Pseudospheres from

singularity theory view point
with a classification
of 2 -soliton surfaces (j/w with Yutaro Kabata)

Toshi Fukui (Saitama University) 16.45-1715, 26 September, 2023

Workshop for Mathmatics for Industry 25-29 SeptemBer, 2023
Warsaw University of Technology

Surfaces in \mathbb{R}^{3}

$$
\begin{aligned}
\varphi: \mathbb{R}^{2} \longrightarrow & M=\varphi\left(\mathbb{R}^{2}\right) \subset \mathbb{R}^{3}, C^{\infty} \\
E & =\left\langle\varphi_{u}, \varphi_{u}\right\rangle, \quad F=\left\langle\varphi_{u}, \varphi_{v}\right\rangle, \quad G=\left\langle\varphi_{v}, \varphi_{v}\right\rangle \\
L & =\left\langle\varphi_{u u}, \nu\right\rangle, M=\left\langle\varphi_{u v}, \nu\right\rangle, \quad N=\left\langle\varphi_{v v}, \nu\right\rangle
\end{aligned}
$$

where ν is a unit normal.
The first fundamental form

$$
I=E d u^{2}+2 F d u d v+G d v^{2}
$$

The second fundamental form

$$
I I=L d u^{2}+2 M d u d v+N d v^{2}
$$

Chebyshev' net
A pseudosphere is a surface with constant negative Gauss curvatures. We can assume that they have Gauss curvature -1 up to similarity transformations.
For a surface with $K=-1$, we can take the asymptotic coordinate (u, v) with the following fundamental forms:

$$
\begin{aligned}
I & =d u^{2}+2 \cos \phi d u d v+d v^{2} \\
I & =2 \sin \phi d u d v
\end{aligned}
$$

where ϕ is the asymptotic ancle. Gauss-Coddazi equation Becomes sine-Gordon equation:

$$
\phi_{u v}=\sin \phi
$$

Curvature coordinate

The curvature coordinate is Given By

$$
x=\frac{u+v}{2}, \quad y=\frac{u-v}{2} .
$$

The fundamental forms are

$$
\begin{aligned}
& I=\cos ^{2} \frac{\phi}{2} d x^{2}+\sin ^{2} \frac{\phi}{2} d y^{2} \\
& I I=\frac{1}{2} \sin \phi\left(d x^{2}-d y^{2}\right)
\end{aligned}
$$

The principal curvatures are

$$
\tan \frac{\phi}{2}, \text { and }-\cot \frac{\phi}{2}
$$

Ridge and flecnodal

Let v_{i} denote a principal vector of a surface and let κ_{i} denote the corresponding principal curvature of a surface.

A point P on a surface is v_{i}-ridge if $v_{i} \kappa_{i}(P)=0$.

A point P on a surface is flecnodal if there is a line with at least 4 point contact with the surface at P.

1. The level sets of ϕ, κ_{1} and κ_{2} contaning P are equal.
2. The differentials of the principal curvatures are Given as follows:

$$
\begin{array}{ll}
\partial_{x} \kappa_{1}=\frac{\phi_{x}}{1+\cos \phi}, & \partial_{y} \kappa_{1}=\frac{\phi_{y}}{1+\cos \phi}, \\
\partial_{x} \kappa_{2}=\frac{\phi_{x}}{-1+\cos \phi}, & \partial_{y} \kappa_{2}=\frac{\phi_{y}}{-1+\cos \phi} .
\end{array}
$$

So $\partial_{x}-$ ridge (resp. ∂_{y}-ridge) is civen By $\phi_{x}=0$ (resp. $\phi_{y}=0$). (A level of ϕ has a horizontal (or vertical) tangent.)
Flecnodal point on pseudosphere is given By $\phi_{u} \phi_{v}=0$. (i.e., A level of ϕ has a diagonal (or anti-diagonal) tancent.)

Backlünd transformation

We say $\tilde{\phi}$ is Backlünd transformation of ϕ if

$$
\begin{equation*}
\left(\frac{\tilde{\phi}+\phi}{2}\right)_{u}=\lambda \sin \frac{\tilde{\phi}-\phi}{2}, \quad\left(\frac{\tilde{\phi}-\phi}{2}\right)_{v}=\lambda^{-1} \sin \frac{\tilde{\phi}+\phi}{2} . \tag{1}
\end{equation*}
$$

where $\lambda=\tan \theta / 2$. θ is in the next sheet.
If ϕ is a solution of sine-Gordon equation, so is $\tilde{\phi}$.
\{sol. of sine-Gordon $\} \xrightarrow{B T}\{$ sol. Of sine-Gordon $\}$

Geometric BT
We say

$$
M \longrightarrow \tilde{M}, \quad p \longmapsto \tilde{p}
$$

is Gemetric BT, if

- The line $\overline{p \tilde{p}}$ is in $T_{p} M$ and also in $T_{\tilde{p}} \tilde{M}$.
- $d(p, \tilde{p})$ is constant $(=r)$.
- the unit normals ν_{p} and $\tilde{\nu}_{\tilde{p}}$ has a constant angle θ, that is $\left\langle\boldsymbol{\nu}_{p}, \tilde{\boldsymbol{\nu}}_{\tilde{p}}\right\rangle=\cos \theta$.
Geometric BT Between $K=-1$ surfaces is Given By

$$
\tilde{\varphi}=\varphi+r\left(\frac{\cos \tilde{\phi} / 2}{\cos \phi / 2} \varphi_{x}+\frac{\sin \tilde{\phi} / 2}{\sin \phi / 2} \varphi_{y}\right), r=\sin \theta
$$

and it preserves Chebyshev's nets.

Bianchi's permutability
If $\phi_{i}(i=1,2)$ satisfies

$$
\left(\frac{\phi_{i}+\phi}{2}\right)_{u}=\lambda_{i} \sin \frac{\phi_{i}-\phi}{2}, \quad\left(\frac{\phi_{i}-\phi}{2}\right)_{V}=\lambda_{i}^{-1} \sin \frac{\phi_{i}+\phi}{2}
$$

and $\tilde{\phi}$ satisfies

$$
\left(\lambda_{2}-\lambda_{1}\right) \tan \frac{\tilde{\phi}-\phi}{4}=\left(\lambda_{2}+\lambda_{1}\right) \tan \frac{\phi_{2}-\phi_{1}}{4}
$$

then

$$
\begin{aligned}
& \left(\frac{\tilde{\phi}+\phi_{1}}{2}\right)_{u}=\lambda_{2} \sin \frac{\tilde{\phi}-\phi_{1}}{2}, \quad\left(\frac{\tilde{\phi}-\phi_{1}}{2}\right)_{V}=\lambda_{2}^{-1} \sin \frac{\tilde{\phi}+\phi_{1}}{2} . \\
& \left(\frac{\tilde{\phi}+\phi_{2}}{2}\right)_{u}=\lambda_{1} \sin \frac{\tilde{\phi}-\phi_{2}}{2}, \quad\left(\frac{\tilde{\phi}-\phi_{2}}{2}\right)_{V}=\lambda_{1}^{-1} \sin \frac{\tilde{\phi}+\phi_{2}}{2} .
\end{aligned}
$$

Soliton

$$
\text { 0-soliton } \xrightarrow{B T} \text {-soliton } \xrightarrow{B T} \text { 2-soliton }
$$

$$
\phi=0
$$

$$
\begin{array}{r}
\phi_{\lambda}=4 \tan ^{-1}\left(\lambda u+\lambda^{-1} v\right) \quad \xi_{i}=\lambda_{i} u+\lambda_{i}^{-1} v \\
\phi_{\lambda_{1}, \lambda_{2}}=4 \tan ^{-1}\left(\frac{\lambda_{1}+\lambda_{2}}{\lambda_{2}-\lambda_{1}} \cdot \frac{\sinh \frac{\xi_{1}-\xi_{2}}{2}}{\cosh \frac{\xi_{1}+\xi_{2}}{2}}\right)
\end{array}
$$

line
Beltrami's pseudosphere
Dini's pseudosphere
2-soliton surfaces

Sincular locus of φ

Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ Be a Chevyshev net for a pseudosphere with $K=-1$. Let ϕ denote the asymptotic ancle. Then

$$
\begin{aligned}
I & =d u^{2}+2 \cos \phi d u d v+d v^{2} \\
I & =2 \sin \phi d u d v
\end{aligned}
$$

Remark that the sincular locus of φ is defined By

$$
\Sigma: \sin \phi=0, \quad \text { i.e. }, \quad \phi=k \pi, \quad k \in \mathbb{Z} .
$$

For 2 -soliton surface, we have $k=0, \pm 1$.

Criteria of sincularities
Let C denote the curvature line throuch P whose principal direction is null direction at P.

1. Assume that ϕ is nonsincular at P, i.e, the sincular locus of φ is nonsincular at P.
1.1φ is cuspidal edce at P if and only if Σ and C intersect transversely at P.
1.2φ is swallowtail at P if and only if Σ has 2 -point contact with C at P.
2. Assume that ϕ has a Morse sincularity at P.
2.1φ is cuspidal Beaks at P if and only if the Hessian of ϕ is positive.
2.2φ is cuspidal lips at P if and only if the Hessian of ϕ is negative.

Flecnodal and ridge on a 2-soliton surface

On pseudospheres, we have
∂_{u}-flecnodal line ($\phi_{u}=0$),
∂_{v}-flecnodal line $\left(\phi_{v}=0\right)$,
∂_{x}-ridge line $\left(\phi_{x}=0\right)$,
∂_{y}-ridge line $\left(\phi_{y}=0\right)$
and, on 2 -soliton surfaces, they are

$$
\frac{\cosh \xi_{2}}{\cosh \xi_{1}}=\frac{\lambda_{2}}{\lambda_{1}}, \frac{\lambda_{1}}{\lambda_{2}}, \frac{\lambda_{2}+\lambda_{2}^{-1}}{\lambda_{1}+\lambda_{1}^{-1}}, \frac{\lambda_{2}-\lambda_{2}^{-1}}{\lambda_{1}-\lambda_{1}^{-1}}, \text { respectively. }
$$

Here $\xi_{i}=\lambda_{i} u+v / \lambda_{i}, i=1,2$.

When $\lambda_{2} \rightarrow \lambda_{1}=\lambda$,

$$
\phi_{\lambda, \lambda}=\lim _{\lambda^{\prime} \rightarrow \lambda} \phi_{\lambda, \lambda^{\prime}}=4 \tan ^{-1} \frac{-\eta}{\cosh \xi},
$$

where $\xi=\lambda u+\lambda^{-1} v+c$ and $\eta=\lambda u-\lambda^{-1} v$.
The ∂_{u}-flecnodal, ∂_{v}-flecnodal, ∂_{x}-ridge and ∂_{y}-ridge are defined By
$\eta \tanh \xi=1,-1, \frac{\lambda-\lambda^{-1}}{\lambda+\lambda^{-1}}, \frac{\lambda+\lambda^{-1}}{\lambda-\lambda^{-1}}$, respectively.

Classification of 2-soliton

The result in this section should compare the classification of 2 -soliton surfaces (Popov). They show four types for Generic 2-soliton surfaces. The correspondence Between their classification and our results is summarized as follows:

Type	$\lambda_{1} \lambda_{2}$	μ	flecnodal	∂_{x}-ridge	∂_{y}-ridge
1	+	+	exist	exist	exist
2	+	-	exist	exist	not exist
3	-	+	not exists	not exist	not exist
4	-	-	not exists	not exist	exist

$$
\mu=\left(\lambda_{1}^{2}-1\right)\left(\lambda_{2}^{2}-1\right) .
$$

Breather surfaces

For $\lambda \in \mathbb{C}$, with $\operatorname{Re} \lambda \neq 0, \operatorname{Im} \lambda \neq 0$, we have

$$
\phi_{\lambda, \bar{\lambda}}=-4 \tan ^{-1}\left(\cot \arg \lambda \cdot \frac{\sin \operatorname{Im} \xi}{\cosh \operatorname{Re} \xi}\right)
$$

where $\xi=\lambda u+v / \lambda$.
The ∂_{u}-flecnodal, ∂_{v}-flecnodal, ∂_{x}-ridge and ∂_{y}-ridge are defined By

$$
\frac{(\tanh \operatorname{Re} \xi)(\tan \operatorname{Im} \xi)}{\tan \arg \lambda}=1,-1, \frac{|\lambda|-|\lambda|^{-1}}{|\lambda|+|\lambda|^{-1}}, \frac{|\lambda|+|\lambda|^{-1}}{|\lambda|-|\lambda|^{-1}},
$$

respectively.

