Singularities of mixed polynomials with Newton polyhedrons

Toshizumi Fukui*
Department of Mathematics, Saitama University
255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
E-mail address: tfukui@rimath.saitama-u.ac.jp

August 25, 2023

Abstract

Oka introduced the concept of mixed polynomials and started to investigate how a study for singularities of mixed polynomials similar to the study of singularities of polynomials is possible. We introduce a mixed toric modification as a mixed analogy of toric modifications and discuss when this provides an analogy of resolutions of singularities defined by mixed polynomials. A mixed toric modification is associated with a mixed fan, which is a notion we introduce in the paper. They provide several combinatorial data for singularities of mixed polynomials. We define the notion of mixed Newton non-degeneracy for mixed polynomials and show that a mixed toric modification provides a semi-algebraic or real algebraic analogue of resolutions of singularities under mixed Newton non-degeneracy condition. Our approach allows us a combinatorial description of the topology of singularities of mixed polynomials, which are mixed Newton non-degenerate, and we show a formulas for the Euler characteristics and the monodromy zeta function of nearby fibers. We also show how the dual graphs of analogy of resolution of singularities of such mixed polynomial are obtained in low dimensions.

J. Milnor ([[T]]) started to investigate topology of complex polynomials and he shows there cone structure and fibration structure. These have been provided a wealth of examples in differential topology and basic language for describing how topological type changes under deformations. In [[⿴囗] , Khovanskii introduced a powerful method to construct a resolution of singularities. He introduced a suitable non-degeneracy condition with respect to Newton polyhedrons of holomorphic functions, and showed that a toric modification provides a resolution of singularities of a holomorphic function under this non-degenerate condition. This allows us several combinatorial descriptions of topological objects of the holomorphic functions like:

[^0]- topology of nearby fibers, in particular the Euler characteristics of the nearby fiber, and zeta function of monodromy ([[17]),
- topology of links of singularity (for example, see [2] for surface singularities).

Such a description of phenomenon should be understood as a broder class of phenomenon that includees singularities of polynomials. For example, Pichon and Seade [[15] showed a kind of Milnor fibration for functions of the form $f \bar{g}$. Oka ([[T2]) has launched to investigate the topology of the maps defined by a mixed polynomial introducing the notion of Newton polyhedron for a mixed polynomial ([.].]). Oka introduced the notion of non-degeneracy for mixed polynomial ([L2, 2.3]) and discussed how topology of mixed polynomials are described in terms of combinatorics of Newton polyhedrons. He showed fibration theorems [[22, Theorems 29, 33] and describe zeta functions of monodromies [I2, Theorem 60], etc. for singularities defined by several mixed polynomials. He also investigate when a toric modification provides a resolution of singularities for mixed functions ([[]3, Theorem 11]). Inaba, Kawashima and Oka also have investigated ([8]) the topology of links for special mixed polynomials. We also remark that Chen, Dias, Takeuchi and Tibăr ([3], [4]) discussed asymptotically critical values or bifurcation values for mixed polynomials using Newton polyhedrons.

In this paper, we introduce the notion of mixed Newton non-degeneracy (Definition I.7) for mixed polynomials, and define the notion of mixed toric modifications (Definition ■.22) associated with mixed fans (Σ, β) (Definition $\mathbb{L 2}$) constructed from it, and show that they provide a semi-algebraic analogue of resolution of the singularities defined by the mixed polynomials. Our approach allows us to analyze considerably wide cases of mixed polynomials compared to Oka's results.

Let us state several definitions related to mixed polynomials to fix the terminology. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be the coordinate system of \mathbb{C}^{n} and let $\overline{\boldsymbol{x}}=\left(\overline{x_{1}}, \ldots, \overline{x_{n}}\right)$ where $\overline{x_{i}}$ denotes the complex conjugate of x_{i}. Setting $\boldsymbol{x}^{\nu}=x_{1}^{\nu_{1}} \cdots x_{n}^{\nu_{n}}, \overline{\boldsymbol{x}}^{\bar{\nu}}={\overline{x_{1}}}^{\bar{\nu}_{1}} \cdots{\overline{x_{n}}}^{\bar{\nu}_{n}}$, $\boldsymbol{\nu}=\left(\nu_{1}, \ldots, \nu_{n}\right), \overline{\boldsymbol{\nu}}=\left(\bar{\nu}_{1}, \ldots, \bar{\nu}_{n}\right) \in \mathbb{Z}^{n}$, we consider a \mathbb{C}-linear combination of $\boldsymbol{x}^{\nu} \overline{\boldsymbol{x}}^{\bar{\nu}}$:

$$
\begin{equation*}
\sum_{\nu, \bar{\nu}} c_{\nu, \bar{\nu}} \boldsymbol{x}^{\nu} \overline{\boldsymbol{x}}^{\bar{\nu}}, \quad c_{\nu, \overline{\boldsymbol{\nu}}} \in \mathbb{C} . \tag{0.1}
\end{equation*}
$$

- We call this (I.I) by a mixed polynomial if all the exponents $\boldsymbol{\nu}$ and $\overline{\boldsymbol{\nu}}$ are nonnegative.
- In general, we say (D) is a mixed Laurent polynomial, since we allow negative exponents in the expression (ID).
- We call $\boldsymbol{x}^{\boldsymbol{\nu}} \overline{\boldsymbol{x}}^{\bar{\nu}}$ a mixed monomial if the exponents $\boldsymbol{\nu}$ and $\overline{\boldsymbol{\nu}}$ are non-negative integers.
- We call $\boldsymbol{x}^{\nu} \overline{\boldsymbol{x}}^{\bar{\nu}}$ a mixed semi-monomial if the exponents are non-negative half integers.
- We also call $\boldsymbol{x}^{\nu} \overline{\boldsymbol{x}}^{\overline{\boldsymbol{\nu}}}$ a mixed Laurent monomial if we allow negative integer exponents.
- We call $\boldsymbol{x}^{\nu} \overline{\boldsymbol{x}}^{\bar{\nu}}$ a mixed Laurent semi-monomial if the exponents are half integers. By comparison, we sometimes call polynomials in \boldsymbol{x} are called pure polynomials, and monomials in \boldsymbol{x} are called pure monomials.

For a mixed polynomial (\mathbb{I}. $)$), we consider the map

$$
f: \mathbb{C}^{n} \longrightarrow \mathbb{C}, \quad \text { defined by } \boldsymbol{x} \longmapsto f(\boldsymbol{x})=\sum_{\nu, \overline{\boldsymbol{\nu}}} c_{\boldsymbol{\nu}, \bar{\nu}} \boldsymbol{x}^{\nu} \overline{\boldsymbol{x}}^{\bar{\nu}} .
$$

For the abuse of language, we often call the map f a mixed polynomial.

Definition 0.2. We say that a mixed polynomial (IDCD) is a mixed weighted homogeneous polynomial of type $(\boldsymbol{a}, \boldsymbol{b} ; \ell, m), \boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq}^{n}, \boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{Z}^{n}$, if f is a \mathbb{C}-linear combination of mixed monomials $\boldsymbol{x}^{\nu} \overline{\boldsymbol{x}}^{\bar{\nu}}$ with

$$
\begin{equation*}
\langle\boldsymbol{\nu}+\overline{\boldsymbol{\nu}}, \boldsymbol{a}\rangle=\ell,\langle\boldsymbol{\nu}-\overline{\boldsymbol{\nu}}, \boldsymbol{b}\rangle=m . \tag{0.3}
\end{equation*}
$$

We easily see that for such a polynomial we have

$$
\begin{equation*}
f\left(r^{a_{1}} e^{b_{1} \theta \stackrel{\imath}{8}} x_{1}, \ldots, r^{a_{n}} e^{b_{n} \theta \stackrel{ }{8}} x_{n}\right)=r^{\ell} e^{m \theta \mathrm{\imath}} f(\boldsymbol{x}) \tag{0.4}
\end{equation*}
$$

for $r \geq 0$, and $\theta \in \mathbb{R}$.
Definition 0.5. We define (absolute) Newton polyhedron (or radial Newton polyhedron as in [12]) of the mixed polynomial ($\mathbb{[1]}$) (as power series) by

$$
\begin{equation*}
\Gamma_{+}(f)=\text { convex hull of }\left\{\boldsymbol{\nu}+\overline{\boldsymbol{\nu}}+\mathbb{R}_{\geq}^{n}: c_{\boldsymbol{\nu}, \overline{\boldsymbol{\nu}}} \neq 0\right\} . \tag{0.6}
\end{equation*}
$$

For a subset γ of \mathbb{R}^{n}, we define f_{γ} by $f_{\gamma}=\sum_{\nu+\overline{\boldsymbol{\nu}} \in \gamma} c_{\boldsymbol{\nu}, \overline{\boldsymbol{\nu}}} \boldsymbol{x}^{\nu} \overline{\boldsymbol{x}}^{\bar{\nu}}$.
Definition 0.7. We say that a mixed polynomial f is mixed Newton non-degenerate if the following conditions hold.
(a) For each compact face γ of $\Gamma_{+}(f)$, we have

$$
\begin{equation*}
\Sigma\left(f_{\gamma}\right) \cap f_{\gamma}^{-1}(0) \subset\left\{x_{1} \cdots x_{n}=0\right\} \tag{0.8}
\end{equation*}
$$

Here $\Sigma\left(f_{\gamma}\right)$ denotes the singular set of the map $f_{\gamma}: \mathbb{C}^{n} \longrightarrow \mathbb{C}$ defined by $\boldsymbol{x} \longmapsto f_{\gamma}(\boldsymbol{x})$.
(b) The polynomial f_{γ} is mixed weighted homogeneous for each compact face γ of $\Gamma_{+}(f)$.

As in [I2, 2.2], we say that a mixed polynomial f is non-degenerate if the condition (a) above holds.

Now we can state our main theorem.
Theorem 0.9. If a mixed polynomial f is mixed Newton non-degenerate in the sense of Definition 0.7, then there exists a mixed toric modification $\pi: M \longrightarrow \mathbb{C}^{n}$ (see Definition प.2g) which provides a semi-algebraic analogy of "resolution of singularities" of $f^{-1}(0)$ near 0 , that is, $(f \circ \pi)^{-1}(0)$ is a semi-algebraically normal crossing variety (see Definition (3.1) near $\pi^{-1}(0)$.

As a by-product of this construction, we are able to discuss an analogy of A'Campo's formula for zeta functions, Euler characteristics of nearby fibers, and resolution graphs of singularities of $f^{-1}(0)$, as holomorphic function case. In particular, we have a formula (Theorem [3.Ty) for the monodromy zeta function for mixed polynomials.

The paper is organized as follows: In $\S(\mathbb{L}$, we introduce the notion of mixed toric modification and describe their fundamental properties. The key idea is to construct mixed toric manifolds using the notion of mixed fan. Using the notion of Newton polyhedron in §[2.ID, we introduce mixed version of normal crossing properties, which is a semi-algebraic
 provides a semi-algebraic analogue of resolution of singularities for a mixed polynomial f. We also discuss a formula for monodromy zeta function of singularities in $\S(2.2$ and a way to compute the intersection numbers associated with resolution of singularities in
§[5.3]. In §4.D, we show a version of topologically triviality theorem, which comes from real-analytic isomorphism of the resolution spaces.

It is also important to look at phenomena specific to mixed polynomials, despite of the fact that it is important to pursue analogies of the study of polynomial in the study of topologies of mixed polynomials. We thus present an attempt to analyze a mixed polynomial, which is not mixed Newton non-degenerate, but which is non-degenerate, in $\$ 4.2$.

Throughout the paper, we denote by \mathbb{Z} (resp. \mathbb{R}, \mathbb{C}) the set of integers (resp. real numbers, complex numbers). We denote by $\mathbb{Z}_{\geq}\left(\mathrm{resp} . \mathbb{R}_{\geq}\right)$the set of non-negative integers (resp. real numbers). We set $\mathbb{C}^{*}=\mathbb{C} \backslash\{\mathbf{0}\}$ and $S^{1}=\{z \in \mathbb{C}:|z|=1\}$.

The author is grateful to Masaharu Ishikawa for helpful comments on this topic. The author also thanks to H . Shimizu, since the paper is motivated by seminar works with him.

Contents

1 Mixed toric manifold 4
1.1 Fan and mixed fan 4
$\boxed{0} 2$ Mixed toric manifold 6
1.3 Mixed toric modification 9
2 Mixed toric modifications for mixed polynomials 11
2.1 Newton polyhedron of f and construction of a mixed fan (Σ, β) 11
2.2 Remark on the singular set of f 12
2.3 Strict transform of f via a mixed toric modification 13
2.4 Mixed weighted homogeneous polynomials 14
3 Semi-algebraic analogue of resolution of singularities 15
3.1 Normal crossing property 15
3.2 Monodromy zeta function 17
3.3 Intersection numbers among components of the exceptional set 19
4 Remarks on non-degenerate case 234.1 Topological trivialities induced by real-analytic isomorphisms of resolutionspaces23
4.2 Coordinate crossing property 26

1 Mixed toric manifold

1.1 Fan and mixed fan

We say a subset σ of \mathbb{R}^{n} is rational polyhedral cone if there are integer vectors $\boldsymbol{a}^{1}, \ldots$, \boldsymbol{a}^{k} so that

$$
\sigma=\left\{c_{1} \boldsymbol{a}^{1}+\cdots+c_{k} \boldsymbol{a}^{k}: c_{i} \geq 0, \quad i=1, \ldots, k\right\}
$$

Let Σ denote a fan, that is, a finite collection of rational polyhedral cones in \mathbb{R}^{n} with the following properties.

- If $\sigma \in \Sigma$ and τ is a face of σ, then $\tau \in \Sigma$.
- If $\sigma, \sigma^{\prime} \in \Sigma$, then $\sigma \cap \sigma^{\prime}$ is a face of σ and also is a face of σ^{\prime}.

Let $\Sigma(k)$ denote the set of k-dimensional cones (k-cones, for short) in Σ. Let $\sigma(k)$ denote the set of k-dimensional faces of σ.

We say a fan Σ is simplicial if each cone in Σ is simplicial cones, that is, $\sigma \in \Sigma(k)$ is generated by linearly independent k vectors.

We say a fan Σ is nonsingular if each cone in Σ is generated by a part of \mathbb{Z}-basis of \mathbb{Z}^{n}.

Remark 1.1. A toric variety is constructed from a fan. This toric variety is nonsingular if the fan is nonsingular. Refer the survey article [5] for a fundamental facts for toric varieties. We remark that a nonsingular fan is called a regular fan in [5].

We say a vector $\boldsymbol{a} \in \mathbb{Z}^{n}$ is primitive if the greatest common divisor of non zero components of \boldsymbol{a} is 1 .
Definition 1.2 (Mixed fan). Let Σ be a simplicial fan, and let β be a map

$$
\Sigma(1) \longrightarrow \mathbb{Z}^{n} \times \mathbb{Z}^{n}, \quad \tau \longmapsto\left(\boldsymbol{a}^{\tau}, \boldsymbol{b}^{\tau}\right) .
$$

We say that (Σ, β) is a mixed fan, if the following conditions hold.
(i) $\left\{\boldsymbol{a}^{\tau}: \tau \in \Sigma(1)\right\}$ is the set of the primitive generators of $\tau \in \Sigma(1)$. Thus, for all $\sigma \in \Sigma$,

$$
\sigma=\left\{\sum_{\tau \in \sigma(1)} c_{\tau} \boldsymbol{a}^{\tau}: c_{\tau} \geq 0\right\} .
$$

(ii) $\left\{\boldsymbol{b}^{\tau}: \tau \in \sigma(1)\right\}$ forms a part of \mathbb{Z}-basis of \mathbb{Z}^{n} for all $\sigma \in \Sigma$.

If $\boldsymbol{a}^{\tau}=\boldsymbol{b}^{\tau}$ for $\tau \in \Sigma(1)$, the mixed fan (Σ, β) is a nonsingular fan with mentioning primitive generators \boldsymbol{a}^{τ} for $\tau \in \Sigma(1)$.

Mixed fans form a subclass of the set of topological fans introduced in [9]. We are going to define mixed toric manifold associated to a mixed fan, which also form a subclass of topological toric manifolds introduced in loc.cite..

The following lemma ensures the existence of nonsingular mixed fan for several cases.
Lemma 1.3. Let Σ_{0} denote a simplicial fan, which is a subdivision of the positive orthant \mathbb{R}_{\geq}^{n}. For $\tau \in \Sigma_{0}(1)$, set $\beta_{0}(\tau)=\left(\boldsymbol{a}^{\tau}, \boldsymbol{b}^{\tau}\right)$ where \boldsymbol{a}^{τ} is the primitive vector generating τ. We assume that

- For $\sigma \in \Sigma_{0}(n), \boldsymbol{b}^{\tau}, \tau \in \sigma(1)$, are linearly independent.

Then there exists a mixed fan (Σ, β) with the following properties.

- Σ is a subdivision of Σ_{0}.
- $\beta(\tau)=\beta_{0}(\tau)$ for $\tau \in \Sigma_{0}(1)$.

Proof. We construct a simplicial subdivision Σ of Σ_{0} and

$$
\beta: \Sigma(1) \longrightarrow \mathbb{Z}^{n} \times \mathbb{Z}^{n}, \quad \tau \longmapsto \beta(\tau)=\left(\boldsymbol{a}^{\tau}, \boldsymbol{b}^{\tau}\right)
$$

with the following properties:

- For $\tau \in \Sigma_{0}(1), \beta(\tau)=\beta_{0}(\tau)$.
- For $\tau \in \Sigma(1), \boldsymbol{a}^{\tau}$ generates τ.
- For $\sigma \in \Sigma(n), \boldsymbol{b}^{\tau}, \tau \in \sigma(1)$, generate a nonsingular n-cone.
- For $\sigma \in \Sigma(n)$ and $\tau \in \Sigma_{1}(1) \backslash \Sigma_{0}(1), \boldsymbol{a}^{\tau}$ is a primitive generator of the 1-cone generated by $\sum_{\tau^{\prime} \in \sigma(1)} c_{\tau^{\prime}} \boldsymbol{a}^{\boldsymbol{\tau}^{\prime}}$ if $\boldsymbol{b}^{\tau}=\sum_{\tau^{\prime} \in \sigma(1)} c_{\tau^{\prime}} \boldsymbol{b}^{\boldsymbol{\tau}^{\prime}}$.
This Σ is obtained constructing a nonsingular subdivision of $\left\langle\boldsymbol{b}^{\tau}: \tau \in \sigma(1)\right\rangle_{\mathbb{R}_{\geq}}$for $\sigma \in$ $\Sigma_{0}(n)$ (see [5, 8.1]).

1.2 Mixed toric manifold

Definition 1.4 (Group G). Let us define the group G as the kernel of the group morphism:

$$
\begin{equation*}
\lambda_{\Sigma, \beta}:\left(\mathbb{C}^{*}\right)^{\Sigma(1)} \longrightarrow\left(\mathbb{C}^{*}\right)^{n},\left(z_{\tau}\right)_{\tau \in \Sigma(1)} \longmapsto\left(\prod_{\tau \in \Sigma(1)}\left|z_{\tau}\right|^{a_{i}^{\tau}}\left(\frac{z_{\tau}}{\left|z_{\tau}\right|}\right)^{b_{i}^{\tau}}\right)_{i=1, \ldots, n} \tag{1.5}
\end{equation*}
$$

We clearly have

$$
\left(z_{\tau}\right)_{\tau \in \Sigma(1)} \in G \Longleftrightarrow\left\{\begin{array}{l}
\sum_{\tau \in \Sigma(1)} a_{i}^{\tau} \log \left|z_{\tau}\right|=0, \\
\sum_{\tau \in \Sigma(1)} b_{i}^{\tau} \arg z_{\tau} \equiv 0 \quad(\bmod 2 \pi) .
\end{array}\right.
$$

For $\sigma \in \Sigma(n)$, these equations can be written as

$$
\begin{aligned}
\sum_{\tau \in \sigma(1)} a_{i}^{\tau} \log \left|z_{\tau}\right| & =-\sum_{\tau^{\prime} \notin \sigma(1)} a_{i}^{\tau^{\prime}} \log \left|z_{\tau^{\prime}}\right| \\
\sum_{\tau \in \sigma(1)} b_{i}^{\tau} \arg z_{\tau} & \equiv-\sum_{\tau^{\prime} \notin \sigma(1)} b_{i}^{\tau^{\prime}} \arg z_{\tau^{\prime}} \quad(\bmod 2 \pi),
\end{aligned}
$$

and we conclude that an element $\left(z_{\tau}\right)_{\tau \in \sigma(1)} \in G$ is determined by $\left(z_{\tau^{\prime}}\right)_{\tau^{\prime} \notin \sigma(1)}$.
Notation 1.6. Let i denote the imaginary unit. We do not use i for the imaginary unit, since we may use i as an index of vectors, etc.. Then a complex number z can be written as in the following polar form

$$
z=r e^{\theta 8} \quad \text { where } \quad r=|z|, \theta=\arg z
$$

Since $\bar{z}=r e^{-\theta \AA}$, we have

$$
\begin{equation*}
r \partial_{r}=z \partial_{z}+\bar{z} \partial_{\bar{z}}, \quad \partial_{\theta}=\AA\left(z \partial_{z}-\bar{z} \partial_{\bar{z}}\right) . \tag{1.7}
\end{equation*}
$$

by chain rule. To save symbols, we often denote them as

$$
\begin{equation*}
|z| \partial_{|z|}=z \partial_{z}+\bar{z} \partial_{\bar{z}}, \quad \partial_{\arg z}=\stackrel{\circ}{ }\left(z \partial_{z}-\bar{z} \partial_{\bar{z}}\right) . \tag{1.8}
\end{equation*}
$$

Since the polar coordinate (r, θ) is a coordinate system of $\widehat{\mathbb{C}}=\mathbb{R}_{\geq} \times S^{1}$, we often regard the formula ([.7), or equivalently, ([.\|), as a formula on $\widehat{\mathbb{C}}$ via the polar blow-up:

$$
\widehat{\mathbb{C}} \longrightarrow \mathbb{C}, \quad \hat{z}=(r, \theta) \longmapsto z=r e^{\theta \AA} .
$$

In [$[$], page 222], this map is called a simple oriented blowing-up.
Setting $x=\operatorname{Re} z=\frac{1}{2}(z+\bar{z}), y=\operatorname{Im} z=\frac{1}{2 \mathrm{~s}}(z-\bar{z})$, we have

$$
J=\binom{\partial_{x}}{\partial_{y}}(\operatorname{Re} f \quad \operatorname{Im} f)=\binom{\partial_{\operatorname{Re} z}}{\partial_{\operatorname{Im} z}}(\operatorname{Re} f \quad \operatorname{Im} f)=\left(\begin{array}{cc}
1 & 1 \\
\mathrm{i} & -\mathrm{i}
\end{array}\right)\binom{\partial_{z}}{\partial_{\bar{z}}}\left(\begin{array}{ll}
f & \bar{f}
\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}
1 & -\mathrm{i} \\
1 & \mathrm{i}
\end{array}\right) .
$$

By ([.8), we have

$$
\binom{\partial_{z}}{\partial_{\bar{z}}}=\frac{1}{2}\left(\begin{array}{cc}
1 / z & -\frac{\imath}{\imath} / z \\
1 / \bar{z} & \circ / \bar{z}
\end{array}\right)\binom{|z| \partial_{|z|}}{\partial_{\arg z}}
$$

and

$$
\operatorname{det} J=\left|\begin{array}{cc}
f_{z} & f_{\bar{z}} \tag{1.9}\\
\bar{f}_{z} & \bar{f}_{\bar{z}}
\end{array}\right|=\frac{\mathrm{i}}{2|z|}\left|\begin{array}{ll}
\partial_{|z|} f & \partial_{\arg z} f \\
\partial_{|z|} \bar{f} & \partial_{\arg z} \bar{f}
\end{array}\right| .
$$

Definition 1.10 (Mixed toric manifold). We assume that (Σ, β) is a mixed fan. We define U_{Σ} by

$$
U_{\Sigma}=\bigcup_{\sigma \in \Sigma(n)} U_{\sigma}, \text { where } U_{\sigma}=\left\{\left(u_{\tau}\right)_{\tau \in \Sigma(1)} \in \mathbb{C}^{\Sigma(1)}: \prod_{\tau \notin \sigma(1)} u_{\tau} \neq 0\right\} .
$$

We remark that $\left(z_{\tau}\right)_{\tau \in \Sigma(1)} \in G$ acts on U_{σ} by

$$
\left(z_{\tau}\right)_{\tau \in \Sigma(1)}: U_{\sigma} \longrightarrow U_{\sigma}, \quad\left(u_{\tau}\right)_{\tau \in \sigma(1)} \longmapsto\left(z_{\tau} u_{\tau}\right)_{\tau \in \sigma(1)},
$$

and thus on U_{Σ}. We define the mixed toric manifold $M_{\Sigma, \beta}$ by

$$
M_{\Sigma, \beta}=U_{\Sigma} / G, \text { and } M_{\sigma}=U_{\sigma} / G
$$

Set $V_{\sigma}=\left\{\left(u_{\tau}\right)_{\tau \in \Sigma(1)}: u_{\tau^{\prime}}=1, \tau^{\prime} \notin \sigma(1)\right\}$. We easily have the following:

$$
\left(u_{\tau}\right)_{\tau \in \Sigma(1)} \in U_{\sigma} \Longleftrightarrow \exists\left(z_{\tau}\right)_{\tau \in \Sigma(1)} \in G \text { such that }\left(z_{\tau} u_{\tau}\right)_{\tau \in \Sigma(1)} \in V_{\sigma} .
$$

We thus conclude that the composition $V_{\sigma} \subset U_{\sigma} \longrightarrow U_{\sigma} / G=M_{\sigma}$ is a semi-algebraic homeomorphism. We consider this map as a semi-algebraic chart of a mixed toric manifold $M_{\Sigma, \beta}$, identifying V_{σ} with $\mathbb{C}^{\sigma(1)}$.

It is interesting to ask when $M_{\Sigma, \beta}$ is a real algebraic manifold.
Proposition 1.11. Let (Σ, β) denote a mixed fan. Then $M_{\Sigma, \beta}$ is a real algebraic manifold if

$$
\boldsymbol{a}^{\tau} \equiv \boldsymbol{b}^{\tau} \quad \bmod 2 \quad \text { for } \quad \tau \in \Sigma(1)
$$

Proof. By supposition, we have

$$
\left(\boldsymbol{a}^{\tau}\right)_{\tau \in \sigma(1)} \equiv\left(\boldsymbol{b}^{\tau}\right)_{\tau \in \sigma(1)} \bmod 2 \quad \text { for } \sigma \in \Sigma(n)
$$

By the condition (ii) in Definition [.2, $\operatorname{det}\left(\boldsymbol{b}^{\tau}\right)_{\tau \in \sigma(1)} \equiv 1 \bmod 2$, and $\operatorname{det}\left(\boldsymbol{a}^{\tau}\right)_{\tau \in \sigma(1)} \equiv 1$ $\bmod 2$. Moreover, $\left(\boldsymbol{b}^{\tau}\right)_{\tau \in \sigma(1)}^{-1}\left(\boldsymbol{a}^{\tau}\right)_{\tau \in \sigma(1)}$ is the identity matrix modulo 2. Thus the lemma below implies the result.

Lemma 1.12. Assume that (Σ, β) is a mixed fan. For $\sigma, \sigma^{\prime} \in \Sigma(n)$, we have two charts $V_{\sigma} \longrightarrow M_{\Sigma, \beta}$ and $V_{\sigma^{\prime}} \longrightarrow M_{\Sigma, \beta}$. The patch $V_{\sigma} \longrightarrow V_{\sigma^{\prime}}$ is a semi-algebraic map (defined except a thin set). This is given by mixed Laurent monomials if

$$
\begin{equation*}
\left(\boldsymbol{a}^{\tau^{\prime}}\right)_{\tau^{\prime} \in \sigma^{\prime}(1)}\left(\boldsymbol{b}^{\boldsymbol{\tau}^{\prime}}\right)_{\tau^{\prime} \in \sigma^{\prime}(1)}^{-1} \equiv\left(\boldsymbol{a}^{\tau}\right)_{\tau \in \sigma(1)}\left(\boldsymbol{b}^{\tau}\right)_{\tau \in \sigma(1)}^{-1} \bmod 2 \tag{1.13}
\end{equation*}
$$

Proof. We consider two semi-algebraic maps (possibly with indeterminacy sets)

$$
\begin{align*}
V_{\sigma} \longrightarrow \mathbb{C}^{n}, & \left(v_{\tau}\right)_{\tau \in \sigma(1)} \longmapsto\left(\prod_{\tau \in \sigma(1)}\left|v_{\tau}\right|^{a_{i}^{\tau}}\left(\frac{v_{\tau}}{\left|v_{\tau}\right|}\right)^{b_{i}^{\tau}}\right)_{i=1, \ldots, n}, \tag{1.14}\\
V_{\sigma^{\prime}} \longrightarrow \mathbb{C}^{n}, & \left(v_{\tau^{\prime}}^{\prime}\right)_{\tau^{\prime} \in \sigma^{\prime}(1)} \longmapsto\left(\prod_{\tau^{\prime} \in \sigma^{\prime}(1)}\left|v_{\tau}^{\prime}\right|^{a_{i}^{\tau^{\prime}}}\left(\frac{v_{\tau^{\prime}}^{\prime}}{\left|v_{\tau^{\prime}}^{\prime}\right|}\right)^{b_{i}^{\tau_{i}^{\prime}}}\right)_{i=1, \ldots, n} .
\end{align*}
$$

For $\tau^{\prime} \in \sigma^{\prime}(1)$, we assume that

$$
\begin{equation*}
\boldsymbol{a}^{\tau}=\sum_{\tau \in \sigma} p_{\tau^{\prime}}^{\tau} \boldsymbol{a}^{\tau^{\prime}}, \quad \boldsymbol{b}^{\tau}=\sum_{\tau \in \sigma} q_{\tau^{\prime}}^{\tau} \boldsymbol{b}^{\tau^{\prime}}, \tag{1.15}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\left(\boldsymbol{a}^{\tau^{\prime}}\right)_{\tau^{\prime} \in \sigma^{\prime}(1)}\left(p_{\tau^{\prime}}^{\tau}\right)=\left(\boldsymbol{a}^{\tau}\right)_{\tau \in \sigma(1)}, \quad\left(\boldsymbol{b}^{\tau^{\prime}}\right)_{\tau^{\prime} \in \sigma^{\prime}(1)}\left(q_{\tau^{\prime}}^{\tau}\right)=\left(\boldsymbol{b}^{\tau}\right)_{\tau \in \sigma(1)} . \tag{1.16}
\end{equation*}
$$

We thus have

$$
\left|v_{\tau^{\prime}}^{\prime}\right|=\prod_{\tau \in \sigma(1)}\left|v_{\tau}\right|^{p_{\tau^{\prime}}^{\tau}}, \quad \frac{v_{\tau^{\prime}}^{\prime}}{\left|v_{\tau^{\prime}}^{\prime}\right|}=\prod_{\tau \in \sigma(1)}\left(\frac{v_{\tau}}{\left|v_{\tau}\right|}\right)^{q_{\tau^{\prime}}^{\tau}}
$$

and

$$
v_{\tau^{\prime}}^{\prime}=\prod_{\tau \in \sigma(1)} v_{\tau^{\prime}}^{q^{\tau}}\left(v_{\tau} \bar{v}_{\tau}\right)^{\frac{p_{\tau^{\prime},}^{\tau}-q_{\tau}^{\tau}}{\tau}}=\prod_{\tau \in \sigma(1)} v_{\tau} \frac{p_{\tau^{\tau}}^{\tau}+q_{\tau^{\prime}}^{\tau}}{2} \bar{v}_{\tau}^{\bar{p}_{\tau^{\prime} \prime^{\prime}-q_{\tau^{\prime}}^{\tau}}^{2}} .
$$

So $v_{\tau^{\prime}}^{\prime}$ and $\bar{v}_{\tau^{\prime}}^{\prime}$ are mixed Laurent monomials in v_{τ} and $\overline{v_{\tau}}$ if

$$
\left(\boldsymbol{a}^{\tau^{\prime}}\right)_{\tau^{\prime} \in \sigma^{\prime}(1)}^{-1}\left(\boldsymbol{a}^{\tau}\right)_{\tau \in \sigma(1)} \equiv\left(\boldsymbol{b}^{\tau^{\prime}}\right)_{\tau^{\prime} \in \sigma^{\prime}(1)}^{-1}\left(\boldsymbol{b}^{\tau}\right)_{\tau \in \sigma(1)} \quad \bmod 2
$$

Let $\left(\boldsymbol{a}^{\boldsymbol{\tau}^{\prime}}\right)_{\tau^{\prime} \in \sigma^{\prime}(1)}^{*}$ denote the adjugate matrix of $\left(\boldsymbol{a}^{\tau^{\prime}}\right)_{\tau^{\prime} \in \sigma^{\prime}(1)}$ and $\delta_{\sigma}=\operatorname{det}\left(\boldsymbol{a}^{\tau}\right)_{\tau \in \sigma(1)}$. Then this condition is equivalent that

$$
\left(\boldsymbol{a}^{\tau^{\prime}}\right)_{\tau^{\prime} \in \sigma^{\prime}(1)}^{*}\left(\boldsymbol{a}^{\tau}\right)_{\tau \in \sigma(1)} \equiv \delta_{\sigma^{\prime}}\left(\boldsymbol{b}^{\tau^{\prime}}\right)_{\tau^{\prime} \in \sigma^{\prime}(1)}^{-1}\left(\boldsymbol{b}^{\tau}\right)_{\tau \in \sigma(1)} \quad \bmod 2 \delta_{\sigma^{\prime}} .
$$

Multiplying $\left(\boldsymbol{a}^{\tau^{\prime}}\right)_{\tau^{\prime} \in \sigma^{\prime}(1)}$ from the left, and $\left(\boldsymbol{b}^{\tau}\right)_{\tau \in \sigma(1)}$ from the right, we obtain that

$$
\delta_{\sigma^{\prime}}\left(\boldsymbol{a}^{\tau}\right)_{\tau \in \sigma(1)}\left(\boldsymbol{b}^{\tau}\right)_{\tau \in \sigma(1)}^{-1} \equiv \delta_{\sigma^{\prime}}\left(\boldsymbol{a}^{\tau^{\prime}}\right)_{\tau^{\prime} \in \sigma^{\prime}(1)}\left(\boldsymbol{b}^{\tau^{\prime}}\right)_{\tau^{\prime} \in \sigma^{\prime}(1)}^{-1} \quad \bmod 2 \delta_{\sigma^{\prime}},
$$

which is equivalent to ([.].3).
Remark 1.17. Let (Σ, β) is a mixed fan and $\beta(\tau)=\left(\boldsymbol{a}^{\tau}, \boldsymbol{b}^{\tau}\right)$ for $\tau \in \Sigma(1)$. Let S and T be integer $n \times n$ matrices with $\operatorname{det} S=\operatorname{det} T=1$. If we set $\Sigma^{\prime}=\{S \sigma: \sigma \in \Sigma\}$ and $\beta^{\prime}(S \tau)=\left(S \boldsymbol{a}^{\tau}, T \boldsymbol{b}^{\tau}\right)$ for $\tau \in \Sigma(1)$, then $M_{\Sigma^{\prime}, \beta^{\prime}}$ is isomorphic to $M_{\Sigma, \beta}$, because of the proof above.

Example 1.18. Let (Σ, β) is a mixed fan so that Σ is a subdivision of \mathbb{R}^{2}.
Assume that the cardinal of $\Sigma(1)$ is three, and $\boldsymbol{b}^{1}=\boldsymbol{e}_{1}, \boldsymbol{b}^{2}=\boldsymbol{e}_{2}$ and $\boldsymbol{b}^{3}= \pm \boldsymbol{e}_{1} \pm \boldsymbol{e}_{2}$. Let $M_{ \pm \pm}$denote the mixed toric manifold $M_{\Sigma, \beta}$. They are real algebraic manifolds. We call them mixed complex projective planes if Σ is nonsingular, since M_{--}is the complex projective plane (see [5, 0.3]).

Assume that the cardinal of $\Sigma(1)$ is four, and $\boldsymbol{b}^{1}=\boldsymbol{e}_{1}, \boldsymbol{b}^{2}=\boldsymbol{e}_{2}, \boldsymbol{b}^{3}=\epsilon_{1} \boldsymbol{e}_{1}+s_{1} \boldsymbol{e}_{2}$ and $\boldsymbol{b}^{4}=s_{2} \boldsymbol{e}_{1}+\epsilon_{2} \boldsymbol{e}_{2}, \epsilon_{i}= \pm 1, s_{i} \in \mathbb{Z}$ so that $s_{1} s_{2}+\epsilon_{1} \epsilon_{2}= \pm 1$. Let M denote the mixed toric manifold $M_{\Sigma, \beta}$. We call them mixed Hirzeburch surfaces if Σ is nonsingular, since M is the Hirzebruch surface when $\boldsymbol{a}^{i}=\boldsymbol{b}^{i}, i=1,2,3,4$.

Remark 1.19 (Orientation of $M_{\Sigma, \beta}$). The complex structure of \mathbb{C}^{n} defines a natural orientation of $\left(\mathbb{C}^{*}\right)^{n}$. We consider an orientation of $M_{\Sigma, \beta}$ induced by the map defined by (ㄸ.]4). The sign of the jacobian of the map defined by (ㄴ..4) is the sign of

$$
\operatorname{det}\left(\boldsymbol{a}^{\tau}\right)_{\tau \in \sigma(1)} \operatorname{det}\left(\boldsymbol{b}^{\tau}\right)_{\tau \in \sigma(1)}
$$

which we refer as ε_{σ}. For $\sigma \in \Sigma(n),\left\{\boldsymbol{a}^{\tau}\right\}_{\tau \in \sigma(1)}$ generates the n-cone σ, and, changing the order of \boldsymbol{a}^{τ} if necessary, we can assume that $\operatorname{det}\left(\boldsymbol{a}^{\tau}\right)_{\tau \in \sigma(1)}$ is always positive in the calculation. In this case, ε_{σ} is the sign of the jacobian of the map defined by ([..]4).

Remark 1.20 (Real oriented blow up, cf. [il, §2]). Let $E=\bigcup_{j=1}^{k} C_{j}$ denote the critical set of $\pi=\pi_{\Sigma, \beta}$ where $C_{j}, j=1, \ldots, k$, denote the semi-algebraically nonsingular submanifolds, which form a semi-algebarically normal crossing set. Let $\rho_{j}: Z_{j} \longrightarrow M_{\Sigma, \beta}$ denote real orientaed blow up along C_{j}, that is, a map described by $\left(\widehat{\mathbb{C}} \times \mathbb{C}^{n-1}, S^{1} \times \mathbf{0}\right) \longrightarrow\left(\mathbb{C}^{n}, \mathbf{0}\right)$ locally where $C_{j}=\{0\} \times \mathbb{C}^{n-1}$ locally. The map $\widehat{M}_{\Sigma, \beta} \longrightarrow M_{\Sigma, \beta}$ is the fiber product of $Z_{j} \longrightarrow M_{\Sigma, \beta}, j=1, \ldots, k$. We denote by $\hat{\pi}_{\Sigma, \beta}$ the composition: $\widehat{M}_{\Sigma, \beta} \longrightarrow M_{\Sigma, \beta} \xrightarrow{\pi} \mathbb{C}^{n}$.

1.3 Mixed toric modification

Definition 1.21 (Mixed toric modification). We assume that
(i) (Σ, β) is a mixed fan. Set $\beta(\tau)=\left(\boldsymbol{a}^{\tau}, \boldsymbol{b}^{\tau}\right)$ for $\tau \in \Sigma(1)$.
(ii) A fan Σ is a subdivision of \mathbb{R}_{\geq}^{n}. In particular, each $a_{j}^{\tau}, \tau \in \Sigma(1), j=1, \ldots, n$, is non-negative.
(iii) For any $\tau \in \Sigma(1)$ and $j=1, \ldots, n, a_{j}^{\tau}=0$ implies $b_{j}^{\tau}=0$.

Then the map $\lambda_{\Sigma, \beta}$ (see (L.5)) extends to the map

$$
\tilde{\pi}_{\Sigma, \beta}: U_{\Sigma} \longrightarrow \mathbb{C}^{n}, \quad\left(u_{\tau}\right)_{\tau \in \Sigma(1)} \longmapsto\left(\prod_{\tau \in \Sigma(1)}\left|u_{\tau}\right|^{a_{i}^{\tau}}\left(\frac{u_{\tau}}{\left|u_{\tau}\right|}\right)^{b_{i}^{\tau}}\right)_{i=1, \ldots, n}
$$

Since this map is G-invariant, $\tilde{\pi}_{\Sigma, \beta}$ induces the natural map

$$
\begin{equation*}
\pi=\pi_{\Sigma, \beta}: M_{\Sigma, \beta} \longrightarrow \mathbb{C}^{n} \tag{1.22}
\end{equation*}
$$

which we call the mixed toric modification defined by the mixed fan (Σ, β).
We always assume that conditions (i), (ii), and (iii) for (Σ, β) when discussing mixed toric modifications ($[.22)$.

Lemma 1.23. The map ([Г2Z) is proper.
Proof. Take a sequence $\left\{\boldsymbol{y}^{(m)}\right\}_{m=1,2, \ldots}$ in $M_{\Sigma, \beta}$ so that $\left\{\pi_{\Sigma, \beta}\left(\boldsymbol{y}^{(m)}\right)\right\}_{m=1,2, \ldots}$ is convergent. We are going to prove that there is a convergent subsequence of $\left\{\boldsymbol{y}^{(m)}\right\}_{m=1,2, \ldots}$. Since $M_{\Sigma, \beta}$ is a finite union of $V_{\sigma}(\sigma \in \Sigma(n))$ there is an n-cone $\sigma \in \Sigma(n)$ so that infinitely many $\left\{\boldsymbol{y}^{(m)}\right\}$ are in V_{σ}. We write this sequence as $\left\{\boldsymbol{v}^{(m)}\right\}_{m=1,2, \ldots}$. We take a sequence $\left\{\hat{\boldsymbol{v}}^{(m)}\right\}_{m=1,2, \ldots}$ in $\left(\mathbb{C}^{*}\right)^{\sigma(1)}$ so that

$$
\left|\boldsymbol{v}^{(m)}-\hat{\boldsymbol{v}}^{(m)}\right| \rightarrow 0 \quad(m \rightarrow \infty)
$$

It is enough to show that $\left\{\hat{\boldsymbol{v}}^{(m)}\right\}_{m=1,2, . .}$ has a convergent subsequence. Thus we can assume that $\boldsymbol{v}^{(m)} \in\left(\mathbb{C}^{*}\right)^{\sigma(1)}$. Since $\pi_{\sigma}\left(\boldsymbol{v}^{(m)}\right)$ is convergent, there is a positive constant L so that

$$
\log \left|x_{i}^{(m)}\right| \leq L \quad \text { where } \quad\left|x_{i}^{(m)}\right|=\prod_{\tau \in \sigma(1)}\left|v_{\tau}^{(m)}\right|^{a_{i}^{\tau}}
$$

Since

$$
\left(L-\log \left|x_{i}^{(m)}\right|\right)_{i=1, \ldots, n} \in \mathbb{R}_{\geq}^{n}=\bigcup_{\sigma \in \Sigma(n)} \sigma
$$

we can assume that, taking a subsequence if necessary, there is $\sigma \in \Sigma(n)$ so that

$$
\begin{equation*}
\left(L-\log \left|x_{i}^{(m)}\right|\right)_{i=1, \ldots, n} \in \sigma . \tag{1.24}
\end{equation*}
$$

Taking constants $L_{\tau}(\tau \in \sigma(1))$ so that $L=\sum_{\tau \in \sigma(1)} \boldsymbol{a}^{\tau} L_{\tau}$,

$$
\left(L-\log \left|x_{i}^{(m)}\right|\right)_{i=1, \ldots, n}=\left(\boldsymbol{a}^{\tau}\right)_{\tau \in \sigma(1)}\left(L_{\tau}-\log \left|v_{\tau}^{(m)}\right|\right)_{\tau \in \sigma(1)}
$$

By ([.24), we obtain that $L_{\tau}-\log \left|v_{\tau}^{(m)}\right| \geq 0$. Thus $\left\{\boldsymbol{v}^{(m)}\right\}_{m=1,2, \ldots}$ is bounded, and $\left\{\boldsymbol{v}^{(m)}\right\}_{m=1,2, \ldots}$ has a convergent subsequence.

Remark 1.25. In general, the map $\pi_{\Sigma, \beta}$ is semi-algebraic. Since

$$
\tilde{\pi}_{\Sigma, \beta}\left(\left(u_{\tau}\right)_{\tau \in \Sigma(1)}\right)=\left(\prod_{\tau \in \Sigma(1)} u^{\frac{a_{i}^{\tau}+b_{\tau}^{\tau}}{2}} \overline{u_{\tau}} \frac{a_{\tau}^{\tau}-b_{i}^{\tau}}{2}\right)_{i=1, \ldots, n}
$$

the map $\pi_{\Sigma, \beta}$ is expressed by mixed monomials if $\left|b_{i}^{\tau}\right| \leq a_{i}^{\tau}$ for $\tau \in \Sigma(1), i=1, \ldots, n$. The map $\pi_{\Sigma, \beta}$ is real algebraic if we further assume that $\boldsymbol{a}^{\tau} \equiv \boldsymbol{b}^{\tau} \bmod 2$ for $\tau \in \Sigma(1)$ (cf. Proposition [..TI).

Definition 1.26 (E_{σ} and E_{σ}^{*}). For $\tau \in \Sigma(1)$, we define E_{τ} as the image of the set defined by $u_{\tau}=0$ by the map $\tilde{\pi}_{\Sigma, \beta}: U_{\Sigma} \longrightarrow M_{\Sigma, \beta}$. We call E_{τ} the mixed divisor corresponding to $\tau \in \Sigma(1)$. It is clear that $v_{\tau}=0$ define $V_{\sigma} \cap E_{\tau}$ under the identification of $\mathbb{C}^{\sigma(1)}$ with V_{σ}. For $\sigma \in \Sigma$, we set

$$
\begin{equation*}
E_{\sigma}=\bigcap_{\tau \in \Sigma(1)} E_{\tau}, \text { and } E_{\sigma}^{*}=E_{\sigma} \backslash \bigcup_{\sigma^{\prime} \in \Sigma: \tau \not \subset \not \subset \sigma^{\prime}} E_{\sigma^{\prime}} . \tag{1.27}
\end{equation*}
$$

Since the natural map $V_{\sigma} \longrightarrow \mathbb{C}^{n}, \sigma \in \Sigma(n)$, is expressed by

$$
\begin{equation*}
\left|x_{i}\right|=\prod_{\tau \in \sigma(1)}\left|v_{\tau}\right|^{a_{i}^{\tau}}, \quad \frac{x_{i}}{\left|x_{i}\right|}=\prod_{\tau \in \sigma(1)}\left(\frac{v_{\tau}}{\left|v_{\tau}\right|}\right)^{b_{i}^{\tau}} \tag{1.28}
\end{equation*}
$$

we have that the restriction of the map $V_{\sigma} \longrightarrow \mathbb{C}^{n}$ to the set defined by $\prod_{\tau \in \sigma(1)} v_{\tau} \neq 0$ is an isomorphism onto $\left(\mathbb{C}^{*}\right)^{n}$, and

$$
\begin{equation*}
\pi_{\Sigma, \beta}\left(E_{\tau}\right)=\left\{x \in \mathbb{C}^{n}: x_{i}=0 \text { for } i \text { with } a_{i}^{\tau}>0\right\} . \tag{1.29}
\end{equation*}
$$

Remark 1.30 (Moment maps). We consider a moment map associated to a finite subset Γ of \mathbb{Z}^{n}. This is a completion of the map

$$
\begin{equation*}
\mu:\left(\mathbb{C}^{*}\right)^{n} \longrightarrow \mathbb{R}^{n}, \quad \boldsymbol{x} \longmapsto \mu(\boldsymbol{x})=\frac{\sum_{\boldsymbol{\nu} \in \Gamma}\left|\boldsymbol{x}^{\nu}\right| \boldsymbol{\nu}}{\sum_{\boldsymbol{\nu} \in \Gamma}\left|\boldsymbol{x}^{\boldsymbol{\nu}}\right|} \tag{1.31}
\end{equation*}
$$

Let Δ denote the convex hull of Γ. For a vector \boldsymbol{a}, we define $\Delta(\boldsymbol{a})$ by

$$
\Delta(\boldsymbol{a})=\left\{\boldsymbol{\nu} \in \Delta:\langle\boldsymbol{a}, \boldsymbol{\nu}\rangle=m_{\Delta}(\boldsymbol{a})\right\}
$$

where $m_{\Delta}(\boldsymbol{a})=\min \{\langle\boldsymbol{a}, \boldsymbol{\nu}\rangle: \boldsymbol{\nu} \in \Delta\}$. Similarly for a cone σ, we define $\Delta(\sigma)$ by

$$
\Delta(\sigma)=\left\{\boldsymbol{\nu} \in \Delta:\langle\boldsymbol{a}, \boldsymbol{\nu}\rangle=m_{\Delta}(\boldsymbol{a}) \forall \boldsymbol{a} \in \sigma\right\} .
$$

We define an equivalence relation, for $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{n}$, by

$$
\boldsymbol{a} \sim \boldsymbol{b} \Longleftrightarrow \Delta(\boldsymbol{a})=\Delta(\boldsymbol{b}) .
$$

Their equivalence classes are identified with cones in \mathbb{R}^{n}, which form the dual fan of Δ. Let Σ be a simplicial subdivision of the dual fan of Δ.

For any $\boldsymbol{\nu}^{0} \in \mathbb{Z}^{n}$,

$$
\mu(\boldsymbol{x})=\frac{\sum_{\boldsymbol{\nu} \in \Gamma}\left|\boldsymbol{x}^{\nu-\boldsymbol{\nu}^{0}}\right| \boldsymbol{\nu}}{\sum_{\boldsymbol{\nu} \in \Gamma}\left|\boldsymbol{x}^{\boldsymbol{\nu} \boldsymbol{\nu}^{0}}\right|} .
$$

Let σ^{\prime} be a face of $\sigma, \sigma \in \Sigma(n)$. When $\boldsymbol{\nu}^{0}$ is a point in the relative interior of $\Delta\left(\sigma^{\prime}\right)$, by ($\boxed{L 28}$), we can identify this with

$$
\begin{equation*}
\frac{\sum_{\boldsymbol{\nu} \in \Gamma} \prod_{\tau \in \sigma(1)}\left|v_{\tau}\right|^{\left\langle\boldsymbol{a}^{\tau}, \boldsymbol{\nu}-\boldsymbol{\nu}^{0}\right\rangle} \boldsymbol{\nu}}{\sum_{\boldsymbol{\nu} \in \Gamma} \prod_{\tau \in \sigma(1)}\left|v_{\tau}\right|^{\left|\boldsymbol{a}^{\tau}, \boldsymbol{\nu}-\boldsymbol{\nu}^{0}\right\rangle}} . \tag{1.32}
\end{equation*}
$$

When $v_{\tau} \rightarrow 0$ for $\tau \in \sigma^{\prime}(1)$, we have

$$
(\mathbb{L} .32) \longrightarrow \frac{\sum_{\boldsymbol{\nu} \in \Gamma \cap \Delta(\sigma)} \prod_{\tau \notin \sigma(1) \backslash \sigma^{\prime}(1)}\left|v_{\tau}\right|^{\left\langle\boldsymbol{a}^{\tau}, \boldsymbol{\nu}-\boldsymbol{\nu}^{0}\right\rangle} \boldsymbol{\nu}}{\sum_{\boldsymbol{\nu} \in \Gamma \cap \Delta(\sigma)} \prod_{\tau \notin \sigma(1) \backslash \sigma^{\prime}(1)}\left|v_{\tau}\right|^{\left\langle\boldsymbol{a}^{\tau}, \boldsymbol{\nu}-\boldsymbol{\nu}^{0}\right\rangle}}
$$

If the dual fan of Δ is nonsingular, the fiber $\mu_{\Sigma, \beta}^{-1}(\boldsymbol{p})$ is isomorphic to $\left(S^{1}\right)^{n-d}$ where $d=\operatorname{dim} \Delta(\sigma)$, for $\boldsymbol{p} \in \Delta(\sigma)$.

Let us consider a mixed fan (Σ, β) with the following property:

- The fan Σ is a part of the dual fan of Δ.

Then we have the moment map

$$
\mu_{\Sigma, \beta}: M_{\Sigma, \beta} \longrightarrow \Delta .
$$

For a mixed toric modification $\pi_{\Sigma, \beta}: M_{\Sigma, \beta} \longrightarrow \mathbb{C}^{n}$, then $\mu_{\Sigma, \beta}\left(\pi_{\Sigma, \beta}^{-1}(\mathbf{0})\right)$ is the union of faces of Δ which are facing to the origin.

2 Mixed toric modifications for mixed polynomials

2.1 Newton polyhedron of f and construction of a mixed fan (Σ, β)

We consider the Newton polyhedron $\Gamma_{+}(f)$ defined by (0.61). For $\boldsymbol{a} \in \mathbb{R}^{n}$, set

$$
\begin{aligned}
\ell(\boldsymbol{a}) & =\min \left\{\langle\boldsymbol{a}, \boldsymbol{\nu}\rangle: \boldsymbol{\nu} \in \Gamma_{+}(f)\right\}, \text { and } \\
\gamma(\boldsymbol{a}) & =\left\{\boldsymbol{\nu} \in \Gamma_{+}(f):\langle\boldsymbol{a}, \boldsymbol{\nu}\rangle=\ell(\boldsymbol{a})\right\} .
\end{aligned}
$$

For $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}_{\geq}^{n}$, we introduce an equivalence relation \sim by

$$
\boldsymbol{a} \sim \boldsymbol{b} \Longleftrightarrow \gamma(\boldsymbol{a})=\gamma(\boldsymbol{b}) .
$$

The set of closures of equivalence classes gives a polyhedral cone subdivision of \mathbb{R}_{\geq}^{n}. We denote it as $\Gamma^{*}(f)$ and we call it the dual Newton diagram.

Define $\mathrm{LE}_{\gamma}(f)$ by

$$
\begin{equation*}
\operatorname{LE}_{\gamma}(f)=\text { convex hull of }\left\{\boldsymbol{\nu}-\overline{\boldsymbol{\nu}}: c_{\boldsymbol{\nu}, \overline{\boldsymbol{\nu}}} \neq 0, \boldsymbol{\nu}+\overline{\boldsymbol{\nu}} \in \gamma\right\} . \tag{2.1}
\end{equation*}
$$

We call $\left(\Gamma_{+}(f) ; \operatorname{LE}_{\gamma}(f), \gamma \in \mathcal{F}_{0}\left(\Gamma_{+}(f)\right)\right.$ mixed Newton polyhedrons of f where $\mathcal{F}_{0}\left(\Gamma_{+}(f)\right)$ denotes the set of compact faces of $\Gamma_{+}(f)$.

For a mixed Newton non-degenerate mixed polynomial, we construct a mixed fan (Σ, β) as follows: We first take a simplicial subdivision Σ_{0} of $\Gamma^{*}(f)$. Let \boldsymbol{a}^{τ} denote the primitive vector which generates τ for $\tau \in \Sigma_{0}(1)$. Set

$$
m\left(\boldsymbol{b}^{\tau}\right)=\min \left\{\left\langle\boldsymbol{b}^{\tau}, \boldsymbol{\nu}\right\rangle: \boldsymbol{\nu} \in \operatorname{LE}_{\gamma\left(\boldsymbol{a}^{\tau}\right)}(f)\right\} .
$$

We can assume that $m\left(\boldsymbol{b}^{\tau}\right) \geq 0, \tau \in \Sigma(1)$, changing the sign of \boldsymbol{b}^{τ}, if necessary. If we assume that Condition (b) of Definition ©.], we can choose $\boldsymbol{b}^{\tau}, \tau \in \Sigma_{0}(1)$, which satisfies the flollowing properties.
(a1) $\mathrm{LE}_{\gamma\left(\boldsymbol{a}^{\tau}\right)}(f)=\left\{\boldsymbol{\nu} \in \mathrm{LE}_{\gamma\left(\boldsymbol{a}^{\tau}\right)}(f):\left\langle\boldsymbol{b}^{\tau}, \boldsymbol{\nu}\right\rangle=m\left(\boldsymbol{b}^{\tau}\right)\right\}$ for $\tau \in \Sigma_{0}(1)$.
(a2) $\boldsymbol{b}^{\tau}, \tau \in \sigma(1)$, are linearly independent for $\sigma \in \Sigma_{0}(n)$.
By Lemma [..3], there is a mixed fan (Σ, β) with the following properties.

- Σ is a simplicial subdivision of Σ_{0}.
- $\beta(\tau)=\left(\boldsymbol{a}^{\tau}, \boldsymbol{b}^{\tau}\right)$ for $\tau \in \Sigma_{0}(1)$.

By condition (b) of Definition [D.7, f_{γ} is a mixed weighted homogeneous with respect to the weight $\left(\boldsymbol{a}^{\tau}, \boldsymbol{b}^{\tau}\right)$ and degrees $\left(\ell\left(\boldsymbol{a}^{\tau}\right), m\left(\boldsymbol{b}^{\tau}\right)\right)$ where $\tau \in \Sigma(1)$ with $\gamma\left(\boldsymbol{a}^{\tau}\right)=\gamma$. If Condition (b) of Definition 0.7 does not hold, f_{γ} is no longer mixed weighted homogeneous, but we can choose \boldsymbol{b}^{τ} with Condition (a2) above, and we are able to construct a mixed fan (Σ, β) similarly.

Lemma 2.2. $\pi_{\Sigma, \beta}\left(E_{\tau}\right) \subset f^{-1}(0)$, whenever $\ell\left(\boldsymbol{a}^{\tau}\right) \neq 0$ for $\tau \in \Sigma(1)$,
Proof. Set $I(\tau)=\left\{i=0, a_{i}^{\tau}>0\right\}$. We have

$$
\left\langle\boldsymbol{\nu}+\overline{\boldsymbol{\nu}}, \boldsymbol{a}^{\tau}\right\rangle=\sum_{i \in I(\tau)}\left(\nu_{i}+\bar{\nu}_{i}\right) a_{i}^{\tau}<\ell\left(\boldsymbol{a}^{\tau}\right) \Longrightarrow c_{\boldsymbol{\nu}, \overline{\boldsymbol{\nu}}}=0 .
$$

This implies $\left.f\right|_{\left\{x_{i}=0: i \in I(\tau)\right\}}=0$ by ([.2.प) .
We often refer $\ell\left(\boldsymbol{a}^{\tau}\right)$ and $m\left(\boldsymbol{b}^{\tau}\right)$ as ℓ_{τ} and m_{τ}, respectively, for $\tau \in \Sigma(1)$, when discussing one fixed mixed fan (Σ, β)

2.2 Remark on the singular set of f

We say that $\Gamma_{+}(f)$ is convenient if $\Gamma_{+}(f)$ intersects with each coordinate axis. In this subsection, we show that the zero of a mixed Newton non-degenerate polynomial f has isolated singularity whenever f is convenient. We also show several conclusions for nonconvenient cases from the related discussion of its proof.

For $I \subset\{1, \ldots, n\}$, we set

$$
\mathbb{C}^{I}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}: x_{i}=0, i \notin I\right\}
$$

and identify $\mathbb{C}^{I} \times \mathbb{C}^{I^{c}}$ with $\mathbb{C}^{n}, I^{c}=\{1, \ldots, n\} \backslash I$, without notice.
Notation $2.3\left(\mathcal{A}_{\boldsymbol{p}}\right)$. For $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{Z}_{\geq}^{n}, \mathcal{A}_{\boldsymbol{p}}$ denotes the set of real-analytic arcs

$$
\boldsymbol{x}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right), \quad x_{i}(t)= \begin{cases}\alpha_{i} t^{p_{i}}+\text { h.o.t., } \alpha_{i} \neq 0, & i \in I(\boldsymbol{p}), \tag{2.4}\\ 0, & i \notin I(\boldsymbol{p}),\end{cases}
$$

where $I(\boldsymbol{p})=\left\{i \in\{1, \ldots, n\}: p_{i}>0\right\}$.

Proposition 2.5. If there is a real analytic arc $\boldsymbol{x}(t) \in \mathcal{A}_{\boldsymbol{p}}$ in $\Sigma(f)\left(\right.$ resp. $\left.\Sigma(f) \cap f^{-1}(0)\right)$, then the set

$$
\widetilde{\Sigma}_{\boldsymbol{p}}(f)=\left\{\boldsymbol{x} \in\left(\mathbb{C}^{*}\right)^{I(\boldsymbol{p})}: \operatorname{rank} \tilde{J}_{\boldsymbol{p}} f(\boldsymbol{x})<2\right\}
$$

(resp. $\left.\widetilde{\Sigma}_{\boldsymbol{p}}(f) \cap f_{\gamma(\boldsymbol{p})}^{-1}(0)\right)$ is not empty, where, setting $I=I(\boldsymbol{p})$,

$$
\tilde{J}_{\boldsymbol{p}} f=\left(\begin{array}{llll}
x_{i} \partial_{x_{i}}\left(\left.f\right|_{\mathbb{C}^{I}}\right)_{\gamma(\boldsymbol{p})} & \overline{x_{i}} \partial_{\overline{x_{i}}}\left(\left.f\right|_{\mathbb{C}^{I}}\right)_{\gamma(\boldsymbol{p})} & \left(\left.\left(\partial_{x_{j}} f\right)\right|_{\mathbb{C}^{I}}\right)_{\gamma(\boldsymbol{p})} & \left(\left.\left(\partial_{\overline{x_{j}}} f\right)\right|_{\mathbb{C}^{I}}\right)_{\gamma(\boldsymbol{p})} \\
x_{i} \partial_{x_{i}}\left(\left.\bar{f}\right|_{\mathbb{C}^{I}}\right)_{\gamma(\boldsymbol{p})} & \overline{x_{i}} \partial_{\overline{x_{i}}}\left(\left.\bar{f}\right|_{\mathbb{C}^{I}}\right)_{\gamma(\boldsymbol{p})} & \left(\left.\left(\partial_{x_{j}} \bar{f}\right)\right|_{\mathbb{C}^{I}}\right)_{\gamma(\boldsymbol{p})} & \left(\left(\left.\partial_{\overline{x_{j}}} \bar{f}\right|_{\mathbb{C}^{I}}\right)_{\gamma(\boldsymbol{p})}\right.
\end{array}\right)_{i \in I ; j \notin I} .
$$

Corollary 2.6. If a mixed polynomial f is non-degenerate, then

$$
\Sigma(f) \cap f^{-1}(0) \subset \bigcup_{I \in \mathcal{I}_{0}(f)} \mathbb{C}^{I} \quad \text { near } \mathbf{0}
$$

where $\mathcal{I}_{0}(f)$ denotes the set of subsets I of $\{1, \ldots, n\}$ so that $\left.f\right|_{\mathbb{C}^{I}}$ is identically zero, that is,

$$
\mathcal{I}_{0}(f)=\left\{I \subset\{1, \ldots, n\}: \mathbb{R}^{I} \cap \Gamma_{+}(f)=\varnothing\right\}
$$

In particular, if f is convenient, then the origin $\mathbf{0}$ is an isolated point of $\Sigma(f) \cap f^{-1}(0)$.
Proof of Proposition [2.5. Choose a real-analytic $\operatorname{arc} \boldsymbol{x}(t) \in \mathcal{A}_{\boldsymbol{p}}$, so that $\boldsymbol{x}(t) \in \Sigma(f)$. By definition, we have

$$
\operatorname{rank}\left(\begin{array}{ccccc}
\partial_{x_{1}} f & \partial_{\overline{x_{1}}} f & \cdots & \partial_{x_{n}} f & \partial_{\overline{x_{n}}} f \\
\partial_{x_{1}} \bar{f} & \partial_{\overline{x_{1}}} & \cdots & \cdots & \partial_{x_{n}} \bar{f}
\end{array} \partial_{\overline{x_{n}}} \bar{f}\right)(\boldsymbol{x}(t))<2,
$$

and we obtain 2×2 minors of $\tilde{J}_{\boldsymbol{p}} f$ are zero along $\boldsymbol{\alpha} t^{\boldsymbol{p}}=\left(\alpha_{i} t^{p_{\boldsymbol{i}}}\right)_{i \in I} \in \mathbb{C}^{I}, I=I(\boldsymbol{p})$, and a point of $\widetilde{\Sigma}_{\boldsymbol{p}}(f)$ is attained by $\boldsymbol{\alpha}=\left(\alpha_{i}\right)_{i \in I}$.

If we assume moreover $f(\boldsymbol{x}(t))=0$, then $\left(\left.f\right|_{\mathbb{C}^{I}}\right)_{\gamma(\boldsymbol{p})}\left(\boldsymbol{\alpha} t^{\boldsymbol{p}}\right)_{i \in I}=0$ and a point of $\widetilde{\Sigma}_{\boldsymbol{p}}(f) \cap$ $\left(\left.f\right|_{\mathbb{C}^{I}}\right)_{\gamma(\boldsymbol{p})}^{-1}(0)$ is attained by $\boldsymbol{\alpha}=\left(\alpha_{i}\right)_{i \in I}$.
Proof of Corollary [.6. Remark that $\widetilde{\Sigma}_{\boldsymbol{p}}(f) \subset \Sigma\left(\left(\left.f\right|_{\left.\left(\mathbb{C}^{*}\right)^{I(p)}\right)}\right)_{\gamma(\boldsymbol{p})}\right)$. For \boldsymbol{p} with $I(\boldsymbol{p}) \notin \mathcal{I}_{0}(f)$, $\left.f\right|_{\mathbb{C}^{I(p)}}$ is not identically zero and non-degeneracy implies that $\Sigma\left(\left(\left.f\right|_{\left(\mathbb{C}^{*}\right)^{I(\boldsymbol{p})}}\right)_{\gamma(\boldsymbol{p})}\right) \cap f_{\gamma(\boldsymbol{p})}^{-1}(0)$ is empty.

2.3 Strict transform of f via a mixed toric modification

Let us consider a mixed fan (Σ, β), so that Σ is a subdivision of the dual Newton diagram $\Gamma^{*}(f)$.

For $\sigma \in \Sigma(n)$, we have

$$
\left.f \circ \pi_{\Sigma, \beta}\right|_{V_{\sigma}}\left(v_{\tau}\right)_{\tau \in \sigma(1)}=\sum_{\boldsymbol{\nu}, \overline{\boldsymbol{\nu}}} c_{\boldsymbol{\nu}, \overline{\boldsymbol{\nu}}} \prod_{\tau \in \sigma(1)} \mid v_{\tau}\left\langle^{\left\langle\boldsymbol{a}^{\tau}, \boldsymbol{\nu}+\overline{\boldsymbol{\nu}}\right\rangle} e^{\left(\sum_{\tau \in \sigma(1)}\left\langle\boldsymbol{b}^{\tau}, \boldsymbol{\nu}-\overline{\boldsymbol{\nu}}\right\rangle \arg v_{\tau}\right)^{\AA}}\right.
$$

If we set

$$
\begin{equation*}
f \circ \pi_{\Sigma, \beta}\left(v_{\tau}\right)_{\tau \in \sigma(1)}=\hat{f} \prod_{\tau \in \sigma(1)}\left|v_{\tau}\right|^{\ell\left(\boldsymbol{a}^{\tau}\right)}\left(v_{\tau} /\left|v_{\tau}\right|\right)^{m(\tau)} \tag{2.7}
\end{equation*}
$$

where $m(\tau)=\min \left\{\left\langle\boldsymbol{\nu}, \boldsymbol{b}^{\tau}\right\rangle: \boldsymbol{\nu} \in \operatorname{LE}_{\gamma\left(\boldsymbol{a}^{\tau}\right)}(f)\right\}$, we have

$$
\begin{equation*}
\hat{f}=\sum_{\nu, \bar{\nu}} c_{\boldsymbol{\nu}, \overline{\boldsymbol{\nu}}} \prod_{\tau \in \sigma(1)}\left|v_{\tau}\right|^{\left\langle\boldsymbol{a}^{\tau}, \boldsymbol{\nu}+\overline{\boldsymbol{\nu}}\right\rangle-\ell\left(\boldsymbol{a}^{\tau}\right)} e^{\left(\sum_{\tau \in \sigma(1)}\left(\left\langle\boldsymbol{b}^{\tau}, \boldsymbol{\nu}-\overline{\boldsymbol{\nu}}\right\rangle-m(\tau)\right) \arg v_{\tau}\right)^{\stackrel{\imath}{\imath}}} \tag{2.8}
\end{equation*}
$$

and we thus have

$$
\begin{equation*}
\left.\hat{f}\right|_{E_{\sigma^{\prime}}}=\sum_{\nu+\overline{\boldsymbol{\nu}} \in \gamma} c_{\boldsymbol{\nu}, \overline{\boldsymbol{\nu}}} \prod_{\tau \in \sigma(1) \backslash \sigma^{\prime}(1)}\left|v_{\tau}\right|^{\left\langle\boldsymbol{a}^{\tau}, \boldsymbol{\nu}+\overline{\boldsymbol{\nu}}\right\rangle-\ell\left(\boldsymbol{a}^{\tau}\right)} e^{\left(\left(\left\langle\boldsymbol{b}^{\tau}, \boldsymbol{\nu}-\overline{\boldsymbol{\nu}}\right\rangle-m(\tau)\right) \arg v_{\tau}\right)^{\mathbf{8}}}=f_{\gamma}^{\prime} \tag{2.9}
\end{equation*}
$$

where $\gamma=\bigcap_{\tau \in \sigma^{\prime}(1)} \gamma\left(\boldsymbol{a}^{\tau}\right)$. Remark that \hat{f} is semi-algebraic. Setting $e_{\tau}=e^{\left(\arg v_{\tau}\right)^{\AA}}$, we have

$$
\begin{align*}
& \hat{f}_{\gamma}=\sum_{\nu+\overline{\boldsymbol{\nu}} \in \gamma} c_{\boldsymbol{\nu}, \overline{\boldsymbol{\nu}}} \prod_{\tau \in \sigma^{\prime}(1)} e_{\tau}^{\left\langle\boldsymbol{b}^{\tau}, \boldsymbol{\nu}-\overline{\boldsymbol{\nu}}\right\rangle-m(\tau)} \prod_{\tau^{\prime} \in \sigma(1) \backslash \sigma^{\prime}(1)}\left|v_{\tau^{\prime}}\right|\left\langle\boldsymbol{a}^{\left.\boldsymbol{\tau}^{\prime}, \boldsymbol{\nu}+\overline{\boldsymbol{\nu}}\right\rangle-\ell\left(\boldsymbol{a}^{\tau^{\prime}}\right)} e_{\tau^{\prime}}^{\left\langle\boldsymbol{b}^{\prime}, \boldsymbol{\nu}-\overline{\boldsymbol{\nu}}\right\rangle-m\left(\tau^{\prime}\right)},\right. \tag{2.10}\\
& \overline{\hat{f}_{\gamma}}=\sum_{\nu+\overline{\boldsymbol{\nu}} \in \gamma} \overline{c_{\boldsymbol{\nu}, \overline{\boldsymbol{\nu}}}} \prod_{\tau \in \sigma^{\prime}(1)} e_{\tau}^{\left\langle\boldsymbol{b}^{\tau}, \overline{\boldsymbol{\nu}}-\boldsymbol{\nu}\right\rangle+m(\tau)} \prod_{\tau^{\prime} \in \sigma(1) \backslash \sigma^{\prime}(1)}\left|v_{\tau^{\prime} \mid}\right| \boldsymbol{a}^{\boldsymbol{\tau}^{\prime}}, \boldsymbol{\nu + \overline { \boldsymbol { \nu } } \rangle - \ell (\boldsymbol { a } ^ { \tau ^ { \prime } })} e_{\tau^{\prime}}^{\left\langle\boldsymbol{v}^{\prime}, \overline{\boldsymbol{\nu}}-\boldsymbol{\nu}\right\rangle+m\left(\tau^{\prime}\right)} .
\end{align*}
$$

Remark that

$$
\hat{f}=\hat{f}_{\gamma}+O\left(\left|v_{\tau}\right|: \tau \in \sigma^{\prime}(1)\right) .
$$

and the equation $\hat{f}=0$ defines the strict transform \widehat{Z} of f by $\hat{\pi}_{\Sigma, \beta}$. The equation \hat{f}_{γ} depends on $\left|v_{\tau}\right|, \arg v_{\tau}, \tau \in \sigma(1) \backslash \sigma^{\prime}(1)$, and the arguments $\arg v_{\tau}, \tau \in \sigma^{\prime}(1)$, in general. Eliminating $\arg v_{\tau}, \tau \in \sigma^{\prime}(1)$, from the system $\hat{f}_{\gamma}=\overline{\hat{f}_{\gamma}}=0$, we obtain the equations defining the intersection of $E_{\sigma^{\prime}}$ with the strict transform in terms of coordinate system $\left(v_{\tau}\right)_{\tau \notin \sigma\left({ }^{\prime}\right)}$ of $E_{\sigma^{\prime}}$. When we assume Condition (b) in Definition [.].], the equation $\hat{f}_{\gamma}=0$ depends on $\left|v_{\tau}\right|$, $\arg v_{\tau}, \tau \in \sigma(1) \backslash \sigma^{\prime}(1)$, and \hat{f} and $\overline{\hat{f}}$ have continuous extensions on V_{σ}. We denote these extensons by f^{\prime} and $\overline{f^{\prime}}$ respectively.

2.4 Mixed weighted homogeneous polynomials

We consider a mixed weighted homogeneous polynomial defined in Definition [.2. When the mixed weighted homogeneous polynomial f does not have a constant term, we always have $\ell>0$. Moreover, we can always assume that $m \geq 0$, changing the sign of \boldsymbol{b}, if necessary.

For a mixed weighted homogeneous polynomial f, we have the following:

$$
\left(\begin{array}{cccccc}
x_{1} \partial_{x_{1}} f & \overline{x_{1}} \partial_{\overline{x_{1}}} f & \cdots & x_{n} \partial_{x_{n}} f & \overline{x_{n}} \partial_{\overline{x_{n}}} f \tag{2.11}\\
x_{1} \partial_{x_{1}} \bar{f} & \overline{x_{1}} \partial_{\overline{x_{1}}} \bar{f} & \cdots & x_{n} \partial_{x_{n}} \bar{f} & \overline{x_{n}} \partial_{\overline{x_{n}}} \bar{f}
\end{array}\right)\left(\begin{array}{cc}
a_{1} & b_{1} \\
a_{1} & -b_{1} \\
\vdots & \vdots \\
a_{n} & b_{n} \\
a_{n} & -b_{n}
\end{array}\right)=\left(\begin{array}{cc}
\ell f & m f \\
\ell \bar{f} & -m \bar{f}
\end{array}\right) .
$$

Taking the determinants of the both hand side of (L. L), Cauchy-Binet formula implies $\Sigma(f) \subset f^{-1}(0)$ whenever $m \neq 0$. When $m=0, \Sigma(f) \subset f^{-1}(0)$ does not hold in general, as the following example shows.

Example 2.12. Set $f=\left|x_{1}\right|^{2}+x_{2}^{2}$. This is mixed weighted homogeneous with respect to the weights $((1,1),(1,0))$ and degree $(2,0)$, and $\Sigma(f)=\left\{x_{2}=0\right\} \not \subset f^{-1}(0)$.

The condition (b) in Defiinition $\mathbb{D} .7$ implies that f_{γ} is mixed weighted homogeneous with respect to the weights $\left(\boldsymbol{a}^{\tau}, \boldsymbol{b}^{\tau}\right), \tau \in \sigma(1)$, when $\gamma=\bigcap_{\tau \in \sigma(1)} \gamma\left(\boldsymbol{a}^{\tau}\right)$ is a compact face of $\Gamma_{+}(f), \sigma \in \Sigma$.

Example 2.13. A mixed monomial $f=\boldsymbol{x}^{\boldsymbol{\nu}} \overline{\boldsymbol{x}}^{\overline{\boldsymbol{\nu}}}, \boldsymbol{\nu} \neq \overline{\boldsymbol{\nu}}$, is mixed weighted homogeneous with respect to any weights $(\boldsymbol{a}, \boldsymbol{b})$. We obtain $\Sigma(f) \subset f^{-1}(0)$, since there is a weight \boldsymbol{b} so that $m=\langle\boldsymbol{\nu}-\overline{\boldsymbol{\nu}}, \boldsymbol{b}\rangle \neq 0$.

3 Semi-algebraic analogue of resolution of singularities

3.1 Normal crossing property

We introduce semi-algebraic analogue of normal crossing varieties as mixed version of normal crossing varieties.

Definition 3.1. We say a subset Z of \mathbb{C}^{n} is of semi-algebraically normal crossing at $z \in Z$ if there is a semi-algebraic coordinate system $(U, \varphi), U$ an open neighborhood of z, and a semi-algebraic homeomorphism $\varphi: U \longrightarrow \varphi(U) \subset \mathbb{C}^{n}$ centred at z, so that $Z \cap U$ is the inverse image of zero of a pure monomial by φ.

Theorem 3.2. Let f be a mixed polynomial, which is mixed Newton non-degenerate in the sense of Definition [.T, and let (Σ, β) denote a mixed fan constructed in \$ए.D. Then, for the mixed toric modification $\pi_{\Sigma, \beta}: M_{\Sigma, \beta} \longrightarrow \mathbb{C}^{n}$, the subset $\left(f_{\circ} \pi_{\Sigma, \beta}\right)^{-1}(0)$ in V_{σ} is of semi-algebraically normal crossing near $\pi^{-1}(0)$.

To conclude an analogy of Milnor fibration for mixed polynomial, we need to assume that $\Sigma(f) \subset f^{-1}(0)$. The next theorem shows when this is the case.

Theorem 3.3. For a mixed polynomial f, which is mixed Newton non-degenerate in the sense of Definition U.7, we take (Σ, β) as in Theorem [... Then $\Sigma(f) \subset f^{-1}(0)$ near the origin $\mathbf{0}$, whenever one of the following conditions satisfied.
(i) $m_{\tau} \neq 0$ for all $\tau \in \Sigma(1)$.
(ii) If there is $\sigma \in \Sigma$ with $m_{\tau}=0$ for $\tau \in \sigma(1)$, then $\Sigma\left(f_{\gamma}\right) \subset\left\{x_{1} \cdots x_{n} f_{\gamma}=0\right\}$ where $\gamma=\bigcap_{\tau \in \sigma(1)} \gamma\left(\boldsymbol{a}^{\tau}\right)$.
Remark 3.4. Under the assumptions of Theorem [3.3, we often say that the mixed toric modification $\pi=\pi_{\Sigma, \beta}$ provides a semi-algebraic analogue of resolution of singularity of f, since the zero of $f \circ \pi$ is of semi-algebraically normal crossing and $\Sigma(f \circ \pi) \subset(f \circ \pi)^{-1}(0)$.
Remark 3.5. We use the notation in $\S[2.3]$. As we see in the proof below, non-degeneracy implies the strict transform of f by $\hat{\pi}$ intersects with the set defined by $\left|v_{\tau}\right|=0, \tau \in \sigma^{\prime}(1)$, transversely, when $\left|v_{\tau^{\prime}}\right| \neq 0, \tau^{\prime} \in \sigma(1) \backslash \sigma^{\prime}(1)$. This fact is proved by Oka [IL2, Theorem $24]$ when π is a certain toric modification.

Oka ([14, Theorem 9.19]) also proved that π provides "a resolution of singularity" when $\boldsymbol{a}^{\tau}=\boldsymbol{b}^{\tau}$ for $\tau \in \Sigma(1)$ with the condition (i) in Theorem B.3. Dropping this condition, Saito and Takashimizu ([[6], §8]) discuss the case that a toric modification provides an analogy of resolution.
Proof of Theorem [3.9. We take a mixed fan (Σ, β) constructed in $\S[2.1$. The condition (a) of Definition $\mathbb{0} 7$ implies that

$$
x_{1} \cdots x_{n} \neq 0, \quad f_{\gamma}(x)=0 \Longrightarrow \operatorname{rank}\left(\begin{array}{cc}
\partial_{x_{i}} f_{\gamma}(x) & \partial_{\overline{x_{i}}} f_{\gamma}(x) \tag{3.6}\\
\partial_{x_{i}} & f_{\gamma}(x)
\end{array} \partial_{\bar{x}_{\bar{i}}} \frac{f_{\gamma}}{}(x)\right)_{i=1, \ldots, n}=2 .
$$

This is clearly equivalent to the following condition:

$$
x_{1} \cdots x_{n} \neq 0, f_{\gamma}(x)=0 \Longrightarrow \operatorname{rank}\left(\begin{array}{ll}
x_{i} \partial_{x_{i}} f_{\gamma}(x) & \overline{x_{i}} \partial_{\overline{x_{i}}} f_{\gamma}(x) \tag{3.7}\\
x_{i} \partial_{x_{i}} \overline{\bar{y}_{\gamma}}(x) & \overline{x_{i}} \partial_{\overline{x_{i}}} \\
f_{\gamma} & (x)
\end{array}\right)_{i=1, \ldots, n}=2
$$

Since $\left|x_{i}\right| \partial_{\left|x_{i}\right|}=x_{i} \partial_{x_{i}}+\overline{x_{i}} \partial_{\overline{x_{i}}}, \partial_{\arg x_{i}}=\stackrel{\circ}{0}\left(x_{i} \partial_{x_{i}}-\overline{x_{i}} \partial_{\overline{x_{i}}}\right)$, we have

$$
\left(\begin{array}{ll}
\left|x_{i}\right| \partial_{\left|x_{i}\right|} \mid & \partial_{\arg x_{i}} f \\
\left|x_{i}\right| \partial_{\left|x_{i}\right|} \mid & \partial_{\arg x_{i}} \bar{f}
\end{array}\right)=\left(\begin{array}{cc}
x_{i} \partial_{x_{i}} f & \overline{x_{i}} \partial_{\overline{x_{i}}} f \\
x_{i} \partial_{x_{i}} \bar{f} & \overline{x_{i}} \partial_{\overline{x_{i}}}
\end{array}\right)\left(\begin{array}{cc}
1 & \mathrm{o} \\
1 & -\mathrm{i}
\end{array}\right)
$$

and condition (3.7) is equivalent to the following condition:

$$
x_{1} \cdots x_{n} \neq 0, f_{\gamma}(x)=0 \Longrightarrow \operatorname{rank}\left(\begin{array}{ll}
\left|x_{i}\right| \partial_{\left|x_{i}\right|} f_{\gamma}(x) & \partial_{\arg x_{i}} f_{\gamma}(x) \tag{3.8}\\
\left|x_{i}\right| \partial_{\left|x_{i}\right|} \mid f_{\gamma}(x) & \partial_{\arg x_{i}} \frac{f_{\gamma}}{f_{\gamma}}(x)
\end{array}\right)=2 .
$$

We take $\sigma \in \Sigma(n)$ and discuss the behavior of the pull back $f \circ \pi_{\sigma}$ where $\pi_{\sigma}=\left.\pi_{\Sigma, \beta}\right|_{V_{\sigma}}$ near $\pi_{\sigma}^{-1}(0)$. By (3.22), we have

$$
\begin{aligned}
\binom{\left|v_{\tau}\right| \partial_{\left|v_{\tau}\right|} f}{\left|v_{\tau}\right| \partial_{\left|v_{\tau}\right|} \mid \bar{f}}_{\tau \in \sigma(1)} & =\left(\begin{array}{lll}
\left|x_{1}\right| \partial_{\left|x_{1}\right|} f & \cdots & \left|x_{n}\right| \partial_{\left|x_{n}\right|} f \\
\left|x_{1}\right| \partial_{\left|x_{1}\right|} \mid \bar{f} & \cdots & \left|x_{n}\right| \partial_{\left|x_{n}\right|} \bar{f}
\end{array}\right)\left(\boldsymbol{a}^{\tau}\right)_{\tau \in \sigma(1)}
\end{aligned} \quad \text { and } .
$$

We thus obtain

$$
\prod_{\tau \in \sigma(1)} v_{\tau} \neq 0, f_{\gamma^{\circ}} \pi_{\sigma}\left(v_{\tau}\right)=0 \Longrightarrow \operatorname{rank}\left(\begin{array}{ll}
\left|v_{\tau}\right| \partial_{\left|v_{\tau}\right|} f_{\gamma^{\circ}} \pi_{\sigma} & \partial_{\arg v_{\tau}} f_{\gamma^{\circ}} \pi_{\sigma} \tag{3.9}\\
\left|v_{\tau}\right| \partial_{\left|v_{\tau}\right|} f_{\gamma^{\circ}} \pi_{\sigma} & \partial_{\arg v_{\tau}} f_{\gamma^{\circ}} \pi_{\sigma}
\end{array}\right)_{\tau \in \sigma(1)}(v)=2 .
$$

Since $f_{\gamma}=f_{\gamma}^{\prime} \prod_{\tau \in \sigma(1)}\left|v_{\tau}\right|^{\ell_{\tau}} e^{\left(m_{\tau} \arg v_{\tau}\right)^{\AA}}, \ell_{\tau}=\ell\left(\boldsymbol{a}^{\tau}\right), m_{\tau}=m\left(\boldsymbol{b}^{\tau}\right)$, we have

$$
\begin{align*}
\left|v_{\tau}\right| \partial_{\left|v_{\tau}\right|} f_{\gamma} & =\left(\left|v_{\tau}\right| \partial_{\left|v_{\tau}\right|} f_{\gamma}^{\prime}+\ell_{\tau} f_{\gamma}^{\prime}\right) \prod_{\tau \in \sigma(1)}\left|v_{\tau}\right|^{\ell_{\tau}} e^{\left(m_{\tau} \arg v_{\tau}\right)^{\mathrm{\imath}}}, \tag{3.10}\\
\left|v_{\tau}\right| \partial_{\left|v_{\tau}\right|} \overline{f_{\gamma}} & =\left(\left|v_{\tau}\right| \partial_{\left|v_{\tau}\right|} \overline{f_{\gamma}^{\prime}}+\ell_{\tau} \overline{f_{\gamma}^{\prime}}\right) \prod_{\tau \in \sigma(1)}\left|v_{\tau}\right|^{\ell_{\tau}} e^{\left(m_{\tau} \arg v_{\tau}\right)^{\mathrm{\imath}}}, \\
\partial_{\arg v_{\tau}} f_{\gamma} & =\left(\partial_{\left.\arg v_{\tau} f_{\gamma}^{\prime}+m_{\tau} f_{\gamma}^{\prime} \mathrm{o}\right)}^{\prod_{\tau \in \sigma(1)}\left|v_{\tau}\right|^{\ell_{\tau}} e^{\left(m_{\tau} \arg v_{\tau}\right)^{\mathrm{\imath}}},}\right. \tag{3.11}\\
\partial_{\arg v_{\tau}} \overline{f_{\gamma}} & =\left(\partial_{\arg v_{\tau}} \overline{f_{\gamma}^{\prime}}-m_{\tau}^{\left.\overline{f_{\gamma}^{\prime}}\right)} \prod_{\tau \in \sigma(1)}\left|v_{\tau}\right|^{\ell_{\tau}} e^{\left(m_{\tau} \arg v_{\tau}\right)^{\mathrm{\imath}}},\right.
\end{align*}
$$

The function f_{γ}^{\prime} does not depend on $\left|v_{\tau}\right|$. The condition (b) of Definition $\mathbb{D} .7$ and (2.10) implies that f_{γ}^{\prime} does not depend on $\arg v_{\tau}, \tau \in \sigma(1)$. We thus obtain that

$$
\prod_{\tau \notin \sigma^{\prime}(1)} v_{\tau} \neq 0, \quad f_{\gamma}^{\prime}(v)=0 \Longrightarrow \operatorname{rank}\left(\begin{array}{ll}
\left|v_{\tau}\right| \partial_{\left|v_{\tau}\right|} f_{\gamma}^{\prime} & \partial_{\arg v_{\tau}} f_{\gamma}^{\prime} \\
\left|v_{\tau}\right| \partial_{\left|v_{\tau}\right|} f_{\gamma}^{\prime} & \partial_{\arg v_{\tau}}^{f_{\gamma}^{\prime}}
\end{array}\right)_{\tau \notin \sigma^{\prime}(1)}(v)=2 .
$$

Thus we have the following condition:

$$
\prod_{\tau \in \sigma(1)} v_{\tau} \neq 0, f_{\gamma} \circ \pi_{\sigma}(v)=0 \Longrightarrow \operatorname{rank}\left(\begin{array}{ll}
\left|v_{\tau}\right| \partial_{\mid v_{\tau}} \left\lvert\, \frac{\left.\right|_{\gamma} ^{\prime}}{\prime} \circ \pi_{\sigma}\right. & \partial_{\arg v_{\tau}} \frac{f_{\gamma}^{\prime} \circ \pi_{\sigma}}{\left|v_{\tau}\right| \partial_{\left|v_{\tau}\right|} f_{\gamma}^{\prime} \circ \pi_{\sigma}} \tag{3.12}\\
\partial_{\arg v_{\tau}}^{f_{\gamma}^{\prime}} \pi_{\sigma}
\end{array}\right)_{\tau \in \sigma(1) \backslash \sigma^{\prime}(1)}(v)=2 .
$$

We can rewrite this condition as follows:

$$
\prod_{\tau \in \sigma(1)} v_{\tau} \neq 0, f_{\gamma} \circ \pi_{\sigma}(v)=0 \Longrightarrow \operatorname{rank}\left(\begin{array}{lll}
v_{\tau} \partial_{v_{\tau}} f_{\gamma}^{\prime} & \overline{v_{\tau}} \partial_{\overline{v_{\tau}}} f_{\gamma}^{\prime} \tag{3.13}\\
v_{\tau} \partial_{v_{\tau}} f_{\gamma}^{\prime} & \bar{v}_{\tau} \partial_{\overline{v_{\tau}}}^{f_{\gamma}^{\prime}}
\end{array}\right)_{\tau \in \sigma(1) \backslash \sigma^{\prime}(1)}(v)=2,
$$

since $\left|v_{\tau}\right| \partial_{\left|v_{\tau}\right|}=v_{\tau} \partial_{v_{\tau}}+\bar{v}_{\tau} \partial_{\overline{v_{\tau}}}, \partial_{\arg v_{\tau}}=\mathrm{o}\left(v_{\tau} \partial_{v_{\tau}}-\overline{v_{\tau}} \partial_{\overline{v_{\tau}}}\right)$. This implies that the set defined by $f^{\prime}=0$ intersects $E_{\sigma^{\prime}} \backslash \bigcup_{\tau \uparrow \sigma^{\prime}} E_{\tau}$ transversely.

Remark 3.14. From the proof above, we see that f^{\prime} can be a part of coordinate system at a point of zero of f^{\prime} in $\pi^{-1}(0)$.
Proof of Theorem [3.3. We continue the notation of the proof of Theorem [3.2. Assume that there is a real-analytic arc $\boldsymbol{x}(t) \in \mathcal{A}_{p}$ with $\boldsymbol{x}(t) \in \Sigma(f)$. We are going to show that $\boldsymbol{x}(t) \in f^{-1}(0)$ for $0<t \ll 1$.

We take a lift $\tilde{\boldsymbol{x}}(t)$ of $\boldsymbol{x}(t)$ by π. Clearly we have $\tilde{\boldsymbol{x}}(t) \in \Sigma(f \circ \pi)$. If $\tilde{\boldsymbol{x}}(t) \in E_{\tau}$ with $\ell_{\tau} \neq 0$, Lemma $\mathbb{L 2}$ implies $\boldsymbol{x}(t) \in f^{-1}(0)$.

We assume that $\tilde{\boldsymbol{x}}(t) \notin E_{\tau}$ with $\ell_{\tau} \neq 0$. We can also assume that $\tilde{\boldsymbol{x}}(t) \in V_{\sigma}$ for some $\sigma \in \Sigma(n)$. We also assume that $\tilde{\boldsymbol{x}}(0) \in E_{\tau}$. Then $\tilde{\boldsymbol{x}}(0)$ represents a point in $\left(\mathbb{C}^{*}\right)^{n}$ so that the Jacobi matrix of f_{γ} is not of full rank. If $m_{\tau} \neq 0$, then we deduce $f_{\gamma}(\tilde{\boldsymbol{x}}(0))=0$. By Remark [3.74, one can take a local coordinate system at $\tilde{\boldsymbol{x}}(0)$ so that $f_{\circ} \pi$ is expressed as Example [2.J3, and we conclude that $\tilde{\boldsymbol{x}}(t) \in(f \circ \pi)^{-1}(0)$.

If $m_{\tau}=0$, then we deduce $f_{\gamma}(\tilde{\boldsymbol{x}}(0))=0$ by condition (ii). Again, by Remark [.]4, one can take a local coordinate system at $\tilde{\boldsymbol{x}}(0)$ so that $f \circ \pi$ is expressed as Example [2.]3, and we conclude that $\tilde{\boldsymbol{x}}(t) \in(f \circ \pi)^{-1}(0)$.

3.2 Monodromy zeta function

The zeta function of a transformation $h: Y \longrightarrow Y$ of a topological space Y is the rational function

$$
\zeta_{h}(t)=\prod_{i \geq 0} \Delta_{i}(h)^{(-1)^{i}}, \quad \Delta_{i}(h)=\operatorname{det}\left\{1-t h_{*}: H_{i}(Y) \longrightarrow H_{i}(Y)\right\}
$$

where $H_{i}(Y)$ is the i-th homology group of chain complex with closed support whose coefficient is \mathbb{C}.

Let $f:\left(\mathbb{C}^{n}, \mathbf{0}\right) \longrightarrow(\mathbb{C}, 0)$ be a holomorphic function germ. We have a locally trivial fibration

$$
\begin{equation*}
f^{-1}\left(S_{r}^{1}\right) \cap B_{\varepsilon}^{2 n} \longrightarrow S_{r}^{1}, \boldsymbol{x} \longmapsto f(\boldsymbol{x}), \quad S_{r}^{1}=\{z \in \mathbb{C}:|z|=r\} \tag{3.15}
\end{equation*}
$$

for $0<r \ll \varepsilon \ll 1$, since $\Sigma(f) \subset f^{-1}(0)$ near 0 . We consider the zeta function $\zeta_{h}(t)$ of a monodromy transformation

$$
h: F(r, 0) \longrightarrow F(r, 2 \pi)=F(r, 0)
$$

where $F(r, \theta)=f^{-1}\left(r e^{\theta \AA}\right) \cap B_{\varepsilon}^{2 n}$. This monodromy transformation h is obtained by integrateing a vector field ξ which is a lift of $\partial_{\arg z}$ by (3.15). Remark that the zeta function $\zeta_{h}(t)$ is determined by f. In fact, if two lifts ξ_{0} and ξ_{1} of the vector field $\partial_{\arg z}$ generate two monodromy transformations h_{0} and h_{1}, then they are connected by a homotopy, which is generated by $\xi_{t}=(1-t) \xi_{0}+t \xi_{1}(0 \leq t \leq 1)$.

Let $\pi: M \longrightarrow \mathbb{C}^{n}$ be a proper modification such that at any point of $\pi^{-1}(0)$ the divisor $X_{0}=\pi^{-1}\left(f^{-1}(0)\right)$ is of normal crossing. For $m \in \mathbb{Z}, m \geq 1$, we put

$$
S_{m}=\left\{s \in \pi^{-1}(0): \begin{array}{l}
\text { the equation of } X_{0} \text { at } s \text { is of the form } z_{1}^{m} \text { for a } \\
\text { local coordinate system }\left(z_{1}, \ldots, z_{n}\right) \text { of } M \text { at } s
\end{array}\right\}
$$

Theorem 3.16 ([T, THÉORÈME 3]). The monodromy zeta function $\zeta(t)$ and the Euler characteristics of Milnor fiber $F=f^{-1}(r) \cap B_{\varepsilon}^{2 n}, 0<r \ll \varepsilon \ll 1$, are given by

$$
\zeta(t)=\prod_{m \geq 1}\left(1-t^{m}\right)^{\chi\left(S_{m}\right)}, \quad \chi(F)=\sum_{m \geq 1} m \chi\left(S_{m}\right)
$$

Remark 3.17. Remark that A'Campo stated the formula with opposite sign in the exponents ([IT, THÉORÈME 3]), since he defined the monodromy zeta function with the opposite sign in the exponents in the first paragraph loc.cite..

Remark 3.18. We quickly recall A'Campo's construction of geometric monodromy ([IT, $\S 2]$). Let $X=(f \circ \pi)^{-1}\left(D_{r}\right) \cap B_{\varepsilon}^{2 n}$ for $0<r \ll \varepsilon \ll 1$, where $D_{r}=\{w \in \mathbb{C}:|w|<r\}$. Let C_{1}, \ldots, C_{s} be nonsingular components of $X_{0}=(f \circ \pi)^{-1}(0)$. Let Δ_{x} be a simplex spanned by the pre-image of $x \in X_{0}$ by the natural map: $\bigsqcup_{i=1}^{s} C_{i} \longrightarrow X_{0}$. Define \widehat{X}_{0} by

$$
\widehat{X}_{0}=\left(\bigsqcup_{i=1}^{s} C_{i}\right) \cup\left(\bigsqcup_{x \in X_{0}} \Delta_{x}\right)
$$

Let $\rho: \widehat{X} \longrightarrow X$ denote the fiber product of $\rho_{j}: \widehat{X}_{j} \longrightarrow X$, the real oriented blow-up of X with center C_{j} for $j=1, \ldots, s$. Remark that \widehat{X} is a manifold with corner and $\partial \widehat{X}=\rho^{-1}\left(X_{0}\right)$. Let Y denote the fiber product of the natural map $\widehat{X}_{0} \longrightarrow X_{0}$ and $\rho: \partial \widehat{X} \longrightarrow X_{0}$. We remark that the inverse image of $x \in X_{0}$ is $\left(S^{1}\right)^{k+1}$ where k is dimension of Δ_{x}. Let m_{i} denote the multiplicity of f along C_{i}. Then the geometric monodromy $h: Y \longrightarrow Y$ is described as follows:

$$
h\left(a, \theta_{i_{0}}, \ldots, \theta_{i_{k}}\right)=\left(a, \theta_{i_{0}}+\frac{2 \pi a_{i_{0}}}{m_{i_{0}}}, \ldots, \theta_{i_{k}}+\frac{2 \pi a_{i_{k}}}{m_{i_{k}}}\right), \quad a \in \Delta_{x},\left(\theta_{i_{0}}, \ldots, \theta_{i_{k}}\right) \in \rho^{-1}(x) .
$$

where $a_{i_{0}}, \ldots, a_{i_{k}}$ denote the barycentric coordinate of $a \in \Delta_{x}$. Remark that, when $k=0$, we have $h\left(x, \theta_{i_{0}}\right)=\left(x, \theta_{i_{0}}+\frac{2 \pi}{m_{i_{0}}}\right)$.

Now we consider a map $f: \mathbb{C}^{n} \longrightarrow \mathbb{C}$ defined by a mixed polynomial with $\Sigma(f) \subset$ $f^{-1}(0)$. Then we have an analogy of a locally trivial fibration (B.1.5) and we can consider a monodromy transformation as holomorphic case. Let $\pi: M \longrightarrow \mathbb{C}^{n}$ be a proper modification which provides semi-algebraic analogue of resolution of singularities of f. For $m \in \mathbb{Z}, m \geq 1$, we put

$$
S_{m}=\left\{\begin{array}{ll}
s \in \pi^{-1}(0): & \begin{array}{l}
\text { the equation of } X_{0} \text { at } s \text { is of the form } u z_{1}{ }^{\alpha} \bar{z}_{1}^{\beta} \text { for a } \\
m=|\alpha-\beta| \text { where } u \text { is an invertible function near } s .
\end{array}
\end{array}\right\} .
$$

Under the notation above, we obtain the following
Theorem 3.19. If S_{0} is empty, then the monodromy zeta function $\zeta(t)$ is given by

$$
\begin{equation*}
\zeta(t)=\prod_{m \geq 1}\left(1-t^{m}\right)^{\chi\left(S_{m}\right)} \tag{3.20}
\end{equation*}
$$

In particular, we have the following formula for Euler characteristics for local nearby fiber:

$$
\begin{equation*}
\chi(F(r, \theta))=\lim _{r \rightarrow 0} \chi(F(r, \theta))=\sum_{m \geq 1} m \chi\left(S_{m}\right) \tag{3.21}
\end{equation*}
$$

where $F(r, \theta)=f^{-1}\left(r e^{\theta \AA}\right) \cap B_{\varepsilon}^{2 n}$ for $0<r \ll \varepsilon \ll 1$.

3.3 Intersection numbers among components of the exceptional set

Let (Σ, β) be a mixed fan. Using the orientation introduced by Remark $\mathbb{L T} 9$, we can discuss intersection numbers of submanifolds of $M_{\Sigma, \beta}$. Let E_{τ} be the mixed divisor corresponding to $\tau \in \Sigma(1)$.

Denoting the coordinate of $V_{\sigma}=\mathbb{C}^{\sigma(1)}$ by $\left(v_{\tau}\right)_{\tau \in \sigma(1)}$, we have

$$
\begin{equation*}
d \pi_{\sigma}\left(\left|v_{\tau}\right| \partial_{\left|v_{\tau}\right|}\right)=\sum_{i=1}^{n} a_{i}^{\tau}\left|x_{i}\right| \partial_{\left|x_{i}\right|}, \quad d \pi_{\sigma}\left(\partial_{\arg v_{\tau}}\right)=\sum_{i=1}^{n} b_{i}^{\tau} \partial_{\arg x_{i}} \tag{3.22}
\end{equation*}
$$

and they define co-orientations of $E_{\tau}, \tau \in \Sigma(1)$. Using these co-orientations, we can compute their intersection numbers. Actually the intersection number of $E_{\tau_{1}}, \ldots, E_{\tau_{n}}$ is

$$
E_{\tau_{1}} \cdots E_{\tau_{n}}= \begin{cases}\varepsilon_{\sigma}, & \tau_{1}, \ldots, \tau_{n} \text { generate an } n \text {-cone } \sigma \in \Sigma(n) \\ 0, & \text { otherwise }\end{cases}
$$

whenever $\tau_{1}, \ldots, \tau_{n}$ are all distinct. Here ε_{σ} is defined in Remark [.].
Define D_{i} by

$$
\begin{equation*}
D_{i}=\sum_{\tau \in \Sigma(1)} b_{i}^{\tau} E_{\tau} . \tag{3.23}
\end{equation*}
$$

Lemma 3.24. We have $\sum_{\tau \in \Sigma(1)} b_{i}^{\tau} E_{\tau} \cdot E_{\tau_{2}} \cdots E_{\tau_{n}}=0$.
Proof. We consider the map $\pi_{\sigma}=\left.\pi_{\Sigma, \beta}\right|_{V_{\sigma}}: V_{\sigma} \longrightarrow \mathbb{C}^{n}$. Since

$$
\pi_{\sigma}^{*} x_{i}=\prod_{\tau \in \sigma(1): b_{i}^{\tau} \neq 0}\left(\left|v_{\tau}\right|^{\frac{a_{i}^{\tau}}{b_{i}}}\left(v_{\tau} /\left|v_{\tau}\right|\right)\right)^{b_{i}^{\tau}} \prod_{\tau \in \sigma(1): b_{i}^{\tau}=0}\left|v_{\tau}\right|^{a_{\tau}^{\tau}}
$$

we have

$$
\begin{equation*}
\frac{\pi_{\sigma}^{*} x_{i}}{\rho_{i}} \sim \prod_{\tau \in \sigma(1): b_{i}^{\tau} \neq 0} w_{\tau}^{b_{\tau}^{\tau}}, \quad w_{\tau}=\left|v_{\tau}\right|^{\frac{a_{\tau}^{\tau}}{b_{i}^{\tau}}}\left(v_{\tau} /\left|v_{\tau}\right|\right) \tag{3.25}
\end{equation*}
$$

where $\rho_{i}: M \longrightarrow \mathbb{R}$ be a continuous function defined by

$$
\rho_{i}(z)=\prod_{\tau \in \Sigma(1): b_{i}^{\tau}=0} \operatorname{dist}\left(z, E_{\tau}\right)^{a_{i}^{\tau}}
$$

and $\operatorname{dist}\left(z, E_{\tau}\right)$ is the distance between z and E_{τ}. Here $p \sim q$ means $C_{1}|p| \leq|q| \leq C_{2}|p|$ for some positive constants C_{1}, C_{2}. Let $A_{\varepsilon, \delta}$ denote the locus defined by

$$
\frac{\pi^{*} x_{i}}{\varepsilon+\rho_{i}}=\delta, \quad \varepsilon \geq 0, \delta \geq 0
$$

which defines D_{i} when $\varepsilon=\delta=0$ by (3.251). Thus we obtain

$$
0=A_{\varepsilon, \delta} \cdot E_{\tau_{2}} \cdots E_{\tau_{n}}=D_{i} \cdot E_{\tau_{2}} \cdots E_{\tau_{n}}=\sum_{\tau \in \Sigma(1)} b_{i}^{\tau} E_{\tau} \cdot E_{\tau_{2}} \cdots E_{\tau_{n}} .
$$

This lemma often determines intersection numbers $E_{\tau_{1}} \cdots E_{\tau_{n}}$.

Proposition 3.26. Assume that $n=2$, and (Σ, β) is a mixed fan. Suppose that $\Sigma(1)=$ $\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{k+1}\right\}$ and $\beta\left(\tau_{i}\right)=\left(\boldsymbol{a}^{i}, \boldsymbol{b}^{i}\right), i=0,1, \ldots, k+1$. We assume that $\boldsymbol{a}^{0}=\boldsymbol{e}_{1}$, $\boldsymbol{a}^{k+1}=\boldsymbol{e}_{2}$, and $\operatorname{det}\left(\boldsymbol{a}^{i}, \boldsymbol{a}^{i+1}\right)>0, i=0, \ldots, k$. We set $\varepsilon_{j}=\operatorname{det}\left(\boldsymbol{b}^{j-1} \boldsymbol{b}^{j}\right)$. Then we have

$$
E_{i} \cdot E_{j}= \begin{cases}0 & (j-i \geq 2) \\ \varepsilon_{j} & (j=i+1) \\ q_{j} & (i=j)\end{cases}
$$

where q_{j} is defined by $0=b_{i}^{j} q_{j}+b_{i}^{j-1} \varepsilon_{j}+b_{i}^{j+1} \varepsilon_{j+1}, i=1,2$.
Proof. By (3.23), we have

$$
\left(\pi_{\Sigma, \beta}^{*} x_{i}\right)_{0}=\sum_{s=0}^{k+1} b_{i}^{s} E_{s} .
$$

Then we conclude that, for $i=1,2$,

$$
0=\left(\pi_{\Sigma, \beta}^{*} x_{i}\right)_{0} \cdot E_{j}=\sum_{s=0}^{k+1} b_{i}^{s} E_{s} \cdot E_{j}=b_{i}^{j-1}\left(E_{j-1} \cdot E_{j}\right)+b_{i}^{j}\left(E_{j} \cdot E_{j}\right)+b_{i}^{j+1}\left(E_{j+1} \cdot E_{j}\right) .
$$

We complete the proof, since $E_{j-1} \cdot E_{j}=\operatorname{det}\left(\boldsymbol{b}^{j-1} \boldsymbol{b}^{j}\right)$ and $E_{j+1} \cdot E_{j}=\operatorname{det}\left(\boldsymbol{b}^{j} \boldsymbol{b}^{j+1}\right)$.
Remark 3.27 (Dual graph of exceptional sets). We can consider a dual weighted graph associated to a finite collection of connected oriented surfaces E_{i} in an oriented compact 4 -manifold with boundary, which form a variety with sub-algebraically normal crossing singularities. The intersection relations give rise a dual weighted graph where each vertex corresponds to a surface E_{i}. The vertex corresponding to E_{i} is labelled by self-intersection number of E_{i}. We connect two vertices by a solid edge (resp. dashed edge) if the corresponding surfaces intersect with intersection number 1 (resp. -1). In general, we connect two vertices by edge if the corresponding surfaces E_{i} and E_{j} intersect, labeling the intersection number $E_{i} \cdot E_{j}$.

Since the dual graph is a tree, we can choose orientations of E_{j} so that the numbers ε_{j} are 1. It is also useful to add the information of the strict transform to the dual graph. We associate a vertex \bullet to each component C of the strict transform and connect the vertex corresponding to E_{i} when C and E_{i} intersect. In this case, \boldsymbol{a}^{i} supports a 1-dimensional face of $\Gamma_{+}(f)$, since the intersection corresponds to the solution of $f_{\gamma}=0$.

Example 3.28. Set $f=x_{2}^{5}+x_{1}^{2} \overline{x_{1}} x_{2}^{3}+x_{1}^{5} \bar{x}_{1}^{2} x_{2}+x_{1}^{8} \bar{x}_{1}^{3}$. We show the boundary of $\Gamma_{+}(f)$ (solid lines) and $\mathrm{LE}_{\gamma}(f)$'s (dotted lines) in the left figure below.

We consider the mixed fan from the data

$$
\left(\boldsymbol{a}^{0} \boldsymbol{a}^{1} \boldsymbol{a}^{2} \boldsymbol{a}^{3} \boldsymbol{a}^{4}\right)=\left(\begin{array}{ccccc}
1 & 2 & 1 & 1 & 0 \\
0 & 3 & 2 & 4 & 1
\end{array}\right),\left(\boldsymbol{b}^{0} \boldsymbol{b}^{1} \boldsymbol{b}^{2} \boldsymbol{b}^{3} \boldsymbol{b}^{4}\right)=\left(\begin{array}{lllll}
1 & 2 & 1 & 1 & 0 \\
0 & 1 & 1 & 2 & 1
\end{array}\right),
$$

which are shown in the middle and right figures above. The corresponding $\ell=\left(\ell_{\tau}\right)_{\tau \in \Sigma(1)}$ and $m=\left(m_{\tau}\right)_{\tau \in \Sigma(1)}$ are given by $\ell=(0159110), m=\left(\begin{array}{lll}0 & 5 & 5\end{array}\right)$ and $\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right)=$ $(1,1,1,1)$. Thus we obtain the dual graph

since $\boldsymbol{b}^{1}=\boldsymbol{b}^{0}+\boldsymbol{b}^{2}, 2 \boldsymbol{b}^{2}=\boldsymbol{b}^{1}+\boldsymbol{b}^{3}$ and $\boldsymbol{b}^{3}=\boldsymbol{b}^{2}+\boldsymbol{b}^{4}$. Remark that the intersection numbers of a component C_{i} of the strict transform and a component E_{j} of the exceptional set depend on the given orientation of the components of the strict transform. For simplicity, we assume that $E_{i} \cdot C_{j} \geq 0$.

Since $\chi\left(S_{4}\right)=0$ and $\chi\left(S_{5}\right)=-1$, we obtain

$$
\zeta(t)=\left(1-t^{5}\right)^{-1}
$$

Example 3.29. Set $f=x_{2}^{3} \overline{x_{2}}+x_{1}^{2} \overline{x_{1}} x_{2}^{3}+x_{1}^{5}{\overline{x_{1}}}^{2} x_{2}+x_{1}^{7} \overline{x_{1}}{ }^{4}$. We show the boundary of $\Gamma_{+}(f)$ (solid lines) and $\mathrm{LE}_{\gamma}(f)$'s (dotted lines) in the left figure below.

We consider the mixed fan from the data

$$
\left(\boldsymbol{a}^{0} \boldsymbol{a}^{1} \boldsymbol{a}^{2} \boldsymbol{a}^{3} \boldsymbol{a}^{4}\right)=\left(\begin{array}{ccccc}
1 & 2 & 1 & 1 & 0 \\
0 & 3 & 2 & 4 & 1
\end{array}\right),\left(\boldsymbol{b}^{0} \boldsymbol{b}^{1} \boldsymbol{b}^{2} \boldsymbol{b}^{3} \boldsymbol{b}^{4}\right)=\left(\begin{array}{ccccc}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right),
$$

which are shown in the middle and righte figures above. The corresponding $\ell=\left(\ell_{\tau}\right)_{\tau \in \Sigma(1)}$ and $m=\left(m_{\tau}\right)_{\tau \in \Sigma(1)}$ are given by $\ell=(0159110)$, $m=(03430)$ and $\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right)=$ $(1,-1,-1,1)$. Thus we obtain the dual graph

since $\boldsymbol{b}^{1}=-\boldsymbol{b}^{0}+\boldsymbol{b}^{2}, \boldsymbol{b}^{2}=\boldsymbol{b}^{1}+\boldsymbol{b}^{3}, \boldsymbol{b}^{3}=\boldsymbol{b}^{2}-\boldsymbol{b}^{4}$.
Since $\chi\left(S_{4}\right)=0$ and $\chi\left(S_{3}\right)=-1$, we obtain

$$
\zeta(t)=\left(1-t^{3}\right)^{-1} .
$$

As Remark 3.27 , if $n=3$, we can consider the dual graph for intersection numbers of the exceptional mixed divisors E_{i} in the strict transform Z. In this case, it is convenient to add the information of the genus of E_{i}.

If $\operatorname{dim} \gamma\left(\boldsymbol{a}^{\tau}\right)=0$, then $f_{\gamma\left(\boldsymbol{a}^{\tau}\right)}=0$ defines the empty set and $Z \cdot E_{\tau} \cdot E_{\tau}=0$. If $\operatorname{dim} \gamma\left(\boldsymbol{a}^{\tau}\right)=1$, then $f_{\gamma\left(\boldsymbol{a}^{\tau}\right)}=0$ defines $\mathbb{C}^{*} \times S$ in $\left(\mathbb{C}^{*}\right)^{2}$ where S is a finite set. Since S can move a nearby finite set by a homotopy and $Z \cdot E_{\tau} \cdot E_{\tau}=0$.

Since $\left(\pi_{\Sigma, \beta}^{*} x_{i}\right)_{0}=\sum_{\tau \in \Sigma(1)} b_{i}^{\tau} E_{\tau}$, we have

$$
\begin{aligned}
0 & =Z \cdot\left(\pi_{\Sigma, \beta}^{*} x_{i}\right)_{0} \cdot E_{\tau} \\
& =Z \cdot\left(b_{i}^{\tau} E_{\tau}+\sum_{\tau^{\prime} \neq \tau} b_{i}^{\tau^{\prime}} E_{\tau^{\prime}}\right) \cdot E_{\tau} \\
& =b_{i}^{\tau} Z \cdot E_{\tau} \cdot E_{\tau}+\sum_{\tau^{\prime} \neq \tau} b_{i}^{\tau^{\prime}} N\left(f_{\gamma\left(\tau^{\prime}\right) \cap \gamma(\tau)}\right) .
\end{aligned}
$$

Example 3.30. Set $f=x_{1} \overline{x_{1}}+x_{2}^{2}+x_{3}^{2}$. We consider a simplicial fan Σ so that $\Sigma(3)=\left\{\left\langle\boldsymbol{a}^{1}, \boldsymbol{a}^{2}, \boldsymbol{a}^{5}\right\rangle_{\mathbb{R}_{\geq}},\left\langle\boldsymbol{a}^{2}, \boldsymbol{a}^{4}, \boldsymbol{a}^{5}\right\rangle_{\mathbb{R}_{\geq}},\left\langle\boldsymbol{a}^{1}, \boldsymbol{a}^{3}, \boldsymbol{a}^{5}\right\rangle_{\mathbb{R}_{\geq}},\left\langle\boldsymbol{a}^{3}, \boldsymbol{a}^{4}, \boldsymbol{a}^{5}\right\rangle_{\mathbb{R}_{\geq}},\left\langle\boldsymbol{a}^{2}, \boldsymbol{a}^{3}, \boldsymbol{a}^{4}\right\rangle_{\mathbb{R}_{\geq}}\right\}$, where

$$
\Sigma(1)=\left\{\boldsymbol{a}^{1}, \boldsymbol{a}^{2}, \ldots, \boldsymbol{a}^{5}\right\}, \quad\left(\boldsymbol{a}^{i}\right)_{i=1, \ldots, 5}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 2
\end{array}\right)
$$

We consider the mixed $\operatorname{fan}(\Sigma, \beta)$ with the following data

$$
\left(\boldsymbol{b}^{i}\right)_{i=1, \ldots, 5}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right) .
$$

Set $\left(\ell_{i}\right)=\left(\begin{array}{lllll}0 & 0 & 0 & 2 & 4\end{array}\right),\left(m_{i}\right)=\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 2\end{array}\right)$.

Taking the intersection product of

$$
\begin{equation*}
\left(\pi^{*} x_{1}\right)_{0}=E_{1}+E_{4}+E_{5}, \quad\left(\pi^{*} x_{2}\right)_{0}=E_{2}+E_{5}, \quad\left(\pi^{*} x_{3}\right)_{0}=E_{3}+E_{5} \tag{3.31}
\end{equation*}
$$

with E_{4} and E_{5}, we obtain

$$
\begin{array}{lll}
0=e_{1,4}+e_{4,4}+e_{4,5}, & 0=e_{2,4}+e_{4,5}, & 0=e_{3,4}+e_{4,5}, \\
0=e_{1,5}+e_{4,5}+e_{5,5}, & 0=e_{2,5}+e_{5,5}, & 0=e_{3,5}+e_{5,5} .
\end{array}
$$

where $e_{i, j}=Z \cdot E_{i} \cdot E_{j}$. Since $e_{2,5}=e_{3,5}=0$, we have $e_{5,5}=0$. We also have

$$
\begin{gathered}
\frac{\left|b^{1} b^{2} b^{5}\right|}{\left|\boldsymbol{a}^{1} \boldsymbol{a}^{2} \boldsymbol{a}^{5}\right|}=1, \quad \frac{\left|b^{2} \boldsymbol{b}^{4} \boldsymbol{b}^{5}\right|}{\left|\boldsymbol{a}^{2} \boldsymbol{a}^{4} \boldsymbol{a}^{5}\right|}=-1 \\
e_{1,5}=-e_{4,5}=N\left(x_{2}^{2}+x_{3}^{2}\right)=2
\end{gathered}
$$

Since $e_{1,4}=0, e_{4,4}=-e_{4,5}=2$. The dual graph of the exceptional set is as follows:

Taking the intersection products of (3.3]) with $E_{4} \cdot E_{4}, E_{4} \cdot E_{5}$, and $E_{5} \cdot E_{5}$, we obtain

$$
\begin{array}{lll}
0=e_{1,4,4}+e_{4,4,4}+e_{4,4,5} & 0=e_{2,4,4}+e_{4,4,5} & 0=e_{3,4,4}+e_{4,5,5} \\
0=e_{1,4,5}+e_{4,4,5}+e_{4,5,5} & 0=e_{2,4,5}+e_{4,5,5} & 0=e_{3,4,5}+e_{4,5,5} \\
0=e_{1,5,5}+e_{4,5,5}+e_{5,5,5} & 0=e_{2,5,5}+e_{5,5,5} & 0=e_{3,5,5}+e_{5,5,5}
\end{array}
$$

where $e_{i, j, k}=E_{i} \cdot E_{j} \cdot E_{k}$. Since $E_{1} \cap E_{4}=\varnothing$, we have $e_{1,4,4}=e_{1,4,5}=0$. Since $e_{2,5,5}=e_{3,5,5}=0$, we have $e_{5,5,5}=0$. Since $e_{2,4,5}=e_{3,4,5}=-1, e_{4,5,5}=1$ and $e_{4,4,5}=-1$. We also conclude that $e_{4,4,4}=1$.

Remark 3.32 (Links of singularities). In general, the link of an isolated singularity of the zero set of a holomorphic function is a graph manifold, which is a manifold obtained by plumbing of several S^{1}-bundle on the irreducuble components of the exceptional set in the strict transform of its resolution of singularity. The plumbing data are given by resolution graphs.

The situation is analogous for the link of zero of a mixed polynomial f which is mixed Newton non-degenerate. Let $K(f)$ denote the link of f, that is,

$$
K(f)=f^{-1}(0) \cap S_{\varepsilon}^{2 n-1}, \quad S_{\varepsilon}^{2 n-1}=\left\{\boldsymbol{x} \in \mathbb{C}^{n}:|\boldsymbol{x}|=\varepsilon\right\} \quad \text { for } 0<\varepsilon \ll 1 .
$$

Assume that f is mixed Newton non-degenerate and (Σ, β) denote a mixed fan constructed in $\delta \mathbb{L}$.l. We take a polygon Δ so that Σ is a part of the dual fan of Δ. Then we have maps

$$
K(f) \longrightarrow \pi_{\Sigma, \beta}^{-1}(\mathbf{0}) \cap Z \xrightarrow{\mu_{\Sigma, \beta}} \mu_{\Sigma, \beta}\left(\pi_{\Sigma, \beta}^{-1}(\mathbf{0})\right) \subset \Delta \subset \mathbb{R}^{n}
$$

where the first arrow is determined by pluming and Z denotes the strict transform of $f^{-1}(0)$ and $\mu_{\Sigma, \beta}$ is the moment map (see Remark $\mathbb{L} 30 \pi$).

4 Remarks on non-degenerate case

4.1 Topological trivialities induced by real-analytic isomorphisms of resolution spaces

We consider a family of mixed polynomials, which are simultaneously non-degenerate, and show a topological triviality theorem for them which comes down from real-analytic isomorphisms of a resolution space if they have the same Newton polyhedron which intersects each coordinate axis.

Theorem 4.1. Let I be an interval which contains 0 . Let $f_{t}: \mathbb{C}^{n} \longrightarrow \mathbb{C}, t \in I$, be a real-analytic family of mixed polynomials with $\Gamma_{+}\left(f_{t}\right)=\Gamma_{+}\left(f_{0}\right)$ with $\Sigma\left(f_{t}\right) \cap f_{t}^{-1}(0)=\{\mathbf{0}\}$, $t \in I$, near $\mathbf{0}$. Let $\pi=\pi_{\Sigma, \beta}: M \longrightarrow \mathbb{C}^{n}$ denote the mixed toric modification associated to a mixed fan (Σ, β) constructed in $\left\{\mathbb{D}\right.$ and $\hat{\pi}=\hat{\pi}_{\Sigma, \beta}: \widehat{M} \longrightarrow \mathbb{C}^{n}$ denote its real oriented blow-up (Remark T.20). If $f_{t}, t \in I$, are mixed Newton non-degenerate (resp.nondegenerate) simultaneously, then there exists a family of real-analytic isomorphisms

$$
h_{t}^{\prime}:\left(M, \pi^{-1}(\mathbf{0})\right) \longrightarrow\left(M, \pi^{-1}(\mathbf{0})\right) \quad\left(\text { resp. } \hat{h}_{t}:\left(\widehat{M}, \pi^{-1}(\mathbf{0})\right) \longrightarrow\left(\widehat{M}, \pi^{-1}(\mathbf{0})\right)\right),
$$

so that

$$
h_{t}^{\prime}\left(\left(\pi \circ f_{0}\right)^{-1}(0)\right)=\left(\pi \circ f_{t}\right)^{-1}(0) \quad\left(\operatorname{resp} . \hat{h}_{t}\left(\left(\hat{\pi}_{\circ} f_{0}\right)^{-1}(0)\right)=\left(\hat{\pi}_{\circ} f_{t}\right)^{-1}(0)\right) .
$$

Moreover, if $f_{t}, t \in I$, are convenient, h_{t}^{\prime} (resp. \hat{h}_{t}) induces a family of homeomorphismgerms $h_{t}:\left(\mathbb{C}^{n}, 0\right) \longrightarrow\left(\mathbb{C}^{n}, 0\right)$, that is, $h_{t} \circ \pi=\pi \circ h_{t}^{\prime}\left(\right.$ resp. $\left.h_{t} \circ \hat{\pi}=\hat{\pi} \circ \hat{h}_{t}\right)$, so that

$$
\left(h_{t}\left(f_{0}^{-1}(0)\right), \mathbf{0}\right)=\left(f_{t}^{-1}(0), \mathbf{0}\right), \quad t \in I .
$$

We can take such $h_{t}, t \in I$, so that $f_{t} h_{t}(x)=f_{0}(x)$ whenever $\Sigma\left(f_{t}\right)=\{\mathbf{0}\}$ near $\mathbf{0}$.
Proof. The proof is an adaption of the discussion appeared in [6] and we present here briefly. Assume that $f_{t}, t \in I$, are mixed Newton non-degenerate (resp. non-degenerate) simultaneously, and set $F(x, t)=f_{t}(x)$. Consider the vector field

$$
\begin{aligned}
& \tilde{\boldsymbol{\xi}}=\operatorname{det}(P V) \text {, where } P=\left(\begin{array}{cc}
J & J_{t} \\
0 & 1
\end{array}\right), V=\left(\begin{array}{cc}
{ }^{t} J & { }^{t} \boldsymbol{v} \\
{ }^{t} J_{t} & \partial_{t}
\end{array}\right), \\
& J=\left(\left.\begin{array}{llll}
\left|x_{1}\right| \partial_{\left|x_{1}\right|} \operatorname{Re} F & \partial_{\arg x_{1}} \operatorname{Re} F & \cdots & \left|x_{n}\right| \partial_{\left|x_{n}\right|} \operatorname{Re} F \\
\partial_{\arg x_{n}} \operatorname{Re} F \\
\left|x_{1}\right| \partial_{\left|x_{1}\right|} \mid & \operatorname{Im} F & \partial_{\arg x_{1}} \operatorname{Im} F & \cdots
\end{array} \right\rvert\, \begin{array}{|l|l}
n & \mid \partial_{\left|x_{n}\right|} \operatorname{Im} F
\end{array} \partial_{\arg x_{n}} \operatorname{Im} F\right), \quad J_{t}=\binom{\partial_{t} \operatorname{Re} F}{\partial_{t} \operatorname{Im} F}, \\
& \boldsymbol{v}=\left(\begin{array}{llll}
\left|x_{1}\right| \partial_{\left|x_{1}\right|} & \partial_{\arg x_{1}} & \cdots & \left|x_{n}\right| \partial_{\left|x_{n}\right|}
\end{array} \partial_{\arg x_{n}}\right) .
\end{aligned}
$$

Remark that the elements of the last column of V are vectors. We have $\tilde{\boldsymbol{\xi}} \operatorname{Re} F=\tilde{\boldsymbol{\xi}} \operatorname{Im} F=$ 0 , since both $V \operatorname{Re} F$ and $V \operatorname{Im} F$ are not of full rank. Define

$$
\boldsymbol{\xi}= \begin{cases}\frac{\tilde{\tilde{t}}}{\operatorname{det} J t)} & \text { case }(1): \Sigma\left(f_{t}\right)=\{\mathbf{0}\} \text { near } \mathbf{0}, \\ \frac{\tilde{\boldsymbol{t}}+|F|^{4} \partial_{t}}{\operatorname{det}\left(J^{t} t\right)+|F|^{4}} & \text { case }(2): \Sigma\left(f_{t}\right) \neq\{\mathbf{0}\}, \Sigma\left(f_{t}\right) \cap f^{-1}(0)=\{\mathbf{0}\} \text { near } \mathbf{0} .\end{cases}
$$

The coefficient of ∂_{t} in $\boldsymbol{\xi}$ is 1 , since the coefficient of ∂_{t} in $\tilde{\boldsymbol{\xi}}$ is $\operatorname{det}\left(J^{t} J\right)$. If $\Sigma\left(f_{t}\right)=\{\mathbf{0}\}$ near $\mathbf{0}$, then $\boldsymbol{\xi} \operatorname{Re} F=\boldsymbol{\xi} \operatorname{Im} F=0$. If $\Sigma\left(f_{t}\right) \neq\{\mathbf{0}\}, \Sigma\left(f_{t}\right) \cap f^{-1}(0)=\{\mathbf{0}\}$, then $\boldsymbol{\xi} \operatorname{Re} F=$ $\xi \operatorname{Im} F=0$ on the set defined by $F=0$.

Since $J=\frac{1}{2} I J_{c} I_{1}$, where

$$
J_{c}=\left(\begin{array}{lllll}
x_{1} \partial_{x_{1}} F & \overline{x_{1}} \partial_{\overline{x_{1}}} F & \cdots & x_{n} \partial_{x_{n}} F & \overline{x_{n}} \partial_{\overline{x_{n}}} F \\
x_{1} \partial_{x_{1}} \bar{F} & \overline{x_{1}} \partial_{\overline{x_{1}}} \bar{F} & \cdots & x_{n} \partial_{x_{n}} \bar{F} & \overline{x_{n}} \partial_{\overline{x_{n}}} \bar{F}
\end{array}\right), I=\left(\begin{array}{cc}
1 & 1 \\
-\AA & \circ
\end{array}\right), I_{1}=\left(\begin{array}{lll}
t_{\bar{I}} & \\
& \ddots & \\
& & t_{\bar{I}}
\end{array}\right),
$$

we have

$$
\begin{aligned}
\operatorname{det}\left(J^{t} \bar{J}\right) & =\frac{1}{4} \operatorname{det}\left(I J_{c} I_{1}{ }^{t} I_{1}{ }^{t} \bar{J}_{c}{ }^{t} I\right)=4^{n-1} \operatorname{det}\left(J_{c}{ }^{t} \overline{J_{c}}\right) \\
& =4^{n-1}\left|\begin{array}{cc}
2 \sum_{i=1}^{n}\left|x_{i} \partial_{x_{i}} F\right|^{2} & \sum_{i=1}^{n}\left[\left(x_{i} \partial_{x_{i}} F\right)^{2}+\left(\bar{x}_{i} \partial_{\overline{x_{i}}} F\right)^{2}\right] \\
\sum_{i=1}^{n}\left[\left(x_{i} \partial_{x_{i}} F\right)^{2}+\left(\bar{x}_{i} \partial_{\overline{x_{i}}} F\right)^{2}\right] & 2 \sum_{i=1}^{n}\left|x_{i} \partial_{x_{i}} F\right|^{2}
\end{array}\right|,
\end{aligned}
$$

since

$$
\operatorname{det}\left(\frac{1}{2} I\right)=\frac{\AA}{2}, \quad \operatorname{det}\left(\frac{1}{2} t \bar{I}\right)=-\frac{\AA}{2}, \quad{ }^{t} \bar{I} I=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) .
$$

We first remark that \boldsymbol{v} has a lift on M (resp. \widehat{M}) by (5222). We denote them by \boldsymbol{v}^{\prime} (resp. $\widehat{\boldsymbol{v}}$). Then we see the pull backs of coefficients of $\boldsymbol{\xi}$ by π (resp. $\hat{\pi}$). We consider these pull backs on $V_{\sigma}, \sigma \in \Sigma(n)$. Define J^{\prime} and J_{t}^{\prime} (resp. \widehat{J} and \widehat{J}_{t}) by

$$
\begin{aligned}
J_{\circ} \pi_{\sigma} & =J^{\prime} \prod_{\tau \in \sigma(1)}\left|u_{\tau}\right|^{\ell\left(\boldsymbol{a}^{\tau}\right)}, & J_{t} \circ \pi_{\sigma}=J_{t}^{\prime} \prod_{\tau \in \sigma(1)}\left|u_{\tau}\right|^{\ell\left(\boldsymbol{a}^{\tau}\right)} \\
\left(\operatorname{resp} . J \circ \hat{\pi}_{\sigma}\right. & =\widehat{J} \prod_{\tau \in \sigma(1)}\left|u_{\tau}\right|^{\ell\left(\boldsymbol{a}^{\tau}\right)}, & \left.J_{t} \circ \hat{\pi}_{\sigma}=\widehat{J}_{t} \prod_{\tau \in \sigma(1)}\left|u_{\tau}\right|^{\ell\left(\boldsymbol{a}^{\tau}\right)}\right) .
\end{aligned}
$$

Remark that J^{\prime} and J_{t}^{\prime} (resp. \widehat{J} and $\widehat{J_{t}}$) is locally well-defined functions. Setting

$$
\begin{gathered}
\tilde{\boldsymbol{\xi}}^{\prime}=\operatorname{det}\left(P^{\prime} V^{\prime}\right), \text { where } P^{\prime}=\left(\begin{array}{cc}
J^{\prime} & J_{t}^{\prime} \\
0 & 1
\end{array}\right), V^{\prime}=\left(\begin{array}{cc}
{ }^{t} J^{\prime} & { }^{t} \boldsymbol{v}^{\prime} \\
{ }^{t} J_{t}^{\prime} & \partial_{t}
\end{array}\right) \\
\left(\text { rssp. } \widehat{\tilde{\boldsymbol{\xi}}}=\operatorname{det}(\widehat{P} \widehat{V}), \text { where } \widehat{P}=\left(\begin{array}{cc}
\widehat{J} & \widehat{J_{t}} \\
0 & 1
\end{array}\right), \widehat{V}=\left(\begin{array}{cc}
{ }^{t} \widehat{J} & { }^{t} \widehat{\boldsymbol{v}} \\
{ }^{t} \widehat{J} & \partial_{t}
\end{array}\right)\right),
\end{gathered}
$$

we obtain the lift $\boldsymbol{\xi}^{\prime}$ (resp. $\widehat{\tilde{\boldsymbol{\xi}}}$) of $\boldsymbol{\xi}$ by π_{σ} (resp. $\hat{\pi}_{\sigma}$) as follows:
since

$$
\begin{aligned}
\operatorname{det}\left(J^{t} J\right) \circ \pi_{\sigma} & =\operatorname{det}\left(J^{\prime t} J^{\prime}\right) \prod_{\tau \in \sigma(1)}\left|u_{\tau}\right|^{2 \ell\left(\boldsymbol{a}^{\tau}\right)}, & F \circ \pi_{\sigma}=F^{\prime} \prod_{\tau \in \sigma(1)}\left|u_{\tau}\right|^{2 \ell\left(\boldsymbol{a}^{\tau}\right)} \\
\left(\text { resp. } \operatorname{det}\left(J^{t} J\right) \circ \hat{\pi}_{\sigma}\right. & =\operatorname{det}\left(\widehat{J}^{t} \widehat{J}\right) \prod_{\tau \in \sigma(1)}\left|u_{\tau}\right|^{2 \ell\left(\boldsymbol{a}^{\tau}\right)}, & \left.F \circ \hat{\pi}_{\sigma}=\widehat{F} \prod_{\tau \in \sigma(1)}\left|u_{\tau}\right|^{2 \ell\left(\boldsymbol{a}^{\tau}\right)}\right) .
\end{aligned}
$$

Take a cone $\sigma^{\prime} \in \Sigma$ so that $\pi\left(E_{\sigma^{\prime}}\right)=\{\mathbf{0}\}, \sigma^{\prime} \subset \sigma$. It is enough to show that

$$
Q=\left\{\begin{array}{lll}
\left.\operatorname{det}\left(J^{\prime} t J^{\prime}\right)\right|_{E_{\sigma^{\prime}}} & \left(\text { resp. } \operatorname{det}(\widehat{J} t \widehat{J}) \mid \widehat{E}_{\sigma^{\prime}}\right) & (\text { case (1)) } \\
\left.\left(\operatorname{det}\left(J^{\prime} t J^{\prime}\right)+\left|F^{\prime}\right|^{4}\right)\right|_{E_{\sigma^{\prime}}} & \left(\text { resp. }\left(\operatorname{det}\left(\left.\widehat{J} t\right|^{t}\right)+\mid \widehat{F}_{\widehat{\sigma}^{\prime}}\right)\right. & (\text { case (2)) }
\end{array}\right.
$$

is nowhere zero. Remark that only the terms in $\left(f_{t}\right)_{\gamma}, \gamma=\bigcap_{\tau \in \sigma^{\prime}(1)} \gamma\left(\boldsymbol{a}^{\tau}\right)$, contribute to the terms in $\left.\left.J^{\prime}\right|_{E_{\sigma^{\prime}}} J_{t}^{\prime}\right|_{E_{\sigma^{\prime}}},\left.F^{\prime}\right|_{E_{\sigma^{\prime}}}$ (resp. $\widehat{J} \widehat{E}_{\sigma_{\sigma^{\prime}}}, \widehat{J}_{\left.\right|_{\widehat{E}_{\sigma^{\prime}}}},\left.\widehat{F}\right|_{\widehat{E}_{\sigma^{\prime}}}$, and so is Q. Since f_{γ} is mixed weighted homogeneous (resp. radially weighted homogeneous), if it is zero, it must be zero at some point in $\left(\mathbb{C}^{*}\right)^{n}$, which contradicts the non-degeneracy assumption. Thus the vector field $\boldsymbol{\xi}^{\prime}$ (resp. $\widehat{\boldsymbol{\xi}}$) is well-defined and its flow provides the desired real-analytic isomorphisms. The last assertion is a consequence of the fact that $\boldsymbol{\xi}^{\prime}$ (resp. $\widehat{\boldsymbol{\xi}}$) tangent to each E_{τ} (resp. \widehat{E}_{τ}) for $\tau \in \Sigma(1)$.

Remark that H_{t} (resp. $\widehat{H_{t}}$) induces a homeomorphism when $\left(f_{t}\right)_{\gamma}$ does not depend on t for each non-compact face γ which does not lie in the union of coordinate hyperplanes, since $\left.\partial_{t} F^{\prime}\right|_{E_{\tau}}$ is zero for $\tau \in \Sigma(1)$ with $\ell\left(\boldsymbol{a}^{\tau}\right)>0$ and $\pi\left(E_{\tau}\right) \neq\{\mathbf{0}\}$.

Corollary 4.2. Let f be a mixed polynomial. If f is non-degenerate and convenient, then the local topological type of $\left(\mathbb{C}^{n}, f^{-1}(0), \mathbf{0}\right)$ is determined by f_{Γ} where Γ is the union of compact faces of $\Gamma_{+}(f)$.

Proof. Apply the previous Theorem for $f_{t}(x)=f(x)+t g(x), 0 \leq t \leq 1$, so that $\Gamma_{+}(g)$ is in the interior of $\Gamma_{+}(f)$.

4.2 Coordinate crossing property

In this subsection, we present an attempt to understand the situation that a mixed polynomial is not mixed Newton non-degenerate, but is non-degenerate.

We say that two subsets Z_{1} and Z_{2} of $\mathbb{R}^{2 n}$ at $p \in Z_{1} \cap Z_{2}$ are of coordinate crossing if there exists submersion germs $g_{i}:\left(\mathbb{R}^{2 n}, p\right) \longrightarrow\left(\mathbb{R}^{k_{i}}, 0\right), i=1,2$, so that $\left(Z_{i}, p\right)=$ $\left(g_{i}^{-1}(0), p\right), i=1,2$, and the Jacobi matrix of $G=\left(g_{1}, g_{2}\right):\left(\mathbb{R}^{2 n}, p\right) \longrightarrow\left(\mathbb{R}^{k_{1}} \times \mathbb{R}^{k_{2}}, 0\right)$ is of rank k along $G^{-1}(0)$. Remark that $k \leq k_{1}+k_{2}$ and equality holds if and only if $g_{1}^{-1}(0)$ and $g_{2}^{-1}(0)$ intersects transversely.

We consider the real oriented blow up $\widehat{V}_{\sigma} \longrightarrow V_{\sigma}$ along the exceptional set $E_{\sigma^{\prime}}$. The set \widehat{V}_{σ} is $\widehat{\mathbb{C}}^{\sigma^{\prime}(1)} \times \mathbb{C}^{\sigma(1) \backslash \sigma^{\prime}(1)}$ where $\widehat{\mathbb{C}}^{\sigma^{\prime}(1)}=\left\{\left(\left|v_{\tau^{\prime}}\right|\right.\right.$, arg $\left.\left.v_{\tau^{\prime}}\right) \in \mathbb{R}_{\geq 0} \times S^{1}: \tau^{\prime} \in \sigma^{\prime}(1)\right\}$. The condition ($\left(\mathbb{I}\right.$) implies that the strict transform of f intersects the set defined by $\left|v_{\tau^{\prime}}\right|=0$, $\tau^{\prime} \in \sigma^{\prime}(1)$ transversely (Remark [3.5).

We consider how the strict transform Z of f by $\pi_{\Sigma, \beta}$ and the exceptional set E_{τ}, $\tau \in \Sigma(1)$ intersect in V_{σ}. By ($[.28)$, the map $\pi_{\sigma}=\left.\pi_{\Sigma, \beta}\right|_{V_{\sigma}}$ is expressed by

$$
\begin{equation*}
x_{i}=\prod_{\tau \in \sigma(1)} v_{\tau} \frac{a_{i}^{\tau}+b_{i}^{\tau}}{2} \overline{v_{\tau}} \frac{a_{i}^{\tau}-b_{i}^{\tau}}{2}, \quad i=1, \ldots, n, \tag{4.3}
\end{equation*}
$$

and we obtain that

$$
f \circ \pi_{\sigma}=\sum_{\boldsymbol{\nu}, \bar{\nu}} c_{\boldsymbol{\nu}, \overline{\boldsymbol{\nu}}} \prod_{\tau \in \sigma(1)} v_{\tau}^{\left\langle\frac{\nu+\bar{\nu}}{2}, \boldsymbol{a}^{\tau}\right\rangle+\left\langle\frac{\nu-\bar{\nu}}{2}, \boldsymbol{b}^{\tau}\right\rangle} \bar{v}_{\tau}\left\langle\frac{\nu+\bar{\nu}}{2}, \boldsymbol{a}^{\tau}\right\rangle-\left\langle\frac{\nu-\bar{\nu}}{2}, \boldsymbol{b}^{\tau}\right\rangle .
$$

Define \tilde{f} and $\tilde{f}_{\gamma}, \gamma \subset \mathbb{R}^{n}$, by

$$
f \circ \pi_{\sigma}=\tilde{f} \prod_{\tau \in \sigma(1)} v_{\tau}^{\frac{\ell\left(\boldsymbol{a}^{\tau}\right)+m(\tau)}{2}} \overline{v_{\tau}} \frac{\ell\left(\boldsymbol{a}^{\tau}\right)-\bar{m}(\tau)}{2}, \quad f_{\gamma} \circ \pi_{\sigma}=\tilde{f}_{\gamma} \prod_{\tau \in \sigma(1)} v_{\tau}^{\frac{\ell\left(\boldsymbol{a}^{\tau}\right)+m(\tau)}{2}} \overline{v_{\tau}} \frac{\ell\left(\boldsymbol{a}^{\tau}\right)-\bar{m}(\tau)}{2}
$$

where $\bar{m}(\tau)=\max \left\{\left\langle\boldsymbol{\nu}, \boldsymbol{b}^{\tau}\right\rangle: \boldsymbol{\nu} \in \operatorname{LE}_{\gamma\left(\boldsymbol{a}^{\tau}\right)}(f)\right\}$. We then have

$$
\begin{aligned}
\tilde{f} & =\sum_{\boldsymbol{\nu}, \bar{\nu}} c_{\boldsymbol{\nu}, \overline{\boldsymbol{\nu}}} \prod_{\tau \in \sigma(1)} v_{\tau}^{\left\langle\frac{\nu+\bar{\nu}}{2}, \boldsymbol{a}^{\tau}\right\rangle+\left\langle\frac{\boldsymbol{\nu}-\overline{\boldsymbol{\nu}}}{2}, \boldsymbol{b}^{\tau}\right\rangle-\frac{\ell\left(\boldsymbol{a}^{\tau}\right)+m(\tau)}{2}} \overline{v_{\tau}}\left\langle\frac{\boldsymbol{\nu}+\bar{\nu}}{2}, \boldsymbol{a}^{\tau}\right\rangle-\left\langle\frac{\boldsymbol{\nu}-\overline{\bar{\nu}}}{2}, \boldsymbol{b}^{\tau}\right\rangle-\frac{\ell\left(\mathbf{a}^{\tau}\right)-\bar{m}(\tau)}{2} \\
& =\sum_{\nu, \overline{\boldsymbol{\nu}}} c_{\boldsymbol{\nu}, \overline{\boldsymbol{\nu}}} \prod_{\tau \in \sigma(1)}\left|v_{\tau}\right|^{\left\langle\boldsymbol{\nu}+\bar{\nu}, \boldsymbol{a}^{\tau}\right\rangle-\ell\left(\boldsymbol{a}^{\tau}\right)}\left(v_{\tau} /\left|v_{\tau}\right|\right)^{\left\langle\boldsymbol{\nu}-\overline{\boldsymbol{\nu}}, \boldsymbol{b}^{\tau}\right\rangle-m(\tau)} \overline{v_{\tau}} \frac{\bar{m}(\tau)-m(\tau)}{2}
\end{aligned}
$$

Then we have

$$
\tilde{f}=f^{\prime} \prod_{\tau \in \sigma(1)} \bar{v}_{\tau} \frac{\bar{m}(\tau)-m(\tau)}{2}, \quad \text { and } \quad \tilde{f}_{\gamma}=f_{\gamma}^{\prime} \prod_{\tau \in \sigma(1)} \bar{v}_{\tau} \frac{\bar{m}(\tau)-m(\tau)}{2}
$$

When $\bar{m}(\tau)=m(\tau)$ for $\tau \in \Sigma(1)$, we have $\tilde{f}=f^{\prime}$, and $\tilde{f}_{\gamma}=f_{\gamma}^{\prime}$. This case is already treated in the previous section.

In this section, we consider the case $\bar{m}\left(\tau_{0}\right)-m\left(\tau_{0}\right)=2$ assuming $n=2$. We assume that $\left(v_{0}, v_{1}\right)$ denotes the coordinate system of $V_{\sigma}, \sigma \in \Sigma(2)$, and $E_{\tau}=\left\{v_{0}=0\right\}$. We have

$$
\tilde{f}=v_{0} \tilde{\phi}_{0}+\bar{v}_{0} \tilde{\phi}_{1}, \quad \tilde{f}_{\gamma\left(\boldsymbol{a}^{\tau_{0}}\right)}=v_{0} \phi_{0}+\bar{v}_{0} \phi_{1}
$$

where $\tilde{\phi}_{i}=\phi_{i}+R_{i}, R_{i}=o\left(\left|v_{0}\right|\right), i=1,2$. We set $\phi=\operatorname{det} \Phi$, and $\tilde{\phi}=\operatorname{det} \widetilde{\Phi}$ where

$$
\Phi=\left(\begin{array}{cc}
\frac{\phi_{0}}{\phi_{1}} & \phi_{1} \\
\phi_{0}
\end{array}\right), \quad \widetilde{\Phi}=\left(\begin{array}{cc}
\tilde{\phi}_{0} & \tilde{\phi}_{1} \\
\tilde{\phi}_{1} & \tilde{\phi}_{0}
\end{array}\right)
$$

Proposition 4.4. The strict transform Z and the set $E_{\tau} \backslash\left\{v_{1}=0\right\}, \tau \in \sigma(1)$, intersect as coordinate crossing when $\operatorname{rank} \Phi=1$ and $\{\tilde{\phi}=0\}$ is nonsingular at $Z \cap E_{\tau}$.

Proof. We first remark that

$$
\binom{\operatorname{Re} \tilde{f}}{\operatorname{Im} \tilde{f}}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-\mathrm{i} & \circ \\
0
\end{array}\right) \tilde{\Phi}\binom{v_{0}}{v_{0}}
$$

and

$$
\binom{\operatorname{Re} f^{\prime}}{\operatorname{Im} f^{\prime}}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-\mathrm{¿} & \mathrm{o}
\end{array}\right) \widetilde{\Phi}\binom{e^{\arg v_{0}^{\mathrm{®}}}}{e^{-\arg v_{0} \mathrm{Z}}} .
$$

The system $f^{\prime}=\overline{f^{\prime}}=0$ thus reduces to the system

$$
\widetilde{\Phi}\binom{e^{\arg v_{0}^{\mathrm{i}}}}{e^{-\arg v_{0 \mathrm{O}}^{\mathrm{O}}}}=0,
$$

and we conclude that $\tilde{\phi}=0$ on $Z \cap\left\{v_{0}=0\right\}$.
Since

$$
\begin{aligned}
& \left.\frac{\partial(\operatorname{Re} \tilde{f}, \operatorname{Im} \tilde{f}, \tilde{\phi})}{\partial\left(\operatorname{Re} v_{0}, \operatorname{Im} v_{0}, \operatorname{Re} u_{1}, \operatorname{Im} u_{1}\right)}\right|_{v_{0}=0} \\
& =\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{8}{2} & \frac{i}{2} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
\left(\tilde{f}_{\gamma}\right)_{v_{0}} & \frac{\left(\tilde{f}_{\gamma}\right)_{\overline{v_{0}}}}{} & \frac{\left(\tilde{f}_{\gamma}\right)_{u_{1}}}{} & \frac{\left(\tilde{f}_{\gamma}\right)_{\overline{u_{1}}}}{\left(\tilde{f}_{\gamma}\right)_{v_{0}}} \\
\phi_{v_{0}} & \left.\tilde{f}_{\gamma}\right)_{\overline{v_{0}}} & \left.\phi_{\overline{v_{0}}}^{\left(\tilde{f}_{\gamma}\right.}\right)_{v_{1}} & \phi_{v_{1}} \\
\left(\tilde{f}_{\gamma}\right)_{\overline{v_{1}}}
\end{array}\right) \frac{1}{2}\left(\begin{array}{cccc}
1 & -\AA & 0 & 0 \\
1 & \AA & 0 & 0 \\
0 & 0 & 1 & -\AA \\
0 & 0 & 1 & i
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\operatorname{Re}\left(\phi_{0}+\phi_{1}\right) & \operatorname{Im}\left(\phi_{1}-\phi_{0}\right) & 0 & 0 \\
\operatorname{Im}\left(\phi_{0}+\phi_{1}\right) & \operatorname{Re}\left(\phi_{1}-\phi_{0}\right) & 0 & 0 \\
\phi_{v_{0}}+\phi_{\overline{v_{0}}} & \stackrel{\circ}{ }\left[\phi_{\overline{v_{0}}}-\phi_{v_{0}}\right] & \phi_{v_{1}}+\phi_{\overline{v_{1}}} & \circ\left[\phi_{\overline{v_{1}}}-\phi_{v_{1}}\right]
\end{array}\right),
\end{aligned}
$$

where $\gamma=\gamma\left(\boldsymbol{a}^{\tau}\right)$, we have the following:

- $\operatorname{Re} v_{0}, \operatorname{Re} \tilde{f}, \tilde{\phi}$ form a part of a coordinate system when $\operatorname{Im}\left(\phi_{0}-\phi_{1}\right) \neq 0$.
- $\operatorname{Re} v_{0}, \operatorname{Im} \tilde{f}, \tilde{\phi}$ form a part of a coordinate system when $\operatorname{Re}\left(\phi_{0}-\phi_{1}\right) \neq 0$.
- $\operatorname{Im} v_{0}, \operatorname{Re} \tilde{f}, \tilde{\phi}$ form a part of a coordinate system when $\operatorname{Re}\left(\phi_{0}+\phi_{1}\right) \neq 0$.
- $\operatorname{Im} v_{0}, \operatorname{Im} \tilde{f}, \tilde{\phi}$ form a part of a coordinate system when $\operatorname{Im}\left(\phi_{0}+\phi_{1}\right) \neq 0$.

Thus we complete the proof, because of the following lemma.
Lemma 4.5. Assume that $\operatorname{rank} \Phi=1$. Let \boldsymbol{p} is a point in $Z \cap\left\{v_{0}=0\right\}$.
(i) The strict transform Z near \boldsymbol{p} is defined by one of the following ideals:

$$
\left\langle\operatorname{Re} f^{\prime}, \tilde{\phi}\right\rangle,\left\langle\operatorname{Im} f^{\prime}, \tilde{\phi}\right\rangle .
$$

(ii) The exceptional set $\left\{v_{0}=0\right\}$ near \boldsymbol{p} is defined by one of the following ideals:

$$
\left\langle\operatorname{Re} v_{0}, \operatorname{Im} \tilde{f}\right\rangle,\left\langle\operatorname{Re} v_{0}, \operatorname{Re} \tilde{f}\right\rangle,\left\langle\operatorname{Im} v_{0}, \operatorname{Im} \tilde{f}\right\rangle,\left\langle\operatorname{Im} v_{0}, \operatorname{Re} \tilde{f}\right\rangle .
$$

Proof. The item (i) is a consequence of the following implications.

- $\operatorname{Re} f^{\prime}=\operatorname{det} \tilde{\phi}=0$ implies $\operatorname{Im} \tilde{f}=0$ for $\left|v_{0}\right| \ll 1, \tau^{\prime} \in \sigma^{\prime}(1)$.
- $\operatorname{Im} f^{\prime}=\operatorname{det} \tilde{\phi}=0$ implies $\operatorname{Re} \tilde{f}=0$ for $\left|v_{0}\right| \ll 1, \tau^{\prime} \in \sigma^{\prime}(1)$.
$\operatorname{Re} f^{\prime}=0$ implies $\widetilde{\Phi} X=0$ has only solution

$$
X=c\binom{e^{\left(\arg v_{0}\right)^{\mathfrak{i}}}}{e^{\left(-\arg u_{0}\right)^{\mathfrak{i}}}}, \quad c \in \mathbb{C},
$$

and we obtain $\operatorname{Im} f^{\prime}=0$, which shows the first item. The second item is proved similarly.
Now we show the item (ii). Since $\left(\phi_{0}, \phi_{1}\right) \neq(0,0)$ on $Z \cap E_{\tau_{0}}$, we have $\left(\phi_{0}+\phi_{1}, \phi_{0}-\right.$ $\left.\phi_{1}\right) \neq(0,0)$ on $Z \cap E_{\tau_{0}}$. Thus the lemma is a consequence of the following implications.

- $\operatorname{Re}\left(\phi_{0}-\phi_{1}\right) \neq 0, \operatorname{Re} v_{0}=0, \operatorname{Im} \tilde{f}=0 \Longrightarrow \operatorname{Im} v_{0}=0$.
- $\operatorname{Im}\left(\phi_{0}-\phi_{1}\right) \neq 0, \operatorname{Re} v_{0}=0, \operatorname{Re} \tilde{f}=0 \Longrightarrow \operatorname{Im} v_{0}=0$.
- $\operatorname{Re}\left(\phi_{0}+\phi_{1}\right) \neq 0, \operatorname{Im} v_{0}=0, \operatorname{Re} \tilde{f}=0 \Longrightarrow \operatorname{Re} v_{0}=0$.
- $\operatorname{Im}\left(\phi_{0}+\phi_{1}\right) \neq 0, \operatorname{Im} v_{0}=0, \operatorname{Im} \tilde{f}=0 \Longrightarrow \operatorname{Re} v_{0}=0$.

These implications follow from the following identity:

$$
\left(\begin{array}{c}
\operatorname{Re} \tilde{f} \\
\operatorname{Im} \tilde{f} \\
\operatorname{Re} v_{0} \\
\operatorname{Im} v_{0}
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{Re}\left(\tilde{\phi}_{0}+\tilde{\phi}_{1}\right) & \operatorname{Im}\left(\tilde{\phi}_{0}-\tilde{\phi}_{1}\right) \\
\operatorname{Im}\left(\tilde{\phi}_{0}+\tilde{\phi}_{1}\right) & \operatorname{Re}\left(\tilde{\phi}_{0}-\tilde{\phi}_{1}\right) \\
1 & 0 \\
0 & 1
\end{array}\right)\binom{\operatorname{Re} v_{0}}{\operatorname{Im} v_{0}} .
$$

References

[1] N. A'Campo, La fonction zêta d'une monodromie, Comment. Math. Helvetici 50 (1975), 233-248.
[2] G. Braun and A. Némethi, Invariants of Newton non-degenerate surface singularities, Compositio Math. 143 (2007), 1003-1036.
[3] Y. Chen and M. Tibăr, Bifurcation values and monodromy of mixed polynomials. Math. Res. Lett.19(2012), no.1, 59-79.
[4] Y. Chen, L. R, Dias, K. Takeuchi and M. Tibăr, Invertible polynomial mappings via Newton non-degeneracy.(English, French summary)Ann. Inst. Fourier (Grenoble) 64 (2014), no.5, 1807-1822.
[5] V. Danilov, The geometry of toric variety, Russian Math. Surveys 33 (1978), 97-154.
[6] T. Fukui and E. Yoshinaga, The modified analytic trivialization of family of real analytic functions, Invent. Math. 82 (1985), 467-477.
[7] H. Hironaka, Stratification and flatness. Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 199-265.
[8] K. Inaba, M. Kawashima and M. Oka, Topology of mixed hypersurfaces of cyclic type, J. Math. Soc. Japan 70 (2018), no.1, 387- 402.
[9] H. Ishida, Y. Fukukawa, and M. Masuda, Topological toric manifolds, Mosc. Math. J. 13 (2013), 57-98, 189-190.
[10] A. G. Khovanskii, Newton polyhedra and toroidal varieties, Functional Analysis and its Applications 11 (1978), 289-296.
[11] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies 61, Princeton University Press. London: Oxford University Press, 1969.
[12] M. Oka, Non-degenerate mixed functions, Kodai Math. J. 33 (2010), 1-62.
[13] M. Oka, Mixed functions of strongly polar weighted homogeneous face type, Singularities in Geometry and Topology 2011, Advanced Study in Pure Math. 66, 173-202, 2015.
[14] M. Oka, Introduction to Complex and Mixed hypersurface singularities (in Japanese), Maruzen, Tokyo, 2018.
[15] A. Pichon and J. Seade, Fibred multilinks and singularities $f \bar{g}$, Math. Ann. 342(2008), no.3, 487-514.
[16] S. Saito and K. Takashimizu, Resolutions of Newton non-degenerate mixed polynomials of strongly polar non-negative mixed weighted homogeneous face type, Kodai Math. J. 44 (2021), 457-491.
[17] A. N. Varchenko, Zeta-function of monodromy and Newton's diagram, Invent. math., 37 (1976), 253-262.

[^0]: 2020 Mathematics subject classification. 57R45, 14S70, 14M25
 Key words and phrases. singularities of mixed polynomial, Newton polyhedrons, mixed toric modification, mixed Newton non-degeneracy.
 *The author is supported by Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (C) Grant Number 23K03106.

