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1. Introduction -What is the Folding Family?-

• S ⇢ R3 : A smooth surface defined by z = f(x, y)

• F is ”Folding map” with reflection plane ⇧ : y = 0, that is,
F : R2,0

graph�! R3,0
folding�! R3,0

2 2 2

(x, y) 7�! (x, y, f(x, y)) 7�! (x, y2, f(x, y))
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z
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1. Introduction -What is the Folding Family?-

•When we move ⇧ by Euclidean motion A, we obtain
”Motion unfolding” of F :

M : R2 ⇥ Euc/H ! R3

2 2

(p, A) 7�! A�1 � F � A(p)
Here, H is subgroup preserving y = 0.
This is the folding family due to Bruce and Wilkinson.

• Restricting to rotations, we obtain ”Rotation unfolding” of F :

R : R2 ⇥ S2 ! R3.
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1. Introduction -Infinitesimal Reflectional Symmetry-

• Bruce and Wilkinson are motivated by infinitesimal reflectional
symmetry.
! ”Infinitesimal” reflectional symmetry implies
fo(x, y) =

f(x,y)�f(x,�y)
2 is closed to 0 near the origin.

• Formulations are as follows:
(1) fo(x0, y0) =

@
@xfo(x0, y0) =

@
@yfo(x0, y0) = 0

) (x0, y0) is self-tangency point of folding map.
(2) If F A⇠ (x, y) 7! (x, y2, y5 � x2y), B2-singularity,
there is a perturbation of F with a self-tangency point.
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1. Introduction -Self Tangency-
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1. Introduction -Bruce &Wilkinson’s Paper (The folding family and focal )-

• For a residual set of embeddings g : M ! R3, the folding
maps have A-equivalent to the following.
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1. Introduction -Bifurcation set due to Bruce & Wilkinson-
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1. Introduction -Geometry for the focal set due to Bruce & Wilkinson-

On the surface  ! On the focal set
The ”ridge” point $ The cusp point

The ”subparabolic” point $ The parabolic point 8



1. Introduction -Versality of Rotation Unfolding-

Main Theorem for Rotation unfolding◆ ⇣
We assume that

f(x, y) =
1

2
(k1x

2 + k2y
2) +

mX

i+j�3

1

i!j!
aijx

iyj +O(m+ 1)

where m is an integer � 3.

(1) If F ⇠A S1, the rotation unfolding R is always versal.
(2) If F ⇠A S2, R is versal if and only if the origin is not umbilic.
(3) If F ⇠A B2, R is versal if and only if the origin is not umbilic and ridge
line transverse to the reflection plane ⇧: y = 0, or D4 type umbilic.✓ ⌘
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1. Introduction -Versality of Motion Unfolding-

Main Theorem for Motion unfolding◆ ⇣
If the folding map F is equivalent to the following singularities,
the motion unfolding M is versal.
The sing. The condition of versality for non-umbilic

S1 Always.
S2 Always
S3 The v2-subparabolic line is non-singular.
B2 The v2-ridge line is non-singular.
B3 6-jet conditon.
C3 The v2-ridge and v2-subpara lines meet transversely.✓ ⌘
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2. Preliminaries -Extended Tangent Space-

Let g : Rn,0! Rp,0 be a C1-germ.
• ”✓k” is the set of germs of C1-sections Rk,0! TRk

• ”✓(g)” is the set of vector fields along f .
• ”tg” : ✓n 7! ✓(f) is defined by ⇠ 7! df � ⇠.
• ”!g” : ✓p 7! ✓(f) is defined by ⌘ 7! ⌘ � f .
• ”TAeg” := tg(✓n) + !g(✓p).

TRn df !! TRp

Rn f !!

""
tf

##

ωf

##

Rp

""
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2. Preliminaries -Versality and Infinitesimal Versality-

• An unfolding G of g is ”versal” def()
An unfolding which contains all other unfoldings of g

up to parameterized equivalence.

Thm.2.1◆ ⇣
The unfolding G of g is versal if and only if TAeg + VG = ✓(g).
Here, VG := h @G@u1

|Rn⇥0, ...,
@F
@ur

|Rn⇥0iR (u1, . . . ur 2 Rr).✓ ⌘
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2. Preliminaries -Explicit form of Rotation Unfolding-

• Let ⇧v be a plane through (0, 0, 0) with a normal vector
v 2 S2.
• ⌫ = (0, 0, 1) is a normal vector of the surfaceM at 0.
We consider an orthonormal frame:

⌫ ⇥ v, v, (v ⇥ ⌫)⇥ v.

Then the folding map for v-direction is given by:

sv ⇥ ⌫ + tv + r(v ⇥ ⌫)⇥ v 7�! sv ⇥ ⌫ + t2v + r(v ⇥ ⌫)⇥ v.

x
y

z
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3. Versality -The Rotation Unfolding in the case of S1-

b00 b10 b01 b11 b21 b03 c00 c10 c01 c20 c11 c02 q1 q2 q3 r1 r2

ye1 1 �1
xye1 1

x2ye1 1 a21
2

y3e1 1 a03
6

ye2 2

xye2 2 2

x2ye2 2 a21
2 k1

y3e2 2 a03
6 k2

ye3 k2 �1
xye3 a21 k1 a12 k2
x2ye3

a31
2 a21

a30
2 k1

a22
2 a12

a21
2 k2

a21
2

y3e3
a13
6

a12
2

a04
6

a03
6 k2

a03
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3. Versality -The Rotation Unfolding-

Singularity The condition of versality
S1 Always.
S2 k1 � k2 6= 0. , the umbilic.
B2 3a21a12 � a13(k1 � k2) 6= 0

( the v2-ridge line is transverse to ⇧.

The ridge line is expressed by:
0 = a03 +

1
k2�k1

{3a21a12 + a13(k2 � k1)}u
+ 1

k2�k1
{3a212 + (a04 � 3k3

2)(k2 � k1)}v +O(2)
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3. Versality -The Motion Unfolding-

Singularity The condition for non umbilic
S1 Always.
S2 Always.
S3 The v2-subparabolic line is non-singular.
B2 The v2-ridge line is non-singular.
B3 6-jet conditon.
C3 The v2-ridge and subpara line meet transversely.

B3 condition: full-rank of the below matrix B3:✓
a12 +

a13(k2�k1)
3a21

a14
2 +

a15
10a21

(k2 � k1) +
a13
3a21

(a04 � 3a22 +
a23(k1�k2)

a21
) +

a2
13

6a2
21

(a30 � 2a12 +
a31
a21

(k2 � k1))

a04 � 3k3
2 � a12a13

a21

3a06
10 � 9a04k2

2
2 � 3a31a2

13
a2
21

+
a13
a21

(�a14 + 6a12k
2
2 +

a12a23
a21

+
a2
13

a2
21

(a22 � k1k
2
2 � a12a31

a21
))

◆

16



4. Umbilic -Geometry of the umbilic-

We expressM using complex coordinates z = x+ iy,
f(z) = k

2zz̄ + c(z) +O(4), where c(z) = 1
6Re(↵z

3 + 3�z2z).

Figure 1: ��A������

S(ii)

(iii)M

(iv)L

( i )
3-ridges

(v)

Figure 2: ��B������
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4. Umbilic -Versality for Rotation Unfolding-

•We chose w 2 C s.t. |w| = 1, and that

c(wz) =
1

6
(a30x

3 + 3a21x
2y + 3a12xy

2 + a03y
3).

Then,
a30 = c(wz)

��
z=1
, a21 =

@c(wz)
@y

��
z=1
,

a12 =
@c(wz)
@x

��
z=i
, a03 = c(wz)

��
z=i
.

• If ⇠A B2, i.e., a21 6= 0, a03 = 0, then R is versal

, 3a21a12 � a13(k1 � k2) 6= 0, a12 6= 0
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4. Umbilic -Versality for Motion Unfolding-

Sing. Condition for sing. Condition for versality
S1 a21 6= 0, a03 6= 0 always
S2 a21 = 0, a03 6= 0, a31 6= 0 a12 6= 0

S3 a21 = 0, a03 6= 0, a31 = 0, a41 = 0 a12(2a12 � a30) 6= 0

B2 a21 6= 0, a03 = 0, B2 6= 0 a12 6= 0 or a13 6= 0

B3 a21 6= 0, a03 = 0, B2 = 0, B3 6= 0 B3 6= 0.
C3 a21 = 0, a03 = 0, a13 6= 0, a13 6= 0 C 6= 0

Here, B2 =
a05
5 �

a213
3a21

, B3 =
a07
7 �

a15a13
a21

+ 5a23a213
a221
� 5a31a313

a321
.

C = a12(3a31a12 + a13(2a12 � a30))
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Thank you for listening.

arXiv QR code
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