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Bifurcation problem

to describe bifurcation of solutions to

certain nonlinear differential equation.

Example:

u′′ + λ sin u = 0, u(0) = u(π) = 0

where u is a function on [0, π].



Bifurcation problem

This problem comes back to Euler.

The function u = 0 is clearly a solution

(trivial solution).

When λ 6= n2
, u = 0 is the only solution

nearby trivial solution by inverse function

theorem.

When λ = n2
, Euler’s critical load, the

solution bifurcate and bifurcation is

pitchfork bifurcation.



Set up

Let L : X → X be a linear self-adjoint

operator of a Hilbert space X . We

investigate the bifurcation of solutions

of the nonlinear equation

Φ(λ, u) = Lu − λu + h(λ, u) = 0, u ∈ X , (1)

where h(λ, u) ∈ C 1(R× X ,X ), h(λ, 0) = 0,
hu(λ, 0) = 0.
So Φ(λ, u) = 0 has trivial solution.



We call (λ∗, 0) a bifurcation point, if for

any neighborhood U of (λ∗, 0), there exists

(λ, u) ∈ U so that Φ(λ, u) = 0, u 6= 0.
It is well-known that if (λ∗, 0) is a

bifurcation point, then λ∗
is an eigenvalue

of L, i.e., Vλ∗ = Ker(L− λ∗I ) is non zero.

Set m = dimR Vλ∗ .



If m = 1, and h(λ, u) = ak(λ)u
k + o(uk),

ak(λ
∗) 6= 0, then the bifurcation is

described by

(λ∗ − λ)u + auk = 0, a = ak(λ
∗), (2)

and the bifurcation of solutions is

decided by k and a, as shown in the

following figures.

λ-
λ∗

Transcritical

bifurcation

(k is even).

λ-
λ∗

Subcritical

bifurcation

(k is odd, a < 0).

λλ∗

Supercritical

bifurcation

(k is odd, a > 0).



Ambrosetti’s result

A. Ambrosetti, Branching points for a class of

variational operators, Journal d’Analyse Mathématique

76 (1998), 321–335.

Let E be a Hilbert space and consider the equation

Lu + H(u) = λu, u ∈ E (3)

where L : E → E is linear and H ∈ C 1(E ,E ) is such that

H(0) = 0, H ′(0) = 0. Let µ ∈ R be an eigenvalue of finite

multiplicity of L and set Z = Ker[µI − L], where I denotes

the identity map in E .

- (A1) L ∈ L(E ,E ) is a symmetric Fredholm operator

with index zero.

- (A2) There exists a functional h ∈ C k(E ,R), for

some k ≥ 3, such that H(u) = h′(u). Moreover

h(0) = h′(0) = h′′(0) = 0.
- (A3) there exists an integer k ≥ 3 and z̃ such that

D jh(0) = 0, j = 1, ..., k − 1, and Dkh(0)[z̃ ] 6= 0.



Ambrosetti’s result (continued)

For z ∈ Z , set

αk(z) =
1
k!

Dkh(0)[z ]k .

Let T denote the boundary of the unit ball in Z . Let

M := maxT αk , m := minT αk

and let ξ ∈ T , resp. η ∈ T , be such that αk(ξ) = M , resp.

αk(η) = m. We assume

- (A4) kM and km are not eigenvalues of the matrix

D2αk(ξ), resp. D2αk(η).

Theorem Suppose that (A1), (A2), (A3), (A4) hold and let

µ be an isolated eigenvalue of finite multiplicity of L.
Then µ is a branching point of (1).



Lyapunov-Schmidt reduction

Let L : X → X be a self-adjoint operator

of a Hilbert space X , and let

{v1, . . . , vm,w1,w2, . . . } be an orthonomal

basis of X with the following conditions:

- X = V ⊕W ,

where

V = Ker(L− λ∗I ) = span{v1, v2, . . . , vm},
W is the closure of span{w1,w2, . . . }
with Lwj = λjwj , λj 6= λ∗

.



Lyapunov-Schmidt reduction

(continued)

Recall that Φ(λ, u) = Lu − λu + h(λ, u),
V is the λ∗

-eigenspace of L
W is complementary subspace to V .

X = V ⊕W
Let P : X → V , Q : X → W denote the

projections.

Setting u = v + w , v ∈ V , w ∈ W .

Φ(λ, u) = 0 ⇐⇒

{
P◦Φ(λ, v + w) = 0,
Q◦Φ(λ, v + w) = 0



Lyapunov-Schmidt reduction

(continued)

Set v = x1v1 + · · ·+ xmvm .

Since

Dξ(Q◦Φ(λ, v + w))|(λ∗,0) = Lξ − λ∗ξ

L|W cannot have λ∗
as an eigenvalue and

Q◦Φ(λ, v + w) = 0 defines w as a function

of λ and x1, . . . , xm, by implicit function

theorem.

We denote this function W (λ, x1, . . . , xm).
So

P◦Φ(λ, x1v1 + · · ·+ xmvm +W (λ, x1, . . . , xm)) = 0

describe the bifurcation of solutions.



Bifurcation equation

For i = 1, . . . ,m

F̂i(λ, x1, . . . , xm) =

v ∗i (Φ(λ, x1v1 + · · ·+ xmvm +W (λ, x1, . . . , xm)))

Φ(λ, u) = 0, u = x1v1 + · · ·+ xmvm + w
⇐⇒

P◦Φ(λ, x1v1 + · · ·+ xmvm +W (λ, x1, . . . , xm)) = 0

⇐⇒ F̂i(λ, x1, . . . , xm) = 0, i = 1, . . . ,m.



Bifurcation model

Assume that

h(λ, u) = ak(λ)u
k + o(uk), ak(λ

∗) 6= 0

Assume that there exists a linear

function ϕ : X → R, such that v ∗x = ϕ(vx),
v ∗ ∈ V ∗

, x ∈ X . In many case ϕ(u) =
∫
Ω u .

Set Fi = (λ∗ − λ)xi + Hxi (i = 1, . . . ,m) where

H =
ak(λ

∗)

k + 1
ϕ(P(u)k+1), P(u) = x1v1 + · · ·+ xmvm

if RHS is not constant on x2
1 + · · ·+ x2

m = 1.



If ϕ
(
P(u)k+1

)
is constant on x2

1 + · · ·+ x2
m = 1.

H(x) =


a2(λ

∗)2

8

∞∑
j=1

ϕ(P(u)2wj)
2

λj−λ∗ + a3(λ
∗)

24 ϕ(P(u)4) (k = 2),

ak+1(λ
∗)

(k+2)! ϕ(P(u)
k+2) (k ≥ 3).

We say the set Z defined by Fi = 0
(i = 1, . . . ,m) in R× Rm

is the bifurcation

model often determined by the initial

nonlinear term.



We have

F = (F1, . . . , Fm) : R×Rm → Rm, (λ, x) 7→ F (λ, x)

We say that our bifurcation model is

non-degenerate if

- the restriction of H to S is a Morse

function, and

- 0 is a regular value of the restriction

of H to S .

Here S is the sphere defined by
m∑
i=1

x2
i = k ′ + 1 where k ′ is the degree of H .



k ′ is even Several transcritical

bifurcations take place at the bifurcation

point (λ∗, 0).
We say such a bifurcation

pluritranscritical bifurcation (or

multi-transcritical bifurcation).

λ-
λ∗

Pluritranscritical

bifurcation

(k ′
is even)



k ′ is odd The real branches of each

non-trivial solution stay in the region

λ ≤ λ∗
or λ ≥ λ∗

. We call them

plurisubcritical (or multi-subcritical) bifurcation,

plurisupercritical (or multi-supercritical) bifurcation,

mixed critical bifurcation, respectively.

λ-
λ∗

Plurisubcritical

bifurcation

(k ′
is odd)

λ-
λ∗

Plurisupercritical

bifurcation

(k ′
is odd)

λ-

λ∗

Mixed critical

bifurcation

(k ′
is odd)



Theorem. If the equation (1) is

non-degenerate, then the bifurcation

equations F̂i = 0 (i = 1, . . . ,m) are

equivalent to the bifurcation model

Fi = 0. i = 1, . . . ,m,

that is, there is a homeomorphism germ

Ξ : (R× Rm, (λ∗, 0)) → (R× Rm, (λ∗, 0)),

preserving the hyperplane defined by

λ = λ∗
, with Ξ(F−1(0)) = F̂−1(0).



Characterization of non-degeneracy

The system (1) is non-degenerate if and

only if the following conditions (i) and (ii)
hold.

(i) Any irreducible component of Fi = 0
(i = 1, . . . , n) is not in the hyperplane

defined by λ = λ∗
, that is,

{λ = λ∗,Hx1 = · · · = Hxm = 0} = {0}.
(ii) Fi = 0 (i = 1, . . . ,m) defines curves with

an isolated singularity at (λ∗, 0), that is,

rank(xi , δij(λ∗ − λ) + Hxixj ) = m if Fi = 0
(i = 1, . . . , n) except (λ∗, 0).



Dirichlet problem on square Ω = [0, π]2

∆u + λu + h(u, λ) = 0, u|∂Ω = 0

Eigenvalues of −∆ are a2 + b2
,

a, b = 1, 2, . . . , (with eigenfunction

sin as sin bt) that is,

2, 5, 5, 8, 10, 10, 13, 13, 17, 17, 18, 20, 20, 25, 25,

26, 26, 29, 29, 32, 34, 34, 37, 37, 40, 40, 41, 41, 45, 45,

50, 50, 50, 52, 52, 53, 53, 58, 58, 61, 61, 65, 65, 65, 65,

Many eigenvalues are of multiplicity 2,

since a2 + b2 = b2 + a2
.



k = 3 Assume that k = 3 and λ∗
is an

eigenvalue of −∆ with multiplicity 2. Then

the bifurcation model is non-degenerate

with

H =
3π2

256
a3(λ

∗)(3x4
1 + 8x2

1x
2
2 + 3x4

2 )



Thick line is a

quater of the unit

circle

Thin lines are levels of

H .



Thick line is a

quater of the unit

circle

Thin lines are levels of

H .



Thick line is a

quater of the unit

circle

Thin lines are levels of

H .



λ

Plurisupercritical bifurcation of type (1,9)



Collision of bifurcations



k = 5
The bifurcation is

(b−, b+) = (1, 9) if a5(λ
∗) > 0

(b−, b+) = (9, 1) if a5(λ
∗) < 0

H(5π
16

)2
a5(λ∗)

=



(x2 + y 2)[x
4−x2y2+y4

6 + 3
2x

2y 2]

{
b = 2a or

a = 2b

[x
6+y6

6 + 9
5x

2y 2(x2 + y 2) + 45x3y 3]

{
b = 3a or

a = 3b
(x2 + y 2)[x

4−x2y2+y4

6 + 9
5x

2y 2] (otherwise).



k = 2 Assume that k = 2 and λ∗ = a2 + b2
is

an eigenvalue of −∆ with multiplicity 2.
If ab is odd (e.g. λ∗ = 10 = 12 + 32

), then the

bifurcation model is non-degenerate with

H

16a2(λ∗)
=

1
27ab

(x3+y 3)− ab

4a4 − 17a2b2 + 4b4xy(x+y)

and (b−, b+) = (4, 4) transcritical.



If ab is even (e.g. λ∗ = 5 = 12 + 22
), then

ϕ(p(x)3) = 0 and this is degenerate case.

H =
8a2(λ

∗)

3π6 (16a2b2)2G+
3a3(λ

∗)

4π
(3(x2+y 2)2+2x2y 2)

where

G =
∑

p≡1(2), q≡1(2)

 1
pq

(
x2

(4a2−p2)(4b2−q2) +
y2

(4a2−q2)(4b2−p2)

)
+ 2pqxy

((a+b)2−p2)((a−b)2−p2)((a+b)2−q2)((a−b)2−q2)

2

p2 + q2 − a2 − b2

if a + b is even; and

G =
∑

p≡1(2),q≡1(2)

(
x2

(4a2−p2)(4b2−q2) +
y2

(4a2−q2)(4b2−p2)

)2
(p2 + q2 − a2 − b2)p2q2

+
∑

p≡0(2),q≡0(2)

( 2pqxy
((a+b)2−p2)((a−b)2−p2)((a+b)2−q2)((a−b)2−q2)

)2
p2 + q2 − a2 − b2 ,

if a + b is odd.



Approximations of (16a2b2)2G are given by

the following table:

λ∗ (16a2b2)2G (b−, b+)
5 = 12 + 22 −0.437133(x2 + y2)2 + 0.21458x2y2 (1, 9)
13 = 22 + 32 −0.296234(x2 + y2)2 + 0.160728x2y2 (1, 9)
17 = 12 + 42 −0.112539(x2 + y2)2 + 0.638932x2y2 (5, 5)

20 = 22 + 42 −0.111457(x2 + y2)2 − 0.512649x2y2

−0.207558xy(x2 + y2)
(1, 9)

25 = 32 + 42 0.526489(x2 + y2)2 − 0.331983x2y2 (9, 1)
29 = 22 + 52 −0.12589(x2 + y2)2 + 0.614737x2y2 (5, 5)
37 = 12 + 62 −0.0548666(x2 + y2)2 + 0.215801x2y2 (1, 9)

40 = 22 + 62 −0.0595494(x2 + y2)2 − 0.158775x2y2

+0.0276499xy(x2 + y2)
(1, 9)

41 = 42 + 52 0.0254434(x2 + y2)2 − 0.311271x2y2 (5, 5)
45 = 32 + 62 −0.00459484(x2 + y2)2 − 0.126777x2y2 (1, 9)

52 = 42 + 62 −0.22101(x2 + y2)2 + 0.106694x2y2

+0.185669xy(x2 + y2)
(1, 5)



k = 4 λ∗ = a2 + b2
, a, b = 1, 2, . . . with m = 2.

If ab is even, then ϕ(P(u)5) = 0.
If ab is odd, we have

H

162a4(λ∗)
=

1
152ab

x5 + y 5

5

+
32a2b2xy(x3 + y 3)

(4a2 − b2)(16a2 − b2)(a2 − 4b2)(a2 − 16b2)

+ 4ab(5b2 − 2a2)(5a2 − 2b2)x2y2(x + y)

9(4b2 − a2)(9a2 − 4b2)(a+ 2b)(4a2 − b2)(9b2 − 4a2)(2a+ b)
.

(b−, b+) = (4, 4) if

λ∗ = 10, 26, 34, 58, 74, 82, 90, 106, 122, 146
(b−, b+) = (6, 6) if λ∗ = 178



The first eigenvalue with multiplicity 3 is

50. Note that 50 = 12 + 72 = 2 × 52
. Here is

the data for bifurcation model.

k
∫ π
0
∫ π
0 (x sin s sin 7t + y sin 7s sin t + z sin 5s sin 5t)k+1ds dt (b−, b+)

2 16
675

(
(x + y)( 25(x2+y2)

7 − 374
91 xy) + 7z( 26250

20449 xy − x2+y2

19 )

+ 15625
1309 (x + y)z2 + z3

)
(8, 8)

3 3π2

256 (3(x
4 + y4 + z4) + 8(x2y2 + x2z2 + y2z2)) (1, 27)

4 256
441


7(x + y)( x

4+y4

125 − 99964xy(x2+y2)
13996125 + 421500766

103977212625 x
2y2)

+( 16807(x4+y4)
1081575 + 790130684xy(x2+y2)

1173261375 + 4049858x2y2

946785675 )z

+2(x + y)( 15625(x2+y2)
63767 − 58360350722xy

135847622625 )z2

+2( 19531250xy
97357689 − 42189(x2+y2)

3044275 )z3 + 390625(x+y)
1247103 z4 + 49z5

3125

 (8, 8)

5 5π2

1536

(
5(x6 + y6 + z6) + 27(x4(y2 + z2) + y4(x2 + z2) + z4(x2 + y2)

+72x2y2z2 − 9xy(x + y)z3

)
(1, 27)

Here b− (resp. b+) is the number of

semi-branches, with λ < λ∗ (resp. λ > λ∗).



Convex hull of 26 nontrivial solutions



Neumann problem on square [0, π]2

∆u + λu + h(u, λ) = 0, Dnu|∂Ω = 0

The eigenvalues of −∆ are

λ∗ = a2 + b2, a, b = 0, 1, 2, . . . ,

that is,

0, 1, 1, 2, 4, 4, 5, 5, 8, 9, 9, 10, 10, 13, 13, 16, 16, 17, 17,

18, 20, 20, 25, 25, 25, 25, 26, 26, 29, 29, 32, 34, 34, 36, 36,

37, 37, 40, 40, 41, 41, 45, 45, 49, 49, 50, 50, 50, . . .



Neuman problem on [0, π]2

(m, k) = (2, 3) Similar to Dirichlet with

(m, k) = (2, 3).
(m, k) = (2, 5)

(a, b) H/a5(λ
∗) (b−, b+)

(1, 2) 5
512 (x

2 + y2)(10x4 + 53x2y2 + 10y4) (1, 9)
(1, 3) 5

512 (5x
6 + 27x4y2 + 9x3y3 + 27x2y4 + 5y6) (1, 9)

(1, 4) 5
512 (x

2 + y2)(5x4 + 22x2y2 + 5y4) (1, 9)
(2, 3) 5

512 (x
2 + y2)(5x4 + 22x2y2 + 5y4) (1, 9)

(2, 4) 5
512 (x

2 + y2)(10x4 + 53x2y2 + 10y4) (1, 9)



Rectangle Ω = [0, ℓ1π]× [0, ℓ2π] with

(m, k) = (2, 3)
Dirichlet Problem

λ∗ =
(b1

ℓ1

)2
+
(b2

ℓ2

)2
, bi = 1, 2, . . .

H = C (3x4 + 8x2y 2 + 3y 4)

Neumann Problem

λ∗ =
(b1

ℓ1

)2
+
(b2

ℓ2

)2
, bi = 0, 1, 2, . . .

H = C (3x4 + 8x2y 2 + 3y 4) if bi 6= 0
H = C (x4 + 4x2y 2 + y 4) if some bi = 0.



Main conclusion

The following bifurcation is common for

nonlinear Dirichlet (Neuman) problems

with m = 2.

λ

Not hilltop bifurcatioin!

λ λ
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