Versality of the folding families of regular surfaces

Toshizumi Fukui* and Atsuki Hiramatsu ${ }^{\dagger}$
Department of Mathematics, Saitama University
255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
E-mail addresses: tfukui@rimath.saitama-u.ac.jp, a.hiramatsu.2357@gmail.com

March 14, 2024

Abstract

We investigate \mathcal{A}-versality of the folding family introduced by Bruce and Wilkinson, which describes infinitesimal reflectional symmetry of a regular surface in Euclidean 3 -space. We obtain several geometric conditions which ensure \mathcal{A}-versality of the folding family.

We consider the restriction of the folding map

$$
\begin{equation*}
f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}, \quad(x, y, z) \longmapsto\left(x, y^{2}, z\right) \tag{0.1}
\end{equation*}
$$

to the surface \mathcal{M} defined by an embedding g whose 2 -jet is given by

$$
(x, y) \mapsto\left(x, y, a_{10} x+a_{01} y+a_{20} \frac{x^{2}}{2}+a_{11} x y+a_{02} \frac{y^{2}}{2}\right)
$$

We easily see the following:

- the map $\left.f\right|_{\mathcal{M}}$ is nonsingular at $(0,0)$ if \boldsymbol{v} is not tangent to \mathcal{M}, that is, $\left(a_{10}, a_{01}\right) \neq 0$,
- the map $\left.f\right|_{\mathcal{M}}$ has a singularity \mathcal{A}-equivalent to cross-cap $\left(S_{0}\right)$ at $(0,0)$ if and only if \boldsymbol{v} is tangent to \mathcal{M} and does not generate a principal direction of \mathcal{M} at 0 , that is, $\left(a_{10}, a_{01}\right)=0$ and $a_{11} \neq 0$,
where \boldsymbol{v} denotes a unit vector which is perpendicular to the reflection plane $y=0$.
So if we investigate more degenerate singularity of $\left.f\right|_{\mathcal{M}}$, it is natural to assume that the embedding g is given by the following Monge form:

$$
\begin{equation*}
g(x, y)=(x, y, h(x, y)) \quad h(x, y)=\frac{k_{1} x^{2}+k_{2} y^{2}}{2}+\sum_{i+j \geq 3}^{m} a_{i j} \frac{x^{i} y^{j}}{i!j!}+O(m+1) \tag{0.2}
\end{equation*}
$$

2020 Mathematics subject classification. $58 \mathrm{~K} 05,58 \mathrm{~K} 60,58 \mathrm{~K} 70$
Key words and phrases. \mathcal{A}-versal unfolding, the folding family, focal set, symmetry set, ridge line, subparabolic line.
*The first author is supported by Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (C) Grant Number 23K03106.
†Supported by RIMS symposia (open) "Extension of singularity theory", Kyoto University.
where m is an integer ≥ 3. Here $O(m+1)$ denotes a term whose absolute value is at most a positive constant multiple of $|(x, y)|^{m+1}$ near 0 . When the origin is not umbilic (that is, $k_{1} \neq k_{2}$), the vectors ∂_{x} and ∂_{y} generate principal directions at the origin. They can be extended to the principal vectors on the surface which we denote by v_{1} and v_{2}, respectively.

Bruce and Wilkinson showed the list of singularities of the folding map $\left.f\right|_{\mathcal{M}}$ in a generic context, mentioning several geometric meaning ([2, Page 68]), as follows:

$$
\begin{array}{ll}
S_{1} & \text { general smooth point } \\
S_{2} & \text { parabolic smooth point of focal set } \\
S_{3} & \text { cusp of gauss at smooth point of focal set } \\
B_{2} & \text { general cusp point of focal set } \\
B_{3} & \text { (cusp) point of focal set in closure of parabolic curve on symmetry set } \\
C_{3} & \text { intersection point of cuspidal edge and parabolic curve on focal set }
\end{array}
$$

Here we use the notations introduced by Mond ([i0]).
Bruce and Wilkinson ([2]) also introduced the folding family, which is the restriction to \mathcal{M} of the family of maps obtained by conjugating the map (ㄸ.ᅦ) by Euclidean motions. They showed that the folding family is \mathcal{A}-versal for a residual set of embeddings $\mathcal{M} \subset \mathbb{R}^{3}$. We recall these results as Theorem [.2]. Since Bruce and Wilkinson ([2]) did not show any explicit criteria for \mathcal{A}-versality in [[Z], it is an interesting problem to describe them. The folding map is motivated by describing infinitesimal reflectional symmetry of a regular surface, and the conditions being \mathcal{A}-versal should have several geometric meanings.

In this paper, we first give criteria of singularities of the folding map $\left.f\right|_{\mathcal{M}}$ in terms of the double point locus of $\left.f\right|_{\mathcal{M}}$ (Theorem ITD). The main topic is to describe explicit criteria for \mathcal{A}-versality of the folding family and discuss their geometric meaning. Our main results are stated as Theorem $\mathbb{L} 4$ for non-umbilic points, and Theorems $\mathbb{4 . 1 9}$ for umbilic points. These are based on Lemma I..., which shows the necessary and sufficient conditions for \mathcal{A} versality in terms of the coefficients of ($\mathbb{L} .2)$. We describe several consequences here. For non-umbilic points, the geometric criteria for \mathcal{A}-versality are stated using subparabolic lines and ridge lines. For example, if the folding map has a B_{2} singularity, then the folding family is \mathcal{A}-versal if and only if the corresponding ridge line is nonsingular there (Theorem $\boxed{4.4}$ (iv)). For umbilic points, we claim that the folding family is always \mathcal{A}-versal when the folding map has S_{1}, S_{2}, S_{3} and B_{2} singularity at Darbouxian umbilics (star, monstar and lemon) (see Theorem L.31).

The paper is organized as follows. In $\S 1$, we recall the definition of the folding family, and state a main theorems at a non-umbilic point clarifying several geometric meaning of its \mathcal{A}-verality. We also discuss here the crirteria of singularutuies of folding map $\left.f\right|_{\mathcal{M}}$ in terms of the double point locus of $\left.f\right|_{\mathcal{M}}$. In $\S 2$, we recall the duality between focal/symmetry sets and the bifurcation sets of the folding families. In §3, we investigate the conditions appeared in our main theorem for non-umbilic points. To do this we describe derivatives of principal curvatures by principal vectors including higher orders. In §4, we recall classification Darbouxian umbilics and show our main theorems for umbilic points. In $\S 5$, we show Lemma $\mathbb{\square . 9}$, which is a key lemma in our calculation.

The authors are grateful to Farid Tari, since discussion with him motivates the paper.

Contents

1 The folding family F 3
1.1 Definition of the folding family F 3
1.2 Criteria of singularities of $\left.f\right|_{\mathcal{M}}$ and \mathcal{A}-versality of F 6
1.3 Double point locus of $\left.f\right|_{\mathcal{M}}$ 7
1.4 Non-umbilical points 9
2 Dual map and bifurcation sets 9
2.1 Dual map 9
2.2 Bifurcation sets of the folding family 11
3 Non-umbilic points: Proof of Lemma 1.13. 13
4 Umbilics 15
4. Classification of umbilics 15
4.2 A criteria of S_{2} and S_{3} singularities 18
4.3 Criteria of \mathcal{A}-versality of the folding family 19
5 Proof of Lemma 1.9 26
$5.1 \quad S_{1}$ singularity 28
$5.2 \quad S_{2}$ singularity 28
$5.3 \quad C_{3}$ singularity 30
$5.4 \quad S_{3}$ singularity 31
$5.5 \quad B_{2}$ singularity 32
$5.6 \quad B_{3}$ singularity 34
A Criteria of singularity types of maps 35

1 The folding family F

1.1 Definition of the folding family F

Bruce and Wilkinson ([2]) defined the folding family F as follows:

Let \mathcal{M} be a nonsingular surface in \mathbb{R}^{3}. Let \mathcal{G} denote the group of motions of the Euclidean space \mathbb{R}^{3}. We define

$$
\begin{equation*}
\bar{F}: \mathcal{M} \times \mathcal{G} \longrightarrow \mathbb{R}^{3} \quad \text { by } \quad \bar{F}(\boldsymbol{p}, A)=A^{-1} \circ f \circ A(\boldsymbol{p}) \tag{1.1}
\end{equation*}
$$

Remark that this map is actually defined on $\mathbb{R}^{3} \times \mathcal{G}$ and we are thinking its restriction to $\mathcal{M} \times \mathcal{G}$. Let Π_{0} denote the plane defined by $y=0$. If \mathcal{H} denotes the subgroup of \mathcal{G} preserving the region $y \geq 0$, then \bar{F} gives rise to a family of foldings at the plane $\Pi=$ $A^{-1} \Pi_{0}$. Remark that the quotient group $\mathcal{G} / \mathcal{H}$ parametrizes the planes in \mathbb{R}^{3}. Identifying the quotient group $\mathcal{G} / \mathcal{H}$ with the space \mathcal{P} of all planes in \mathbb{R}^{3}, we define the folding family

$$
F: \mathcal{M} \times \mathcal{P} \longrightarrow \mathbb{R}^{3}, \quad \text { by } \quad(\boldsymbol{p}, \Pi) \longmapsto \bar{F}(\boldsymbol{p}, A),
$$

where A is a motion with $\Pi=A \Pi_{0}$. We also define $f^{\Pi}: \mathcal{M} \longrightarrow \mathbb{R}^{3}$ by $f^{\Pi}(\boldsymbol{p})=F(\boldsymbol{p}, A)$.
Theorem 1.2 ([Z, Proposition 2.2]). For a residual set of embedding $\mathcal{M} \subset \mathbb{R}^{3}$ the folding maps $\left.f\right|_{\mathcal{M}}: \mathcal{M} \longrightarrow \mathbb{R}^{3}$, have singularities \mathcal{A}-equivalent to one of the following types:

type	normal form	\mathcal{A}_{e}-codimension	order of \mathcal{A}-determinacy	C
S_{0}	$\left(x, y^{2}, x y\right)$	0	2	1
$S_{1}^{ \pm}$	$\left(x, y^{2}, y^{3} \pm x^{2} y\right)$	1	3	2
S_{2}	$\left(x, y^{2}, y^{3}+x^{3} y\right)$	2	4	3
$S_{3}^{ \pm}$	$\left(x, y^{2}, y^{3} \pm x^{4} y\right)$	3	5	4
$B_{2}^{ \pm}$	$\left(x, y^{2}, x^{2} y \pm y^{5}\right)$	2	5	2
$B_{3}^{ \pm}$	$\left(x, y^{2}, x^{2} y \pm y^{7}\right)$	3	7	3
$C_{3}^{ \pm}$	$\left(x, y^{2}, x y^{3} \pm x^{3} y\right)$	3	4	3

Here C is an invariant due to Mond, which bounds the number of cross cap appeared in stable deformations of each singularity. Moreover, these singularities are \mathcal{A}-versally unfolded by the family F.

We do not recall the theory on \mathcal{A}-versality in the paper. We just remark that the condition equivalent to the \mathcal{A}-versality of the folding family is stated as (5.3). The notion of \mathcal{A}-versality is important, since two \mathcal{A}-versal unfoldings of a map-germ are equivalent. See also [TI, §3] more for \mathcal{A}-versality.

Since Bruce and Wilkinson ([ZZ]) did not mention explicit conditons for \mathcal{A}-versality of the situation above, the theorem above becomes much useful after we clarify several geometric meanings of the criteria of \mathcal{A}-versality of F.

We recall the notions of ridge points and subparabolic points here.
Definition 1.3 ([7]]). Let p be non umbilical point of a regular surface with principal vectors v_{1}, v_{2}, and the corresponding principal curvatures κ_{1}, κ_{2}, which are defined near p.

- We say that the point p is a v_{i}-ridge point, $i=1,2$, if $v_{i} \kappa_{i}(p)=0$, where $v_{i} \kappa_{i}$ is the directional derivative of κ_{i} in v_{i}. Moreover, we say p is the first order v_{i}-ridge if $v_{i}^{2} \kappa_{i}(p) \neq 0$. The closure of the set of v_{i}-ridge points is called a v_{i}-ridge line if it is of one-dimensional.
- We say that the point p is a v_{i}-subparabolic point if $v_{i} \kappa_{j}(p)=0(i \neq j)$. The closure of the set of v_{i}-subparabolic points is called a v_{i}-subparabolic line if it is of one-dimensional.

We now state several geometric criteria of the singularity of the folding map and \mathcal{A}-versality of the folding families at non-umbilic points as follows.

Theorem 1.4. Assume that we consider a point on the surfaces, which is not umbilic, and \boldsymbol{v} generetes a principal direction there. We asuume that v_{2} is the principal vector, which is an extension of \boldsymbol{v}.
(i) The folding map $\left.f\right|_{\mathcal{M}}$ has a singularity \mathcal{A}-equivalent to $S_{1}^{ \pm}$if and only if the point is neither v_{2}-ridge nor v_{2}-subparabolic. Moreover, the folding family F is automatically \mathcal{A}-versal there.
(ii) The folding map $\left.f\right|_{\mathcal{M}}$ has a singularity \mathcal{A}-equivalent to S_{2} if and only if the point is v_{2}-subparabolic, but not v_{2}-ridge and the v_{2}-subparabolic line is not tangent to the reflection plane Π_{0} there. Moreover, the folding family F is automatically \mathcal{A}-versal there.
(iii) The folding map $\left.f\right|_{\mathcal{M}}$ has a singularity \mathcal{A}-equivalent to $S_{3}^{ \pm}$if and only if the point is v_{2}-subparabolic, but not v_{2}-ridge and $v_{2}^{2} \kappa_{1}(0) \neq 0$. Moreover, the folding family F is \mathcal{A}-versal if and only if the v_{2}-subparabolic line is nonsingular. In this case, we automatically have that the v_{2}-subparabolic line has 2-point contact with the reflection plane Π_{0} there.
(iv) The folding map $\left.f\right|_{\mathcal{M}}$ has a singularity \mathcal{A}-equivalent to $B_{2}^{ \pm}$if and only if the point is v_{2}-ridge, but not v_{2}-subparabolic and the double point locus $D\left(\left.f\right|_{\mathcal{M}}\right)$ has $A_{3}^{ \pm}$singularity with tangent property with respect to \boldsymbol{v} (see Definition (1.10). Moreover, the folding family F is \mathcal{A}-versal if and only if the v_{2}-ridge line is nonsingular there.
(v) The folding map $\left.f\right|_{\mathcal{M}}$ has a singularity \mathcal{A}-equivalent to $B_{3}^{ \pm}$if and only if the point is v_{2}-ridge, but not v_{2}-subparabolic and the double point locus $D\left(\left.f\right|_{\mathcal{M}}\right)$ has $A_{5}^{ \pm}$singularity with tangent property with respect to \boldsymbol{v} (see Definition [.](0). Moreover, the folding map $f^{\Pi_{\theta}}$ is \mathcal{A}-versally unfolded by the folding family F for a generic choice of the 6 -jet of ($\mathbb{L} \mathbf{2})$. The condition for \mathcal{A}-versality is explicitly stated in Lemma [.].
(vi) The folding map $\left.f\right|_{\mathcal{M}}$ has a singularity \mathcal{A}-equivalent to $C_{3}^{ \pm}$if and only if the point is v_{2}-subparabolic and v_{2}-ridge and the v_{2}-subparabolic line and the v_{2}-ridge line are nonsingular and intersect the reflection plane Π_{0} transversely. Moreover, the folding family F is \mathcal{A}-versal if and only if the v_{2}-subparabolic line and v_{2}-ridge line intersect transversely there.

Please refer to $\S[.3]$ for the definition (and several properties) of the double point locus $D\left(\left.f\right|_{\mathcal{M}}\right)$,

Remark 1.5. - The authors found that the item (iii), the condition for \mathcal{A}-versality for S_{3} singularity, is already obtained by Wilkinson (see after Corollary 3.3 of [ד])
and that the item (vi), the condition for \mathcal{A}-versality for C_{3} singularity, is already obtained in [$\mathbb{1}$, Theorem 4.6 (i)]. The authors show Theorem $\mathbb{4} 4$ without knowing [I]. The authors are not able to find litertures to state the items (i), (ii) and (iv).

- The geometric meaning of the condition $\left(\mathcal{B}_{3} \neq 0\right.$ in the notation of Lemma $\mathbb{4} 9$ below) of \mathcal{A}-versality for $B_{3}^{ \pm}$singularity is not clear for the authors.

Remark 1.6. In [5], we have discussed the conditions for \mathcal{A}-versality of the subunfolding of the folding family, obtained by restricting the motions to the rotations.

1.2 Criteria of singularities of $\left.f\right|_{\mathcal{M}}$ and \mathcal{A}-versality of F

We start to describe a criteria of singularity of $\left.f\right|_{\mathcal{M}}$ in terms of Monge form (0.2).
Lemma 1.7. Let $\left.f\right|_{\mathcal{M}}$ be the folding map of the regular surface \mathcal{M}. Then criteria of singularities of $\left.f\right|_{\mathcal{M}}$ is given by the following table.

type	condition
$S_{1}^{ \pm}$	$\pm a_{21} a_{03}>0$.
S_{2}	$a_{21}=0, a_{03} \neq 0, a_{31} \neq 0$.
$S_{3}^{ \pm}$	$a_{21}=0, a_{31}=0, \pm a_{03} a_{41}>0$.
$B_{2}^{ \pm}$	$a_{21} \neq 0, a_{03}=0, \pm B_{2}>0$.
$B_{3}^{ \pm}$	$a_{21} \neq 0, a_{03}=0, B_{2}=0, \pm B_{3}>0$.
$C_{3}^{ \pm}$	$a_{21}=0, a_{03}=0, \pm a_{31} a_{13}>0$.

where $B_{2}=\frac{a_{05}}{5}-\frac{a_{13}^{2}}{3 a_{21}}$ and $B_{3}=\frac{a_{07}}{7}-a_{15} \frac{a_{13}}{a_{21}}+\frac{5}{3} a_{23}\left(\frac{a_{13}}{a_{21}}\right)^{2}-\frac{5}{9} a_{31}\left(\frac{a_{13}}{a_{21}}\right)^{3}$.
Proof. Routine calculation. See [4, Proposition 2.2] or [9, page 707] for some detailed computation. One can find the equivalent descriptions in other terminology at [[I , page 254].

Remark 1.8. Bruce and Wilkinson ([2, page 64, lines 19-21]) stated that the key idea in this approach is that singularities of $\left.f\right|_{\mathcal{M}}$ corresponds to infinitesimal reflectional symmetries of \mathcal{M} in the plane $y=0$. It is clear that \mathcal{M} has reflectional symmetry in the plane $y=0$ if and only if $h(x, y)$ is an odd function in y, that is, $h(x, y)=h(x,-y)$. So a naive condition for infinitesimal reflectional symmetry in the plane $y=0$ is concerning the limit of $\frac{h(x, y)-h(x,-y)}{2 y}$ tending $y \rightarrow 0$. For example, being $h_{y}(x, 0)=c x^{k}+o\left(x^{k}\right), c \neq 0$, for some positive integer k is such a condition. But if we investigate singularities of $\left.f\right|_{\mathcal{M}}$, we find several other infinitesimal reflectional symmetries in the plane $y=0$.

Remark that the conditions appearing in Lemma $\mathbb{\square} .7$ depend only on $a_{i j}$, where j is odd. This is a consequence of the fact that to investigate singularities of fold maps is descriptions of various infinitesimal reflectional symmetries of surfaces.

Lemma 1.9. The folding family F is \mathcal{A}-versal if and only if the conditions shown in the following table hold.

Singularity of $\left.f\right\|_{\mathcal{M}}$	Condition for \mathcal{A}－versality of F
$S_{1}^{ \pm}$	always \mathcal{A}－versal．
S_{2}	$k_{1} \neq k_{2}$ or $a_{12} \neq 0$.
$S_{3}^{ \pm}$	$\left(a_{22}-k_{1} k_{2}^{2}\right)\left(k_{1}-k_{2}\right)+a_{12}\left(2 a_{12}-a_{30}\right) \neq 0$.
$B_{2}^{ \pm}$	$a_{12} \neq \frac{a_{13}\left(k_{1}-k_{2}\right)}{3 a_{21}}$ or $a_{04}-3 k_{2}^{3} \neq \frac{a_{12} a_{13}}{a_{21}}$.
$B_{3}^{ \pm}$	$\mathcal{B}_{3} \neq 0$.
$C_{3}^{ \pm}$	$\left\|\begin{array}{cc}k_{2}-k_{1} & -3 a_{12}+\frac{a_{13}}{a_{31}\left(a_{30}-2 a_{12}\right)} \\ a_{12} & a_{04}-3 k_{2}^{3}+\frac{a_{13}}{a_{31}}\left(a_{22}-k_{1} k_{2}^{2}\right)\end{array}\right\| \neq 0$.

Here we define \mathcal{B}_{3} by $\mathcal{B}_{3}=\left|\begin{array}{c}a_{12}+\frac{a_{13}\left(k_{2}-k_{1}\right)}{3 a_{21}} \\ a_{04}-3 k_{2}^{3}-\frac{a_{12} a_{13}}{a_{21}} \\ q\end{array}\right|$ where

$$
\begin{aligned}
& p=\frac{a_{14}}{2}+\frac{a_{15}}{10 a_{21}}\left(k_{2}-k_{1}\right)+\frac{a_{13}}{3 a_{21}}\left(a_{04}-3 a_{22}+\frac{a_{23}\left(k_{1}-k_{2}\right)}{a_{21}}\right)+\frac{a_{13}^{2}}{6 a_{21}^{2}}\left(a_{30}-2 a_{12}+\frac{a_{31}}{a_{21}}\left(k_{2}-k_{1}\right)\right), \\
& q=\frac{3}{10} a_{06}-\frac{9}{2} a_{04} k_{2}^{2}-\frac{3}{10} \frac{a_{12} a_{15}}{a_{21}}+\frac{a_{13}}{a_{21}}\left(-a_{14}+6 a_{12} k_{2}^{2}+\frac{a_{12} a_{23}}{a_{21}}\right)+\frac{a_{13}^{2}}{2 a_{21}^{2}}\left(a_{22}-k_{1} k_{2}^{2}-\frac{a_{12} a_{31}}{a_{21}}\right) .
\end{aligned}
$$

The proof of Lemma $\boxed{\boxed{L} . ⿹ 勹 巳}$ is long and we do not give it here，but in $\S ⿷ 匚$. note that the \mathcal{A}－versatility condition concerns the 3 （4， 6 ，respectively）－jet of h if $\left.f\right|_{\mathcal{M}}$ has S_{2} or S_{3}（ B_{2} or C_{3}, B_{3} ，respectively）singularity．

1．3 Double point locus of $\left.f\right|_{\mathcal{M}}$

We consider the double point locus $D\left(\left.f\right|_{\mathcal{M}}\right)$ of the folding map $\left.f\right|_{\mathcal{M}}$ ：

$$
(x, y) \mapsto\left(x, y^{2}, h(x, y)\right), \quad h(x, y)=\frac{k_{1} x^{2}+k_{2} y^{2}}{2}+\sum_{i+j \geq 3}^{m} \frac{a_{i j}}{i!j!} x^{i} y^{j}+O(m+1)
$$

The double point locus $D\left(\left.f\right|_{\mathcal{M}}\right)$ is defined by $h^{\prime}(x, y)=0$ where

$$
h^{\prime}(x, y)=(h(x, y)-h(x,-y)) / 2 y .
$$

Remark that

$$
h^{\prime}=\frac{a_{21}}{2} x^{2}+\frac{a_{03}}{6} y^{2}+\frac{a_{31}}{6} x^{3}+\frac{a_{13}}{6} x y^{2}+O(4) .
$$

Definition 1．10．We say that $D\left(\left.f\right|_{\mathcal{M}}\right)$ has tangent property with respect to the vecor \boldsymbol{v} if $a_{21} \neq 0$ and $a_{03}=0$ in the notation above．Geometrically this means that the vector \boldsymbol{v} is in the limit of tangent lines of $g\left(D\left(\left.f\right|_{\mathcal{M}}\right)\right.$ ）at 0 when the zero of $h^{\prime}(x, y)$ is not isolated at 0 ．

We now able to state criteria of singularities of the folding map $\left.f\right|_{\mathcal{M}}$ in terms of the double point locus $D\left(\left.f\right|_{\mathcal{M}}\right)$ ．

Theorem 1．11．There is a correspondence between singularities of the folding map $\left.f\right|_{\mathcal{M}}$ and singularities of the double point locus $D\left(\left.f\right|_{\mathcal{M}}\right)$ as follows：

Singularities of $\left.f\right\|_{\mathcal{M}}$	Singularities of $D\left(\left.f\right\|_{\mathcal{M}}\right)$
$S_{1}^{ \pm}$	$A_{1}^{ \pm}$
S_{2}	A_{2}
$S_{3}^{ \pm}$	$A_{3}^{ \pm}$without tangent property with respect to \boldsymbol{v}
$B_{2}^{ \pm}$	$A_{3}^{ \pm}$with tangent property with respect to \boldsymbol{v}
$B_{3}^{ \pm}$	$A_{5}^{ \pm}$with tangent property with respect to \boldsymbol{v}
$C_{3}^{ \pm}$	$D_{4}^{ \pm}$

$\cdots \backsim$

$A_{5}^{+} D_{4}^{+}$

Proof. The proof is given by comparing Lemma $\mathbb{\boxed { W }} \mathbf{]}$ with the following lemma.
Lemma 1.12. (a) If $\pm a_{21} a_{03}>0$, then h^{\prime} defines $A_{1}^{ \pm}$singularity.
(b) When $a_{21}=0, a_{03} \neq 0$, the kernel direction of the Hessian of h^{\prime} is generated by ∂_{x}.

- If $a_{31} \neq 0$, then h^{\prime} defines A_{2} singularity.
- If $a_{31}=0$ and $\pm a_{03} a_{41}>0$, then h^{\prime} defines $A_{3}^{ \pm}$singularity.
(c) When $a_{21} \neq 0, a_{03}=0$, the kernel direction of the Hessian of h^{\prime} is generated by ∂_{y}.
- If $\pm B_{2}>0$, then h^{\prime} defines $A_{3}^{ \pm}$singularity.
- If $B_{2}=0$ and $\pm B_{3}>0$, then h^{\prime} defines $A_{5}^{ \pm}$singularity.
(d) When $a_{21}=a_{03}=0$, and $\pm a_{31} a_{13}>0$, then h^{\prime} defines $D_{4}^{ \pm}$singularity.
(e) If none of the conditions above hold, then h^{\prime} does not define $A_{1}^{ \pm}, A_{2}, A_{3}^{ \pm}, A_{5}^{ \pm}, D_{4}^{ \pm}$ singularities.

Proof. The proof is routine and we show below its outline. For example, a detailed proof except for the case of A_{5} can be found in [3, §4]. The A_{5} case can be proved similarly.
(a): The assertion (a) is trivial.
(b): When $a_{21}=0$, we have

$$
h^{\prime}=\frac{1}{6}\left(a_{03} y^{2}+a_{31} x^{3}+a_{13} x^{2} y\right)+O(4) .
$$

Thus if $a_{31} a_{03} \neq 0, h^{\prime}$ defines A_{2} singularity. When $a_{21}=a_{31}=0$, we have

$$
h^{\prime}=\frac{1}{6}\left(a_{03} y^{2}+a_{13} x^{2} y\right)+\frac{a_{41}}{24} x^{4}+\frac{a_{23}}{12} x^{2} y^{2}+\frac{a_{05}}{120} y^{4}+O(5) .
$$

Thus if $\pm a_{41} a_{03}>0, h^{\prime}$ defines $A_{3}^{ \pm}$-singularity.
(c): When $a_{03}=0$ and $a_{21} \neq 0$, we have

$$
h^{\prime}=\frac{a_{21}}{6}\left(x+\frac{a_{13}}{6 a_{21}} y^{2}\right)^{2}+\frac{B_{2}}{24 a_{21}} y^{4}+\frac{a_{41}}{24} x^{4}+\frac{a_{23}}{12} x^{2} y^{2}+O(5),
$$

and we obtain the first subcase. When $B_{2}=0$, replacing x by $x-\frac{a_{13}}{6 a_{21}} y^{2}$, we obtain

$$
h^{\prime}=\frac{a_{21}}{6} x^{2}+\frac{B_{3}}{6!a_{11}^{3}} y^{6}+* x^{4}+* x^{2} y^{2}+* x^{6}+* x^{4} y^{2}+* x^{2} y^{4}+O(7)
$$

which implies the second subcase.
(d): When $a_{21}=a_{03}=0$, the cubic part of h^{\prime} defines three real lines (resp. one real line) if $a_{13}<0$ (resp. >0), and we are done.
(e): The assertion is trivial.

1.4 Non-umbilical points

When the surface \mathcal{M} is not umbilic at the origin (i.e., $k_{1} \neq k_{2}$), we can define the principal curvatures κ_{1}, κ_{2} and the principal vectors v_{1}, v_{2} and we can state the conditions above in terms of κ_{i} and v_{i}.

Lemma 1.13. If the origin is not an umbilic point of \mathcal{M}, the conditions in Lemmas 1.7 and W. Q are rephrased as follows.

type	condition for singularities	condition for \mathcal{A}-versality
$S_{1}^{ \pm}$	$v_{2} \kappa_{1}(0) \neq 0, v_{2} \kappa_{2}(0) \neq 0$.	
S_{2}	$v_{2} \kappa_{1}(0)=0, v_{2} \kappa_{2}(0) \neq 0, v_{1} v_{2} \kappa_{1}(0) \neq 0$.	
$S_{3}^{ \pm}$	$v_{2} \kappa_{1}(0)=0, v_{2} \kappa_{2}(0) \neq 0, v_{1} v_{2} \kappa_{1}(0)=0, v_{1}^{2} v_{2} \kappa_{1}(0) \neq 0$.	$v_{2}^{2} \kappa_{1}(0) \neq 0$.
$B_{2}^{ \pm}$	$v_{2} \kappa_{1}(0) \neq 0, v_{2} \kappa_{2}(0)=0, v_{2}^{3} \kappa_{2}(0) \neq \frac{5}{3} \frac{v_{1} v_{2} \kappa_{2}(0)^{2}}{v_{2} \kappa_{1}(0)}$.	$\left(v_{1} v_{2} \kappa_{2}(0), v_{2}^{2} \kappa_{2}(0)\right) \neq 0$.
$C_{3}^{ \pm}$	$v_{2} \kappa_{1}(0)=0, v_{2} \kappa_{2}(0)=0, v_{1} v_{2} \kappa_{1}(0) \neq 0, v_{1} v_{2} \kappa_{2}(0) \neq 0$.	$\left\lvert\,$$v_{1} v_{2} v_{2} \kappa_{1} v_{1} v_{2} v_{2} v_{2} \kappa_{2} \kappa_{1}$ $v_{1} v_{2} v_{2} v_{2} \kappa_{2}$$(0) \neq 0\right.$.

We give a proof of Lemma ㄷ.[3] in \S 国.

2 Dual map and bifurcation sets

2.1 Dual map

For a regular surface X in \mathbb{R}^{3}, we consider the dual map δ defined by

$$
\delta: X \longrightarrow \mathcal{P}, \quad \boldsymbol{p} \longmapsto T_{\boldsymbol{p}} X
$$

Lemma 2.1. (i) The map δ is singular at \boldsymbol{p} if and only if \boldsymbol{p} is a parabolic point of X. Moreover, the rank of $d \delta_{\boldsymbol{p}}$ is 1 (resp.0) if it is not umbilic (resp. umbilc).
(ii) The map δ has a singularity \mathcal{A}-equivalent to cuspidal edge at \boldsymbol{p} if and only if \boldsymbol{p} is parabolic, neither umbilic, nor η-ridge where η is a principal vector corresponding to the zero principal curvature.

Proof. (i): For a surface given by

$$
(u, v) \longmapsto \boldsymbol{p}=(u, v, f(u, v)),
$$

the tangent plane $T_{\boldsymbol{p}} X$ is defined by $\boldsymbol{v} \cdot \boldsymbol{x}=c,|\boldsymbol{v}|=1$, where

$$
\boldsymbol{v}=\frac{1}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}\left(-f_{u},-f_{v}, 1\right), \quad c=\frac{1}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}\left|\begin{array}{ccc}
1 & 0 & u \\
0 & 1 & v \\
f_{u} & f_{v} & f
\end{array}\right| .
$$

We consider the map

$$
(u, v) \mapsto(\boldsymbol{v}, c)=\frac{1}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}\left(-f_{u},-f_{v}, 1, f-u f_{u}-v f_{v}\right) .
$$

Composing the inverse of the transformation

$$
\left(x_{1}, x_{2}, c\right) \mapsto\left(\frac{x_{1}}{\sqrt{1+x_{1}^{2}+x_{2}^{2}}}, \frac{x_{2}}{\sqrt{1+x_{1}^{2}+x_{2}^{2}}}, \frac{1}{\sqrt{1+x_{1}^{2}+x_{2}^{2}}}, c\right)
$$

it is enough to consider the map represented by

$$
\begin{equation*}
(u, v) \mapsto\left(-f_{u},-f_{v}, \frac{f-u f_{u}-v f_{v}}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}\right) \tag{2.2}
\end{equation*}
$$

We see that the jacobian of (L2.Z) is not of full rank if and only if $f_{u u} f_{v v}-f_{u v}^{2}=0$. When $f=k_{1} \frac{u^{2}}{2}+k_{2} \frac{v^{2}}{2}+\sum_{i+j \geq 3} a_{i j} \frac{u^{i} v^{j}}{i!j!}$, the 2-jet of (2.2) is

$$
\left(-k_{1} u-a_{30} \frac{u^{2}}{2}-a_{21} u v-a_{12} \frac{v^{2}}{2},-k_{2} v-a_{21} \frac{u^{2}}{2}-a_{12} u v-a_{03} \frac{v^{2}}{2} .-k_{1} \frac{u^{2}}{2}-k_{2} \frac{v^{2}}{2}\right)
$$

and 1-jet of the Jacobi's matrix of ([2.2) is

$$
\left(\begin{array}{ccc}
-k_{1}-a_{30} u-a_{21} v & -a_{21} u-a_{12} v & -k_{1} u \tag{2.3}\\
-a_{21} u-a_{12} v & -k_{2}-a_{12} u-a_{03} v & -k_{2} v
\end{array}\right) .
$$

If $k_{1}=0$ and $k_{2} \neq 0$, then the rank of (2.3) at 0 is 1 . The null direction is generated by $\eta=-f_{u v} \partial_{u}+f_{u u} \partial_{v}$ there. This can be shown, checking by the identity:

$$
\eta\left(-f_{u},-f_{v}, \frac{f-u f_{u}-v f_{v}}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}\right)=\left(f_{u u} f_{v v}-f_{u v}^{2}\right)\left(0,1, \frac{v+f f_{v}-u f_{u} f_{v}+v f_{u}^{2}}{\left(1+f_{u}^{2}+f_{v}^{2}\right)^{3 / 2}}\right) .
$$

If $k_{1}=k_{2}=0$, then the rank of (2.3) at 0 is 0 .
(ii): We assume that $k_{1} \neq 0$ and $k_{2}=0$. Since a unit normal of the map (2.2) is given by

$$
\boldsymbol{\nu}=\frac{\tilde{\boldsymbol{\nu}}}{|\tilde{\boldsymbol{\nu}}|}, \quad \tilde{\boldsymbol{\nu}}=\left(-u-u f_{v}^{2}-f f_{u}+v f_{u} f_{v},-v-v f_{u}^{2}-f f_{v}+u f_{u} f_{v},\left(1+f_{u}^{2}+f_{v}^{2}\right)^{3 / 2}\right)
$$

its Taylor expansion is expressed as

$$
\boldsymbol{\nu}=\left(-u+\frac{1+2 k_{1}^{2}}{2} u^{3}+\frac{1}{2} u v^{2},-v+\frac{1+k_{1}^{2}}{2} u^{2} v+\frac{1}{2} v^{3}, 1-\frac{u^{2}+v^{2}}{2}\right)+O(4) .
$$

We now use Lemma A.] and the notation there. We can take $\lambda=f_{u u} f_{v v}-f_{u v}^{2}$. Then we have $\eta \lambda(0)=k_{1}^{2} a_{03}$. Since $\psi(0)=k_{1}$, we have the result.

Remark 2.4. Under the notation of the proof above, the map δ has singularity \mathcal{A} equivalent to swallowtail at \boldsymbol{p} if and only if \boldsymbol{p} is parabolic, the first order v_{2}-ridge $\left(v_{2} \kappa_{2}(0)=0, v_{2}^{2} \kappa_{2}(0) \neq 0\right)$, but not umbilic. For proof, we apply Lemma A.Cl, using $\eta^{2} \lambda(0)=k_{1} a_{04}+3\left(a_{21} a_{03}-a_{12}^{2}\right)$ and (3.5). Remark that $\eta^{2} \lambda(0)$ is non zero if and only if $v_{2}^{2} \kappa_{2}(0) \neq 0$ also.

Remark 2.5. We remark that the Gauss map of the surface X is represented by

$$
\begin{equation*}
(u, v) \mapsto\left(-f_{u},-f_{v}\right) \tag{2.6}
\end{equation*}
$$

in the notation of the proof above. When we assume $k_{1} \neq 0$ and $k_{2}=0,-f_{u v} \partial_{u}+f_{u u} \partial_{v}$ represents the null direction at 0 along the singular locus, and the singular locus is defined by $\lambda=f_{u u} f_{v v}-f_{u v}^{2}$. Then the map (2.6) has a singularity \mathcal{A}-equivalent to

- a fold if \boldsymbol{p} is not v_{2}-ridge, that is, $a_{03} \neq 0$,
- a cusp if \boldsymbol{p} is the first order v_{2}-ridge, that is, $a_{03}=0$, and $k_{1} a_{04}+3\left(a_{21} a_{03}-a_{12}^{2}\right) \neq 0$.

2.2 Bifurcation sets of the folding family

The set of plane Π for which the folding map f^{Π} is not stable is the bifurcation set $\mathcal{B}(F)$ of the folding family F.

Remark that f^{Π} fails to be stable if f^{Π} has more degenerate singularity than a cross cap $\left(S_{0}\right)$, or if f^{Π} has a self-tangent point, that is, two distinct points \boldsymbol{p} and \boldsymbol{p}^{\prime} with $f^{\Pi}(\boldsymbol{p})=f^{\Pi}\left(\boldsymbol{p}^{\prime}\right)$ and $\operatorname{Im} d f^{\Pi}(\boldsymbol{p})=\operatorname{Im} d f^{\Pi}\left(\boldsymbol{p}^{\prime}\right)$.

A surface with a self-tangent point (left) as a deformation of B_{2}^{-}singularity (right).
The focal set \mathcal{F} of a surface \mathcal{M} in \mathbb{R}^{3} is the locus of the centers of curvature of \mathcal{M}, and the symmetry set \mathcal{S} of \mathcal{M} is the closure of the locus of centers of spheres bi-tangent to \mathcal{M}. We denote \mathcal{F}° (resp. \mathcal{S}°) the nonsingular locus of \mathcal{F} (resp. \mathcal{S}).

Theorem 2.7. $\mathcal{B}(F)=\overline{\delta\left(\mathcal{F}^{\circ}\right)} \cup \overline{\delta\left(\mathcal{S}^{\circ}\right)}$.
Proof. See [2, Proposition 2.3].
When the folding family F is \mathcal{A}-versal, one can deduce local models for the bifurcation sets $\mathcal{B}(F)$.

Example $2.8\left(S_{1}^{ \pm}\right)$. An \mathcal{A}-versal unfolding of $S_{1}^{ \pm}$singularity defined by $(x, y) \mapsto\left(x, y^{2}, y^{3}\right.$ $\left.\pm x^{2} y\right)$ is given by $f=\left(x, y^{2}, y^{3} \pm x^{2} y+a y\right)$. The S_{1} locus in the parameter space is defined by $a=0$ and there is no A_{1}^{*} locus.

Example $2.9\left(S_{2}\right)$. An \mathcal{A}-versal unfolding of S_{2} singularity defined by $(x, y) \mapsto\left(x, y^{2}, y^{3}+\right.$ $\left.x^{3} y\right)$ is given by $f=\left(x, y^{2}, y^{3}+x^{3} y+a y+b x y\right)$. The S_{1} locus in the parameter space is parametrized by

$$
t \mapsto(a, b)=\left(-2 t^{3}, 3 t^{2}\right),
$$

which corresponds to the mono-germ of f at $(t, 0)$ under (a, b) described above, and there is no A_{1}^{*} locus.

Bifurcation set for S_{2} (Example [2.4)
Bifurcation set for $S_{3}^{ \pm}$(Example [2.T])

Example $2.10\left(S_{3}^{ \pm}\right)$. An \mathcal{A}-versal unfolding of $S_{3}^{ \pm}$singularity defined by $(x, y) \mapsto$ $\left(x, y^{2}, y^{3} \pm x^{4} y\right)$ is given by $f=\left(x, y^{2}, y^{3} \pm x^{4} y+a y+b x y+c x^{2} y\right), S_{\geq 1}$ locus is parametrized by

$$
(t, c) \mapsto(a, b, c)=\left(-c t^{2} \mp t^{4}+2 t\left(c t \pm 2 t^{3}\right),-2\left(c t \pm 2 t^{3}\right), c\right)
$$

which corresponds to the mono-germ of f at $(t, 0)$, and there is no A_{1}^{*} locus.
Example $2.11\left(B_{2}^{ \pm}\right)$. An \mathcal{A}-versal unfolding of $B_{2}^{ \pm}$singularity defined by $(x, y) \mapsto$ $\left(x, y^{2}, y^{5} \pm x^{2} y\right)$ is given by $f=\left(x, y^{2}, y^{5} \pm x^{2} y+a y+b y^{3}\right)$. The S_{1} locus is defined by $a=0$, which corresponds to the mono-germs of f at the origin, while A_{1}^{*} locus is parametrized by

$$
t \mapsto(a, b)=\left(t^{4},-2 t^{2}\right)
$$

which corresponds to the bi-germ of f at $(0, t)$ and $(0,-t)$.

Bifurcation set for $B_{2}^{ \pm}$(Example [.] \quad Bifurcation set for $B_{3}^{ \pm}$(Example [2.12)
Example $2.12\left(B_{3}^{ \pm}\right)$. An \mathcal{A}-versal unfolding of $B_{3}^{ \pm}$singularity defined by $(x, y) \mapsto$ $\left(x, y^{2}, y^{7} \pm x^{2} y\right)$ is given by $f_{ \pm}=\left(x, y^{2}, y^{7}-x^{2} y+a y+b y^{3}+c y^{5}\right)$. The S_{1} locus is defined by $a=0$, which corresponds to the mono-germs of f at the origin, while A_{1}^{*} locus is parametrized by

$$
(t, c) \mapsto(a, b, c)=\left(t^{4}\left(c+2 t^{2}\right),-t^{2}\left(2 c+3 t^{2}\right), c\right)
$$

which corresponds to the bi-germ of $f_{ \pm}$at $(0, t)$ and $(0,-t)$.
Example $2.13\left(C_{3}^{ \pm}\right)$. An \mathcal{A}-versal unfolding of $C_{3}^{ \pm}$singularity defined by $(x, y) \mapsto$ $\left(x, y^{2}, x y^{3} \pm x^{3} y\right)$ is given by $f=\left(x, y^{2}, x y^{3} \pm x^{3} y+a y+b x y+c y^{3}\right)$. The $S_{\geq 1}$ locus is parametrized by

$$
(t, c) \mapsto(a, b, c)=\left(\mp 2 t^{3}, \pm 3 t^{2}, c\right)
$$

which corresponds to the mono-germ of f at $(t, 0)$, while A_{1}^{*} locus is parametrized by

$$
(s, t) \mapsto(a, b, c)=\left(\pm 2 s^{3}+s t^{2}, \mp 3 s^{2}-t^{2},-s\right),
$$

which corresponds to the bi-germ of f at (s, t) and $(s,-t)$.

Bifurcation set for C_{3}^{+}(Example [2.2.3) Bifurcation set for C_{3}^{-}(Example [2.13) We remark that the figure right is missing in [[Z, Fig. 2, page 67].

3 Non-umbilic points: Proof of Lemma 1.13.

Let us describe the several computation of a regular surface defined by ($\mathbb{0} .2$) at nonumbilical point. We thus assume that $k_{1} \neq k_{2}$. The first observations are as follows.

$$
\begin{align*}
v_{1} \kappa_{1}(0) & =a_{30}, \quad v_{2} \kappa_{1}(0)=a_{21}, & v_{1} \kappa_{2}(0) & =a_{12}, \quad v_{2} \kappa_{2}(0)=a_{03}, \tag{3.1}\\
v_{1}^{2} \kappa_{1}(0) & =a_{40}-3 k_{1}^{3}+\frac{3 a_{21}^{2}}{k_{1}-k_{2}}, & v_{2} v_{1} \kappa_{1}(0) & =a_{31}+\frac{3 a_{21} a_{12}}{k_{1}-k_{2}}, \tag{3.2}\\
v_{1} v_{2} \kappa_{1}(0) & =a_{31}+\frac{a_{21}\left(2 a_{12}-a_{30}\right)}{k_{1}-k_{2}}, & v_{2}^{2} \kappa_{1}(0) & =a_{22}-k_{1} k_{2}^{2}+\frac{a_{12}\left(2 a_{12}-a_{30}\right)}{k_{1}-k_{2}}, \tag{3.3}\\
v_{1}^{2} \kappa_{2}(0) & =a_{22}-k_{1}^{2} k_{2}+\frac{a_{21}\left(2 a_{21}-a_{03}\right)}{k_{2}-k_{1}}, & v_{2} v_{1} \kappa_{2}(0) & =a_{13}+\frac{a_{12}\left(2 a_{21}-a_{03}\right)}{k_{2}-k_{1}}, \tag{3.4}\\
v_{1} v_{2} \kappa_{2}(0) & =a_{13}+\frac{3 a_{21} a_{12}}{k_{2}-k_{1}}, & v_{2}^{2} \kappa_{2}(0) & =a_{04}-3 k_{2}^{3}+\frac{3 a_{12}^{2}}{k_{2}-k_{1}} . \tag{3.5}
\end{align*}
$$

These are obtained by direct computations. See [3, 2.3] for some of the detail, for example. We also have the expressions of the principal curvatures as follows:

$$
\begin{align*}
\kappa_{1} & =k_{1}+a_{30} x+a_{21} y+\left(a_{40}-3 k_{1}^{3}+\frac{2 a_{21}^{2}}{k_{1}-k_{2}}\right) \frac{x^{2}}{2} \tag{3.6}\\
& +\left(a_{31}+\frac{2 a_{21} a_{12}}{k_{1}-k_{2}}\right) x y+\left(a_{22}-k_{1}^{2} k_{2}+\frac{2 a_{12}^{2}}{k_{2}-k_{1}}\right) \frac{y^{2}}{2}+O(3), \\
\kappa_{2} & =k_{2}+a_{12} x+a_{03} y+\left(a_{22}-k_{1}^{2} k_{2}+\frac{2 a_{21}^{2}}{k_{2}-k_{1}}\right) \frac{x^{2}}{2} \tag{3.7}\\
& +\left(a_{13}+\frac{2 a_{21} a_{12}}{k_{2}-k_{1}}\right) x y+\left(a_{04}-3 k_{2}^{3}+\frac{2 a_{12}^{2}}{k_{2}-k_{1}}\right) \frac{y^{2}}{2}+O(3) .
\end{align*}
$$

A principal vector v_{2} is expressed by

$$
\left.\begin{array}{rl}
v_{2} & =\left(\frac{a_{21} x+a_{12} y}{k_{2}-k_{1}}+\left(\frac{a_{31}}{k_{2}-k_{1}}+\frac{2 a_{21}\left(a_{12}-a_{30}\right)}{\left(k_{2}-k_{1}\right)^{2}}\right) \frac{x^{2}}{2}+\left(\frac{a_{22}-k_{1} k_{2}^{2}}{k_{2}-k_{1}}+\frac{a_{30} a_{12}-a_{12}^{2}-a_{21}^{2}+a_{21} a_{03}}{\left(k_{2}-k_{1}\right)^{2}}\right) x y\right. \\
& \left.+\left(\frac{a_{13}}{k_{2}-k_{1}}+\frac{2 a_{12}\left(a_{21}-a_{03}\right)}{\left(k_{2}-k_{1}\right)^{2}}\right) \frac{y^{2}}{2}+O(3)\right) \partial_{x} \\
& +\left(1-\frac{a_{21}^{2}}{\left(k_{2}-k_{1}\right)^{2}} \frac{x^{2}}{2}+\frac{a_{21} a_{12}}{\left(k_{2}-k_{1}\right)^{2}} x y-\left(k_{2}^{2}+\frac{a_{12}^{2}}{\left(k_{2}-k_{1}\right)^{2}}\right)^{\frac{y}{2}}\right. \\
2
\end{array} O(3)\right) \partial_{y} .
$$

We thus conclude that

$$
\begin{align*}
& v_{2} \kappa_{1}=a_{21}+\left(a_{31}+\frac{a_{21}\left(a_{30}-2 a_{12}\right)}{k_{2}-k_{1}}\right) x+\left(a_{22}-k_{1} k_{2}^{2}+\frac{a_{12}\left(a_{33}-2 a_{12}\right)}{k_{2}-k_{1}}\right) y+O(2), \tag{3.8}\\
& v_{2} \kappa_{2}=a_{03}+\left(a_{13}+\frac{3 a_{21} a_{12}}{k_{2}-k_{1}}\right) x+\left(a_{04}-3 k_{2}^{3}+\frac{3 a_{12}^{2}}{k_{2}-k_{1}}\right) y+O(2) . \tag{3.9}
\end{align*}
$$

Proof of Lemma [.1.3. We first consider the condition for singularities of the folding map $\left.f\right|_{\mathcal{M}}$.

The assertion for $S_{1}^{ \pm}$is clear by (3.1). By (3.3), we have $a_{31}=v_{1} v_{2} \kappa_{1}(0)$ when $a_{21}=0$ and the assertion is clear. In a similar way to the computation above, we obtain that the coefficient of x^{2} in the expression of $v_{2} \kappa_{1}$ is

$$
\begin{align*}
a_{41}-k_{1} a_{21}\left(5 k_{1}+k_{2}\right) & +\frac{2 a_{21}\left(2 a_{22}-a_{40}+k_{1}^{3}\right)+a_{31}\left(2 a_{12}-a_{30}\right)}{k_{1}-k_{2}} \tag{3.10}\\
& +\frac{a_{21}\left(\left(a_{12}-a_{30}\right)\left(2 a_{12}-a_{30}\right) a_{12}+2 a_{03} a_{12}^{2}-7 a_{12}^{3}\right)}{\left(k_{1}-k_{2}\right)^{2}} .
\end{align*}
$$

The assertion for $S_{3}^{ \pm}$follows, since ($\left.\bar{B} . \mathrm{d}\right)$ is non-zero when $a_{21}=a_{31}=0$ and $a_{41} \neq 0$. The assertion for $C_{3}^{ \pm}$follows by (3.7), (B.3) and (B.4).

Remark that，if $a_{03}=0$ ，we have

$$
\begin{align*}
v_{2}^{3} \kappa_{2}(0) & =a_{05}-18 a_{03} k_{2}^{2}+\frac{10 a_{12} a_{13}}{k_{2}-k_{1}}+\frac{3 a_{12}^{2}\left(5 a_{21}-3 a_{03}\right)}{\left(k_{2}-k_{1}\right)^{2}} \tag{3.11}\\
a_{13} & =v_{1} v_{2} \kappa_{2}(0)-\frac{3 v_{2} \kappa_{1}(0) v_{1} \kappa_{2}(0)}{k_{2}-k_{1}} \tag{3.12}
\end{align*}
$$

and we conclude that

$$
B_{2}=\frac{a_{05}}{5}-\frac{a_{13}^{2}}{3 a_{21}}=\frac{v_{2}^{3} \kappa_{2}(0)}{5}-\frac{\left(v_{1} v_{2} \kappa_{2}(0)\right)^{2}}{3 v_{1} \kappa_{2}(0)} .
$$

So the condition that $\pm\left(a_{05}-5 a_{13}^{2} / 2 a_{21}\right)>0$ for $B_{2}^{ \pm}$singularity is equivalent that

$$
\pm\left(v_{1} \kappa_{2}(0) \cdot v_{2}^{3} \kappa_{2}(0)-\frac{5}{3}\left(v_{1} v_{2} \kappa_{2}(0)\right)^{2}\right)>0
$$

From now on，we consider \mathcal{A}－versality of the folding family．
The assertions for $S_{1}^{ \pm}$and S_{2} are clear．
The assertion for $S_{3}^{ \pm}$follows，since $v_{2} v_{2} \kappa_{1}(0) \neq 0$ by（ $\left.\mathrm{B}_{3} .3\right)$ ．
For $B_{2}^{ \pm}$singularity the condition in Lemma $\mathbb{L . 9}$ is equivalent that

$$
\left(v_{1} v_{2} \kappa_{2}(0), v_{2}^{2} \kappa_{2}(0)\right) \neq 0
$$

by（3．5），and thus shows the assertion．
For $C_{3}^{ \pm}$singularity，the condition in Lemma $\boxed{\boxed{4} . ⿹ 勹 巳}$ is equivalent that

$$
\left|\begin{array}{ll}
v_{1} v_{2} \kappa_{1}(0) & v_{2}^{2} \kappa_{1}(0) \\
v_{1} v_{2} \kappa_{2}(0) & v_{2}^{2} \kappa_{2}(0)
\end{array}\right| \neq 0
$$

from（5．3）and（3．5）．This shows the assertion．
Remark 3．13．The origin is v_{2}－subparabolic（resp．v_{2}－ridge）if and only if the constant principal curvature line $\kappa_{1}=k_{1}$（resp．$\kappa_{2}=k_{2}$ ）is perpendicular to the reflection plane $y=0$ there，whenever it is not v_{1}－ridge（resp．v_{1}－subparabolic），by（3．6）and（3．7）．

Remark 3．14．We can conclude that the v_{1}－curvature line is parametrized by

$$
t \mapsto(x, y)=\left(t, \frac{a_{21}}{k_{1}-k_{2}} \frac{t^{2}}{2}+\left(\frac{a_{31}}{k_{1}-k_{2}}+\frac{a_{21}\left(3 a_{12}-2 a_{30}\right)}{\left(k_{1}-k_{2}\right)^{2}}\right) \frac{t^{3}}{6}+a \frac{t^{4}}{24}+O(5)\right)
$$

where $a=\frac{a_{41}}{k_{1}-k_{2}}+\frac{3 a_{21}\left(2 a_{22}-a_{40}+k_{1}^{3}\right)+\left(4 a_{12}-3 a_{30}\right) a_{31}}{\left(k_{1}-k_{2}\right)^{2}}+\frac{a_{21}\left(3 a_{30}-4 a_{12}\right)\left(3 a_{12}-2 a_{30}\right)-3 a_{21}^{2} a_{03}+9 a_{21}^{3}}{\left(k_{1}-k_{2}\right)^{3}}$ ，working the equation of curvature lines：

$$
\left|\begin{array}{ccc}
h_{x x} & 1+h_{x}^{2} & d y^{2} \\
h_{x y} & h_{x} h_{y}^{2} & -d x d y \\
h_{y y} & 1+h_{y}^{2} & d x^{2}
\end{array}\right|=0 .
$$

This shows that the folding map $\left.f\right|_{\mathcal{M}}$ has a $S_{2}\left(\right.$ resp．$\left.S_{3}, S_{4}\right)$ singularity at 0 with respect to the principal direction v_{2} if and only if 0 is v_{2}－subparabplic but not v_{2}－ridge and the v_{1}－curvature line throgh 0 has 2 （resp．3，4）－point contact with the reflecftion plane $y=0$ ．

Remark 3．15．Let (u, v) denote a curvature coordinate of a surface $\boldsymbol{p}=\boldsymbol{p}(u, v)$ ．Let $\boldsymbol{\nu}$ denote its unit normal．When the principal curvature κ_{2} is not zero，we can define a focal set $\boldsymbol{q}=\boldsymbol{p}+\left(1 / \kappa_{2}\right) \boldsymbol{\nu}$ ，and its Gauss map is $\boldsymbol{g}=\boldsymbol{p}_{v} /\left|\boldsymbol{p}_{v}\right|$ ．Since

$$
\boldsymbol{g}_{u}=\frac{\left(\kappa_{1}\right)_{v}}{\kappa_{1}-\kappa_{2}} \frac{\boldsymbol{p}_{u}}{\left|\boldsymbol{p}_{v}\right|}, \quad \text { and } \quad \boldsymbol{g}_{v}=\frac{\boldsymbol{p}_{v v} \cdot \boldsymbol{p}_{u}}{\left|\boldsymbol{p}_{v} \cdot \boldsymbol{p}_{v} \| \boldsymbol{p}_{u} \cdot \boldsymbol{p}_{u}\right|} \boldsymbol{p}_{u}-\kappa_{2} \boldsymbol{\nu}
$$

the Gauss map \boldsymbol{g} is singular when $v_{2} \kappa_{1}=0$ ，where $v_{2}=\partial_{v}$ ，and $v_{1}=\partial_{u}$ generates the kernel field there．Then the Gauss map \boldsymbol{g} has a singularity at 0 if and only if $v_{2} \kappa_{1}(0)=0$ （that is，$a_{21}=0$ ）．Moreover，the Gauss map \boldsymbol{g} has a singularity \mathcal{A}－equivalent to

- a fold at 0 if and only if $v_{1} v_{2} \kappa_{1}(0) \neq 0$ (that is, $\left.a_{31} \neq 0\right)$.
- a cusp at 0 if and only if $v_{1} v_{2} \kappa_{1}(0)=0$ (that is, $\left.a_{31}=0\right)$ and $v_{1}^{2} v_{2} \kappa_{1}(0) \neq 0\left(a_{41} \neq 0\right)$.

Remark 3.16. Since the Gauss curvature of the focal set $\boldsymbol{q}=\boldsymbol{p}+\left(1 / \kappa_{2}\right) \boldsymbol{\nu}$ at $(u, v)=(0,0)$ is given by

$$
-\frac{v_{2} \kappa_{1}\left(\kappa_{2}\right)^{4}}{v_{2} \kappa_{2}\left(\kappa_{1}-\kappa_{2}\right)^{2}}(0)=-\frac{a_{21} k_{2}^{4}}{a_{03}\left(k_{1}-k_{2}\right)^{2}},
$$

elliptic (resp. hyperbolic) points of the focal set correspond to S_{1}^{-}(resp. S_{1}^{+}) singularities of the folding maps. This fact mentioned in the third paragraph from the bottom in page 68 in [2] with changing the sign.

4 Umbilics

4.1 Classification of umbilics

We consider a nonsingular surface

$$
\begin{equation*}
\boldsymbol{p}: \mathbb{C} \longrightarrow \mathbb{C} \times \mathbb{R}, \quad z \mapsto(z, h(z)), \quad \text { where } h(z)=\frac{k}{2} z \bar{z}+\sum_{k=3}^{m} H_{k}(z)+O(m+1) \tag{4.1}
\end{equation*}
$$

and $H_{k}(z)$ is a real-valued homogeneous polynomial of degree k in variables z, \bar{z}. We remark that this surface has an umbilic point at the origin.

The first fundamental form is expressed as

$$
I=d \boldsymbol{p} \cdot d \boldsymbol{p}=d z d \bar{z}+d h d \bar{h}=h_{z}^{2} d z^{2}+\left(1+2\left|h_{z}\right|^{2}\right) d z d \bar{z}+h_{\bar{z}}^{2} d \bar{z}^{2} .
$$

Since $\boldsymbol{p}_{x} \times \boldsymbol{p}_{y}=\left(-h_{x}-h_{y} \sqrt{-1}, 1\right)=\left(-2 \sqrt{-1} h_{\bar{z}}, 1\right)$, a unit normal is expressed as

$$
\boldsymbol{\nu}=\frac{1}{1+\left|2 h_{z}\right|^{2}}\left(-2 \sqrt{-1} h_{\bar{z}}, 1\right) .
$$

The second fundamental form is thus expressed as

$$
\mathrm{II}=d^{2} \boldsymbol{p} \cdot \boldsymbol{\nu}=\frac{1}{1+\left|2 h_{z}\right|^{2}}\left(h_{z z} d z^{2}+2 h_{z \bar{z}} d z d \bar{z}+h_{\bar{z} \bar{z}} d \bar{z}^{2}\right) .
$$

Therefore the equation of curvature lines is

$$
\sqrt{-1}\left|\begin{array}{ccc}
h_{z}^{2} & h_{z z} & d \bar{z}^{2} \tag{4.2}\\
1+2\left|h_{z}\right|^{2} \\
h_{z \bar{z}}^{2} & h_{\bar{z}} & -d z d \bar{z} \\
h_{\bar{z} \bar{z}} & d z^{2}
\end{array}\right|=\frac{1}{\sqrt{-1}}\left(\left(H_{3}\right)_{z z} d z^{2}-\left(H_{3}\right)_{\bar{z} \bar{z}} d \bar{z}^{2}\right)+\text { h.o.t. }=0 .
$$

Set

$$
\begin{equation*}
H_{3}(z)=\alpha z^{3} / 6+\beta z^{2} \bar{z} / 2+\bar{\beta} z \bar{z}^{2} / 2+\bar{\alpha} \bar{z}^{3} / 6 \tag{4.3}
\end{equation*}
$$

We consider the resultant of $\left(H_{3}\right)_{z}$ and $\left(H_{3}\right)_{\bar{z}}$ as

$$
D_{H_{3}}=\left|\begin{array}{cccc}
\alpha & 2 \beta & \bar{\beta} & 0 \tag{4.4}\\
0 & \alpha & 2 \beta & \bar{\beta} \\
\beta & 2 \bar{\beta} & \bar{\alpha} & 0 \\
0 & \beta & 2 \bar{\beta} & \bar{\alpha}
\end{array}\right|=|\alpha|^{4}-6|\alpha|^{2}|\beta|^{2}-3|\beta|^{4}+8 \operatorname{Re} \alpha \bar{\beta}^{3} .
$$

The cubic H_{3} has three real roots (resp. one real root) if and only if the origin is elliptic (resp. hyperbolic) umbilic, that is, $D_{H_{3}}>0$ (resp. <0).

We also consider the characteristic polynomial H_{3}^{\prime} for (4.2), which is defined by

$$
\begin{equation*}
\left.H_{3}^{\prime}(z)=\frac{1}{\sqrt{-1}}\left(z^{2}\left(H_{3}\right)_{z z}(z)-\bar{z}^{2}\left(H_{3}\right)_{\bar{z} \bar{z}}(z)\right)\right) . \tag{4.5}
\end{equation*}
$$

Its zeros define the characteristic directions of the singularity of curvature lines at the origin. The characteristic polynomial H_{3}^{\prime} has three real roots (resp. one real root) if and only if $D_{H_{3}^{\prime}}>0($ resp. $<0)$ where

$$
D_{H_{3}^{\prime}}(z)=\left|\begin{array}{cccc}
\frac{3 \alpha}{\sqrt{-1}} & \frac{2 \beta}{\sqrt{-1}} & \frac{-\bar{\beta}}{\sqrt{-1}} & 0 \tag{4.6}\\
0 & \frac{3 \alpha}{\sqrt{-1}} & \frac{2 \beta}{\sqrt{-1}} & \frac{-\bar{\beta}}{\sqrt{-1}} \\
\frac{\beta}{\sqrt{-1}} & \frac{-2 \bar{\beta}}{\sqrt{-1}} \frac{-3 \bar{\alpha}}{\sqrt{-1}} & 0 \\
0 & \frac{\beta}{\sqrt{-1}} & \frac{-2 \bar{\beta}}{\sqrt{-1}} & \frac{-3 \bar{\alpha}}{\sqrt{V-1}}
\end{array}\right|=3\left(27|\alpha|^{4}-18|\alpha|^{2}|\beta|^{2}-|\beta|^{4}-8 \operatorname{Re} \alpha \bar{\beta}^{3}\right) .
$$

We say a characteristic direction is a double characteristic direction if it is generated by a double root of $H_{3}^{\prime}(z)$.

An umbilic is said to be right-angled if there are two characteristic directions that are orthogonal to each other. It is well-known that this is equivalent that $|\alpha|=|\beta|$. This also implies $D_{H_{3}} \leq 0$ and $D_{H_{3}^{\prime}} \geq 0$.

We are now able to state the classification result of Darbouxian umbilics.

- We say that the umbilic is star if $|\alpha|>|\beta|$.
* If $D_{H_{3}}>0$, then there are three directions which are limits of principal directions.
* If $D_{H_{3}}<0$, then there is one direction which is a limit of principal directions.
- We say that the umbilic is monstar if $|\alpha|<|\beta|$ and $D_{H_{3}^{\prime}}>0$.
- We say that the umbilic is lemon if $D_{H_{3}^{\prime}}<0$.

When $\alpha=1$, the bifurcation of generic umbilics is shown in β-plane as follows:

Remark 4.7. The locus $D_{H_{3}}=0$ is parametrized by

$$
\begin{equation*}
\mathbb{C} \times S^{1} \rightarrow \mathbb{C}^{2},(\alpha, \phi) \mapsto(\alpha, \beta), \quad \text { where } \quad \beta=\left(\bar{\alpha} e^{-2 \phi \sqrt{-1}}-2 \alpha e^{\phi \sqrt{-1}}\right) / 3, \tag{4.8}
\end{equation*}
$$

and its singular locus is defined by $\cos \left(\arg \alpha+\frac{3 \phi}{2}\right)=0$. Similarly, the locus $D_{H_{3}^{\prime}}=0$ is parametrized by

$$
\begin{equation*}
\mathbb{C} \times S^{1} \rightarrow \mathbb{C}^{2},(\alpha, \phi) \mapsto(\alpha, \beta), \quad \text { where } \quad \beta=-\bar{\alpha} e^{-2 \phi \sqrt{-1}}-2 \alpha e^{\phi \sqrt{-1}} \tag{4.9}
\end{equation*}
$$

and its singular locus is defined by $\sin \left(\arg \alpha+\frac{3 \phi}{2}\right)=0$.
Remark 4.10. Replacing z by $e^{-\frac{\arg \alpha+2 n \pi}{3} \sqrt{-1}} z$ in $H_{3}(z), n \in \mathbb{Z}$, in (4.3$)$, we can reduce to the case $\alpha \in \mathbb{R}$. Then the argument of β becomes $\arg \beta-\frac{\arg \alpha+2 n \pi}{3}$.
Definition 4.11 (S_{2}-direction, B_{2}-direction and C_{3}-direction). Set

$$
w_{\theta}=e^{\theta \sqrt{-1}}, \quad \text { and } \quad v_{\theta}=\frac{e^{\theta \sqrt{-1}}}{\sqrt{-1}}
$$

Let Π_{θ} denote the plane generated by $\left(w_{\theta}, 0\right)$ and $(0,1)$ in $\mathbb{C} \times \mathbb{R}$ passing through the origin. A normal vector to Π_{θ} is given by a vector \boldsymbol{v}_{θ}, represented by the complex number v_{θ}.

We say that \boldsymbol{v}_{θ} generates a S_{2}-direction (resp. B_{2}-direction, C_{3}-direction) if

$$
a_{21}\left(w_{\theta}\right)=0(\text { resp. } \neq 0,=0), \quad \text { and } a_{03}\left(w_{\theta}\right) \neq 0(\text { resp. }=0,=0)
$$

where the definition of $a_{i j}\left(w_{\theta}\right)(i+j=3)$ is given as follows:

$$
H_{3}(w z)=a_{30}(w) \frac{x^{3}}{6}+a_{21}(w) \frac{x^{2} y}{2}+a_{12}(w) \frac{x y^{2}}{2}+a_{03}(w) \frac{y^{3}}{6} .
$$

In other words, \boldsymbol{v}_{θ} generates a S_{2}-direction (resp. B_{2}-direction, C_{3}-direction) if and only if

$$
\begin{aligned}
&|\alpha| \sin (3 \theta+\arg \alpha)+|\beta| \sin (\theta+\arg \beta)=0(\text { resp. } \neq 0,=0), \text { and } \\
&|\alpha| \sin (3 \theta+\arg \alpha)-3|\beta| \sin (\theta+\arg \beta) \neq 0 \quad(\text { resp. }=0,=0)
\end{aligned}
$$

Moreover, we say that \boldsymbol{v}_{θ} generates a simple (resp. double) S_{2}-direction (or $B_{2^{-}}$ direction), if w_{θ} is a simple (resp. double) root of the cubic $a_{21}(w)$ (or $a_{03}(w)$).

If \boldsymbol{v}_{θ} is not such a direction, $f^{\Pi_{\theta}}$ has a singularity \mathcal{A}-equivalent to $S_{1}^{ \pm}$. Moreover, the singularity of $f^{\Pi_{\theta}}$ is \mathcal{A}-versally unfolded by the family F.

We remark that S_{2}-direction (or C_{3}-direction) is orthogonal to a characteristic direction (see the second formula of (4.241$)$).

Lemma 4.12. We consider an umiblic defined by (4.ل1). Then the numbers of S_{2} directions, B_{2}-directions and C_{3}-directions are summarized as follows:

$D_{H_{3}}$	$D_{H_{3}^{\prime}}$	$\alpha \bar{\beta}^{3} \neq \bar{\alpha} \beta^{3}$	$\alpha \bar{\beta}^{3}=\bar{\alpha} \beta^{3}$
+	+	$3 S_{2}+3 B_{2}$	$2 S_{2}+2 B_{2}+C_{3}(\beta \neq 0), 3 C_{3}(\beta=0)$
0	+	$3 S_{2}+2 B_{2}$	$2 S_{2}+B_{2}+C_{3}$
-	+	$3 S_{2}+B_{2}$	$2 S_{2}+C_{3}$
0	0	-	$S_{2}+C_{3}$
-	0	$2 S_{2}+B_{2}$	C_{3}
-	-	$S_{2}+B_{2}$	C_{3}

- Case: $D_{H_{3}} \neq 0, D_{H_{3}^{\prime}}=0$
* If $\alpha \bar{\beta}^{3} \neq \bar{\alpha} \beta^{3}$, then there are one simple S_{2}-direction and one double S_{2} direction.
* If $\alpha \bar{\beta}^{3}=\bar{\alpha} \beta^{3}$, then there are one double S_{2}-direction and one C_{3}-direction.
- Case: $D_{H_{3}}=0, D_{H_{3}^{\prime}} \neq 0$.
* If $\alpha \bar{\beta}^{3} \neq \bar{\alpha} \beta^{3}$, then there are one simple B_{2}-direction and one double B_{2} direction.
* If $\alpha \bar{\beta}^{3}=\bar{\alpha} \beta^{3}$, then there are one simple B_{2}-direction and one C_{3}-direction.
- When $D_{H_{3}}=0, D_{H_{3}^{\prime}}=0$, we automatically have $\alpha \bar{\beta}^{3}=\bar{\alpha} \beta^{3}$ and there are one double S_{2}-direction and one C_{3}-direction.

Proof. Routine calculation. See the items (i)-(iv) in the proof of Proposition 4.20 below also.

Assume that $\alpha \bar{\beta}^{3}=\bar{\alpha} \beta^{3}$. When $D_{H_{3}^{\prime}}=0$ and $D_{H_{3}} \neq 0\left(\operatorname{resp} . D_{H_{3}^{\prime}} \neq 0\right.$ and $\left.D_{H_{3}}=0\right)$, the computation reduces to case $\alpha=1$ and $\beta=-3$ (resp. -1), which is analyzed in Example 4.32 (resp. 4.37). When $D_{H_{3}^{\prime}}=D_{H_{3}}=0$, the computation reduces to case $\alpha=\beta=1$, which is analyzed in Example 4.33].

4.2 A criteria of S_{2} and S_{3} singularities

We here formulate a criterion that the folding map $f^{\Pi_{\theta}}$ has S_{2} or S_{3} singularities using curvature lines.

Theorem 4.13. Let L_{θ} denote the section of the surface by the reflection plane Π_{θ}. If \boldsymbol{v}_{θ} generates an S_{2}-direction, then $f^{\Pi_{\theta}}$ has a singularity \mathcal{A}-equivalent to

- S_{2} if a nonsingular curvature line approaching the umbilic in the direction generated by w_{θ} has 2-point contact with L_{θ}.
- S_{3} if a nonsingular curvature line approaching the umbilic in the direction generated by w_{θ} has 3-point contact with L_{θ}.

Before the proof of this theorem we introduce the notion of asymptotic curvature line. We say that a curve

$$
\begin{equation*}
\gamma: s \mapsto z=\gamma(s)=p_{1} s+p_{2} \frac{s^{2}}{2}+p_{3} \frac{s^{3}}{6}+O\left(s^{4}\right), \quad p_{1} \neq 0, \tag{4.14}
\end{equation*}
$$

represents an asymptotic curvature line of order k if it satisfies the equation for curvature lines (4.2) up to order k, that is,

$$
\sqrt{-1}\left|\begin{array}{ccc}
h_{z}^{2} & h_{z z} & d \bar{z}^{2} \\
1+2\left|h h_{z}\right|^{2} & h_{z \bar{z}} & -d z d \bar{z} \\
h_{\bar{z}}^{2} & h_{\bar{z} \bar{z}} & d z^{2}
\end{array}\right|(\gamma(s))=O\left(s^{k+1}\right) .
$$

In order to show Theorem 4.13, it is enough to show the following.
Proposition 4.15. Let L_{θ} denote the section of the surface by the reflection plane Π_{θ}. If \boldsymbol{v}_{θ} generates an S_{2}-direction, then $f^{\Pi_{\theta}}$ has a singularity \mathcal{A}-equivalent to

- S_{2}, if and only if $H_{4}^{\prime}\left(w_{\theta}\right) \neq 0$, that is, an asymptotic curvature line of order 2 approaching the umbilic in the direction generated by w_{θ} has 2-point contact with L_{θ}.
- S_{3}, if and only if $H_{4}^{\prime}\left(w_{\theta}\right)=0$ and $H_{5}^{\prime}\left(w_{\theta}\right) \neq 0$, that is, an asymptotic curvature line of order 3 approaching the umbilic in the direction generated by w_{θ} has 3-point contact with L_{θ}.

Proof. The assertions are proved by evaluating (4.2) along a curve defined by (4.44). By this evaluation, the left hand side of (4.2) becomes

$$
\begin{equation*}
\left.H_{3}^{\prime}\left(p_{1}\right) s+\left[H_{4}^{\prime}\left(p_{1}\right)+O\left(\left|p_{2}\right|\right)\right] s^{2}+\left[H_{5}^{\prime}\left(p_{1}\right)+\frac{k^{2}}{2}\left|p_{1}\right|^{2} H_{3}^{\prime}\left(p_{1}\right)+O\left(\left|p_{2}\right|,\left|p_{3}\right|\right)\right)\right] s^{3}+O\left(s^{4}\right) \tag{4.16}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{k}^{\prime}(z)=\frac{1}{\sqrt{-1}}\left[z^{2}\left(H_{k}\right)_{z z}(z)-\bar{z}^{2}\left(H_{k}\right)_{\bar{z} \bar{z}}(z)\right], \quad \text { for } k=3,4,5, \ldots \tag{4.17}
\end{equation*}
$$

If the curve (4.14) has at least 3 -point contact with L_{θ}, we have $p_{1}=w_{\theta}$ and $p_{2}=0$. If $H_{4}^{\prime}\left(w_{\theta}\right) \neq 0$, (4.161$)$ is not zero. This shows the first assertion.

If the curve (4.14) has at least 4-point contact with L_{θ}, we have $p_{1}=w_{\theta}$ and $p_{2}=$ $p_{3}=0$. If $H_{5}^{\prime}\left(w_{\theta}\right) \neq 0$, (4.16) is not zero. This shows the second assertion.

Remark 4.18. Computation in the previous section has several interesting consequences at umbilic. Consider the surfaces defined by ($\mathbb{L} .2)$. When $k_{1} \neq k_{2}$, the tangent direction of the locus $\kappa_{1}=k_{1}\left(\right.$ resp. $\left.\kappa_{2}=k_{2}\right)$ is generated by $a_{21} \partial_{x}-a_{30} \partial_{y}$ (resp. $a_{03} \partial_{x}-a_{12} \partial_{y}$) by (ㄹ.П), whenever $\left(a_{21}, a_{30}\right) \neq 0$ (resp. $\left.\left(a_{12}, a_{03}\right) \neq 0\right)$. Tending $k_{2} \rightarrow k_{1}$, we obtain that the limit of the tangent directions is generated by $a_{21} \partial_{x}-a_{30} \partial_{y}$ (resp. $a_{03} \partial_{x}-a_{12} \partial_{y}$). A similar argement using (3.2), (3.3), (3.4) and (3.5) shows that, tending $k_{2} \rightarrow k_{1}$, the limit of tangent directions to the levels of $v_{i} \kappa_{j}, i, j=1,2$, at 0 is generated by $a_{12} \partial_{x}-a_{21} \partial_{y}$, whenever $\left(a_{21}, a_{12}\right) \neq 0$.

Setting $z=x+y \sqrt{-1}$ in (4.3) and (4.5), we have

$$
\begin{aligned}
& H_{3}=\operatorname{Re}(\alpha+3 \beta) x^{3} / 6-\operatorname{Im}(\alpha+\beta) x^{2} y / 2-\operatorname{Re}(\alpha-\beta) x y^{2} / 2+\operatorname{Im}(\alpha-3 \beta) y^{3} / 6, \\
& H_{3}^{\prime}=\operatorname{Im}(\alpha+\beta) x^{3}+\operatorname{Re}(3 \alpha+\beta) x^{2} y-\operatorname{Im}(3 \alpha-\beta) x y^{2}-\operatorname{Re}(\alpha-\beta) y^{3} .
\end{aligned}
$$

If the origin is v_{2}-subparabolic (that is, $a_{21}=0$), then $\operatorname{Im}(\alpha+\beta)=0$, and the limit direction is generated by ∂_{x}. We remark that this direction is a characteristic direction since this is a root of H_{3}^{\prime}.

If we have a C_{3}-direction with respect to v_{2} (that is, $a_{21}=a_{03}=0$), then, a discussion similar to the above shows that, tending $k_{2} \rightarrow k_{1}$, the corresponding subparabolic line and the corresponding ridge line have the same limiting tangent direction (generated by ∂_{x}) at the umbilic whenever $a_{12} \neq 0$.

4.3 Criteria of \mathcal{A}-versality of the folding family

We consider criteria of \mathcal{A}-versality of the folding family at umbilics of surfaces. Since the case for S^{1} singularity is always \mathcal{A}-versal (see Lemma [. \mathbb{L}), we state other singularities cases.

Theorem 4.19. We use the notations prepared in \$4.].
(1) Assume that \boldsymbol{v}_{θ} generates an S_{2}-direction,

- If the folding map $f^{\Pi_{\theta}}$ has an S_{2}-singularity, then the folding map $f^{\Pi_{\theta}}$ is \mathcal{A} versally unfolded by the folding family F, if and only if \boldsymbol{v}_{θ} does not generate a characteristic direction.
- If the folding map $f^{\Pi_{\theta}}$ has an S_{3}-singularity, then the folding map $f^{\Pi_{\theta}}$ is \mathcal{A} versally unfolded by the folding family F, if and only if the both of following conditions hold.
* \boldsymbol{v}_{θ} does not generate a characteristic direction, and
* \boldsymbol{v}_{θ} generates a simple S_{2}-direction (equivalently, w_{θ} generates a simple characteristic direction).
(2) Assume that \boldsymbol{v}_{θ} generates a B_{2}-direction and the folding map $f^{\Pi_{\theta}}$ has a B_{2}-singularity. The folding map $f^{\Pi_{\theta}}$ is \mathcal{A}-versally unfolded by the folding family F, if and only if one of the following conditions holds.
- \boldsymbol{v}_{θ} generates a simple B_{2}-direction, or
- \boldsymbol{v}_{θ} generates a double B_{2}-direction and the circle C_{θ} has 4-point contact with the surface (i.e., $H_{4}\left(v_{\theta}\right) \neq k^{3} / 8$), where C_{θ} is the section of the curvature sphere (or the tangent plane when $k=0$) with the plane generated by the normal $(0,0,1)$ and \boldsymbol{v}_{θ}.
(3) Assume that \boldsymbol{v}_{θ} generates a C_{3}-direction and $\left.f\right|_{\mathcal{M}}$ has a C_{3} singularity. Then the folding map is \mathcal{A}-versally unfolded by the folding family if and only if one of the following conditions holds.
- H_{3}^{\prime} is a cube (that is, we have a triple characteristic direction), or
- H_{3} is not a cube and the corresponding subparabolic line has 2-point contact with the corresponding ridge.

This theorem is a consequence of the following proposition. The reason that the criterion for \mathcal{A}-versality for B_{3} singularity is missing is that the authors are not aware the geometric meaning of the \mathcal{A}-versality condition (that is, $\mathcal{B}_{3} \neq 0$) for B_{3} singularity.

Proposition 4.20. We consider an umbilic defined by (4.ل1). Then the conditions for singularities of the folding map $\left.f\right|_{\mathcal{M}}$ and \mathcal{A}-versality of the folding family are summarized as follows:

	Condition for singularity type	Condition for \mathcal{A}-versality
$S_{1}^{ \pm}$	$\pm H_{3}^{\prime}\left(w_{\theta}\right) H_{3}\left(v_{\theta}\right)>0$	always versal.
S_{2}	$H_{3}^{\prime}\left(w_{\theta}\right)=0, H_{3}\left(v_{\theta}\right) \neq 0, H_{4}^{\prime}\left(w_{\theta}\right) \neq 0$	$H_{3}^{\prime}\left(v_{\theta}\right) \neq 0$
$S_{3}^{ \pm}$	$H_{3}^{\prime}\left(w_{\theta}\right)=0, \quad H_{4}^{\prime}\left(w_{\theta}\right)=0$ $\pm H_{3}\left(v_{\theta}\right) H_{5}^{\prime}\left(w_{\theta}\right)>0$	$H_{3}^{\prime}\left(v_{\theta}\right)\left(H_{3}^{\prime}\left(v_{\theta}\right)+3 H_{3}\left(w_{\theta}\right)\right) \neq 0$
$B_{2}^{ \pm}$	$H_{3}^{\prime}\left(w_{\theta}\right) \neq 0, H_{3}\left(v_{\theta}\right)=0, \pm B_{2}\left(w_{\theta}\right)>0$	$H_{3}^{\prime}\left(v_{\theta}\right) \neq 0$ or $H_{4}\left(v_{\theta}\right) \neq \frac{k^{3}}{8}$
$B_{3}^{ \pm}$	$H_{3}^{\prime}\left(w_{\theta}\right) \neq 0, \quad H_{3}\left(v_{\theta}\right)=0$, $B_{2}\left(w_{\theta}\right)=0, \quad \pm B_{3}\left(w_{\theta}\right)>0$	$\mathcal{B}_{3}\left(w_{\theta}\right) \neq 0$
$C_{3}^{ \pm}$	$H_{3}^{\prime}\left(w_{\theta}\right)=0, H_{3}\left(v_{\theta}\right)=0$, $\mp H_{4}^{\prime}\left(w_{\theta}\right) H_{4}^{\prime}\left(v_{\theta}\right)>0$	$H_{3}^{\prime}\left(v_{\theta}\right) \|$$3 H_{4}^{\prime}\left(w_{\theta}\right) H_{3}^{\prime}\left(v_{\theta}\right)+3 H_{3}\left(w_{\theta}\right)$ $2 H_{4}^{\prime}\left(v_{\theta}\right)$ $H_{3}^{\prime}\left(w_{\theta}\right)$

Here $H_{k}^{\prime}(z)$ is defined as (4.J7). The definitions of $B_{2}\left(w_{\theta}\right), B_{3}\left(w_{\theta}\right)$ and $\mathcal{B}_{3}\left(w_{\theta}\right)$ will be given later as (4.266), (4.27) and (4.28).

Proof. By the rotation defined by $z \mapsto w_{\theta} z$, we can send Π_{θ} to Π_{0} and \boldsymbol{v}_{θ} to ∂_{y}, and we can apply Lemmas $\mathbb{L . 7}$ and $\mathbb{T} .9$, which are summarized the criteria of singularities and \mathcal{A}-versality as follows:

	Condition for singularity type	Condition for \mathcal{A}-versality
$S_{1}^{ \pm}$	$\pm a_{21} a_{03}>0$.	always versal.
S_{2}	$a_{21}=0, a_{03} \neq 0, a_{31} \neq 0$.	$a_{12} \neq 0$.
$S_{3}^{ \pm}$	$a_{21}=0, a_{31}=0,, \pm a_{03} a_{41}>0$.	$a_{12}\left(2 a_{12}-a_{30}\right) \neq 0$.
$B_{2}^{ \pm}$	$a_{21} \neq 0, a_{03}=0, \pm\left(\frac{a_{05}}{5}-\frac{1}{3} \frac{a_{13}^{2}}{a_{21}}\right)>0$.	$a_{12} \neq 0$ or $a_{04} \neq 3 k^{3}$.
$B_{3}^{ \pm}$	$a_{21} \neq 0, a_{03}=0,3 a_{05}=5 a_{13}^{2} / a_{21}$, $\pm\left(\frac{a_{07}}{7}-a_{15} a_{01}+\frac{5}{a_{21}} a_{23}\left(\frac{013}{a_{21}}\right)^{2}-\frac{5}{9} a_{31}\left(\frac{a_{13}}{a_{21}}\right)^{3}\right)>0$.	a_{12} $a_{04}-3 k^{3}-\frac{a_{12} a_{13}}{a_{21}} \quad q$$\| \neq 0$.
$C_{3}^{ \pm}$	$a_{21}=0, a_{03}=0, \pm a_{31} a_{13}>0$.	$a_{12}\left(3 a_{31} a_{12}+a_{13}\left(2 a_{12}-a_{30}\right)\right) \neq 0$.

where

$$
\begin{align*}
p= & \frac{a_{14}}{2}+\frac{a_{13}}{3 a_{21}}\left(a_{04}-3 a_{22}\right)+\frac{a_{13}^{2}}{6 a_{21}^{2}}\left(a_{30}-2 a_{12}\right), \tag{4.21}\\
q= & \frac{3}{10} a_{06}-\frac{9}{2} a_{04} k^{2}-\frac{3}{10} \frac{a_{12} a_{15}^{2}}{a_{21}^{2}}+\frac{a_{13}}{a_{21}}\left(-a_{14}+6 a_{12} k^{2}+\frac{a_{12} a_{23}}{a_{21}}\right) \tag{4.22}\\
& +\frac{a_{13}^{2}}{a_{21}^{2}}\left(a_{22}-k^{3}-\frac{a_{12} a_{31}}{a_{21}}\right) .
\end{align*}
$$

We define $a_{i j}(w)$ by

$$
\begin{equation*}
h(w z)=\frac{k}{2} z \bar{z}+\sum_{i+j \geq 3}^{m} a_{i j}(w) \frac{x^{i} y^{j}}{i!j!}+O(m+1) . \tag{4.23}
\end{equation*}
$$

Then, by direct computation, we have

$$
\begin{equation*}
a_{30}(w)=6 H_{3}(w), \quad a_{21}(w)=-H_{3}^{\prime}(w), \quad a_{12}(w)=-H_{3}^{\prime}\left(\frac{w}{\sqrt{-1}}\right), \quad a_{03}(w)=-6 H_{3}\left(\frac{w}{\sqrt{-1}}\right), \tag{4.24}
\end{equation*}
$$

and we also conclude

$$
2 a_{12}(w)-a_{30}(w)=-2\left(H_{3}^{\prime}\left(\frac{w}{\sqrt{-1}}\right)+3 H_{3}(w)\right) .
$$

Using these relations, we can prove the following assertions, taking resultants of the corresponding cubics.
(i) There is a non-zero w with $a_{21}(w)=a_{12}(w)=0$ if and only if $|\alpha|=|\beta|$.
(ii) There is a non-zero w with $a_{21}(w)=2 a_{12}(w)-a_{30}(w)=0$ if and only if $D_{H_{3}^{\prime}}=0$.
(iii) There is a non-zero w with $a_{12}(w)=a_{03}(w)=0$ if and only if $D_{H_{3}}=0$.
(iv) There is a non-zero w with $a_{21}(w)=a_{03}(w)=0$ if and only if $\alpha \bar{\beta}^{3}=\bar{\alpha} \beta^{3}$.

In the same way as above, we can further show the following relations:

$$
a_{31}(w)=-2 H_{4}^{\prime}(w), \quad a_{13}(w)=2 H_{4}^{\prime}\left(\frac{w}{\sqrt{-1}}\right)
$$

and, we obtain that

$$
3 a_{31} a_{12}+a_{13}\left(2 a_{12}-a_{30}\right)=6 H_{4}\left(w_{\theta}\right) H_{3}^{\prime}\left(w_{\theta}\right)-4 H_{4}^{\prime}\left(v_{\theta}\right)\left(H_{3}^{\prime}\left(v_{\theta}\right)+3 H_{3}\left(w_{\theta}\right)\right)
$$

Furthermore, we also have

$$
\begin{array}{ll}
a_{22}(w)= & \frac{1}{4}\left(6 H_{4}(w)-K_{4}^{\prime}(w)\right), \\
a_{04}(w)=4!H_{4}\left(\frac{w}{\sqrt{-1}}\right), & a_{41}(w)=-3!H_{5}^{\prime}(w), \tag{4.25}\\
a_{23}(w)=3 H_{5}^{\prime \prime}\left(\frac{w}{\sqrt{-1}}\right)-4 H_{5}^{\prime \prime}\left(\frac{w}{\sqrt{-1}}\right), a_{14}(w)=-3!H_{5}^{\prime}\left(\frac{w}{\sqrt{-1}}\right), a_{05}(w)=-5!H_{5}\left(\frac{w}{\sqrt{-1}}\right), \\
a_{15}(w)= & 4!H_{6}^{\prime}\left(\frac{w}{\sqrt{-1}}\right), \quad a_{06}(w)=6!H_{6}\left(\frac{w}{\sqrt{-1}}\right), \\
a_{07}(w)=-7!H_{7}\left(\frac{w}{\sqrt{-1}}\right),
\end{array}
$$

where

$$
H_{k}^{\prime \prime}=\frac{1}{\sqrt{-1}}\left[z^{3}\left(H_{k}\right)_{z z z}-\bar{z}^{3}\left(H_{k}\right)_{\bar{z} \bar{z}}\right], H_{k}^{\prime \prime \prime}=\frac{1}{\sqrt{-1}}\left[z^{4}\left(H_{k}\right)_{z z z z}-\bar{z}^{4}\left(H_{k}\right)_{\bar{z} \bar{z} \bar{z} \bar{z}}, K_{k}^{\prime}=z^{2}\left(H_{k}\right)_{z z}+\bar{z}^{2}\left(H_{k}\right)_{\bar{z} \bar{z}} .\right.
$$

Finally we obtain the corresponding expression for B_{2}, B_{3} and \mathcal{B}_{3} as follows:

$$
\begin{align*}
B_{2}\left(w_{\theta}\right)= & -24 H_{5}\left(v_{\theta}\right)+\frac{4}{3} \frac{H_{4}^{\prime}\left(v_{\theta}\right)^{2}}{H_{3}^{\prime}\left(w_{\theta}\right)}, \tag{4.26}\\
B_{3}\left(w_{\theta}\right)= & 6!H_{7}\left(v_{\theta}\right)+48 H_{6}\left(v_{\theta}\right) \frac{H_{4}^{\prime}\left(v_{\theta}\right)}{H_{3}^{\prime}\left(w_{\theta}\right)}+\frac{20}{3}\left(3 H_{5}^{\prime \prime \prime}\left(v_{\theta}\right)-4 H_{5}^{\prime \prime}\left(v_{\theta}\right)\right)\left(\frac{H_{4}^{\prime}\left(v_{\theta}\right)}{H_{3}^{\prime}\left(w_{\theta}\right)}\right)^{2} \tag{4.27}\\
& -\frac{80}{9} H_{4}^{\prime}\left(w_{\theta}\right)\left(\frac{H_{4}^{\prime}\left(v_{\theta}\right)}{H_{3}^{(}\left(w_{\theta}\right)}\right)^{3}, \\
H_{3}^{\prime}\left(w_{\theta}\right) & p\left(w_{\theta}\right) \tag{4.28}\\
\mathcal{B}_{3}\left(w_{\theta}\right)= & \left|\begin{array}{cc}
24 H_{4}\left(v_{\theta}\right)-3 k_{2}^{3}-\frac{2 H_{3}^{\prime}\left(v_{\theta}\right) H_{4}^{\prime}\left(v_{\theta}\right)}{H_{3}\left(v_{\theta}\right) H_{3}^{3}\left(w_{\theta}\right)} & q\left(w_{\theta}\right)
\end{array}\right|,
\end{align*}
$$

where $p\left(w_{\theta}\right)$ (resp. $q\left(w_{\theta}\right)$) is defined by changing $a_{i j}$ by $a_{i j}\left(w_{\theta}\right)$ in (4.2 T$)$ (resp. (4.22)) and substituting using (4.25). We complete the proof.

Example 4.29. When $\alpha>0$ and $\beta=0$, this is a star, and we have

$$
H_{3}\left(w_{\theta} z\right)=|\alpha|\left(\cos 3 \theta \frac{x^{3}-3 x y^{2}}{6}-\sin 3 \theta \frac{3 x^{2} y-y^{3}}{6}\right)
$$

We then conclude that the folding map $f^{\Pi_{\theta}}$ has a singularity \mathcal{A}-equivalent to

- $S_{1}^{ \pm}$singularity, if $3 \theta \not \equiv 0 \bmod \pi$.
- $C_{3}^{ \pm}$singularity, if $3 \theta \equiv 0 \bmod \pi$, and $H_{4}^{\prime}\left(w_{\theta}\right) \neq 0, H_{4}^{\prime}\left(v_{\theta}\right) \neq 0$. Moreover, the folding family F is \mathcal{A}-versal at $f^{\Pi_{\theta}}$ if $H_{4}^{\prime}\left(w_{\theta}\right)-H_{4}^{\prime}\left(v_{\theta}\right) \neq 0$.

Example 4.30. When $\alpha=0$ and $\beta \neq 0$, this is a lemon, and we have

$$
H_{3}\left(w_{\theta} z\right)=|\beta|\left(\cos (\theta+\arg \beta) \frac{x^{3}+3 x y^{2}}{2}-\sin (\theta+\arg \beta) \frac{3 x^{2} y+y^{3}}{2}\right) .
$$

We then conclude that the folding map $f^{\Pi_{\theta}}$ has a singularity \mathcal{A}-equivalent to

- $S_{1}^{ \pm}$singularity, if $\theta+\arg \beta \not \equiv 0 \bmod \pi$.
- $C_{3}^{ \pm}$singularity, if $\theta+\arg \beta \equiv 0 \bmod \pi$, and $H_{4}^{\prime}\left(w_{\theta}\right) \neq 0, H_{4}^{\prime}\left(v_{\theta}\right) \neq 0$. Moreover, the folding family F is \mathcal{A}-versal at $f^{\Pi_{\theta}}$ if $3 H_{4}^{\prime}\left(w_{\theta}\right)+H_{4}^{\prime}\left(v_{\theta}\right) \neq 0$.

There are cases where \mathcal{A}-versality can be determined by 3 -jet, which is worth stating as a theorem.

Theorem 4.31. Assume that the umbilic is star, monstar or lemon. If the folding family $f^{\Pi_{\theta}}$ has S_{2}, S_{3} or B_{2} singularity, then $f^{\Pi_{\theta}}$ is \mathcal{A}-versally unfolded by the folding family F.

Proof. A consequence of the table and the items (i) - (iv) in the proof of Proposition 4.20.

Example 4.32. When $\alpha>0$ and $\beta=\alpha$, the H_{3} is a cube. This is the case that $D_{H_{3}}=D_{H_{3}^{\prime}}=0$, we have

$$
a_{21}\left(w_{\theta}\right)=-8|\alpha| \cos ^{2} \theta \sin \theta, \quad a_{03}\left(w_{\theta}\right)=-8|\alpha| \sin ^{3} \theta
$$

In this case we have one double S_{2}-direction (that is, $\theta=\pi / 2$) and one C_{3}-direction (that is, $\theta=0$). Since $a_{12}\left(w_{\theta}\right)=8|\alpha| \cos \theta \sin ^{2} \theta$, we obtain that the folding map $f^{\Pi_{\theta}}$ is not \mathcal{A}-versally unfolded by the folding family F, even though $f^{\Pi_{\theta}}$ may define S_{2}, S_{3} or C_{3} singularities.

Example 4.33. When $\alpha>0$ and $\beta=-3 \alpha$, we have H_{3}^{\prime} is a cube. Then $D_{H_{3}^{\prime}}=0$ and

$$
a_{21}\left(w_{\theta}\right)=8|\alpha| \sin ^{3} \theta, \quad \quad a_{03}\left(w_{\theta}\right)=4|\alpha|(5+\cos 2 \theta) \sin \theta
$$

In this case, we have one C_{3}-directions (that is, $\theta=0$). Since

$$
a_{12}\left(w_{\theta}\right)=-8|\alpha| \cos ^{3} \theta, \quad 2 a_{12}\left(w_{\theta}\right)-a_{30}\left(w_{\theta}\right)=24|\alpha| \cos \theta \sin ^{2} \theta
$$

If \boldsymbol{v}_{θ} generates a C_{3}-direction and $f^{\Pi_{\theta}}$ defines C_{3} singularity, then the folding family F is \mathcal{A}-versal at $f^{\Pi_{\theta}}$, whenever $H_{4}^{\prime}\left(w_{\theta}\right) \neq 0$.

We first show the item (3) of Theorem 4.IT.
Proof of Theorem 4. 19 (3). We assume that $\alpha \bar{\beta}^{3}=\bar{\alpha} \beta^{3}$. By Remark 1.10 , we can assume that both α and β are non-zero real. Since

$$
\begin{aligned}
& a_{21}\left(w_{\theta}\right)=-2(\beta \sin \theta+\alpha \sin 3 \theta), \\
& a_{03}\left(w_{\theta}\right)=-2(\beta \sin \theta-\alpha \sin 3 \theta),
\end{aligned}
$$

we have $\sin \theta=\sin 3 \theta=0$. It is enough to consider the case $\theta=0$. We assume that $f^{\Pi_{0}}$ defines a C_{3} singularity, which means $a_{31}\left(w_{\theta}\right) a_{13}\left(w_{\theta}\right) \neq 0$. Then

$$
\begin{align*}
a_{12}\left(w_{\theta}\right) & =2(\beta \cos \theta-\alpha \cos 3 \theta)=2(\beta-\alpha), \tag{4.34}\\
2 a_{12}\left(w_{\theta}\right)-a_{30}\left(w_{\theta}\right) & =-2(\beta \cos \theta+3 \alpha \cos 3 \theta)=-2(\beta+3 \alpha) . \tag{4.35}
\end{align*}
$$

If H_{3} is a cube, the folding family is not \mathcal{A}-versal, by Example 4.32. We assume that (4.34) is not zero. If (4.3.5) is zero (that is H_{3}^{\prime} is a cube), then the folding family is \mathcal{A}-versal, since $a_{31}\left(w_{\theta}\right) \neq 0$. We then assume that (4.35) is not zero.

We consider the surface defined by (I.2). We remark that the coefficient of $x^{2} / 2$ in (3.8) is

$$
a_{41}-a_{21} k_{1}\left(5 k_{1}+k_{2}\right)+\frac{a_{21}\left(4 a_{22}-3 a_{40}+2 k_{1}^{3}\right)+\left(2 a_{12}-a_{30}\right) a_{31}}{k_{1}-k_{2}}+\frac{a_{21}\left(2 a_{03}-7 a_{21}\right)+a_{12}\left(4 a_{12}-6 a_{30}\right)+2 a_{30}^{2}}{\left(k_{1}-k_{2}\right)^{2}}
$$

and the coefficient of $x^{2} / 2$ in (3.9) is

$$
a_{23}+3 a_{21} k_{2}^{2}+\frac{3\left(a_{12} a_{31}+2 a_{21}\left(a_{22}-k_{2}^{3}\right)\right)}{k_{1}-k_{2}}+\frac{6 a_{21}\left(a_{21}^{2}-a_{12}^{2}+a_{12} a_{30}\right)}{\left(k_{1}-k_{2}\right)^{2}} .
$$

Assume that $a_{21}=a_{03}=0$ and consider parametrizations of the zeros of (B.8) and (B..प). Tending $k_{2} \rightarrow k_{1}$ we obtain the following: The limit of v_{2}-subparabolic lines is represented by

$$
t \mapsto(x, y)=\left(t, \frac{a_{30} a_{31}}{a_{12}\left(a_{30}-2 a_{12}\right)} \frac{t^{2}}{2}+O(3)\right)
$$

and the limit of v_{2}-ridge lines is represented by

$$
t \mapsto(x, y)=\left(t,-\frac{2 a_{12} a_{13}-2 a_{30} a_{13}+3 a_{12} a_{31}}{3 a_{12}^{2}} \frac{t^{2}}{2}+O(3)\right)
$$

We thus complete the proof, since

$$
\frac{a_{30} a_{31}}{a_{12}\left(a_{30}-2 a_{12}\right)}+\frac{2 a_{12} a_{13}-2 a_{30} a_{13}+3 a_{12} a_{31}}{3 a_{12}^{2}}=\frac{2\left(a_{30}-a_{12}\right)\left(-3 a_{12} a_{31}+\left(a_{30}-2 a_{12}\right) a_{13}\right)}{3 a_{12}^{2}\left(2 a_{12}-a_{30}\right)}
$$

We also see several examples, as consequences of Proposition 4.20].
Example 4.36. When $\alpha>0$ and $\beta=-(1 / 3) \alpha$, which is the case that $D_{H_{3}}=0, D_{H_{3}^{\prime}} \neq 0$ with C_{3}-direction, we have

$$
a_{21}\left(w_{\theta}\right)=-\frac{4}{3}|\alpha| \sin \theta(1+3 \cos 2 \theta), \quad a_{03}\left(w_{\theta}\right)=8|\alpha| \cos ^{2} \theta \sin \theta
$$

In this case, we have two simple S_{2}-directions (that is, $\theta= \pm \tan ^{-1} \sqrt{2}$), one double B_{2}-direction (that is, $\theta=\pi / 2$) and one C_{3}-direction (that is, $\theta=0$). Since

$$
a_{12}\left(w_{\theta}\right)=\frac{4}{3}|\alpha| \cos \theta(1-3 \cos 2 \theta), \quad 2 a_{12}\left(w_{\theta}\right)-a_{30}\left(w_{\theta}\right)=\frac{4}{3}|\alpha| \cos \theta(9 \cos 2 \theta-5),
$$

we obtain the following:

- If \boldsymbol{v}_{θ} generates a simple S_{2}-directions, then the folding family F is \mathcal{A}-versal at $f^{\Pi_{\theta}}$, whenever $f^{\Pi_{\theta}}$ is S_{2} or S_{3} singularity.
- If \boldsymbol{v}_{θ} generates a double B_{2}-direction, then the folding family F is \mathcal{A}-versal at $f^{\Pi_{\theta}}$ whenever $H_{4}\left(v_{\theta}\right) \neq k^{3} / 8$.
- If \boldsymbol{v}_{θ} generates a C_{3}-direction and $f^{\Pi_{\theta}}$ defines a C_{3} singularity, then the folding family F is \mathcal{A}-versal at $f^{\Pi_{\theta}}$, whenever $3 H_{4}^{\prime}\left(w_{\theta}\right)-2 H_{4}^{\prime}\left(v_{\theta}\right) \neq 0$.

Example 4.37. When $\alpha>0$ and $\beta=-\alpha$, which is the right-angled umbilic with a C_{3}-direction, we have

$$
a_{21}\left(w_{\theta}\right)=8|\alpha| \sin \theta \sin \left(\frac{\pi}{4}+\theta\right) \sin \left(\frac{\pi}{4}-\theta\right), \quad a_{03}\left(w_{\theta}\right)=4|\alpha| \sin \theta(2+\cos 2 \theta) .
$$

In this case, we have two S_{2}-directions (that is, $\theta= \pm \pi / 4$), which generate characteristic directions, and one C_{3}-direction (that is, $\theta=0$). Since

$$
a_{12}\left(w_{\theta}\right)=4|\alpha| \cos \theta \sin \left(\frac{\pi}{4}+\theta\right) \sin \left(\frac{\pi}{4}-\theta\right), \quad 2 a_{12}\left(w_{\theta}\right)-a_{30}\left(w_{\theta}\right)=4|\alpha| \cos \theta(2-3 \cos 2 \theta)
$$

we obtain the following:

- If \boldsymbol{v}_{θ} generates a simple S_{2}-directions, then the folding family F defines \mathcal{A}-versal at $f^{\Pi_{\theta}}$, whenever $f^{\Pi_{\theta}}$ defines an S_{2} or S_{3} singularity.
- If \boldsymbol{v}_{θ} generates a C_{3}-direction and $f^{\Pi_{\theta}}$ defines C_{3} singularity, then the folding family F is \mathcal{A}-versal at $f^{\Pi_{\theta}}$, whenever $3 H_{4}^{\prime}\left(w_{\theta}\right)-2 H_{4}^{\prime}\left(v_{\theta}\right) \neq 0$.

Proof of Theorem 4.19 (1), (2). The proof is already done when the umbilic is star, monstar and lemon. So we consider the case $|\alpha|=|\beta|$ or $D_{H_{3}^{\prime}}=0$ or $D_{H_{3}}=0$. The following cases have been already analyzed.

- $D_{H_{3}^{\prime}}=D_{H_{3}}=0$ (Example L..32).
- singular locus of $D_{H_{3}^{\prime}}=0$ (Example 4.3.3)).
- $D_{H_{3}}=0, \alpha \bar{\beta}^{3}=\bar{\alpha} \beta^{3}, D_{H_{3}} \neq 0$ (Example 4.36).
- $|\alpha|=|\beta|, \alpha \bar{\beta}^{3}=\bar{\alpha} \beta^{3}, D_{H_{3}} \neq 0$ (Example 4.37).

Without loss of generality, we can assume that $\alpha \geq 0$. We first consider the case that the umbilic is right-angled (that is, $|\alpha|=|\beta|$) with no C_{3}-direction (that is, $\alpha \bar{\beta}^{3} \neq \bar{\alpha} \beta^{3}$). We can assume that $\alpha>0$. We obtain that

$$
\begin{aligned}
& a_{21}\left(w_{\theta}\right)=-4|\alpha| \cos \left(\theta-\frac{\arg \beta}{2}\right) \sin \left(2 \theta+\frac{\arg \beta}{2}\right), \\
& a_{03}\left(w_{\theta}\right)=2|\alpha|(\sin 3 \theta-3 \sin (\theta+\arg \beta)) .
\end{aligned}
$$

Thus there are three simple S_{2}-direction (that is, $\theta=-\frac{\arg \beta}{4}, \frac{2 \pi-\arg \beta}{4}, \frac{\pi+\arg \beta}{2}$) and one simple B_{2}-direction. Since

$$
a_{12}\left(w_{\theta}\right)=4|\alpha| \sin \left(\theta-\frac{\arg \beta}{2}\right) \sin \left(2 \theta+\frac{\arg \beta}{2}\right),
$$

we have the following:

- If \boldsymbol{v}_{θ} generates a simple S_{2}-directions with $\theta=\frac{\pi+\arg \beta}{2}$, then the folding family F is \mathcal{A}-versal at $f^{\Pi_{\theta}}$, whenever $f^{\Pi_{\theta}}$ defines an S_{2} or S_{3} singularity.
- If \boldsymbol{v}_{θ} generates a simple S_{2}-directions with $\theta=\frac{\arg \beta}{4}, \frac{2 \pi+\arg \beta}{4}$, then the folding family F is not \mathcal{A}-versal at $f^{\Pi_{\theta}}$.
- If \boldsymbol{v}_{θ} generates a B_{2}-direction and $f^{\Pi_{\theta}}$ defines B_{2} singularity, then the folding family F is \mathcal{A}-versal at $f^{\Pi_{\theta}}$, whenever $H_{4}\left(v_{\theta}\right) \neq k^{3} / 8$.

We next consider the case that $D_{H_{3}^{\prime}}=0$ with no C_{3}-direction (that is, $\alpha \bar{\beta}^{3} \neq \bar{\alpha} \beta^{3}$). Using the notation of (4.9), we obtain that

$$
\begin{aligned}
& a_{21}\left(w_{\theta}\right)=8 \sin ^{2}\left(\theta-\frac{\phi}{2}\right) \sin (\theta+\phi), \\
& a_{03}\left(w_{\theta}\right)=2|\alpha|(\sin 3 \theta+3 \sin (\theta-2 \phi)+6 \sin (\theta+\phi)) .
\end{aligned}
$$

Thus there are one simple S_{2}-direction (that is, $\theta=-\phi$), one double S_{2}-direction (that is, $\theta=\phi / 2$), and one simple B_{2}-direction. Since

$$
\begin{aligned}
a_{12}\left(w_{\theta}\right) & =8 \sin ^{2}\left(\theta-\frac{\phi}{2}\right) \cos (\theta+\phi), \\
2 a_{12}\left(w_{\theta}\right)-a_{30}\left(w_{\theta}\right) & =2|\alpha| \sin \left(\theta-\frac{\phi}{2}\right)\left(3 \sin \left(2 \theta+\frac{\phi}{2}\right)+\sin \frac{3 \phi}{2}\right),
\end{aligned}
$$

we have the following:

- If \boldsymbol{v}_{θ} generates a simple S_{2}-direction, then the folding family F is \mathcal{A}-versal at $f^{\Pi_{\theta}}$, whenever $f^{\Pi_{\theta}}$ defines an S_{2} or S_{3} singularity.
- If \boldsymbol{v}_{θ} generates a double S_{2}-direction, then the folding family F is not \mathcal{A}-versal at $f^{\Pi_{\theta}}$. (In [2 , line 9 , page 70], Bruce and Wilkinson mentioned that " S_{2} is not versally unfolded by $F^{\prime \prime}$, which should be read as pointing out this fact.)
- If \boldsymbol{v}_{θ} generates a B_{2}-direction and $f^{\Pi_{\theta}}$ defines B_{2} singularity, then the folding family F is \mathcal{A}-versal at $f^{\Pi_{\theta}}$.

Thirdly, we consider the case that $D_{H_{3}}=0$ with no C_{3}-direction (that is, $\alpha \bar{\beta}^{3} \neq \bar{\alpha} \beta^{3}$). Using the notation of (4.8), we obtain that

$$
\begin{aligned}
& a_{21}\left(w_{\theta}\right)=-\frac{4}{3}|\alpha| \sin \left(\theta-\frac{\phi}{2}\right)\left(3 \cos \left(2 \theta+\frac{\phi}{2}\right)+\cos \frac{3 \phi}{2}\right), \\
& a_{03}\left(w_{\theta}\right)=8|\alpha| \cos ^{2}\left(\theta-\frac{\phi}{2}\right) \sin (\theta+\phi) .
\end{aligned}
$$

Thus there are one simple B_{2}-direction, one double B_{2}-direction and three simple $S_{2^{-}}$ directions. Since

$$
a_{12}\left(w_{\theta}\right)=-\frac{4}{3}|\alpha| \cos \left(\theta-\frac{\phi}{2}\right)\left(3 \cos \left(2 \theta+\frac{\phi}{2}\right)+\cos \frac{3 \phi}{2}\right),
$$

we have the following:

- If \boldsymbol{v}_{θ} generates a simple S_{2}-direction, then the folding family F is \mathcal{A}-versal at $f^{\Pi_{\theta}}$, whenever $f^{\Pi_{\theta}}$ defines an S_{2} or S_{3} singularity.
- If \boldsymbol{v}_{θ} generates a simple B_{2}-direction, then the folding family F is \mathcal{A}-versal at $f^{\Pi_{\theta}}$.
- If \boldsymbol{v}_{θ} generates a double B_{2}-direction and $f^{\Pi_{\theta}}$ defines B_{2} singularity, then the folding family F is \mathcal{A}-versal at $f^{\Pi_{\theta}}$ if and only if $H_{4}\left(v_{\theta}\right) \neq k^{3} / 8$.

Remark 4.38. When $\alpha=\beta=0$, then any direction v_{θ} is a C_{3}-direction and the folding map can have C_{3} singularity, but the folding family F is not \mathcal{A}-versal at $f^{\Pi_{\theta}}$.

5 Proof of Lemma 1.9

We consider a motion $\boldsymbol{p} \longmapsto A(\boldsymbol{p})=\left(\boldsymbol{a}_{1} \boldsymbol{a}_{2} \boldsymbol{a}_{3}\right) \boldsymbol{p}+\boldsymbol{a}_{0}$ where
$\boldsymbol{a}_{0}=w\binom{\tau_{1}}{\tau_{3}}, \boldsymbol{a}_{1}=\frac{1}{\sqrt{1-v^{2}}}\left(\begin{array}{c}\sqrt{1-u^{2}-v^{2}} \\ -u \\ 0\end{array}\right), \boldsymbol{a}_{2}=\binom{\frac{u}{\sqrt{1-u^{2}-v^{2}}}}{v}, \quad \boldsymbol{a}_{3}=\frac{1}{\sqrt{1-v^{2}}}\left(\begin{array}{c}-u v \\ -v \sqrt{1-u^{2}-v^{2}} \\ 1-v^{2}\end{array}\right)$.
Here we remark that ($\boldsymbol{a}_{1} \boldsymbol{a}_{2} \boldsymbol{a}_{3}$) is an orthogonal matrix. We consider the motions

$$
A(\boldsymbol{p})=\left(\begin{array}{c}
\frac{\sqrt{1-u^{2}-v^{2}} x-u v z}{\sqrt{1-v^{2}}}+u y+w \tau_{1} \\
-\frac{u x+v z \sqrt{1-u^{2}-v^{2}}}{\sqrt{1-v^{2}}}+\sqrt{1-u^{2}-v^{2}} y+w \\
v y+\sqrt{1-v^{2}} z+w \tau_{3}
\end{array}\right), \quad \boldsymbol{p}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

in $F=A^{-1} \circ f \circ A(\boldsymbol{p})($ see $(\mathbb{\square}))$, and we obtain

$$
\left.F_{u}\right|_{(u, v, w)=0}=\left(\begin{array}{c}
y(1-y) \tag{5.1}\\
x(1-2 y) \\
0
\end{array}\right),\left.F_{v}\right|_{(u, v, w)=0}=\left(\begin{array}{c}
0 \\
z(1-2 y) \\
y(1-y)
\end{array}\right),\left.\quad F_{w}\right|_{(u, v, w)=0}=\left(\begin{array}{c}
0 \\
2 y-1 \\
0
\end{array}\right) .
$$

Setting $f=\left.F\right|_{(u, v, w)=0}$, we have

$$
\begin{equation*}
f=\left(x, y^{2}, \frac{k_{1} x^{2}+k_{2} y^{2}}{2}+\sum_{i+j \geq 3}^{m} a_{i, j} \frac{x^{i} y^{j}}{i!j!}+O(m+1)\right) \tag{5.2}
\end{equation*}
$$

We are looking for the condition that F is an \mathcal{A}-versal unfolding of f, that is,

$$
\begin{equation*}
\mathcal{E}_{2}^{\oplus 3}=T \mathcal{R} f+T \mathcal{L} f+V_{F} \tag{5.3}
\end{equation*}
$$

where $T \mathcal{R} f=\left\langle f_{x}, f_{y}\right\rangle_{\mathcal{E}_{2}}, T \mathcal{L} f=f^{-1} \mathcal{E}_{3}^{\oplus 3}, V_{F}=\left\langle\dot{F}_{u}, \dot{F}_{v}, \dot{F}_{w}\right\rangle_{\mathbb{R}}$. Here $\dot{F}_{u}=\left.F_{u}\right|_{(u, v, w)=0}$, $\dot{F}_{v}=\left.F_{v}\right|_{(u, v, w)=0}$, and $\dot{F}_{w}=\left.F_{w}\right|_{(u, v, w)=0}$.

In the notation in [III, §3], this is \mathcal{G}_{e}-versality with $\mathcal{G}=\mathcal{A}$. See Versality Theorem 3.3 loc. cite. also.

If f is m - \mathcal{A}-determined, then we have

$$
\left(\langle x, y\rangle_{\mathcal{E}_{2}}^{m+1}\right)^{\oplus 3} \subset T \mathcal{R} f+T \mathcal{L} f
$$

Now we return to the case for the folding family. We assume that the map-germ $(x, y) \mapsto\left(x, y^{2}, f(x, y)\right)$ is m-determined. We consider the condition that the matrix

$$
\tilde{M}=\left(\begin{array}{ccccc}
\tilde{T}_{1} & \tilde{W} \boldsymbol{e}_{1} & O & O & \tilde{V}_{1} \\
\tilde{T}_{2} & O & \tilde{W} \boldsymbol{e}_{2} & O & \tilde{V}_{2} \\
\tilde{T}_{3} & O & O & \tilde{W} \boldsymbol{e}_{3} & \tilde{V}_{3}
\end{array}\right)
$$

is of full rank, where

$$
\begin{aligned}
\tilde{T}_{s} & =\left(\left(\phi_{j_{1}, j_{2}}^{j}\right)^{*}\left(x^{i_{1}} y^{i_{2}}\right)^{*}\left(\phi^{1} f_{x}+\phi^{2} f_{y}\right) \boldsymbol{e}_{s}\right)_{i_{1}+i_{2} \leq m ; j=1,2, j_{1}+j_{2} \leq m} \quad(s=1,2,3), \\
\tilde{W} & =\left(\begin{array}{ll}
\tilde{W}_{0} & \tilde{W}_{1}
\end{array} \ldots \quad \tilde{W}_{\lfloor m / 2\rfloor}\right), \quad \tilde{W}_{k}=\left(\left(x^{i_{1}} y^{i_{2}}\right)^{*}\left(x^{j_{1}} y^{j_{2}} f^{k}\right)\right)_{i_{1}+i_{2} \leq m, j_{1}+j_{2} \leq m-2 k} \\
\tilde{V}_{1} & =\left(\left(x^{i_{1}} y^{i_{2}}\right)^{*}\left(y(1-y) \boldsymbol{e}_{1} 00\right)\right)_{i_{1}+i_{2} \leq m} \\
\tilde{V}_{2} & =\left(\left(x^{i_{1}} y^{i_{2}}\right)^{*}\left(x(1-2 y) \boldsymbol{e}_{2} f(1-2 y) \boldsymbol{e}_{2} 2 y \boldsymbol{e}_{2}\right)\right)_{i_{1}+i_{2} \leq m} \\
\tilde{V}_{3} & =\left(\left(x^{i_{1}} y^{i_{2}}\right)^{*}\left(0 y(1-y) \boldsymbol{e}_{3} 0\right)\right)_{i_{1}+i_{2} \leq m}
\end{aligned}
$$

Here we define

$$
\begin{aligned}
\left(x^{j_{1}} y^{j_{2}}\right)^{*}\left(x^{i_{1}} y^{i_{2}}\right) & = \begin{cases}1 & \left(i_{1}, i_{2}\right)=\left(j_{1}, j_{2}\right) \\
0 & \text { otherwise }\end{cases} \\
\left(\phi_{j_{1} j_{2}}^{j}\right)^{*} \phi_{i_{1} i_{2}}^{i} & = \begin{cases}1 & \left(i, i_{1}, i_{2}\right)=\left(j, j_{1}, j_{2}\right) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

where $\phi^{i}=\sum_{i_{1}, i_{2}} \phi_{i_{1}, i_{2}}^{i} x^{i_{1}} y^{i_{2}}$.
Because of the submatrices $\tilde{W}_{0} \boldsymbol{e}_{s}(s=1,2,3)$, we can remove

- the columns corresponding to $x^{i_{1}} y^{2 i_{2}} \boldsymbol{e}_{s}\left(i_{1}+2 i_{2} \leq m, s=1,2,3\right)$, and
- the rows corresponding to $x^{j_{1}} y^{2 j_{2}} \boldsymbol{e}_{s}\left(j_{1}+2 j_{2} \leq m, s=1,2,3\right)$
from the matrix \tilde{M}. The matrix obtained by this operation is denoted by

$$
M=\left(\begin{array}{ccccc}
T_{1} & W \boldsymbol{e}_{1} & O & O & V_{1} \\
T_{2} & O & W \boldsymbol{e}_{2} & O & V_{2} \\
T_{3} & O & O & W \boldsymbol{e}_{3} & V_{3}
\end{array}\right) \quad \text { where } \quad W=\left(\begin{array}{llll}
W_{1} & W_{2} & \ldots & W_{\lfloor m / 2\rfloor}
\end{array}\right) .
$$

We set $T=\left(\begin{array}{l}T_{1} \\ T_{2} \\ T_{3}\end{array}\right)$.

$5.1 \quad S_{1}$ singularity

We assume that f is \mathcal{A}-equivalent to S_{1} singularity, that is, $a_{21} \neq 0$ and $a_{03} \neq 0$. Remark that S_{1} singularity is 3 -determined $(m=3)$. The matrix M is expressed as follows:

First, by Gauss's elimination method using boxed elements as pivots, we eliminate elements with wavy lines below. Next, by Gauss's elimination method using the underlined elements as pivots, we eliminate elements with double wavy lines below. Thirdly, by Gauss's elimination method using the double underlined elements as pivots, we eliminate elements with wavy lines below with underlines. Now it is easy to see that this matrix is always of full rank.

$5.2 \quad S_{2}$ singularity

We assume that f is \mathcal{A}-equivalent to S_{2} singularity, that is, $a_{21}=0, a_{03} \neq 0$ and $a_{31} \neq 0$. Remark that S_{2} singularity is 4-determined $(m=4)$. The non-zero entries of the matrix T is shown in the following tables.

	ϕ_{00}^{1}	ϕ_{10}^{1}	ϕ_{01}^{1}	ϕ_{20}^{1}	ϕ_{11}^{1}	ϕ_{02}^{1}	ϕ_{30}^{1}	ϕ_{21}^{1}	ϕ_{12}^{1}	ϕ_{03}^{1}	ϕ_{40}^{1}	ϕ_{31}^{1}	ϕ_{22}^{1}	ϕ_{13}^{1}	ϕ_{04}^{1}
$y e_{1}$			1												
$x y e_{1}$					1										
$x^{2} y e_{1}$								$\frac{1}{2}$							
$y^{3} e_{1}$										6					
$x^{3} y e_{1}$												$\frac{1}{6}$			
$x y^{3} \boldsymbol{e}_{1}$														$\frac{1}{6}$	
$y e_{3}$															
$x_{\text {l }}{ }_{3}$		k_{1}													
$x^{2} y e_{3}$	$\frac{a_{31}}{2}$		$\frac{a_{30}}{2}$		k_{1}										
$y^{3} e_{3}$	$\frac{a_{13}^{13}}{6}$		$\frac{a_{12}^{12}}{2}$												
$x^{3} y e_{3}$	$\frac{a_{41}}{6}$	$\frac{a_{31}}{2}$	$\frac{a_{40}}{6}$		$\frac{a_{30}}{2}$			$\frac{k_{1}}{2}$							
$x y^{3} e_{3}$	$\frac{a_{23}}{6}$	$\frac{a_{13}^{2}}{6}$	$\frac{a_{22}}{2}$		$\frac{a_{12}}{2}$					$\frac{k_{1}}{6}$					

	ϕ_{00}^{2}	ϕ_{10}^{2}	ϕ_{01}^{2}	ϕ_{20}^{2}	ϕ_{11}^{2}	ϕ_{02}^{2}	ϕ_{30}^{2}	ϕ_{21}^{2}	ϕ_{12}^{2}	ϕ_{03}^{2}
$y e_{2}$	2									
$x y e_{2}$		2								
$x^{2} y e_{2}$				1		1				
$y^{3} e_{2}$							$\frac{1}{3}$			
$x^{3} y e_{2}$									1	
$x y^{3} e_{2}$										
$y e_{3}$	k_{2}									
$x y e_{3}$	a_{12}	k_{2}								
$x^{2} y e_{3}$	$\frac{a_{22}}{2}$	a_{12}		$\frac{k_{2}}{2}$						
$y^{3} e_{3}$	$\frac{a_{04}}{6}$		$\frac{k_{03}}{2}$							
$x^{3} y e_{3}$	$\frac{a_{32}}{6}$	$\frac{a_{22}}{2}$	$\frac{a_{31}}{6}$	$\frac{a_{12}}{2}$		$\frac{a_{03}}{2}$	$\frac{k_{2}}{2}$			
$x y^{3} e_{3}$	$\frac{a_{14}}{6}$	$\frac{a_{04}}{6}$	$\frac{a_{13}}{2}$		$\frac{a_{2}}{2}$			$\frac{k_{2}}{2}$		

The non-zero elements of the matrix W are given as follows:

	e_{1}	$x e_{1}$	\boldsymbol{e}_{2}	$x \boldsymbol{e}_{2}$	\boldsymbol{e}_{3}	$x e_{3}$	\dot{F}_{u}	\dot{F}_{v}	\dot{F}_{w}
$y e_{1}$								-1	
$x y \boldsymbol{e}_{1}$									
$x^{2} y e_{1}$									
$y^{3} \boldsymbol{e}_{1}$	$\frac{a_{03}}{6}$								
	${ }^{\frac{a}{61}}$								
$x^{3} y e_{1}$									
$x y^{3} \boldsymbol{e}_{1}$	$\frac{a_{13}}{6}$	$\frac{a_{03}}{6}$							
$y e_{2}$									2
$x y e_{2}$							-2		
$x^{2} y e_{2}$								$-k_{1}$	
$y^{3} \boldsymbol{e}_{2}$			$\frac{a_{03}}{6}$						$\frac{a_{03}}{6}-k_{2}$
$x^{3} y e_{2}$			$\frac{a_{31}^{6}}{6}$						$\frac{a_{31}}{6}-\frac{a_{30}}{3}$
$x y^{3} \boldsymbol{e}_{2}$			$\frac{a_{13}}{6}$	$\frac{a_{03}}{6}$					$\frac{a_{13}^{6}}{6}-a_{12}$
$y e_{3}$								1	
$x y e_{3}$									
$x^{2} y e_{3}$									
$y^{3} \boldsymbol{e}_{3}$					$\frac{a_{03}}{6}$				
$x^{3} y e_{3}$					$\frac{a_{31}}{6}$				
$x y^{3} e_{3}$					$\frac{a_{13}}{6}$	$\frac{a_{03}}{6}$			

We thus looking for the condition so that the following matrix is of full rank.

By applying the row-addition transformation to this matrix 12 times, we can remove the first 12 rows and columns $3-10,12$ and $14-16$, yielding the following matrix.

$$
\left(\begin{array}{ccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -k_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & k_{2}-k_{1} & 0 & -a_{12} \\
\frac{a_{31}}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & * & * & * \\
\frac{a_{13}}{6} & 0 & \frac{a_{03}}{2} & 0 & 0 & 0 & * & 0 & * & 0 & * & * & * \\
\frac{a_{41}}{6} & \frac{a_{31}}{2} & \frac{a_{31}}{6} & 0 & 0 & 0 & * & 0 & * & 0 & * & * & * \\
\frac{a_{23}}{6} & * & * & \frac{a_{03}}{2} & * & 0 & * & * & * & * & * & * & *
\end{array}\right)
$$

Since $a_{31} \neq 0, a_{03} \neq 0$, we conclude that this matrix is of full rank if and only if the upper-right 2×3 matrix is of full rank, that is, $k_{1} \neq k_{2}$ or $a_{12} \neq 0$.

$5.3 \quad C_{3}$ singularity

We assume that f is \mathcal{A}-equivalent to S_{2} singularity, that is, $a_{21}=a_{03}=0, a_{31} \neq 0$ and $a_{13} \neq 0$. Remark that C_{3} singularity is 4 -determined $(m=4)$. In a similar way to the discussion above, we obtain the following matrix for T.

0	0	$\mathbf{1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\mathbf{1}$	0	0
0	0	0	$\mathbf{1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	$\frac{\mathbf{1}}{\mathbf{2}}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	$\frac{\mathbf{1}}{\mathbf{6}}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	$\frac{\mathbf{1}}{\mathbf{6}}$	0	0	0	0	0	0	0	0	$\frac{a_{31}}{6}$	0	0	0	0	0
0	0	0	0	0	0	0	$\frac{\mathbf{1}}{\mathbf{6}}$	0	0	0	0	0	0	0	$\frac{a_{13}}{6}$	0	0	0	0	0
0	0	0	0	0	0	0	0	$\mathbf{2}$	0	0	0	0	0	0	0	0	0	0	0	$\mathbf{2}$
0	0	0	0	0	0	0	0	0	$\mathbf{2}$	0	0	0	0	0	0	0	0	$-\mathbf{2}$	0	0
0	0	0	0	0	0	0	0	0	0	0	$\mathbf{1}$	0	0	0	0	0	0	0	$-k_{1}$	0
0	0	0	0	0	0	0	0	0	0	0	0	$\mathbf{1}$	0	0	0	0	0	0	$-k_{2}$	0
0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{\mathbf{1}}{\mathbf{3}}$	0	0	$\frac{a_{31}}{6}$	0	0	$\frac{a_{31}}{6}-\frac{a_{30}}{3}$	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\mathbf{1}$	0	$\frac{a_{13}}{6}$	0	0	$\frac{a_{13}}{6}-a_{12}$	0
0	0	0	0	0	0	0	0	k_{2}	0	0	0	0	0	0	0	0	0	0	$\mathbf{1}$	0
0	0	$\boldsymbol{k}_{\mathbf{1}}$	0	0	0	0	0	\boldsymbol{a}_{12}	$\boldsymbol{k}_{\mathbf{2}}$	0	0	0	0	0	0	0	0	0	0	0
$\frac{\boldsymbol{a}_{\mathbf{3 1}}}{\mathbf{2}}$	0	$\frac{a_{30}}{2}$	k_{1}	0	0	0	0	$\frac{a_{22}}{2}$	a_{12}	0	$\frac{k_{2}}{2}$	0	0	0	0	0	0	0	0	0
$\frac{a_{13}}{6}$	0	$\frac{a_{12}}{2}$	0	0	0	0	0	$\frac{a_{04}}{6}$	0	0	0	$\frac{k_{2}}{2}$	0	0	0	0	0	0	0	0
$\frac{\boldsymbol{a}_{\mathbf{4 1}}}{\mathbf{6}}$	$\frac{a_{31}}{\mathbf{2}}$	$\frac{a_{40}}{6}$	$\frac{a_{30}}{2}$	$\frac{k_{1}}{2}$	0	0	0	$\frac{a_{32}}{6}$	$\frac{a_{22}}{2}$	$\frac{a_{\mathbf{3 1}}}{\mathbf{6}}$	$\frac{a_{12}}{2}$	0	$\frac{k_{2}}{6}$	0	0	0	$\frac{a_{31}}{6}$	0	0	0
$\frac{\boldsymbol{a}_{\mathbf{2 3}}}{\mathbf{6}}$	$\frac{\boldsymbol{a}_{\mathbf{1 3}}}{\mathbf{6}}$	$\frac{a_{22}}{2}$	$\frac{a_{12}}{2}$	0	$\frac{k_{1}}{6}$	0	0	$\frac{a_{14}}{6}$	$\frac{a_{04}}{6}$	$\frac{\boldsymbol{a}_{\mathbf{1 3}}}{\mathbf{2}}$	0	$\frac{a_{12}}{2}$	0	$\frac{k_{2}}{2}$	0	0	$\frac{a_{13}}{6}$	0	0	0

By applying the row-addition transformation to this matrix 12 times, we can remove the first 12 rows and columns $3-10,12-15$, yielding the following matrix:

$$
\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -k_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & k_{2}-k_{1} & 0 & -a_{12} \\
\frac{a_{31}}{2} & 0 & 0 & 0 & 0 & 0 & a_{12}-\frac{a_{30}}{2} & \frac{k_{1} k_{2}}{2} & -\frac{a_{22}}{2} \\
\frac{a_{13}}{6} & 0 & 0 & 0 & 0 & 0 & -\frac{a_{12}}{2} & \frac{k_{2}^{2}}{2} & -\frac{a_{04}}{6} \\
\frac{a_{41}}{6_{23}} & \frac{a_{31}}{2} & \frac{a_{31}}{6} & 0 & * & * & * & * & * \\
\frac{2}{6} & \frac{a 13}{6} & \frac{a_{13}}{2} & 0 & * & * & * & * & *
\end{array}\right)
$$

Since $a_{31} a_{13} \neq 0$, we then conclude that this matrix is of full rank if and only if

$$
\left|\begin{array}{cc}
k_{2}-k_{1} & -3 a_{12}+\frac{a_{13}}{a_{31}}\left(a_{30}-2 a_{12}\right) \\
a_{12} & a_{04}-3 k_{2}^{3}+\frac{a_{13}}{a_{31}}\left(a_{22}-k_{1} k_{2}^{2}\right)
\end{array}\right| \neq 0
$$

$5.4 \quad S_{3}$ singularity

We assume that f is \mathcal{A}-equivalent to S_{2} singularity, that is, $a_{21}=a_{31}=0, a_{03} \neq 0$ and $a_{41} \neq 0$. Remark that S_{3} singularity is 5 -determined $(m=5)$. In a similar way to the discussion above, the matrix T, removing zero columns, is obtained as follows:

0 0	0 0	${ }_{0}^{1}$	0	0 1	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 0	${ }_{0}^{0}$									
0	0	0	0	0	0	$\frac{1}{2}$	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	$\frac{1}{6}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	$\frac{1}{6}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	$\frac{1}{24}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{12}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{120}$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 120 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0																
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{3}$	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	$\frac{1}{12}$	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{2}$	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{12}$
0	0	0	0	0	0	0	0	0	0	0	0	0	k_{2}	0	0	0	0	0	0	0	0	0	0	0	0
0	0	k_{1}	0	0	0	0	0	0	0	0	0	0	$a 12$	k_{2}	0	0	0	0	0	0	0	0	0	0	0
0	0	$\frac{a_{30}}{2}$	0	k_{1}	0	0	0	0	0	0	0	0	$\frac{a_{22}}{2}$	a_{12}	0	$\frac{k_{2}}{2}$	0	0	0	0	0	0	0	0	0
$\frac{a_{13}}{6}$	0	$\frac{a_{12}}{2}$	0	0	0	0	0	0	0	0	0	0	$\frac{a_{04}}{6}$	0	$\frac{a_{03}}{2}$	0	0	$\frac{k_{2}}{2}$	0	0	0	0	0	0	0
$\frac{a 41}{6}$	0	$\frac{a_{40}}{6}$	0	$\frac{a_{30}}{2}$	0	$\frac{k_{1}}{2}$	0	0	0	0	0	0	$\frac{a_{32}}{6}$	$\frac{a_{22}}{2}$	0	$\frac{a_{12}}{2}$	0	0	$\frac{k_{2}}{6}$	0	0	0	0	0	0
$\frac{a_{23}}{6}$	$\frac{a_{13}}{6}$	$\frac{a_{22}}{2}$	0	$\frac{a_{12}}{2}$	0	0	$\frac{k_{1}}{6}$	0	0	0	0	0	$\frac{a_{14}}{6}$	$\frac{a_{04}}{6}$	$\frac{a_{13}}{2}$	0	$\frac{a_{03}}{2}$	$\frac{a_{12}}{2}$	0	0	$\frac{k_{2}}{2}$	0	0	0	0
$\frac{a_{51}}{24}$	$\frac{a_{41}}{6}$	$\frac{a_{50}}{24}$	0	$\frac{a_{40}}{6}$	0	$\frac{a_{30}}{4}$	0	$\frac{k_{1}}{6}$	0	0	0	0	$\frac{a_{42}}{24}$	$\frac{a_{32}}{6}$	$\frac{a_{41}}{24}$	$\frac{a_{22}}{4}$	0	0	$\frac{a_{12}}{6}$	0	0	0	$\frac{k_{2}}{24}$	0	0
$\frac{3}{12}$	$\frac{a_{23}}{6}$	$\frac{a_{32}}{4}$	$\frac{a_{13}}{12}$	$\frac{a_{22}}{2}$	0	$\frac{a_{12}}{4}$	$\frac{a_{30}}{12}$	0	$\frac{k_{1}}{6}$	0	0	0	$\frac{a_{24}}{12}$	$\frac{a_{14}}{6}$	$\frac{a_{23}}{4}$	$\frac{a_{04}}{12}$	$\frac{a_{13}}{2}$	$\frac{a_{22}}{4}$	0	$\frac{a_{03}}{4}$	$\frac{a_{12}}{2}$	0	0	$\frac{k_{2}}{4}$	0
$\frac{a_{15}}{120}$	0	$\frac{a_{14}}{24}$	12	0	$\frac{a_{13}}{12}$	0	$\frac{12}{\frac{a_{12}}{12}}$	0	0	0	0	0	$\frac{a_{06}}{120}$	0	$\frac{a_{05}^{4}}{24}$	12	0	$\frac{a_{04}}{12}$	0		2	$\frac{a_{03}}{12}$	0		$\frac{k_{2}}{24}$

The non-zero elements of the matrix W are given as follows:

	f	$x f$	$x^{2} f$	$y^{2} f$	f^{2}
y	0	0	0	0	0
$x y$	0	0	0	0	0
$x^{2} y$	0	0	0	0	0
y^{3}	$\frac{a_{03}}{6}$	0	0	0	0
$x^{3} y$	0	0	0	0	0
$x y^{3}$	$\frac{a_{13}}{6}$	$\frac{a_{03}}{6}$	0	0	0
$x^{4} y$	$\frac{a_{41}}{24}$	0	0	0	0
$x^{2} y^{3}$	$\frac{a_{23}}{12}$	$\frac{a_{13}}{6}$	$\frac{a_{03}}{6}$	0	$\frac{k_{1} a_{03}}{6}$
y^{5}	$\frac{a_{05}}{120}$	0	0	$\frac{a_{03}}{6}$	$\frac{k_{2} a_{03}}{6}$

We are thus looking for the condition that the following matrix is of full rank:

By applying the row-addition transformation to this matrix 18 times, we can remove the first 18 rows and columns $3,5,8,10-17,19,21,22,24,26-28$, yielding the following matrix:

Since $a_{03} a_{41} \neq 0$, we then conclude that this matrix is of full rank if and only if the upper right 3×3 matrix is of full rank, that is,

$$
\left(a_{22}-k_{1} k_{2}^{2}\right)\left(k_{1}-k_{2}\right)+a_{12}\left(2 a_{12}-a_{30}\right) \neq 0 .
$$

$5.5 \quad B_{2}$ singularity

We assume that f is \mathcal{A}-equivalent to B_{2} singularity, that is,

$$
a_{21} \neq 0, a_{03}=0, \text { and } 3 a_{05}-5 a_{13}^{2} / a_{21} \neq 0 .
$$

Remark that B_{2} singularity is 5 -determined $(m=5)$. In a similar way to the discussion above, the matrix T, removing zero columns, obtained as follows:

0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
0	0	0	0	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
0	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
0	0	0	0	0	0	0	0	0	$\frac{1}{6}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$0 \quad 0$
0	0	0	0	0	0	0	0	0	0	$\frac{1}{6}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$0 \quad 0$
0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{6}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$0 \quad 0$
0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{24}$	0	0	0	0	0	0	0	0	0	0	0	0	0	$0 \quad 0$
0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{12}$	0	0	0	0	0	0	0	0	0	0	0	0	$0 \quad 0$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{120}$	0	0	0	0	0	0	0	0	0	0	0	$0 \quad 0$
0 0	0 0	0 0	0 0	0	0 0	0 0	0	0	0 0	0	0	0	0	1 0 0	2	0 2	0	0	0	0 0	0 0	0 0	0 0	0	0 0	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	00
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	00
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	$0 \quad 0$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	$0 \quad 0$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{12}$	00
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{2} 0$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$0 \quad \frac{1}{12}$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	k_{2}	0	0	0	0	0	0	0	0	0	0	00
a_{21}	0	k_{1}	0	0	0	0	0	0	0	0	0	0	0	0	a_{12}	k_{2}	0	0	0	0	0	0	0	0	0	00
$\frac{a_{31}}{2}$	a_{21}	$\frac{a_{30}}{2}$	0	k_{1}	0	0	0	0	0	0	0	0	0	0	$\frac{a_{22}}{2}$	a_{12}	$\frac{a_{21}}{2}$	$\frac{k_{2}}{2}$	0	0	0	0	0	0	0	$0 \quad 0$
$\frac{a_{13}}{6}$	0	$\frac{a_{12}}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{a_{04}}{6}$	0	0	0	0	$\frac{k_{2}}{2}$	0	0	0	0	0	00
$\frac{a_{41}}{6}$	$\frac{a_{31}}{2}$	$\frac{a_{40}}{6}$	$\frac{a_{21}}{2}$	$\frac{a_{30}}{2}$	0	0	$\frac{k_{1}}{2}$	0	0	0	0	0	0	0	$\frac{a_{32}}{6}$	$\frac{a_{22}}{2}$	$\frac{a_{31}}{6}$	$\frac{a_{12}}{2}$	$\frac{a_{21}}{2}$	0	$\frac{k_{2}}{6}$	0	0	0	0	00
$\frac{a_{23}}{6}$	$\frac{a_{13}}{6}$	$\frac{a_{22}}{2}$	0	$\frac{a_{12}}{2}$	$\frac{a_{21}}{2}$	0	0	0	$\frac{k_{1}}{6}$	0	0	0	0	0	$\frac{a_{14}}{6}$	$\frac{a_{04}}{6}$	$\frac{a_{13}}{2}$	0	0	$\frac{a_{12}}{2}$	0	0	$\frac{k_{2}}{2}$	0	0	00
$\frac{a_{51}}{24}$	$\frac{a_{41}}{6}$	$\frac{a_{50}}{24}$	$\frac{a_{31}}{4}$	$\frac{a_{40}}{6}$	0	$\frac{a_{21}}{6}$	$\frac{a_{30}}{4}$	0	0	$\frac{k_{1}}{6}$	0	0	0	0	$\frac{a_{42}}{24}$	$\frac{a_{32}}{6}$	$\frac{a_{41}}{24}$	$\frac{a_{22}}{4}$	$\frac{a_{31}}{6}$	0	$\frac{a_{12}}{6}$	$\frac{a_{21}}{4}$	0	0	$\frac{k_{2}}{24}$	$0 \quad 0$
$\frac{a_{33}}{12}$	$\frac{a_{23}}{6}$	$\frac{a_{32}}{4}$	$\frac{a_{13}}{12}$	$\frac{a_{22}}{2}$	$\frac{a_{31}}{4}$	0	$\frac{a_{12}}{4}$	$\frac{a_{21}}{2}$	$\frac{a_{30}}{12}$	0	$\frac{k_{1}}{6}$	0	0	0	$\frac{a_{24}}{12}$	$\frac{a_{14}}{6}$	$\frac{a_{23}}{4}$	$\frac{a_{04}}{12}$	$\frac{a_{13}}{2}$	$\frac{a_{22}}{4}$		0	$\frac{a_{12}}{2}$	$\frac{a_{21}}{12}$	0	$\begin{array}{ll} \frac{k_{2}}{4} & 0 \end{array}$
$\frac{a_{15}}{120}$	0	$\frac{a_{14}}{24}$	0	0	$\frac{a_{13}}{12}$	0	0	0	$\frac{a_{12}}{12}$	0	0	0	0	0	$\frac{a_{06}}{120}$	0	$\frac{a_{05}}{24}$	0	0	$\frac{a_{04}}{12}$	0	0	0	0	0	$0 \quad \frac{k_{2}}{24}$

The non-zero elements of the matrix W are given as follows:

	f	$x f$	$x^{2} f$	$y^{2} f$	f^{2}
y	0	0	0	0	0
$x y$	0	0	0	0	0
$x^{2} y$	$\frac{a_{21}}{2}$	0	0	0	0
y^{3}	0	0	0	0	0
$x^{3} y$	$\frac{a_{31}}{6}$	$\frac{a_{21}}{2}$	0	0	0
$x y^{3}$	$\frac{a_{13}}{6}$	0	0	0	0
$x^{4} y$	$\frac{a_{41}}{24}$	$\frac{a_{31}}{6}$	$\frac{a_{21}}{2}$	0	$\frac{k_{1} a_{21}}{2}$
$x^{2} y^{3}$	$\frac{a_{23}}{12}$	$\frac{a_{13}}{6}$	0	$\frac{a_{21}}{2}$	$\frac{k_{2} a_{21}}{2}$
y^{5}	$\frac{a_{05}}{120}$	0	0	0	0

Thus we look for the condition that the following matrix is of full rank.

${ }_{0}^{0}$	0 0	${ }_{0}^{1}$	${ }_{0}^{0}$	${ }_{1}^{0}$	${ }_{0}^{0}$	0 0	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	$\begin{array}{ll}0 \\ 0 & 0 \\ 0\end{array}$	${ }_{0}^{0}$	0 0	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	0 0	0 0	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{1}$	${ }_{0}^{0}$	0 0
0	0	0	0	0	0		$\frac{1}{2}$			0			0		0		0	0	0	0	0	0	0		0	$\frac{a_{21}}{2}$	0	0	0	0	0	0	0	0		0	0			0	0	0	
0	0	0	0	0	0	0	0	0	$\frac{1}{6}$	00	0	0	0	0	0	0	0	0	0	0	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	$\frac{1}{6} \quad 0$	0	0	0	0	0	0	0	0	0	0	0	0	0	00	0	$\frac{a_{31}}{6}$	$\frac{a_{21}}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	${ }_{0} \frac{1}{6}$	0	0	0	0	0	0	0	0	0	0	0	0	0	00	0	$\frac{a_{13}^{13}}{6}$	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	$0 \quad 0$	$\frac{1}{24}$	0	0	0	0	0	0	0	0	0	0	0	0	$0 \quad 0$	0	$\frac{a_{41}}{24}$	$\frac{a_{31}}{6}$	$\frac{a_{21}}{2}$	0	$\frac{k_{1} a_{21}}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	00	0	$\frac{1}{12}$	0	0	0	0	0	0	0	0	0	0	0	$0 \quad 0$	0	$\frac{a_{23}}{12}$	$\frac{a_{13}}{6}$	0	$\frac{a_{21}}{2}$	$\frac{k_{2} a_{21}}{2}$	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	00	0	0	$\frac{1}{120}$	0	0	0	0	0	0	0	0	0	0	00	0	$\frac{a_{05}}{120}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	$\begin{array}{ll}0 \\ 0 & 0 \\ 0\end{array}$	${ }_{0}^{0}$	${ }_{0}^{0}$	0	${ }_{0}^{2}$	${ }_{2}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$	${ }_{0}^{0}$	100	0 0	${ }_{0}^{0}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	${ }_{0}^{0}$	${ }_{0}^{0}$	0 0	${ }_{0}^{0}$	0 0	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	0 0	${ }_{0}^{0}$	0	${ }_{0}^{2}$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0		0	0	0	0		0	0	0		0	$\frac{a_{21}}{2}$		0	0	0	0			0	0		$\frac{a_{21}}{2}-k_{1}$	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	${ }^{-k_{2}}$	0
0	0	0	0	0	0	0	0	0	0	00	0	0	0	0	0	0	0	0	0	$\frac{1}{3}$	0	0	0	00	0	0	0	0	0	0	$\frac{a_{31}}{6}$	$\frac{a_{21}}{2}$	0	0	,	0	0	0	0	0	0	- $\frac{a_{30}}{3}$	
0	0	0	0	0	0	0	0	0	0	$0 \quad 0$	0	0	0	0	0	0	0	0	0	0	0	1	0	00	0	0	0	0	0	0	$\frac{a_{13}}{6}$	0	0	0	0	0	0	0	0	0	0	$\frac{a_{13}}{6}-a_{12}$	
0	0	0	0	0	0	0	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{12} 0$	0	0	0	0	0	0	$\frac{a_{41}}{24}$	$\frac{a_{31}}{6}$	$\frac{a_{21}}{2}$	0	$\frac{k_{1} a_{21}}{2}$	0	0	0	0	0		$\frac{1}{1}-\frac{a_{40}}{12}$	
0	0	0	0	0	0	0	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{2}$	0	0	0	0	0	0	$\frac{a_{23}}{12}$	$\frac{a_{13}}{6}$	0	$\frac{a_{21}}{2}$	$\frac{k_{2} a_{21}}{2}$	0	0	0	0	0		$\frac{a_{23}}{12}-\frac{a_{22}}{2}$	
0	0	0	0	0	0	0	0	0	0	$0 \quad 0$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{12}$	0	0	0	0	0	$\frac{a_{05}}{120}$	0	0		0	0	0	0	0	0		${ }^{\frac{a_{055}^{0}}{120}}-\frac{a_{04}^{0}}{12}$	
0	0	,	0	0	0	0	0	0	0	00		0	0	k_{2}	0	0	0	0	0	0	0		0	00	0	0	0	0	0	0		0	0	0	0	0	0	0		0		1	
	0	k_{1}	0	0	0	0	0	0	0	0 0	0	0	0	a_{12}	k_{2}			0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
$\frac{a_{31}}{2}$	a_{21}	$\frac{a_{30}}{2}$	0	k_{1}	0	0	0	0	0	00	0	0	0	$\frac{a_{22}}{2}$	a_{12}	$\frac{a_{21}}{2}$	$\frac{k_{2}}{2}$	0	0	0	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	$\frac{a_{21}}{2}$	0	0	0	0		0	0
$\frac{a_{13}}{6}$,	$\frac{a_{12}}{2}$	0	0	0	0		0	0	00	0	0	0	$\frac{a_{04}}{6}$		0	0	0	$\frac{k_{2}}{2}$		0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0
$\frac{a_{41}}{6}$	$\frac{a_{31}}{2}$	$\frac{a_{40}}{6}$	$\frac{a_{21}}{2}$	$\frac{a_{30}}{2}$	0	0	$\frac{k_{1}}{2}$	0	0	00	0	0	0	$\frac{a_{32}}{6}$	$\frac{a_{22}}{2}$	$\frac{a_{31}}{6}$			0	$\frac{k_{2}}{6}$	0	0	0	00	0	0	0	0	0	0	0	0	0	0	0	$\frac{a_{31}}{6}$	$\frac{a_{21}}{2}$	0	0	0	0	0	
$\frac{a_{23}}{6}$	$\frac{a_{13}}{6}$	$\frac{a_{22}}{2}$	0	$\frac{a_{12}}{2}$	$\frac{a_{21}}{2}$	0	0	0	$\frac{k_{1}}{6}$	0	0	0	0	$\frac{a_{14}}{6}$	$\frac{a_{04}}{6}$	$\frac{a_{13}}{2}$	0		$\frac{a_{12}}{2}$	0	0	$\frac{k_{2}}{2}$	0	00	0	0	0	0	0	0	0	0	0	0	0	$\frac{a_{13}}{6}$	-	0	0	0	O	0	0
$\frac{a_{51}}{24}$	$\frac{a_{41}}{6}$	$\frac{a_{50}}{24}$	$\frac{a_{31}}{4}$	$\frac{a_{40}}{6}$	0	$\frac{a_{21}}{6}$	$\frac{a_{30}}{4}$	0	0	$\frac{k_{1}}{6}$	0	0	0	$\frac{a_{42}}{24}$	$\frac{a_{32}}{6}$	$\frac{a_{41}}{24}$	$\frac{a_{22}}{4}$		0		$\frac{a_{21}}{4}$			$\frac{k_{2}}{24} 0$	0	0	0	0	0	0	0	0	0	0	0	$\frac{a_{41}}{24}$			0	$\frac{k_{1} a_{21}}{2}$		0	
$\frac{a_{33}}{12}$	$\frac{a_{23}}{6}$	$\frac{a_{32}}{4}$	$\frac{a_{13}}{12}$	$\frac{a_{22}}{2}$	$\frac{a_{31}}{4}$	0	$\frac{a_{12}}{4}$	$\frac{a_{21}}{2}$	$\frac{a_{30}}{12}$	$0 \frac{k_{1}}{6}$	0	0	0	${ }^{\frac{a_{24}}{12}}$	$\frac{a_{14}}{6}$	$\frac{a_{23}}{4}$	$\frac{a_{04}}{12}$	$\frac{a_{13}}{2}$	$\frac{a_{22}}{4}$	0	0	$\frac{a_{12}}{2}$	$\frac{a_{21}}{12}$	$0 \frac{k_{2}}{4}$		0	0	0	0	0	0	0	0	0	0	$\frac{a_{23}}{12}$	$\frac{a_{13}}{6}$	0	$\frac{a_{21}}{2}$	$\frac{k_{2} a_{21}}{2}$		0	0
$\frac{15}{120}$	0	$\frac{a_{14}}{24}$	0	0	$\frac{a_{13}}{12}$	0	0	0	$\frac{12}{12}$	0	0	0	0	${ }^{120}$	0	$\frac{05}{24}$	0		12	0			0	00		0	0	0		0			0	0		${ }_{120}$				0		0	

By applying the row-addition transformation to this matrix 18 times, we can remove the first 18 rows and columns $3,5,8,10-17,19,21,22,24,26-28$, yielding the following matrix:

By applying the row-addition transformation again using the fact $a_{21} \neq 0$ and $B_{2} \neq 0$, we conclude that this matrix is of full rank if and only if

$$
a_{13}\left(k_{1}-k_{2}\right) \neq 3 a_{21} a_{12} \quad \text { or } \quad\left(a_{04}-3 k_{2}^{3}\right)\left(k_{1}-k_{2}\right)+\frac{1}{3}\left(\frac{a_{13}}{a_{21}}\right)^{2} \neq 0 .
$$

$5.6 \quad B_{3}$ singularity

We assume that f is \mathcal{A}-equivalent to B_{3} singularity, that is,

$$
a_{21} \neq 0, a_{03}=0, a_{05}-\frac{5 a_{13}^{2}}{3 a_{21}}=0 \text { and } B_{3} \neq 0
$$

Remark that B_{3} singularity is 7 -determined $(m=7)$. With the same arguments as above, the matrix T becomes

The matrix W looks like

By applying the row-addition transformation to the matrix $M 33$ times, we can remove the first 18 rows and columns $3,5,8,10,12,14,17,19,21-30,32,34,35,37,39,41,43$, $44,46,48,50-53$, and second from last, yielding the following matrix:

Since $a_{21} \neq 0$ and $B_{3}=\frac{a_{07}}{7}-a_{15} \frac{a_{13}}{a_{21}}+\frac{5}{3} a_{23}\left(\frac{a_{13}}{a_{21}}\right)^{2}-\frac{5}{9} a_{31}\left(\frac{a_{13}}{a_{21}}\right)^{3} \neq 0$, we obtain that this matrix is of full rank if and only if

$$
\left|\begin{array}{cc}
a_{12}+\frac{a_{13}\left(k_{2}-k_{1}\right)}{3 a_{21}} & p \\
a_{04}-3 k_{2}^{3}-\frac{a_{12} a_{13}}{a_{21}} & q
\end{array}\right| \neq 0 .
$$

A Criteria of singularity types of maps

Assume that $f:\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{3}, 0\right),(u, v) \mapsto f(u, v)$, has rank one singularity at 0 and an unit normal vector is extended to $\boldsymbol{\nu}$ on the singular locus. Set $\lambda=\operatorname{det}\left(f_{u} f_{v} \boldsymbol{\nu}\right)$, $\psi=\operatorname{det}(\boldsymbol{t} \eta \boldsymbol{\nu} \boldsymbol{\nu})$, where \boldsymbol{t} is a unit tanget vector of the singular locus, and η is a vector field whose restriction is null to the singular locus. We have that $(f, \boldsymbol{\nu}):\left(\mathbb{R}^{2}, 0\right) \rightarrow$ $\left(\mathbb{R}^{3} \times \mathbb{R}^{3},(0, \boldsymbol{\nu}(0))\right)$ is an embedding, if and only if $\psi(0) \neq 0$.

Lemma A.1. The singularity of f is \mathcal{A}-equivalent to

- cuspidal edge, if $\psi(0) \neq 0, \eta \lambda(0) \neq 0$;
- swallowtail, if $\psi(0) \neq 0, \eta \lambda(0)=0, \eta^{2} \lambda(0) \neq 0$;
- cuspidal cross-cap, if $\psi(0)=0, \eta \lambda(0) \neq 0, \psi^{\prime}(0) \neq 0$.

Proof. See $[8, \S 1-2]$ and $[6, \S 1]$.

References

[1] J. W. Bruce, P. J. Giblin, and F. Tari, Families of surfaces: focal sets, ridges and umbilics, Math. Proc. Camb. Phil. Soc., 125 (1999), 243-268.
[2] J. W. Bruce and T. C. Wilkinson, Folding maps and focal sets. Lecture Notes in Math, vol. 1462, pp. 63-72, Springer, Berlin, 1991.
[3] T. Fukui and M. Hasegawa, Singularities of parallel surfaces, Tohoku Mathematical Journal, 64 (2012) 387-408.
[4] T. Fukui and M. Hasegawa, Distance squared functions on singular surfaces parameterized by smooth maps \mathcal{A}-equivalnet to S_{k}, B_{k}, C_{k} and F_{4}, preprint
http://www.rimath.saitama-u.ac.jp/lab.jp/Fukui/preprint/Distance-squared_functions_on_singular_surfaces.pdf
[5] T. Fukui and A.Hiramatsu, Versality of rotation unfolding of folding maps for surfaces in \mathbb{R}^{3}, arxiv.org/abs/2311. 15140 .
[6] S. Fujimori, K. Saji, M. Umehara, and K. Yamada, Singularities of maximal surfaces, Math. Z., 259 (2008), 827-848.
[7] S.Izumiya, C.Romero Fuster, M. Ruas and F.Tari, Differential geometry from a singularity theory viewpoint. World Scientific, 2016.
[8] M. Kokubu, W. Rossman, K. Saji, M. Umehara, and K. Yamada: Singularities of flat fronts in hyperbolic space, Pacific. J. Math. 221 (2005), 303-351.
[9] R. Martins and J. J. Nunõ Ballesteros, Finitely determined singularities of ruled surfaces in \mathbb{R}^{3}, Math. Proc. Camb. Phil. Soc., 147 (2009), 701-733.
[10] D. Mond, On the classification of germs of maps from \mathbb{R}^{2} to \mathbb{R}^{3}, Proc. London Math. Soc. (3) 50(1985), 333-369.
[11] C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc., 13 (1981), 481-539.

