coordinate change ẑ = z − cxiyjzm. Hence we can reduce
jk+1g(0) to (

u,
1

2
v2,

1

6
a0,3v

3 +
1

6
a1,3uv

3 +
k∑

i=2

ai,1
i!

uiv

)
.

This shows that a2,1 = · · · = ak−1,1 = 0, ak,1 6= 0 and a0,3 = 0. Conversely, if a2,1 = · · · =
ak−1,1 = 0, ak,1 6= 0, a0,3 = 0 and a1,3 6= 0, then by the above changes of coordinate of the
source and the target we can reduce jk+1g(0) to(

u,
1

2
v2,

1

6
a1,3uv

3 +
ak,1
k!

ukv

)
,

and we conclude that g is A-equivalent to Ck.
For F4 : We first remark that F4-singularity is 5-A-determined. By the left coordinate

changes like (2.3), we reduce j5g(0) to

(
u,

1

2
v2,

1

2
a2,1u

2v +
1

6
a0,3v

3 +
1

6
a3,1u

3v +
1

6
a1,3uv

3 +
1

24
a4,1u

4v +
1

12
a2,3u

2v3 +
1

120
a0,5v

5

)
.

(2.14)

If g is A-equivalent to F4, we may assume that a3,1 6= 0. Since a3,1 6= 0, replacing u to
u−a2,3/(6a3,1)v

2, we see that the coefficient of u2v3 of the third component of (2.14) reduces
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to zero. Moreover, by the left coordinate change ẑ = z − a4,1/(4a3,1)xz, we can reduce the
coefficient of u4v of the third component of (2.14) to zero. Hence j5g(0) reduces to(

u,
1

2
v2,

1

6
a2,1u

2v +
1

6
a0,3v

3 +
1

6
a3,1u

3v +
1

6
a1,3uv

3 +

(
1

120
a0,5 −

a1,3 a2,3
36a3,1

)
v5
)
.

This implies that we have a2,1 = a0,3 = a1,3 = 0 and a0,5 6= 0. Conversely, if a2,1 = a0,3 =
a1,3 = 0, a3,1 6= 0 and a0,5 6= 0, then by the above changes of coordinate of the source and
the target we can reduce j5g(0) to(

u,
1

2
v2,

1

6
a3,1u

3v +
1

120
a0,5v

5

)
,

and thus g is A-equivalent to F4. □

2.2. Basic notions of differntial geometry of singular surfaces with corank 1 singu-
larities. Consider a singular surface S parameterized by a smooth map-germ g : (R2, 0) →
(R3, 0) of corank 1 at the origin 0. At the singular point g(0), the tangent plane degenerates
to a line, that is, the image of dg0 is a line. We call such a line a tangent line. The plane
passing through g(0) perpendicular to the tangent line is called the normal plane.

We consider the orthogonal projection of S onto the normal plane. The projection can be
expressed as

(R2, 0) → (R2, 0), (u, v) 7→ (p(u, v), q(u, v)).

We consider the group G = GL2(R)×GL2(R) which acts on (j2p, j2q). The list of G-orbits is
given in Table 2 (see [4] for example). We classify the singular points of S on the basis of the
G-class of (j2p, j2q) in Table 2. From Proposition 2.1, if j2g(0) is A-equivalent to (u, v2, 0)
then the singular point g(0) is a hyperbolic, inflection or degenerate inflection point. On
the other hand, if j2g(0) is A-equivalent to (u, uv, 0), then the singular point g(0) is either a
parabolic or inflection point.

Table 2. The classification of the singular points.

G-class Name

(x2, y2) hyperbolic point

(xy, x2 − y2) elliptic point

(x2, xy) parabolic point

(x2 ± y2, 0) inflection point

(x2, 0) degenerate inflection point

(0, 0) degenerate inflection point

There exists non-zero vector η ∈ T0R2 such that dg0(η) = 0. We call η a null vector (cf.
[12, 22]). Suppose that j2g(0) is A-equivalent to (u, v2, 0). The plane passing through g(0)
spanned by the tangent line and ηηg(0) is called the principal plane, where ηηg is the twice
times directional derivative of g with respect to η. The vector in the normal plane is called
the principal normal vector if the vector is normal to the principal plane.
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We remark that the definitions of the tangent line, normal plane, principal plane, principal
normal vector and type of singular points are independent of the choice of coordinates in the
source.

A regular plane curve in the parameter space passing through (0, 0) is called a tangential
curve if it is transverse to η at (0, 0). Let γ(t) be a parameterization of the tangential curve.
Clearly, g ◦ γ is tangent to the tangent line of the singular surface. We denote Γ by a family
of tangential curves γ. A member Γ0 of the family is a characteristic tangential curve if
the curvature of the orthogonal projection of g ◦ Γ0 onto the principal plane at g(0) has
an extremum value κ0. Note that tangential curves tangent to the characteristic tangential
curve are characteristic tangential curves.

Figure. 2. The tangent line, normal plane and principal plane of S− (left)
and S+ (right).

Remark 2.4. Assume that a singular surface is parameterized by g : (R2, 0) → (R3, 0) given
in (2.1). We can easily show that the tangent line is the x-axis and the normal plane is the
yz-plane, where (x, y, z) is the usual Cartesian coordinate system of R3. Furthermore, the
null vector can be chosen as η = ∂v, and thus the principal plane is the xy-plane and the
principal normal vector is ±∂z.

We can take Γ = (u, c1u + c2u
2 + O(u3)) as the family of tangential curves. The 2-jet

of g ◦ Γ are given by (u, (b2 + c21)u
2/2, a2,0u

2/2). It follows that tangential curves tangent
to the u-axis are the characteristic tangential curves, and thus the singular point g(0) is an
inflection (resp. degenerate inflection) point if and only if a2,0 = 0 (resp. a2,0 = b2 = 0).
By using the above argument, it is easily shown that the singular point g(0) is an inflection
point if and only if g ◦γ have at least 3-point contact (inflectional tangent) with the principal
plane at g(0), and that the inflection point g(0) is degenerate if and only if κ0 = 0.

2.3. Extended geometric properties of singular surfaces via blowing-ups. Let S be
a singular surface parameterized by g in (2.1), and let g be A-equivalent to one of Sk, Bk,
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Ck and F4 singularities. From Proposition 2.2, the condition that

a2,1 6= 0 or a2,1 = · · · = an,1 = 0, an+1,1 6= 0 for some n ⩾ 2.(2.15)

holds. Consider maps

Π̃n+1 : R× S1 → R2, (r, θ) 7→ (r cos θ, rn+1 cosn θ sin θ) (n = 1 if a21 6= 0),

and
Πn+1 : M → R2, [(r, θ)] 7→ (r cos θ, rn+1 cosn θ sin θ) (n = 1 if a21 6= 0),

whereM = R×S1/(r, θ) ∼ (−r, θ+π). The exceptional setX = Π−1
n+1(0, 0) = {(r, θ) | r cos θ =

0}. Note that

(2.16) Π̃∗
n+1u

ivj = (uivj) ◦ Π̃n+1 = ri+j+jn cosi+jn θ sinj θ.

Set

Am = Am(u, v) =
∑

i+j=m

ai,j
i!j!

uivj, A = A(u, v) =
k∑

m=3

Am, B = B(u) =
∑
i=3

bi
i!
ui.

We have

(2.17) gu = (1, Bu, a2,0u+ Au), gv = (0, v, Av),

and we thus obtain

(2.18) gu × gv = (AvBu − a2,0uv − vAv,−Av, v).

Therfore, we have

Π̃∗
n+1(gu × gv)

= rn+1 cosn θ

((
an+1,1 b2
(n+ 1)!

cos2 θ − a2,0 cos θ sin θ

)
r

+

(
2an+2,1 b2 + an+1,1 b3

2(n+ 1)!
cos3 θ +

2a1,2 b2 − a3,0
2

cos2 θ sin θ

)
r2 +O(r3),

− an+1,1

(n+ 1)!
cos θ +

(
− an+2,1

(n+ 2)!
cos2 θ − a1,2 cos θ sin θ

)
r

+

(
an+3,1

(n+ 3)!
cos2 θ +

1

2
a2,2 cos θ sin θ − ε

1

2
a0,3 sin

2 θ

)
r2 +O(r3), sin θ

)
,

(2.19)

where ε = 1 if n = 1, or ε = 0 if n ⩾ 2. Write the unit normal vector ñ = Π̃∗
n+1n in the form

ñ(r, θ) = (n1(r, θ), n2(r, θ), n3(r, θ)).

Using (2.19), we show that ñ can be extendible near the exceptional set X and ni can be
written in

n1 = O(r),

n2 = n20 + n21r + n22r
2 +O(r3),

n3 = n30 + n31r + n32r
2 +O(r3),

where

n20 = −an+1,1 cos θ

A(θ)
, n30 =

(n+ 1)! sin θ

A(θ)
,
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and the coefficients (n11, n21, n22, n31, n32) are trigonometric polynomials with coefficients
depending on the 4-jet and ai,1 (n + 1 ⩽ i ⩽ n + 3) of g, expressed in (A.1) to (A.4) in
Appendix A. Here,

A(θ) =
√

a2n+1,1 cos
θ +((n+ 1)!)2 sin2 θ.

Remark 2.5. When the singular surface S is parameterized by a map-germ A-equivalent

to Hk, we cannot obtain an extended unit normal vector of S via such a map Π̃n+1, and the
expressions of the second fundamental form below do not work. This is the reason why we
avoid the case in this paper.

Assume that ñ(0, θ) is not the principal normal vector, that is, cos θ 6= 0. Let us obtain
the pull backs of the coefficients E, F and G of the first fundamental form of S. From (2.16)
and (2.17) we have

Π̃∗
n+1gu =

(
1, b2r +

b3
2
r2 +O(r3), a2,0r cos θ + a3,0r

2 cos2 θ +O(r3)

)
,

Π̃∗
n+1gv = rn+1

(
0, cosn θ sin θ,

an+1,1

(n+ 1)!
cosn+1 θ +

(
an+2,1

(n+ 2)!
cos θ + a1,2

)
r cosn+1 θ

)
,

and thus

Ẽ = Π̃∗
n+1E = 1 + E2r

2 +O(r3),(2.20)

F̃ = Π̃∗
n+1F = rn+2(F0 + F1r +O(r2)),(2.21)

G̃ = Π̃∗
n+1G = r2n+2(G0 +G1r +O(r2)),(2.22)

where

E2 = (a22,0 + b22) cos
2 θ,

F0 =

(
an+1,1 a2,0
(n+ 1)!

cos θ + b2 sin θ

)
cosn+1 θ,

G0 =

((
an+1,1

(n+ 1)!

)2

cos2 θ + sin2 θ

)
cos2n θ,

F1 =

((
an+2,1 a2,0
(n+ 2)!

+
an+1,1 a3,0
2(n+ 1)!

)
cos θ +

(
a1,2 a2,0 +

1

2
b3

)
sin θ

)
cosn+2 θ,

G1 =
2an+1,1

(n+ 1)!

(
an+2,1

(n+ 2)!
cos θ + a1,2 sin θ

)
cos2n+2 θ.

We now obtain the pull backs of the coefficients L, M and N of the second fundamental
form of S. We have

(2.23) guu = (0, Buu, a2,0 + Auu), guv = (0, 0, Auv), gvv = (0, 1, Avv).
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Using (2.16) and (2.23), we have

Π̃∗
n+1guu =

(
0,

4∑
2

bi
(i− 2)!

ri−2 cosi−2 θ +O(r3),

4∑
2

ai,0
(i− 2)!

ri−2 cosi−2 θ + a2,1r
2 cos θ sin θ +O(r3)

)
,

Π̃∗
n+1guv =

(
0, 0,

2∑
0

an+i+1,1

(n+ i)!
rn+i cosn+i θ +

2∑
1

ai,2r
n+i cosn+i−1 θ sin θ +O(rn+3)

)
,

Π̃∗
n+1gvv =

(
0, 1,

2∑
1

ai,2
i!

ri cosi θ + εa0,3r
2 cos θ sin θ +O(r3)

)
,

and thus

L̃ = Π̃∗
n+1L = L0 + L1r + L2r

2 +O(r3),(2.24)

M̃ = Π̃∗
n+1M = rn(M0 +M1r +M2r

2 +O(r3)),(2.25)

Ñ = Π̃∗
n+1N = N0 +N1r +N2r

2 +O(r3),(2.26)

where

L0 =
−an+1,1 b2 cos θ + (n+ 1)! a2,0 sin θ

A(θ)
,

M0 =
(n+ 1)an+1,1 cos

n θ sin θ

A(θ)
,

N0 = −an+1,1 cos θ

A(θ)
,

and the coefficients (L1,M1, N1, L2,M2, N2) are trigonometric polynomials with coefficients
depending on the 4-jet of g and ai,1 (n + 1 ⩽ i ⩽ n + 3) expressed in (A.5) to (A.10) in
Appendix A.

Since the Gaussian curvature K is given by K = (LN −M2)/(EG− F 2), by using (2.20)

– (2.22) the Gaussian curvature K̃ = Π̃∗
n+1K in (r, θ) can be expressed as

K̃ =
1

r2n+2
(K0 +K1r +K2r

2 +O(r3)),(2.27)

where

K0 =
L0N0

G0

=
((n+ 1)!)2 an+1,1(an+1,1b2 cos θ − (n+ 1)! a2,0 sin θ)

A(θ)4 cos2n−1 θ
,

K1 =
G0L1N0 +G0N0N1 −G1L0N0

G2
0

,

K2 =
1

G3
0

(
F 2
0G0L2N0 +G2

1L0N0 − E2
2G

2
0L0N0 −G0G1L1N0

+G2
0L2N0 −G0G1L0N1 +G2

0L1N1 +G2
0L0N2 − εG2

0M
2
0

)
.

We say that a point (0, θ0) is an elliptic, hyperbolic or parabolic point over the singularity of

S if r2n+2K̃(0, θ0) = K0 is positive, negative, or zero, respectively.
The principal curvatures κ1 and κ2 of g are the roots of the equation

(EG− F 2)κ+ (−EN + 2FM −GL)κ+ (LN −M2) = 0.
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So κi is given by

κi =
EL− 2FM +GL+ ε′

√
(EL− 2FM +GL)2 − 4(EG− F 2)(LN −M2)

2(EG− F 2)
,

where ε′ = 1 if i = 2 or ε′ = −1 if i = 1. We assume that N0 > 0 (if N0 < 0, we should
change κ1 with κ2). It follows from (2.20) – (2.22) and (2.24) – (2.26) that

κ̃1 = Π̃∗
n+1κ1 =

1

r2n+2

(
N0 −

√
N2

0

2G0

+O(r)

)
,

κ̃2 = Π̃∗
n+1κ2 =

1

r2n+2

(
N0 +

√
N2

0

2G0

+O(r)

)
.

Hence, κ̃2 can be expressed as

(2.28) κ̃2 =
1

r2n+2
(k20 + k21r + k22r

2 +O(r3)),

where

k20 =
N0

G0

= −((n+ 1)!)2an+1,1

A(θ)3 cos2n−1 θ
.

Since (2.27), (2.28), and K̃ = κ̃1κ̃2, κ̃1 can be expressed as

(2.29) κ̃1 = k10 + k11r + k12r
2 +O(r3).

So we have

K0 = k10k20, K1 = k10k21 + k11k20, K2 = k10k22 + k11k21 + k12k20.

These give

k10 =
K0

k20
= L0 =

−an+1,1 b2 cos θ + (n+ 1)! a2,0 sin θ

A(θ)
,(2.30)

k11 =
K1 − k10k21

k20
= L1,(2.31)

k12 =
K2 − k10k22 − k11k21

k20
= −E2L0 + L2 − ε

M2
0

N0

.(2.32)

The expressions of k11 and k12 expressed in the original coefficients in (2.1) are given respec-
tively by (A.11) and (A.12) in Appendix.

The principal direction (du, dv) corresponding to the principal curvature κi is given by the
equation (

L M

M N

)(
du

dv

)
= κi

(
E F

F G

)(
du

dv

)
.

Hence, vectors vi = (N − κiG)∂u − (M − κiF )∂v (i = 1, 2) generate the principal directions
corresponding to κi. Since

Π̃n+1(r, θ) = (r cos θ, rn+1 cosn θ sin θ) = (u, v),
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we have

∂u = (cos θ − n sin θ tan θ)∂r −
1

r
(n+ 1) sin θ∂θ,(2.33)

∂v =
sin θ

rn cos θ
∂r +

1

rn+1
cos1−n θ∂θ.(2.34)

Therefore, the lifted vectors ṽ1 and ṽ2, respectively, of v1 and v2 by Π̃n+1 are expressed as
follows:

ṽ1 = (ξ10 + ξ11r +O(r2))∂r + (η10 + η11r +O(r2))∂θ,(2.35)

ṽ2 =
1

r2n+1

(
(ξ21r +O(r2))∂r + (η20 + η21r)∂θ

)
,(2.36)

where

ξ10 = N0(cos θ − n sin θ tan θ)− M0 sin θ

cosn θ
= −an+1,1

A(θ)
,

ξ11 = N1(cos θ − n sin θ tan θ)− M1 sin θ

cosn θ
,

η10 = −(n+ 1)N1 sin θ −M1 cos
1−n θ = −((n+ 2)! a1,2 sin θ + an+2,1 cos θ) cos θ sin θ

(n+ 2)A(θ)
,

η11 = −(n+ 1)N2 sin θ − (M2 − k10F0) cos
1−n θ,

ξ21 = −F0k20 sin θ = −(n+ 1)! an+1,1(a2,0an+1,1 cos θ + (n+ 1)! b2 sin θ) sin θ

A(θ)3 cosn−2 θ
,

η20 = −F0k10 cos θ = −(n+ 1)! an+1,1(a2,0an+1,1 cos θ + (n+ 1)! b2 sin θ)

A(θ)3 cosn−1 θ
.

The expressions of ξ11 and η21 expressed in the original coefficients in (2.1) are given, respec-
tively, by (A.14) and (A.15) in Appendix.

Since we have (2.29) and (2.35), the first and second directional derivative of κ̃1 along ṽ1

can be expressed respectively as

ṽ1κ̃1(r, θ) = ξ10k11 + η10k
′
10 + 2ξ10k12 + ξ11k11 + η10k

′
11 + η11k

′
10 +O(r),

ṽ2
1κ̃1(r, θ) = 2ξ210k12 + ξ10ξ11k11 + ξ10ξ11k

′
10

+ 2ξ10η10k
′
11 + ξ′10η10k11 + η10η

′
10k10η11k

′′
10 +O(r),

where ′ denotes the derivative with respect to θ. Moreover, the directional derivative of κ̃1

along ṽ2 can be expressed as

ṽ2κ̃1(r, θ) =
1

r2n+1
(η20k

′
10 +O(r)).
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Therefore, we have

ṽ1κ̃1(r, θ) =
an+1,1∆

(n+1)
1 (θ) cos θ

A(θ)2
+O(r),

ṽ2
1κ̃1(r, θ) =

an+1,1

(
an+1,1∆

(n+1)
2 (θ) cos θ − (n+ 1)! a1,2∆

(n+1)
1 (θ) sin θ

)
cos θ

A(θ)3
+O(r),

ṽ2κ̃1(r, θ) =
1

r2n+1

(
−
cos−2n+3 θ((n+ 1)!)2 a2n+1,1∆

(n+1)
3 (θ)2

A(θ)3
+O(r)

)
where

∆
(n+1)
1 (θ) = an+1,1 b3 cos θ − (n+ 1)! a3,0 sin θ,

∆
(n+1)
2 (θ) = −

(
an+1,1 b4 cos θ − (n+ 1)! a4,0 sin θ

)
cos θ

+ 3(a22,0 + b22)
(
an+1,1 b2 cos θ − (n+ 1)! a2,0 sin θ

)
cos θ + 12a2,1 sin

2 θ,

∆
(n+1)
3 (θ) = a2,0 an+1,1 cos θ0 + (n+ 1)! b2 sin θ0.

A ridge point of a surface in R3 was first studied in details by Porteous [21] as a point where
the distance squared function on the surface has an A⩾3-singularity. It is also a point where
one principal curvature has an extremum value along the corresponding line of curvature. A
point where one principal curvature has an extremum value along the other line of curvature
is also important. Such a point is called the sub-parabolic point, which was first studied in
details by Bruce and Wilkinson [3] from the viewpoint of folding maps. If a regular surface
has a ridge point with respect to the line of curvature tangent to vi, then its focal surface
corresponding to κi has a singular point. On the other hand, if a regular surface has a
sub-parabolic point with respect to the line of curvature tangent to vi, then its focal surface
corresponding to κ1 has a parabolic point.

We define the ridge and sub-parabolic points over the singularity of S are as follows:

Definition 2.6. (1) A point (0, θ0) is a ridge point relative to ṽ1 over the singularity

of S if ∆
(n+1)
1 (θ0) = 0. Moreover, the ridge point (0, θ0) is a first (resp. second or

higher) order ridge point relative to ṽ1 over the singularity of S if ∆
(n+1)
2 (θ0) 6= 0

(resp. ∆
(n+1)
2 = 0).

(2) A point (0, θ0) is a sub-parabolic point relative to ṽ2 over the singularity of S if

∆
(n+1)
3 (θ0) = 0.

When g is A-equivalent to S1, since a2,1 6= 0 (Proposition 2.2) we obtain ñ, κ̃i and ṽi via

Π̃2. Similarly, when g is A-equivalent to one of S⩾2, Bk, Ck and F4 singularities, we obtain

ñ, κ̃i , and ṽi via Π̃m as shown in Table 3. Hence, we have the following lemma.

Table 3. Correspondence between the type of A-singularity and Π̃n.

A-type Sk Bk Ck F4

Π̃m Π̃k+1 Π̃2 Π̃k Π̃3
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Lemma 2.7. The conditions for a point (0, θ) to be a first ridge point relative to ṽ1 and a
sub-parabolic point relative to ṽ2 over the singularity of S are shown in Table 4.

Table 4. Conditions for ridge and sub-parabolic points.

A-type 1st ridge sub-parabolic

Sk ∆
(k+1)
1 (0, θ) = 0, ∆

(k+1)
2 (0, θ) 6= 0 ∆

(k+1)
3 (0, θ) = 0

Bk ∆
(2)
1 (0, θ) = 0, ∆

(2)
2 (0, θ) 6= 0 ∆

(2)
3 (0, θ) = 0

Ck ∆
(k)
1 (0, θ) = 0, ∆

(k)
2 (0, θ) 6= 0 ∆

(k)
3 (0, θ) = 0

F4 ∆
(3)
1 (0, θ) = 0, ∆

(3)
2 (0, θ) 6= 0 ∆

(3)
3 (0, θ) = 0

3. Families of distance squared functions on singular surfaces.

We do not recall here the definition of a versal unfolding. Please refer, for example, to [1,
Section 8 and 19] and [24, Section 3].
We define a family of functions D on a surface S parameterized by a smooth map-germ

g : (R2, 0) → (R3, 0) by

D : (R2, 0)× (R3,p0) → R, D(u, v, x, y, z) =
1

2
‖g(u, v)− p‖2.

The function dp0(u, v) = D(u, v,p0) is the distance squared function on S from a point
p0 = (x0, y0, z0).

Theorem 3.1. Let g : (R2, 0) → (R3, 0) be given in the form (2.1), and let g be A-equivalent
to one of Sk, Bk, Ck and F4 singularities. Suppose that p0 = (x0, y0, z0) is on the normal
plane, that is, p0 ∈ Rñ(0, θ0), where ñ is the well-defined unit normal vector obtained by

using Π̃m given by Table 3 and θ0 ∈ (−π/2, π/2].

(1) Suppose that p0 is not on the principal normal line, and that (0, θ0) is not a parabolic
point over the singularity.
(1a) dp0 has an A1-singularity at (0, 0) if and only if p0 is not on the focal locus.

When dp0 has an A1-singularity at (0, 0), D is an R+ and K-versal unfolding of
dp0.

(1b) dp0 has an A2-singularity at (0, 0) if and only if p0 is on the focal locus and
(0, θ0) is not a ridge point relative to ṽ1 over the singularity. When dp0 has an
A2-singularity at (0, 0), D is an R+ and K-versal unfolding of dp0.

(1c) dp0 has an A3-singularity at (0, 0) if and only if p0 is on the focal locus and
(0, θ0) is a first order ridge point relative to ṽ1 over the singularity. When dp0

has an A3-singularity at (0, 0), D is an R+-versal unfolding of dp0, and D is an
K-versal unfolding of dp0 if and only if (0, θ0) is not a sub-parabolic point relative
to ṽ2 over the singularity.

(1d) dp0 has an A⩾4-singularity at (0, 0) if and only if p0 is on the focal locus and
(0, θ0) is a second or higher order ridge point relative to ṽ1 over the singularity.
When dp0 has an A⩾5 or A⩾4-singularity at (0, 0), D is not an R+- or K-versal
unfolding of dp0, respectively. If dp0 has an A4-singularity at (0, 0), then D is an
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R+-versal unfolding of dp0 if and only if there exists (0, θ) ∈ (−π/2, π/2] such
that (0, θ) is not a ridge point relative to ṽ1.

(2) Suppose that p0 is on the principal normal line. Then D is neither an R+- nor
K-versal unfolding of dp0.
(2a) dp0 has an A⩾2-singularity at (0, 0) if and only if p0 is not the intersection point

of the focal locus.
(2b) dp0 has a singularity of type D4 or worse at (0, 0) if and only if p0 is the inter-

section point of the focal locus.

To show Theorem 3.1, we first show criterion for singularities of distance-squared functions
in terms of the coefficients in (2.1).

Proposition 3.2. Let g : (R2, 0) → (R3, 0) be given in the form(2.1). Then dp0 on g is
singular at (0, 0) if and only if x0 = 0, that is, p0 is on the normal plane. Moreover, assume
that dp0 is singular at (0, 0). Then

(1) dp0 has an A1-singularity at (0, 0) if and only if y0(b2y0 + a2,0z0 − 1) 6= 0. When this
is the case, D is an R+- and K-versal unfolding of dp0.

(2) dp0 has an A2-singularity at (0, 0) if and only if one of the following conditions holds:

(2a) y0 6= 0, b2y0 + a2,0z0 − 1 = 0, b3y0 + a3,0z0 6= 0;

(2b) y0 = 0, a2,0z0 6= 1, a0,3z0 6= 0.

If condition (2a) holds, then D is an R+- and K-versal unfolding of dp0. On the
other hand, if condition (2b) holds, then D is neither an R+- nor K-versal unfolding
of dp0.

(3) dp0 has an A3-singularity at (0, 0) if and only if one of the following conditions holds:

(3a) y0 6= 0, b2y0 + a2,0z0 − 1 = b3y0 + a3,0z0 = 0,

b4y
2
0 + a4,0y0z0 − 3a22,1z

2
0 − 3(a22,0 + b22)y0 6= 0;

(3b) y0 = 0, a2,0z0 6= 1, a0,3z0 = 0, (a0,4 a2,0 − 3a21,2)z
2
0 − (a0,4 + 3a2,0)z0 + 3 6= 0.

If condition (3a) holds, then D is an R+-versal unfolding of dp0, and K-versal un-
folding of dp0 if and only if a2,0y0 − b2z0 6= 0. On the other hand, if condition (3b)
holds, then D is neither an R+- nor K-versal unfolding of dp0.

(4) dp0 has an A⩾4-singularity at (0, 0) if and only if one of the following conditions holds:

(4a) y0 6= 0, b2y0 + a2,0z0 − 1 = 0, b3y0 + a3,0z0 = 0,

b4y
2
0 + a4,0y0z0 − 3a22,1z

2
0 − 3(a22,0 + b22)y0 = 0;

(4b) y0 = 0, a2,0z0 6= 1, z0 6= 0, a0,3 = 0, (a0,4 a2,0 − 3a21,2)z
2
0 − (a0,4 + 3a2,0)z0 + 3 = 0.

When dp0 has an A⩾5- or A⩾4-singularity at (0, 0), D is not an R- or K-versal un-
folding of dp0, respectively. If condition (4a) holds, then D is an R+-versal unfolding
of dp0 having an A4-singularity at (0, 0) if and only if (a3,0, b3) 6= (0, 0). On the other
hand, if condition (4b) holds, then D is not an R+-versal unfolding of dp0.

(5) dp0 has a D4 or worse singularity at (0, 0) if and only if y0 = 0 and a2,0z0 = 1. When
this is the case, D is neither R+- nor K-versal unfolding of dp0.
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Proof. Since ∂dp0/∂u(0, 0) = −x0 and ∂dp0/∂v(0, 0) = 0, the function dp0 is singular at (0, 0)
if and only if x0 = 0.

We assume that dp0 is singular at (0, 0). Then

j2dp0(0) =
1

2

(
‖p0‖2 − ((b2y0 + a2,0z0 − 1)u2 + y0v

2)
)
,

and thus dp0 has an A1-singularity at (0, 0) if and only if y0(b2y0+ a2,0z0− 1) 6= 0. Moreover,
the singularity of dp0 at (0, 0) is of type A⩾2 if and only if (i) y0 6= 0 and b2y0+ a2,0z0− 1 = 0
or (ii) y0 = 0 and a2,0z0 6= 1 hold, and that is of type D⩾4 or worse if and only if y0 = 0 and
a2,0z0 = 1.

We assume that the condition (i) holds. Since y0 6= 0, by replacing v by v−a2,1z0u
2/(2y0),

we can reduce 4-jet of dp0 to

j4dp0(0) =
1

2
‖p0‖2 −

1

2
y0v

2 − 1

6
((b3y0 + a3,0z0)u

3 + 3a1,2z0uv
2 + a0,3z0v

3)

− 1

24

(
b4y

2
0 + a4,0y0z0 − 3a22,1z

2
0 − 3y0(a

2
2 + b22)

y0
+ 4c3,1u

3v + 6c2,2u
2v2 + 4c1,3uv

3 + a0,4v
4

)
,

where c3,1, c2,2, c1,3, c0,4 ∈ R. From this we see that the assertions (2a), (3a) and (4a) hold.
We turn to the case (ii) and assume that condition (ii) holds. Since a2,0z0 6= 1, by replacing

u by u− a1,2z0(2(a2,0z0 − 1))−1v2, we can reduce 4-jet of dp0 to

j4dp0(0) =
1

2
z20 −

1

2
(a2,0z0 − 1)u2 − 1

6
z0(a3,0u

3 + 3a2,1u
2v + a0,3v

3)

− 1

24

(
ĉ4,0u

4 + 4ĉ3,1u
3v + 6ĉ2,2u

2v2 + 4ĉ1,3uv
3 +

(a0,4 a2,0 − 3a21,2)z
2
0 − (a0,3 + 3a2,0)z0 + 3

a2,0z0 − 1

)
,

where ĉ4,0, ĉ3,1, ĉ2,2, ĉ1,3 ∈ R. From this we see that the assertions (2b), (3b) and (4b) hold.
Let us prove the necessary and sufficient conditions for D being an R+- and K-versal

unfolding of dp0 . We skip the proofs of the assertion (1) and (2), because the proofs of (1)
and (2) is similar to that of (3). First, we consider the condition (3a). Assume that (3a)
holds. Since A3-singularity is 4-determined, to see that D is an R+- or K-versal unfolding of
dp0 we need to verify the equalities

E2 =
〈
∂dp0

∂u
,
∂dp0

∂v

〉
E2
+

〈
∂D

∂x

∣∣∣∣
R2×{p0}

,
∂D

∂y

∣∣∣∣
R2×{p0}

,
∂D

∂z

∣∣∣∣
R2×{p0}

〉
R

+ 〈1〉R + 〈u, v〉5E2 , or

(3.1)

E2 =
〈
∂dp0

∂u
,
∂dp0

∂v
, dp0

〉
E2
+

〈
∂D

∂x

∣∣∣∣
R2×{p0}

,
∂D

∂y

∣∣∣∣
R2×{p0}

,
∂D

∂z

∣∣∣∣
R2×{p0}

〉
R

+ 〈u, v〉5E2 ,

(3.2)
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respectively (cf. [13, p.149]). Replacing v by v−a2,1z0u
2/(2y0), we show that the coefficients

of uivj of functions appearing in (3.1) and (3.2) are given by the following tables:

1 u v u2 uv v2 u3 u2v uv2 v3 u4

Dx 0 −1 0 0 0 0 0 0 0 0 0

Dy y0 0 0 − b2
2 0 − 1

2
α3,0

6
α2,1

2
α1,2

2
α0,3

6
α4,0

2 4

Dz z0 0 0 −a2,0

2 0 0
β3,0

6
β2,1

2
β1,2

2
β0,3

6
β4,0

2 4

(dp0)u 0 0 0 0 0 −a1,2z0
2

c4,0
6

c3,1
2

c2,2
2

c1,3
6

c5,0
2 4

(dp0)v 0 0 −y0 0 −a1,2z0 −a0,3z0
2

c3,1
6

c2,2
2

c1,3
2

c0,4
6

c4,1
2 4

u(dp0
)u 0 0 0 0 0 0 0 0 −a1,2z0

2 0
c4,0
6

u(dp0
)v 0 0 0 0 −y0 0 0 −a1,2z0 −a0,3z0

2 0
c3,1
6

v(dp0)v 0 0 0 0 0 −y0 0 0 −a1,2z0 −a0,3z0
2 0

u2(dp0)v 0 0 0 0 0 0 0 −y0 0 0 0

uv(dp0
)v 0 0 0 0 0 0 0 0 −y0 0 0

v2(dp0
)v 0 0 0 0 0 0 0 0 0 −y0 0

uivj (i+ j ⩽ 3) u4 u3v u2v2 uv3 v4

u3(dp0)v 0 0 −y0 0 0 0

u2v(dp0)v 0 0 0 −y0 0 0

uv2(dp0)v 0 0 0 0 −y0 0

v3(dp0)v 0 0 0 0 0 −y0

Here

ci,j =
∂i+jdp0

∂ui∂vj
(0, 0), αi,j =

∂i+j+1D

∂ui∂vj∂y
(0, 0,p0) and βi,j =

∂i+j+1D

∂ui∂vj∂z
(0, 0,p0).

We note that c4,0 = −(b4y
2
0 + a4,0y0z0 − 322,1z

2
0 − 3y0(a

2
2 + b22))/y0 6= 0. Since boxed entries

are non-zero, the matrix represented by the above tables is of full rank, that is, the equality
(3.1) (resp. (3.2)) holds if and only if (a2,0, b2) 6= (0, 0) (resp. b2y0 + a2,0z0 6= 0). However,
since now b2y0+a2,0z0−1 = 0 holds, we have (a2,0, b2) 6= (0, 0). Therefore, if (3a) holds, then
D is an R+-versal unfolding of dp0 .

Next, we assume that (3b) holds. Similar to (3a), we need to verify (3.1) or (3.2) holds.
Since

∂D

∂x
(u, v,p0) = −u,

∂D

∂y
(u, v,p0) = −1

2
(b22u

2 + v2) +O(u, v)3,

∂D

∂z
(u, v,p0) = z0 −

1

2
a2,0u

2 +O(u, v)3,

∂dp0

∂u
(u, v) = (1− a2,0z0)u− 1

2
(2a2,1z0uv + a1,2v

2) +O(u, v)3,

∂dp0

∂v
(u, v) = −1

2
(a2,1z0u

2 + 2a1,2z0uv + a0,3z0v
2) +O(u, v)3,

neither (3.1) nor (3.2) does not hold.
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Now we turn to prove (4). The number of parameters in an R+-mini-versal unfolding of
A5-singularity is 4. Therefore, D is not an R+-versal unfolding of dp0 having A⩾5-singularity
because it is a 3-parameter unfolding. For the similar reason, D is not an K-versal unfolding
of dp0 having A⩾4-singularity.

We assume that (4a) holds and dp0 has an A4-singularity at (0, 0). Since A4-singularity is
5-determined, to see that D is an R+-versal unfolding of dp0 we need to verify the equality

E2 =
〈
∂dp0

∂u
,
∂dp0

∂v

〉
E2
+

〈
∂D

∂x

∣∣∣∣
R2×{p0}

,
∂D

∂y

∣∣∣∣
R2×{p0}

,
∂D

∂z

∣∣∣∣
R2×{p0}

〉
R

+ 〈1〉R + 〈u, v〉6E2 .(3.3)

We consider the table in the proof of (3a). Since, dp0 has an A4-singularity at (0, 0), we have
c4,0 = 0 and c5,0 6= 0. Hence, (3.3) holds if and only if∣∣∣∣∣∣∣

−b2
2

α3,0

6

−a2,0
2

β3,0

6

∣∣∣∣∣∣∣ = − 1

12
(a2,0b3 − a3,0b2) 6= 0.

Let denote L1 and L2, respectively, lines b2y + a2,0z − 1 = 0 and b3y + a3,0z = 0 on the
yz-plane. We remark that now (a2,0, b2) 6= (0, 0) holds by the same reason as in (3a). The
condition that b2y0+ a2,0z0− 1 = b3y0+ a3,0z0 = 0 is equivalent to the condition that a point
(y0, z0), on the yz-plane, is the intersection of L1 and L2 or is on L1 when (a3,0, b3) 6= (0, 0)
or (a3,0, b3) = (0, 0), respectively. Therefore, if (a3,0, b3) 6= (0, 0) (resp. = (0, 0)) then
a2,0b3 − a3,0b2 6= 0 (resp. = 0), and vice versa. Remark that a3,0 = b3 = 0 if and only if dp0

has A⩾3-singularity at (0, 0) for any p0 ∈ L1.
If (4b) holds, then D is not an R+-versal unfolding of dp0 having an A4-singularity at (0, 0)

by the same reason as in (3b).
Now, we shall prove (5). Since the number of parameters in an R+- (resp. K-) mini-versal

unfolding of D5 (resp. D4) is 4, D is not an R+- (resp. K-) versal unfolding of dp0 having a
D5 (resp. D4) or worse singularity at (0, 0). Moreover, since D4-singularity is 3-determined,
D is an R+-versal unfolding of dp0 having a D4-singularity at (0, 0) if and only if

E2 =
〈
∂dp0

∂u
,
∂dp0

∂v

〉
E2
+

〈
∂D

∂x

∣∣∣∣
R2×{p0}

,
∂D

∂y

∣∣∣∣
R2×{p0}

,
∂D

∂z

∣∣∣∣
R2×{p0}

〉
R

+ 〈1〉R + 〈u, v〉4E2 .(3.4)

holds. If dp0 has a D4 singularity at (0, 0), then

∂D

∂x
(u, v,p0) = −u,

∂D

∂y
(u, v,p0) = −1

2
(b22u

2 + v2) +O(u, v)3,

∂D

∂z
(u, v,p0) =

1

a2,0
− 1

2
a2,0u

2 +O(u, v)3,

∂dp0

∂u
(u, v) = − 1

2a2,0
(a3,0u

2 + 2a2,1uv + a1,2v
2) +O(u, v)3,

∂dp0

∂v
(u, v) = − 1

2a2,0
(a2,1u

22a1,2uv + a0,3v
2) +O(u, v)3,

and thus (3.4) does not hold. □
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Let g : (R2, 0) → (R3, 0) be a smooth map-germ of corank 1 at the origin, and let j2g(0)
be A-equivalent to (u, v2, 0). From Proposition 3.2, the locus of points p where dp has a
degenerate singularity at (0, 0) consists of one or two lines on the normal plane. We call such
a locus a focal locus. The focal locus contains the principal normal line. The focal locus can
be considered as an analogy of the focal conic of Whitney umbrellas (cf. [5, Lemma 3.3]).
From Proposition 3.2 and definitions of inflection and degenerate inflection points, we can
easily show that the following proposition holds:

Proposition 3.3. The focal locus is,

(1) a pair of two intersecting lines if and only if the origin is not an inflection point,
(2) a pair of two parallel lines if and only if the origin is a non-degenerate inflection point,
(3) the principal normal line if and only if the origin is a degenerate inflection point.

In case (1), the distance squared function dp has a singularity of type D4 or worse at (0, 0)
if and only if p is the intersection point of these two lines. This is related to the umbilic
curvature introduced in [14].

Proof of Theorem 3.1. Firstly, we remark that the condition (2.15) and the following condi-
tion hold.

(x0, y0, z0) = λ

(
0, −an+1,1 cos θ0

A(θ0)

(n+ 1)! sin θ0
A(θ0)

)
(λ 6= 0).

(1) We skip the proofs of (1a), (1b) and (1d) because the proofs are similar to that of (1c).
We will only prove (1c). From the assumption, now we have

y0 6= 0 and an+1,1 b2 cos θ0 − (n+ 1)! a2,0 sin θ0 6= 0.

Since

b2y0 + a2,0z0 − 1 =
λ(−an+1,1 b2 cos θ0 + (n+ 1)! a2,0 sin θ0)

A(θ0)
− 1 = 0,

we obtain

λ =
A(θ0)

−an+1,1 b2 cos θ0 + (n+ 1)! a2,0 sin θ0
=

1

κ̃1(0, θ0)
.

Then we obtain

b3y0 + a3,0z0 =
−an+1,1 b3 cos θ0 + (n+ 1)! a3,0 sin θ0

κ̃1(0, θ0)A(θ0)
= − ∆n+1

1 (θ0)

κ̃1(θ0)A(θ0)

and

b4y
2
0 + a4,0y0z0 − 3a22,1z

2
0 − 3(a22,0 + b22)y0

=
1

κ̃1(θ0)A(θ0)

(
an+1,1

(
an+1,1 b4 cos θ0 − (n+ 1)! a4,0 sin θ0

)
cos θ0 − 12a22,1 sin

2 θ0

− 3an+1,1(a
2
2,0 + b22)

(
an+1,1 b2 cos θ0 − (n+ 1)! a2,0 sin θ0

)
cos θ0

)
= −an+1,1 ∆

n+1
2 (θ0)

κ̃1(θ0)A(θ0)
.



22 T. FUKUI AND M. HASEGAWA

Therefore, from Proposition 3.2, we conclude that (0, θ0) is a first order ridge point relative
to ṽ1 over the singularity if and only if dp0 has an A3-singularity at (0, 0). Moreover, since

a2,0y0 + b2z0 =
−an+1,1 a2,0 cos θ0 + (n+ 1)! b2 sin θ0

κ̃1(θ0)A(θ0)
= − ∆

(n+1)
3 (θ0)

κ̃1(θ0)A(θ0)
,

D is a K-versal unfolding of dp0 if and only if (0, θ0) is not a sub-parabolic point relative to
ṽ2 over singularity.

(2) The statements follow immediately from the definition of the focal locus and Proposition
3.2. □

4. Wave-fronts and caustics of singular surfaces.

The wave-front or parallel of a surface in R3 is the envelope of spheres with the centers on
the surface. On the other hand, the caustic of the surface is the envelope of normal rays to
the surface. It is also the locus of the singular points on the wave-front of the surface.

We define a family of functions D̃ on a surface parameterized by a smooth map-germ
g : (R2, 0) → (R3, 0) by

D̃ : (R2, 0)× (R3,p0) → R, D̃(u, v,p) =
1

2
(‖g(u, v)− p‖ − t20),

where t0 is a non-negative constant. We define d̃p0(u, v) = D̃(u, v,p0). The discriminant set

of D̃ is given by

D(D̃) = {p ∈ (R3, 0) | D̃ = D̃u = D̃v = 0 for some (u, v) ∈ (R2, 0)},
which is the wave-front of the surface at a distance ±t0. On the other hand, the bifurcation
set of D is given by

B(D) = {p ∈ (R3, 0) |Du = Dv = DuuDvv −D2
uv = 0 for some (u, v) ∈ (R2, 0)},

which is the caustic of the surface. It is well-known (see [24, Theorem 3.4], for example)
that two K (resp. R+)-versal unfoldings of dp are K (resp. R+)-isomorphic as unfoldings.
Therefore, when D is K (resp. R+)-versal, we can conclude the diffeomorphic types of the
wave-fronts (resp. caustics) of our singular surfaces S. Let us state the simplest case of the
conclusion of Theorem 3.1 as following theorem:

Theorem 4.1. Let S be a singular surface parameterized by g : (R2, 0) → (R3, 0) in the
form (2.1), and let g be A-equivalent to one of Sk, Bk, Ck and F4 singularities. Suppose that
κ̃1(0, θ0) 6= 0 and p0 = ñ(0, θ0)/κ̃1(0, θ0) where θ0 ∈ (−π/2, π/2).

(1) If (0, θ0) is not a ridge point relative to ṽ1 over the singularity of S, the singularity
of the wave-front of S at p0 is a cuspidal edge.

(2) If (0, θ0) is a first order ridge relative to ṽ1 but not a sub-parabolic point relative to
ṽ2 over the singularity of S, then the singularity of the wave-front and caustic of S
at p0 is a swallowtail and cuspidal edge, respectively.

Here, a singularity is called a cuspidal edge or swallowtail if the corresponding map-germs
is A-equivalent to

fc := (u2, u3, v) or fs := (3u4 + u2v, 4u3 + 2uv, v),
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respectively.

Appendix A. Coefficients.

n21 = −((n+ 1)!)2(an+2,1 cos θ + (n+ 2)! a1,2 sin θ) cos θ sin
2 θ

(n+ 2)A(θ)3
,(A.1)

n31 = −(n+ 1)! an+1,1(an+2,1 cos θ + (n+ 2)! a1,2 sin θ) cos
2 θ sin θ

(n+ 2)A(θ)3
.(A.2)

n22 =
1

A(θ)5

[
an+1,1

5 b22 cos
5 θ

2
− (n+ 1)! a4n+1,1 a2,0 b2 cos

4 θ sin θ

−((n+ 1)!)2 an+1,1

(
an+3,1 an+1,1

(n+ 3)(n+ 2)
−

3a2n+2,1

2(n+ 2)2
−

a2n+1,1(a
2
2,0 + b22)

2

)
cos3 θ sin2 θ

+((n+ 1)!)3 an+1,1

(
an+2,1 a1,2

n+ 2
− an+1,1(a2,0 b2 − a2,2)

2

)
cos2 θ sin3 θ

−((n+ 1)!)4

(
an+3,1

(n+ 3)(n+ 2)
−

an+1,1(3a
2
1,2 + a22,0)

2

)
cos θ sin4 θ − ((n+ 1)!)5 a2,2

2
sin5 θ

]
cos2 θ

−ε
4a0,3

(
a22,1 cos

2 θ + 4 sin2 θ
)
cos θ sin4 θ

A(θ)5
,

(A.3)

n32 =
1

A(θ)5

[
−(n+ 1)! a2n+1,1

(
an+3,1 an+1,1

(n+ 3)(n+ 2)
−

a2n+2,1

(n+ 2)2
+

a2n+1,1 b2

2

)
cos4 θ

+((n+ 1)!)2 a2n+1,1

(
2an+2,1 a1,2

n+ 2
+

an+1,1(2a2,0 b2 − a2,2)

2

)
cos3 θ sin θ

−((n+ 1)!)3

(
an+3,1 an+1,1

(n+ 3)(n+ 2)
+

a2n+2,1

2(n+ 2)2
−

a2n+1,1(2a
2
1,2 − a22,0 − b22)

2

)
cos2 θ sin2 θ

−((n+ 1)!)4

(
an+2,1 a1,2

n+ 2
− an+1,1(2a2,0 b2 − a2,2)

2

)
cos θ sin3 θ

−
((n+ 1)!)5(a21,2 + a32,0) sin

4 θ

2

]
cos2 θ sin θ −

2a2,1 a0,3(a
2
2,1 cos

2 θ + 4 sin2 θ) cos2 θ sin3 θ

A(θ)5
.

(A.4)

L1 =
(−an+1,1 · b3 cos θ + (n+ 1)!a30 sin θ) cos θ

A(θ)

+
(n+ 1)!

(n+ 2)A(θ)3


an+2,1 an+1,1 a2,0 cos

2 θ

+(n+ 1)!
(
(n+ 2)an+1,1 a1,2 a2,0 + an+2,1 b2

)
cos θ sin θ

+(n+ 2)((n+ 1)!)2a1,2 b2 sin
2 θ

 cos θ sin θ

(A.5)
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M1 =
1

A(θ)

(
an+2,1 cos θ + (n+ 1)! a1,2 sin θ

)
−
(n+ 1)a2n+1,1

(n+ 2)A(θ)3
(
an+2,1 cos θ + (n+ 2)! a1,2 sin θ

)
cosn+1 θ sin θ

(A.6)

N1 =
(n+ 1)! a1,2 cos θ sin θ

A(θ)
− ((n+ 1)!)2

(n+ 2)A(θ)3
(
an+2,1 cos θ + (n+ 2)! a1,2 sin θ

)
cos θ sin2 θ,(A.7)

L2 =
(−an+1,1 b4 cos θ + (n+ 1)! a4,0 sin θ) cos

2 θ

2A(θ)
− (n+ 1)!

A(θ)3

[
an+2,1 an+1,1 a3,0

n+ 2
cos2 θ

+(n+ 1)!

(
an+2,1 b3
n+ 2

+ an+1,1 a3,0 a1,2

)
cos θ sin θ + ((n+ 1)!)2a1,2 b3 sin

2 θ

]
cos2 θ sin θ

+
1

A(θ)5

[
an+1,1

5 b32
2

cos5 θ −
(n+ 1)! a2n+1,1 a2,0

2

(
2an+3,1 an+1,1

(n+ 3)(n+ 2)
−

2a2n+2,1

(n+ 2)2

+3a2n+1,1 b
2
2

)
cos4 θ sin θ − ((n+ 1)!)2an+1,1

(
an+3,1 an+1,1 b2
(n+ 3)(n+ 2)

−
3a2n+2,1 b2

2(n+ 2)2

−2an+2,1 an+1,1 a1,2 a2,0
n+ 2

+
a2n+1,1(a2,2 a2,0 − 3a22,0 b2 − b32)

2

)
cos3 θ sin2 θ

−((n+ 1)!)3

(
an+3,1 an+1,1 a2,0
(n+ 3)(n+ 2)

+
a2n+2,1 a2,0

2(n+ 2)2
− 3an+2,1 an+1,1 a1,2 b2

n+ 2

+
a2n+1,1(a2,2 b2 − 2a21,2 a2,0 + a320 − 3a2,0 b

2
2)

2

)
cos2 θ sin3 θ − ((n+ 1)!)4

(
an+3,1 b2

(n+ 3)(n+ 2)

+
an+2,1 a1,2 a2,0

n+ 2
+

an+1,1(a2,2 a2,0 − 3a21,2 b2 − 3a22,0 b2)

2

)
cos θ sin4 θ

−
((n+ 1)!)5(a2,2 b2 + a21,2 a2,0 + a32,0) sin

5 θ

2

]
cos2 θ + ε

[
2a2,1 cos θ sin

2 θ

A(θ)

− 2a0,3
A(θ)5

(
a32,1 a2,0 cos

3 θ + 2a22,1 b2 cos
2 θ sin θ + 4a2,1 a2,0 cos θ sin

2 θ

+8b2 sin
3 θ

)
cos θ sin3 θ

]
,

(A.8)
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M2 =
1

A(θ)

(
an+3,1 cos θ

n+ 2
+ (n+ 1)! a2,2 sin θ

)
cosn+1 θ sin θ − an+1,1

A(θ)3

[
a2n+2,1 cos

2 θ

n+ 2

+
(n+ 3)(n+ 1)! an+2,1 a1,2 cos θ sin θ

n+ 2
+ ((n+ 1)!)2 a21,2 sin

2 θ

]
cosn+2 θ sin θ

− (n+ 1)an+1,1

A(θ)5

[
a2n+1,1

(
an+3,1 an+1,1

(n+ 3)(n+ 2)
−

a2n+2,1

(n+ 2)2
+

an+1,1 b
2
2

2

)
cos4 θ

−(n+ 1)! a2n+1,1

(
2an+2,1 a1,2

n+ 2
− an+1,1 a2,2

2
+ an+1,1 a2,0 b2

)
cos3 θ sin θ

+((n+ 1)!)2

(
an+3,1 an+1,1

(n+ 3)(n+ 2)
+

a2n+2,1

2(n+ 2)2
−

a2n+1,1(2a
2
1,2 − a22,0 − b22)

2

)
cos2 θ sin2 θ

+((n+ 1)!)3
(
an+2,1 a1,2

n+ 2
+

an+1,1(a2,2 − 2a2,0 b2)

2

)
cos θ sin3 θ

+
((n+ 1)!)4 an+1,1(a

2
1,2 + a22,0) sin

4 θ

2

]
cosn+2 θ sin θ

−
2a22,1 a0,3(a

2
2,1 cos

2 θ + 4 sin2 θ) cos3 θ sin3 θ

A(θ)5
,

(A.9)

N2 =
(n+ 1)! a2,2 cos

2 θ sin θ

2A(θ)
− (n+ 1)! an+1,1 a1,2

A(θ)3

(
an+2,1 cos θ

n+ 2
+ (n+ 1)! a1,2 sin θ

)
cos3 θ sin θ

+
1

A(θ)5

[
a5n+1,1 b

2
2 cos

5 θ

2
− (n+ 1)! a4n+1,1 a2,0 b2 cos

4 θ sin θ

+((n+ 1)!)2 an+1,1

(
− an+3,1 an+1,1

(n+ 3)(n+ 2)
+

3a2n+2,1

2(n+ 2)2
+

a2n+1,1 a
2
2,0

2
+

a2n+1,1 b
2
2

2

)
cos3 θ sin2 θ

+((n+ 1)!)3 an+1,1

(
3an+2,1 a1,2

n+ 2
− an+1,1 a2,2

2
− an+1,1 a2,0 b2

)
cos2 θ sin3 θ

−((n+ 1)!)4

(
an+3,1

(n+ 3)(n+ 2)
−

3an+1,1 a
2
1,2

2
−

an+1,1 a
2
2,0

2

)
cos θ sin4 θ

− ((n+ 1)!)5 a2,2 sin
5 θ

2

]
cos2 θ

+ε

(
2a0,3 cos θ sin

2 θ

A(θ)
− 4

A(θ)5
(4a0,3 sin

2 θ + a22,1 a0,3 cos
2 θ)

)
cos θ sin4 θ

(A.10)

k11 =
(−an+1,1 b3 cos θ + (n+ 1)! a3,0 sin θ) cos θ

A(θ)
− (n+ 1)!

A(θ)3

[
an+2,1 an+1,1 a2,0 cos

2 θ

n+ 2

+(n+ 1)!

(
an+1,1 a1,2 a2,0 +

an+2,1 b2
n+ 2

)
cos θ sin θ + ((n+ 1)!)2 a1,2 b2 sin

2 θ

]
cos θ sin θ,

(A.11)
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k12 =
1

2A(θ)

(
an+1,1(2a

2
2,0b2 + 2b32 − b4) cos θ − (n+ 1)!(2a2,0 b

2
2 + 2a32,0 − a4,0) sin θ

)
cos2 θ

− (n+ 1)!

A(θ)3

[
an+2,1 an+1,1 a3,0 cos

2 θ

n+ 2
+ (n+ 1)!

(
an+1,1 a3,0 a1,2 +

an+2,1 b3
n+ 2

)
cos θ sin θ

+((n+ 1)!)2an+1,1 a3,0 a1,2 sin
2 θ

]
cos2 θ sin θ +

1

A(θ)5

[
a5n+1,1 b

3
2 cos

5 θ

2

−(n+ 1)! a2n+1,1 a2,0

(
an+3,1 an+1,1

(n+ 3)(n+ 2)
−

a2n+2,1

(n+ 2)2
+

3an+1,1 b
2
2

2

)
cos4 θ sin θ

−((n+ 1)!)2an+1,1

(
an+3,1 an+1,1 b2
(n+ 3)(n+ 2)

−
3a2n+2,1 b2

2(n+ 2)2
− 2an+2,1 an+1,1 a1,2 a2,0

n+ 2

−
a2n+1(3a

2
2,0 b2 + b32 − a2,2 a2,0)

2

)
cos3 θ sin2 θ − ((n+ 1)!)3

(
an+3,1 an+1,1 a2,0
(n+ 3)(n+ 2)

−
a2n+2,1 a2,0

2(n+ 2)

−3an+2,1 an+1,1 a1,2 b2
n+ 2

−
a2n+1,1(2a

2
1,2 a2,0 − a32,0 − 3a2,0 b

2
2 − a2,2 b2)

2

)
cos2 θ sin3 θ

−((n+ 1)!)4

(
an+3,1 b2

(n+ 3)(n+ 2)
+

an+2,1 a1,2 a2,0
n+ 2

−
an+1,1(3a

2
1,2 b2 + 3a22,0 b2 − a2,2 a2,0)

2

)
cos θ sin4 θ

−
((n+ 1)!)5(a21,2 a2,0 + a2,2 b2 + a32,0)θ sin

5 θ

2

]
cos2 θ + ε

[
6a2,1 cos θ sin

2 θ

A(θ)

− a0,3
A(θ)5

(
a32,1 a2,0 cos

3 θ + 2a22,1 b2 cos
2 θ sin θ + 4a2,1 a2,0 cos θ sin

2 θ + 8b2 sin
3 θ

)
cos θ sin3 θ

]
,

(A.12)

k21 =
((n+ 1)!)2

(n+ 2)A(θ)5 cos2n θ

(
2an+2,1 a

2
n+1,1 + 3(n+ 2)! a2n+1,1 a1,2 tan θ − ((n+ 1)!)2an+2,1 tan

2 θ

)
.

(A.13)

ξ =
1

A(θ)3

(
(n+ 2)! a2n+1,1 a1,2 cos

4 θ − an+2,1

(
((n+ 1)!)2 + a2n+1,1

)
cos3 θ sin θ

−2((n+ 1)!)2 an+2,1 cos θ sin
3 θ − (n+ 2)((n+ 1)!)3 a1,2 sin

4 θ

)
sin θ,

(A.14)
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η =
1

A(θ)

[
−
a2n+1,1 a2,0 b2

(n+ 1)!
cos2 θ +

(
an+1,1(a

2
2,0 − b22)−

an+3,1

n+ 2

)
cos θ sin θ

+
1

2
(n+ 1)!(2a2,0 b2 + (n+ 3) a2,2) sin

2 θ

]
cos2 θ +

an+1,1

A(θ)3

[
an+2,1

n+ 2
cos2 θ

+2(n+ 1)! an+2,1 a1,2 cos θ sin θ + (n+ 2)!(n+ 1)! a21,2 sin
2 θ

]
cos3 θ sin θ

+
(n+ 1) a3n+1,1

A(θ)5

[(
an+3,1 an+1,1

(n+ 3)(n+ 2)
−

a2n+2,1

(n+ 2)2

)
cos5 θ

+(n+ 1)((n+ 1)!)2 a3n+1,1

(
an+1,1 a2,2

2
− 2(an+2,1 a1,2)

n+ 2

)
cos4 θ sin θ

(n+ 1)((n+ 1)!)2 an+1,1

(
2an+3,1 an+1,1

(n+ 3)(n+ 2)
−

a2n+2,1

(n+ 2)2
− a2n+1,1 a

2
1,2

)
cos3 θ sin2 θ

−(n+ 1)((n+ 1)!)3 an+1,1

(
an+2,1 a1,2

n+ 2
− an+1,1 a2,2

)
cos2 θ sin3 θ

+(n+ 1)((n+ 1)!)4
(

an+3,1

(n+ 3)(n+ 2)
− an+1,1 a

2
1,2

)
cos θ sin4 θ

+
1

2
(n+ 1)((n+ 1)!)5 a2,2 sin

5 θ

]
cos2 θ sin θ − ε

2a0,3 cos θ sin
3 θ

A(A)
.

(A.15)

References
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(2013), 153–168.
[8] R. Garcia, C. Gutierrez and J. Sotomayor, Lines of Principal curvature around umbilics and

Whitney umbrellas, Tohoku Math. J., 52 (2000), 163–172.
[9] C. Gutierrez and J. Sotomayor, Lines of principal curvature for mappings with Whitney umbrella

singularities, Tohoku Math. J., 38 (1986), 551–559.
[10] M. Hasegawa, A. Honda, K. Naokawa, K. Saji, M. Umehara andK. Yamada, Intrinsic properties

of surfaces with singularities, to appear in Global Analysis and Differential Geometry on Manifolds,
(special issue: the Kobayashi memorial volume), International Journal of Mathematics.

[11] M. Hasegawa, A. Honda, K. Naokawa, M. Umehara, and K. Yamada, Intrinsic invariants of
cross caps, Selecta Math. (N. S.), 20 (2014), 769–785.

[12] M. Kokubu, W. Rossman, K. Saji, M. Umehara and K. Yamada, Singularities of flat fronts in
hyperbolic 3-space, Pacific J. Math., 221 (2005), 303–351.



28 T. FUKUI AND M. HASEGAWA

[13] J. Martinet, Singularities of smooth functions and maps, London Math. Soc. Lecture Notes Series vol.
58, Cambridge University Press, 1982.

[14] L. F. Martins and J. J. Nuño-Ballesteros, Contact properties of surfaces in R3 with corank 1
singularities, Tohoku Math. J. 67 (2015), 105–124.

[15] R. Martins and J. J. Nuño Ballesteros, Finitely determined singularities of ruled surfaces in R3,
Math. Proc. Camb. Phil. Soc., 147 (2009), 701–733.

[16] D. Mond, On the Classification of germs of maps from R2 to R3, Proc, London Math. Sco., 50 (1985),
333–369.

[17] J. A. Montaldi, On contact between submanifolds, Michigan Math. J., 33 (1986), 81–85.
[18] J. J. Nuño Ballesteros and F. Tari, Surfaces in R4 and their projections to 3-spaces, Proc. Roy.

Soc. Edinburgh Sect. A, 137 (2007), 1313–1328.
[19] J. M. Oliver, On pairs of foliations of a parabolic cross-cap, Qual. Theory Dyn. Syst., 10 (2011),

139–166.
[20] R. Oset-Shinha and F. Tari, On the geometry of singular surfaces, preprint.
[21] I. R. Porteous, The normal singularities of a submanifolds, J. Differential Geometry 5 (1971) 543–564.
[22] K. Saji, Criteria for cuspidal Sk singularities and their applications, J. Gokova Geom. Topol. GGT 4

(2010), 67–81.
[23] F. Tari, Pairs of geometric foliations on a cross-cap, Tohoku Math. J., 59 (2007), 233-258.
[24] C. T. C. Wall, Finite Determinacy of Smooth Map-Germs. Bull. London Math. Soc. 13 (1981), 481–

539.
[25] T. C. Wilkinson, The geometry of folding maps. Ph.D. thesis, University of Newcastle-upon-Tyne,

1991.
[26] J. M. West, The differential geometry of the cross-cap. Ph.D. thesis, The University of Liverpool, 1995.
[27] H. Whitney, The general type of singularity of a set of 2n − 1 smooth functions of n variables, Duke

Math. J., 10 (1943), 161–172.

(Toshizumi Fukui)Departmet of Mathematics, Faculty of Science, Saitama University, Saitama,
338-8570, JAPAN.

Email address : tfuku@rimath.saitama-u.ac.jp

(Masaru Hasegawa) Depart of Information Science, Center for Liberal Arts and Science,
Iwate Medical University, Iwate 028-3694, JAPAN.

Email address : mhase@iwate-med.ac.jp


