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Abstract

We investigate singularities of all parallel surfaces to a given regular surface. In generic

context, the types of singularities of parallel surfaces are cuspidal edge, swallowtail, cus-

pidal lips, cuspidal beaks, cuspidal butterfly and 3-dimensionalD±4 singularities. We give

criteria for these singularities types in terms of differential geometry (Theorem 3.4 and 3.5).

1 Introduction Classically, a wave front is the locus of points having the same phase of

vibration. A wave front is described by Huygens principle: The wave front of a propagating

wave of light at any instant conforms to the envelope of spherical wavelets emanating from

every point on the wave front at the prior instant (with the understanding that the wavelets have

the same speed as the overall wave).

It is well known that a wave front may have singularities at some moment. Singularities

of wave fronts are classified in generic context (see [1, p. 336]). The local classification of

bifurcations in generic one parameter families of fronts in 3-dimensional spaces are also given

in [1, p. 348]. To understand their singularities, it is important to know when the given front is

generic and when the given one parameter family is generic.

In the differential geometric context, a wave front can be described as the parallel surface

gt : U → R3, gt(u, v) := g(u, v) + tn(u, v),

of a regular surfaceg : U → R3 at time t. HereU is an open set ofR2 andn denotes the

unit normal vector given byn = (gu × gv)/∥gu × gv∥. It is well known that whent is either

of the principal radii of curvature at a point of the initial surfaceg, the parallel surfacegt has

a singularity at the corresponding point (see, for example, [13]). So singularities of parallel

surfaces should be investigated in terms of differential geometry of the regular mapg.
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By Huygens principle, the wave front can be seen as the discriminant set of the distance

squared unfolding

Φt : U × R3→ R, (u, v, x, y, z) 7→ −1
2

(
∥(x, y, z) − g(u, v)∥2 − t0

2
)
,

wheret0 is a constant. Porteous [14, 15] investigated the (Thom-Boardman) singularities of

the unfolding (u, v, x, y, z) 7→ Φt + 1
2∥(x, y, z)∥2 with t0 = 0. He discovered that the notion of

normal vectors, principal radii of curvature, and umbilics correspond toA1-singularities,A2-

singularities, andD4-singularities or worse, respectively. Moreover, he discovered the notion of

ridge points corresponding toA3-singularities or worse.

It is now natural to ask a description of the singularity types ofgt in terms of differential

geometry, which we answer in this paper. We fix a general regular mapg and investigate

singularities ofgt for all t. In other words, we investigate changes of singularities due to time

evolution of fronts generated byg. To do this we need the notion of sub-parabolic points which

is introduced by Bruce and Wilkinson [5] to study singularities of folding maps. The main

theorem (Theorem 3.4) states criteria of the singularity types ofgt for all t in terms of differential

geometry. For example, we show that, at a first order ridge point,gt has swallowtail singularity

when it is not sub-parabolic wheret is the corresponding principal radius of curvature. This is

enough to find a normal form whenΦt is an unfolding ofA1, A2, andA3 singularities. This is

proved by given a characterization for the unfoldingΦt to beK-versal in terms of differential

geometry.

We now know thatΦt is not aK-versal unfolding at a sub-parabolic ridge point, a higher

order ridge, and an umbilic. At these points, we are interested in the unfoldingΦ defined by

Φ : U × R4→ R, (u, v, x, y, z, t) 7→ −1
2

(
∥(x, y, z) − g(u, v)∥2 − t2

)
.

Theorem 3.4 also gives a characterization for the unfoldingΦ to beK-versal in terms of differ-

ential geometry. For example, at a ridge point, we show thatΦ is K-versal without any other

condition. The parallel surface is the section of discriminant set of this unfolding with the hy-

perplane defined byt = constant. ForA4-singularities, that is, at a second order ridge point, we

also show (Theorem 3.5 (1)) thatgt has cuspidal butterfly when it is not sub-parabolic where

t is the corresponding principal radius of curvature. At a sub-parabolic ridge point whereΦt

fails to beK-versal, we show (Theorem 3.5 (2)) the singularities ofgt are cuspidal beaks or

cuspidal lips when the corresponding CPC (constant principal curvature) lines are Morse sin-

gularities. ForD4-singularities, we also show a similar result (Theorem 3.5 (3)). These results

are satisfactory in the context of generic differential geometry.

2 Preliminary from di fferential geometry We recall some differential geometric no-

tions and their properties of regular surfaces in Euclidean space, which we need in this paper.
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We present the definitions of ridge points, sub-parabolic points and umbilics, and their fun-

damental properties. We then discuss constant principal curvature (CPC) lines, which are the

locus of singular points of the parallel surface. We state a characterization of these notions in

terms of the coefficients of a Monge normal form of the surface.

2.1 Fundamental forms Consider a surfaceg defined by the Monge form:

g(u, v) = (u, v, f (u, v)) , f (u, v) =
1
2

(k1u
2 + k2v

2) +
∑
i+ j≥3

1
i! j!

ai j u
iv j .(2.1)

The coefficients of the first fundamental form are given by

E = ⟨gu, gu⟩ = 1+ fu
2, F = ⟨gu, gv⟩ = fu fv, G = ⟨gv, gv⟩ = 1+ fv

2.

Here subscripts denotes partial derivatives and⟨ , ⟩ denotes the Euclidean inner product ofR3.

The unit normal vector is given by

n =
1√

1+ fu
2 + fv

2
(− fu,− fv,1).

The coefficients of the second fundamental form are given by

L = ⟨guu,n⟩ =
fuu√

1+ fu
2 + fv

2
,

M = ⟨guv,n⟩ =
fuv√

1+ fu
2 + fv

2
,

N = ⟨gvv,n⟩ =
fvv√

1+ fu
2 + fv

2
.

We consider the matrices of the first fundamental form and the second fundamental form:

I =

E F

F G

 , II =

 L M

M N

 .
2.2 Principal curvatures We say thatκ is a principal curvatureif there is a non-zero

vector (ξ, ζ) such that  L M

M N

 ξ
ζ

 = κ E F

F G

 ξ
ζ

(2.2)

or, equivalently,

1
EG− F2

 G −F

−F E

  L M

M N

 ξ
ζ

 = κ ξ
ζ

 .
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This is rewritten as

1

(1+ fu
2 + fv

2)3/2

1+ fv
2 − fu fv

− fu fv 1+ fu
2

  fuu fuv
fuv fvv

 ξ
ζ

 = κ ξ
ζ

 .
The eigenvector (ξi , ζi) (i = 1,2) of the equation (2.2) corresponding to the eigenvalueκi

gives the principal vectorvi. We can choose them so that the tangent vectorsξigu + ζigv are of

the unit length.

At a point on the surface where two principal curvatures are distinct, there are two principal

vectors and these vectors are mutually orthogonal. These principal vectors are often colored

(blue or red) to distinguish between the two vectors. We assume thatv1 is the blue principal

vector andv2 is the red principal vector.

If two principal curvatures are equal at a point on the surface, we call such a point an

umbilic. At an umbilic every direction through the umbilic is principal and the umbilic is an

isolated singularity of the direction field.

If only one principal curvature is zero, such a point is called a parabolic point. If both

principal curvatures are zero, such a point is called a flat umbilic or a planer point.

We can consider the focal surface. Away form umbilics the focal surface consists of two

sheets, the blue and red sheets given byg + n/κ1 andg + n/κ2, respectively. The two sheets

come together at umbilics. We note that at parabolic points only one of the two sheets exits, and

at flat umbilics the common focal point lies at infinity.

The focal surface might have a singular point where the same colored principal curvature

has an extreme value along the same colored line of curvature. Such a point ong is called a

ridge point and on focal surface a rib. Ridges were first studied in details by Porteous [14].

The locus of points where the principal curvature has extreme value along the other colored

line of curvature is also of importance. This locus is called a sub-parabolic line. The sub-

parabolic line were studied in details by Bruce and Wilkinson [5] in terms of folding maps. The

sub-parabolic line is also the locus of points on the surface whose image is the parabolic line on

the same colored sheet of the focal surface. In [12] the sub-parabolic line appear as the locus of

points where the other colored line of curvature has the geodesic inflections.

2.3 Ridge points and sub-parabolic points Let g(p) be not an umbilic of a regular sur-

faceg, with principal vectorsv1 (‘blue’), v2 (‘red’) corresponding principal curvatureκ1, κ2.

We say that the pointg(p) is a ridge pointrelative tovi (‘blue ridge point’ fori = 1, ‘red’

for i = 2) if viκi(p) = 0, whereviκi is the directional derivative ofκi in vi. Moreover,g(p) is a

k-th order ridge pointrelative tovi if

v(m)
i κi(p) = 0 (1≤ m≤ k) and v(k+1)

i κi(p) , 0,

wherev(k)
i κi is thek-times directional derivative ofκi in vi. The set of ridge points is called a

ridge lineor ridges.
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Lemma 2.1. Suppose that a surfaceg is given in Monge form as in(2.1), and that the origin

is not an umbilic.

(1) The origin is a first order blue ridge point if and only if

a30 = 0 and 3a21
2 + (a40− 3k1

3)(k1 − k2) , 0.

(2) The origin is a second order blue ridge point if and only if

a30 = 3a21
2 + (a40− 3k1

3)(k1 − k2) = 0 and

15a21
2a12+ 10a21a31(k1 − k2) + a50(k1 − k2)

2 , 0.

Proof. We remark that the principal curvatures at the origin arek1, k2 (k1 , k2) with corre-

sponding principal vectorsv1 = (1,0), v2 = (0,1).

The principal curvatures are the eigenvalues of I−1II. So the principal curvatureκ1 is ex-

pressed as

κ1(u, v) = k1 + a30u+ a21v +
1

2(k1 − k2)
{[2a21

2 + (a40− 3k1
3)(k1 − k2)]u

2

+ 2[2a21a12+ a31(k1 − k2)]uv + [2a12
2 + (a22− k1k2

2)(k1 − k2)]v
2} +O(u, v)3,

(2.3)

and we have

∂3κ1

∂u3
(0,0) =

6a21
2(−a30+ a12) + 6a21a31(k1 − k2) + (a50− 18a30k1

2)(k1 − k2)2

6(k1 − k2)2
.

Let (ξ1, ζ1) be the eigenvector of I−1II with the eigenvalueκ1. It thus follows form (2.2) that

there is a real numberµ , 0 such that

(ξ1, ζ1) = µ(N − κ1G,−M + κ1F).

Selection of the vector (ξ1, ζ1) in order for the tangent vectorξ1gu + ζ1gv to be of the unit length

shows that the principal vectorv1 is expressed as

v1(u, v) =

(
1+O(u, v)2

)
∂

∂u
+

(
1

k1 − k2
(a21u+ a12v) +O(u, v)2

)
∂

∂v
,(2.4)

and that

∂2ζ1

∂u2
(0,0) =

2a21(a12− a30) + a31(k1 − k2)
2(k1 − k2)2

.

Therefore, we have

v1κ1(0,0) =
∂κ1

∂u
(0, 0) = a30,

v1
2κ1(0,0) =

∂2κ1

∂u2
(0,0)+

∂κ1

∂v
(0,0)

∂ζ1

∂u
(0, 0) =

3a21
2 + (a40− 3k1

3)(k1 − k2)
k1 − k2

.
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Moreover, whenv1κ1(0, 0) = v1
2κ1(0, 0) = 0, we obtain

v1
3κ1(0) =

∂3κ1

∂u3
(0) + 3

∂2κ1

∂u∂v
(0)

∂ζ1

∂u
(0) +

∂κ1

∂v
(0)

(
∂ζ1

∂u
(0)

∂ζ1

∂v
(0) +

∂2ζ1

∂u2
(0)

)
=

15a21
2a12+ 10a21a31(k1 − k2) + a50(k1 − k2)2

(k1 − k2)2
.

�

Lemma 2.2. Suppose that a surfaceg is given in Monge form as in(2.1), and that the origin

is a blue ridge point. Then the blue ridge line through the origin fails to be smooth at the origin

if and only if

3a21
2 + (a40− 3k1

3)(k1 − k2) = 3a21a12+ a31(k1 − k2) = 0.

Proof. It follows form (2.3) and (2.4) that the equation of the blue ridge line through the

origin is expressed as

[3a21
2 + (a40− 3k1

3)(k1 − k2)]u+ [3a21a12+ a31(k1 − k2)]v + · · · = 0.(2.5)

This equation implies the assertion. �

We turn to sub-parabolic points. A pointg(p) which is not an umbilic is asub-parabolic

point relative tovi (‘blue sub-parabolic point’ fori = 1, ‘red’ for i = 2) if viκ j(p) = 0 (i , j).

The set of sub-parabolic points is called asub-parabolic line.

Lemma 2.3. Suppose that a surfaceg is given in Monge form as in(2.1), and that the origin

is not an umbilic. Then the origin is a red sub-parabolic point if and only if a21 = 0.

Proof. Since the principal vectorsv1 andv2 are orthogonal, it follows from (2.4) that the

principal vectorv2 is expressed the following form:

v2(u, v) =

(
1

k2 − k1
(a21u+ a12v) +O(u, v)2

)
∂

∂u
+

(
1+O(u, v)2

)
∂

∂v
.(2.6)

From (2.3) and (2.6), the directional derivativev2κ1 is given by

v2κ1(u, v) = a21+
a21(2a12− a30) + a31(k1 − k2)

k1 − k2
u

+
a12(2a12− a30) + (a22− k1k2

2)(k1 − k2)
k1 − k2

v +O(u, v)2.

(2.7)

This equation implies the assertion. �

We can deduce from (2.7) that the equation of the red sub-parabolic line through the origin

has the form

a31(k1 − k2)u+ [a12(2a12− a30) + (a22− k1k2
2)(k1 − k2)]v + · · · = 0.(2.8)
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2.4 Umbilics Umbilicsof a regular surface are points where the two principal curvatures

coincide. At these points the principal direction field is singular and the lines of curvature fail to

cross at right angle. The classification of generic umbilics is due to Darboux [6]. He gave three

configurations of the lines of curvature. The three configurations were given the names lemon,

star, and monstar by Berry and Hannay [2]. Their classification was provided by Gutierrez and

Sotomayor [7].

Suppose that the origin is an umbilic of a surfaceg, and thatg is given in Monge form

g(u, v) = (u, v, f (u, v)), f (u, v) =
k
2

(u2 + v2) +
∑
i+ j≥3

1
i! j!

ai j u
iv j ,(2.9)

wherek is the common value for the principal curvatures at the origin.

At an umbilic the cubic partf3 of f in (2.9) determines its type. An umbilic of the surface

g is said to beelliptic or hyperbolic if f3 has three real roots or one real root, respectively.

Moreover, An umbilic is said to beright-angled if the root directions of the quadratic form

which is the determinant of the Hessian matrix off3 are mutually orthogonal with respect to the

standard scalar product onR2. Such an umbilic necessarily is a hyperbolic umbilic.

We shall present the conditions for types of umbilics in terms of the coefficients of the

Monge form. We set

Γ :=

a30 2a21 a12 0

0 a30 2a21 a12

a21 2a12 a03 0

0 a21 2a12 a03

, and Γ′ :=

1 0 1

a30 a21 a12

a21 a12 a03

.

The discriminant off3 is given by−Γ. Hence, the origin is an elliptic umbilic or hyperbolic

umbilic if and only if Γ < 0 or Γ > 0, respectively. Moreover, the determinant of the Hessian

matrix of f3 is given by

−36[(a21
2 − a30a12)u

2 + (a21a12− a30a03)uv + (a12
2 − a21a03)v

2].

It follows that the origin is a right-angled umbilic if and only ifΓ′ = 0.

It is shown in [15] that there is one ridge line passing through a hyperbolic umbilic and three

ridge lines passing through an elliptic umbilic. It is also shown in [15] that ridge lines change

their color as they pass through a generic umbilic.

It is known that when there is one direction for lines of curvature at an umbilic, there is

one sub-parabolic line through the umbilic in the same direction, while, when there are three

directions for lines of curvature at an umbilic, there are three sub-parabolic lines through the

umbilic in the same three directions [5, 12].
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2.5 Constant principal curvature lines We set

Σc := {(u, v) ∈ U ; κi(u, v) = c for somei}.

We callΣc theconstant principal curvature (CPC) line with the value of c. There are two CPC

linesΣκ1(p) (colored by blue) andΣκ2(p) (colored by red) locally through a non-umbilical point

g(p). We recall that a pointp ∈ U is a singular point of the parallel surfacegt at distancet if

and only if t = 1/κi(p) for somei. This means that the set of singular points ofgt is the CPC

line Σκi (p).

Firstly, we investigate the CPC lines away form umbilics. Suppose that a surfaceg is given

in Monge form as in (2.1). From (2.3),κ1(u, v) = k1 is expressed by the equation

0 = a30u+ a21v +
1

2(k1 − k2)
{[2a21

2 + (a40− 3k1
3)(k1 − k2)]u

2

+ 2[2a21a12+ a31(k1 − k2)]uv + [2a12
2 + (a22− k1k2

2)(k1 − k2)]v
2} + · · · .

(2.10)

Hence, the CPC lineΣk1 is locally given by the equation (2.10) at the origin. The equation (2.10)

shows that the CPC lineΣk1 is singular at the origin if and only ifa30 = a21 = 0, that is, the

origin is a blue ridge point and a red sub-parabolic point (Lemma 2.1 and 2.3).

Lemma 2.4. Suppose that the origin is a blue ridge point which is not a red sub-parabolic

point.

(1) The CPC lineΣk1 is transverse to the blue ridge line at the origin if and only if the order

of the ridge is one.

(2) the CPC lineΣk1 is tangential to the blue ridge line at the origin if and only if the order

of the ridge is more than one.

Proof. It follows from (2.5) and (2.10) that the CPC lineΣk1 is transverse to the blue ridge

line at the origin if and only if

3a21
2 + (a40− 3k1

3)(k1 − k2) , 0.

On the other hand, both lines are tangential at the origin if and only if

3a21
2 + (a40− 3k1

3)(k1 − k2) = 0.

Hence, the statement of the lemma follows from Lemma 2.1 �

Lemma 2.5. Suppose that the origin is a blue ridge point and red sub-parabolic point. Then

the CPC lineΣk1 is locally either an isolated point or two intersecting smooth curves at the

origin, if the blue ridge line crosses the red sub-parabolic line at the origin.
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Proof. First we remark that

∂κ1

∂u
(0,0) = a30 = 0 and

∂κ1

∂v
(0,0) = a21 = 0.

The equations of the blue ridge line (2.5) and the red sub-parabolic line (2.8) reduce

(a40− 3k1
3)(k1 − k2)u+ a31(k1 − k2)v + · · · = 0

and

a31(k1 − k2)u+ [2a12
2 + (a22− k1k2

2)(k1 − k2)]v + · · · = 0,

respectively. From these equations, the blue ridge line crosses the red sub-parabolic line at the

origin if and only if

(a40− 3k1
3)(k1 − k2)[2a12

2 + (a22− k1k2
2)(k1 − k2)] − a31

2(k1 − k2)
2 , 0.

In addition, from (2.3), the determinant of the Hessian matrix ofκ1 at (0,0) is given by

(a40− 3k1
3)(k1 − k2)[2a12

2 + (a22− k1k2
2)(k1 − k2)] − a31

2(k1 − k2)
2.

By the Morse lemma (see, for example, [3]), we complete the proof. �

Secondly, we investigate the CPC line near an umbilic.

Theorem 2.6. (1) The CPC lineΣk is locally an isolated point at the elliptic umbilic,

where k is the common value for the principal curvatures at the umbilic.

(2) The CPC lineΣk is locally two intersecting smooth curves at a hyperbolic umbilic. The

locally two curves change their color as they pass through the hyperbolic umbilic.

Proof. We suppose that the origin is an umbilic of a surfaceg, and that the surfaceg is given

in Monge form as in (2.9). The principal curvatures are the roots of the quadric equation

(EG− F2)κ2 − (EN− 2FM +GL)κ + (LN − M2) = 0.

Replacingκ by k which is the common value for the principal curvatures at the origin, we can

express the equation in the form

(a30a12− a21
2)u2 + (a30a03− a21a12)uv + (a21a03− a12

2)v2 + · · · = 0.(2.11)

The locus of this equation is the CPC lineΣk. We denote the quadric part of (2.11) byαu2 +

2βuv + γv2. Then we haveβ2 − αγ = Γ/4, whereΓ is as in Section 2.4. Hence, the CPC lineΣk

at an umbilic is locally either an isolated point ifΓ < 0 (i.e., the origin is an elliptic umbilic) or

two smooth intersecting curves ifΓ > 0 (i.e., the origin is a hyperbolic umbilic).
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We investigate the case of hyperbolic umbilics in detail. For a hyperbolic umbilic, we may

assume thatg is locally given in the form

g(u, v) = (u, v, f (u, v)), f (u, v) =
k
2

(u2 + v2) +
P
6

u(u2 + 2Quv + Rv2) + · · ·(2.12)

for someP, Q, andR with P , 0 andQ2 − R < 0. Then the principal curvaturesκ1 (maximum

curvature),κ2 (minimum curvature) are expressed as

κ1(u, v) = k+
1
6

(
P[(R+ 3)u+ 2Qu]

+|P|
√

[16Q2 + (R− 3)2]u2 + 12Q(R+ 1)uv + 4(Q2 + R2)v2
)
+ · · · ,

κ2(u, v) = k+
1
6

(
P[(R+ 3)u+ 2Qu]

−|P|
√

[16Q2 + (R− 3)2]u2 + 12Q(R+ 1)uv + 4(Q2 + R2)v2
)
+ · · · .

(2.13)

Therefore, the locally two smooth curves change their color as they through the hyperbolic

umbilic. �

Remark 2.7. (1) A simple calculation givesΓ′ = α + γ, whereΓ′ is as in Section 2.4.

It follows that the tangents to the locally two smooth curves of the CPC line through

the right-angled umbilic are mutually orthogonal. We note that the right-angled umbilic

necessarily is a hyperbolic umbilic.

(2) Equation (2.11) shows that the CPC lineΣk is approximated by a conic near the origin

when the origin is not a parabolic umbilic.

Finally, We investigate bifurcations of the CPC lines at an umbilic. We start with the case of

an elliptic umbilic. There are three ridge lines through the elliptic umbilic. The bifurcation of

the CPC lines at the elliptic umbilic is shown in Figure 1 (i), (ii) (cf. [4], Figure 2). We now turn

to the case of a hyperbolic umbilic. We may assume that the surface given in the from (2.12).

There is one ridge line through the hyperbolic umbilic. Calculations show that the ridge line is

tangent to 2Qu+ Rv = 0 at the origin (cf. [15], corollary (iii) of Theorem 11.10) and that the

locally two smooth curves of the CPC lineΣk are tangent to [QR±
√

R2(−Q2 + R)]u + R2v =

0. Thus it follows that the bifurcation of the CPC lines at the hyperbolic umbilic is given in

Figure 1 (iii)–(v) (cf. [4], Figure 2), in the generic context.

As shown in Figure 1, there are three intersection points of the CPC line and the same col-

ored ridge line near an elliptic umbilic, and there is one such intersection point near a hyperbolic

umbilic, in the generic context.

3 Singularities of parallel surfaces In this section we present our main theorem.
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blue ridge line red ridge line

blue CPC lineΣc red CPC lineΣc

(iii)

(i)

c = k− ε c = k c = k+ ε

(ii)

(iv)

(v)

Figure 1: Bifurcations of the CPC lines near an elliptic umbilic (i) and (ii), and a hyperbolic

umbilic (iii)–(v) , whereε is a small positive number.
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3.1 Augmented distance squared functionsLet f : (Rn,0) → (R,0) be a smooth func-

tion germ. We say that a smooth function germF : (Rn × Rr , 0) → (R,0) is anunfoldingof f

if F(u,0) = f (u). We define thediscriminant setof F by

D(F) =
{
x ∈ Rr ; F(u, x) =

∂F
∂u1

(u, x) = · · · ∂F
∂un

(u, x) = 0 for someu ∈ U
}
,

where (u, x) = (u1, . . . , un, x1, . . . , xr) ∈ (Rn × Rr ,0). We say that theF is aK-versal unfolding

if any unfoldingG : (Rn × Rs,0)→ (R,0) of f is representable in the form

G(u, y) = h(u, y) · F(Ψ(u, y), ψ(y)),

whereΨ : (Rn × Rs,0)→ (Rn,0) is a smooth map germ withΨ(u,0) = u, ψ : (Rs,0)→ (Rr ,0)

is a smooth map germ withψ(0) = 0 andh : (Rn × Rs, 0) → R is a smooth function germ with

h(0,0) , 0 (cf. [1,§8]). This condition is equivalent to that

En =

⟨
∂ f
∂u1

, · · · , ∂ f
∂un

, f
⟩
En

+

⟨
∂F
∂x1

∣∣∣∣∣
Rn×{0}

, · · · , ∂F
∂xr

∣∣∣∣∣
Rn×{0}

⟩
R
+Mk+1

n

when f (u) is k-determined (see [17,§3] and [11, p.75]). Here,En is the set of smooth func-

tion germs (Rn,0) → R, which is the local ring with the unique maximal idealMn = { f ∈
En ; f (0) = 0}. We say that two function germsf andg : (Rn,0) → (R,0) areK-equivalent

if there exist a diffeomorphism germψ : (Rn,0) → (Rn,0) and a smooth function germ

h : (Rn, 0) → R with h(0) , 0 such thatg(u) = h(u) · f ◦ ψ(u). If F, G : (Rn × Rr ,0) → (R,0)

areK-versal unfoldings ofK-equivalent function germsf , g, respectively. Then, there exist a

diffeomorphism germ̃Ψ : (Rn × Rr ,0) → (Rn × Rr ,0), (u, x) 7→ (Ψ(u, x), ψ(x)) and a smooth

function germh : (Rn × Rr ,0)→ R with h(0,0) , 0 such that

G(u, x) = h(u, x) · F(Ψ(u, x), ψ(x)).

(cf. [1, §8]). Moreover, calculation shows thatD(F) = ψ(D(G)).

In order to investigate singularities of parallel surfaces, we consider the functions

Φt : U × R3→ R, defined by (u, v, x, y, z) 7→ −1
2

(
∥(x, y, z) − g(u, v)∥2 − t0

2
)
,

wheret0 ∈ R \ {0}, and

Φ : U × R4→ R, defined by (u, v, x, y, z, t) 7→ −1
2

(
∥(x, y, z) − g(u, v)∥2 − t2

)
.

We call themaugmented distance squared functions.

Calculating the discriminant set ofΦt, we have

D(Φt) = {(x, y, z) ∈ R3 ; (x, y, z) = g(u, v) + t0n(u, v) for some (u, v) ∈ R2},
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which is the parallel surface ofg at a distancet0. Besides, the discriminant set ofΦ is given by

D(Φ) = {(x, y, z, t) ∈ R3 ; (x, y, z) = g(u, v) + tn(u, v) for some (u, v) ∈ R2}.

Its intersection with the hyperplanet = t0 is the parallel surface ofg at distancet0.

We take a pointq0 = (x0, y0, z0) or q0 = (x0, y0, z0, t0) where

(x0, y0, z0) = g(u0, v0) + t0n(u0, v0), t0 =
1

κi(u0, v0)

possibly withκ1(u0, v0) = κ2(u0, v0), and set

φ(u, v) = Φt(u, v, q0) or φ(u, v) = Φ(u, v, q0).

Then the augmented distance functionsΦ andΦt are the unfoldings ofφ.

If φ is K-equivalent toA2 (resp. A3) andΦt is aK-versal unfolding ofφ, then the dis-

criminant set ofΦt is locally diffeomorphic to the discriminant set of the versal unfolding

G : (U × R3, 0)→ (R,0),

G(u, v, x, y, z) = u3 ± v2 + x+ yu (resp.G(u, v, x, y, z) = u4 ± v2 + x+ yu+ zu2)

of g(u, v) = u3 ± v2 (resp.g(u, v) = u4 ± v2). The singularity of the discriminant set ofG is the

cuspidal edge (resp. swallowtail).

Here, thecuspidal edgeis a set locally diffeomorphic to the image of a map germCE :

(R2,0) → (R3,0), (u, v) 7→ (u, v2, v3) and theswallowtail is a a set locally diffeomorphic to the

image of a map germS W: (R2,0)→ (R3,0), (u, v) 7→ (u,3v4 + uv2,4v3 + 2uv). The pictures of

the cuspidal edge and the swallowtail are shown in Figure 2.

Figure 2: From left to right: Cuspidal edge, Swallowtail.

If φ isK-equivalent toA4 (resp. D±4) andΦ : (U × R4, (u0, v0,q0)) → (R,0) is aK-versal

unfolding ofφ, then the discriminant set ofΦ is locally diffeomorphic to the discriminant set of

the versal unfoldingG : (U × R4,0)→ (R,0),

G(u, v, x, y, z, t) = u4±v2+ x+yu+zu2+ tu3 (resp.G(u, v, x, y, z, t) = u2v±v3+ x+yu+zv+ tv2)

of g(u, v) = u4 ± v2 (resp.g(u, v) = u2v ± v3). The singularity of the discriminant set ofG is a

butterfly (resp.D±4 singularities).
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Here, thebutterflyis a set locally diffeomorphic to the image of a map germBF : (R3,0)→
(R4,0), (u, v, w) 7→ (u,5v4+2uv+3v2w,4v5+uv2+2v3w, w) and the 4-dimensional D±4 singularity

is a set locally diffeomorphic to the image of a map germFD± : (R3,0) → (R4,0), (u, v, w) 7→
(uv,u2 + 2vw ± 3v2,2u2v + v2w ± 2v3, w).

3.2 Criteria for singularities of fronts in R3 It is well known that the parallel surface

gt is a front. Fronts were first studied in details by Arnol’d and Zakalyukin. They showed that

the generic singularities of fronts inR3 are cuspidal edges and swallowtails. Moreover, they

showed that the singularities of the bifurcations in generic one parameter families of fronts in

R3 are cuspidal lips, cuspidal beaks, cuspidal butterflies and 3-dimensionalD±4 singularities (cf.

[1]).

Here, thecuspidal lipsis a set locally diffeomorphic to the image of a map germCLP :

(R2,0) → (R3,0), (u, v) 7→ (3u4 + 2u2v2,u3 + uv2, v), thecuspidal beaksis a set locally diffeo-

morphic to the image of a map germCBK : (R2,0)→ (R3,0), (u, v) 7→ (3u4−2u2v2,u3−uv2, v),

the cuspidal butterflyis a set of the image of a map germCBF : (R2,0) → (R3,0), (u, v) 7→
(4u5 + u2v,5u4 + 2uv, v) and the 3-dimensional D+4 singularity (resp. D−4 singularity) is a set

of the image of a map germT D+ : (R2,0) → (R3,0), (u, v) 7→ (uv,u2 + 3v2,u2v + v3) (resp.

T D− : (u, v) 7→ (uv,u2 − 3v2,u2v − v3)). Their pictures are shown in Figure 3.

Figure 3: From top left to bottom right: Cuspidal lips, Cuspidal beaks, Cuspidal butterfly, 3-

dimensionalD+4 singularity, 3-dimensionalD−4 singularity.

Recently, criteria for these singularities are shown in [8], [9], [10], [16]. To present these
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criteria, we prepare basic notions of fronts inR3. A smooth mapf : U → R3 is called afront if

there exists a unit vector fieldν of R3 along f such thatL f = ( f , ν) : U → T1R3 is a Legendrian

immersion, whereT1R3 is the unit tangent bundle ofR3 (cf. [1], see also [10]). For a frontf , we

define a functionλ : U → R by λ(u, v) = det(fu, fv, ν). The functionλ is called adiscriminant

functionof f . The set of singular pointsS( f ) of f is the zero set ofλ. A singular pointp ∈ U

of f is said to benon-degenerateif dλ(p) , 0. Let p be a non-degenerate singular point of a

front f . ThenS( f ) is parameterized by a regular curveγ(t) : (−ε, ε) → U nearp. Moreover,

there exists a a unique directionη(t) ∈ Tγ(t)U up to scalar multiplications such thatd f(η(t)) = 0.

We callη(t) thenull direction. Under these notations, we present the criterion for the cuspidal

butterfly.

Theorem 3.1 ([8]). Let f : U → R3 be a front and p a non-degenerate singular point

of f . Then the germ of the front f at p isA-equivalent to the map germ CBF if and only if

ηλ(p) = η2λ(p) = 0 andη3λ(p) , 0.

Here, two map germsf1, f2 : (R2,0) → (R3,0) areA-equivalentif there exist diffeomor-

phism germsψ1 : (R2,0) → (R2,0) andψ2 : (R3, 0) → (R3,0) such thatψ2 ◦ f1 = f2 ◦ ψ1, and

ηλ denotes the directional derivative ofλ in the direction ofη.

We now turn to degenerate singularities. Letp be a degenerate singular point of the frontf .

If rank(d fp) = 1, then there exists the non-zero vector fieldη nearp such that ifq ∈ S( f ) then

d fq(η(q)) = 0. Criteria for degenerate singularities are as follows:

Theorem 3.2 ([9]). Let f : U → R3 be a front and p a degenerate singular point of f .

(1) The germ of the front f at p isA-equivalent to the map germ CLP if and only ifrank(d fp) =

1 and thedet(Hessλ(p)) > 0, wheredet(Hessλ(p)) denotes the determinant of the Hes-

sian matrix ofλ at p.

(2) The germ of the front f at p isA-equivalent to the map germ CBK if and only if

rank(d fp) = 1, det(Hessλ(p)) < 0 andη2λ(p) , 0.

Theorem 3.3 ([16]). Let f : U → R3 be a front and pa degenerate singular point of f . Then

the germ of the front f at p isA-equivalent to the map germ T D+ (resp. T D−) if and only if

rank(d f)p = 0 anddet(Hessλ(p)) < 0 (resp.det(Hessλ(p)) > 0).

3.3 Singularities of parallels surfaces Now we are ready to state our main theorem.

Theorem 3.4. Let g : U → R3 be a regular surface andgt the parallel surface ofg at dis-

tance t, where U is an open subset ofR2. Assume thatΦ, Φt, andφ is defined as in Section3.1.

(1) If g(u0, v0) is neither a ridge point relative to the principal vectorvi nor an umbilic, and

κi(u0, v0) , 0, thenφ has an A2 singularity at (u0, v0). In this case,Φt is a K-versal

unfolding ofφ. Moreover, the parallel surfacegt at distance t= 1/κi(u0, v0) is locally

diffeomorphic to the cuspidal edge atgt(u0, v0).
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(2) If g(u0, v0) is a first order ridge point relative to the principal vectorvi, andκi(u0, v0) , 0,

thenφ has an A3 singularity at(u0, v0). In this case,Φt is aK-versal unfolding ofφ if

and only ifg(u0, v0) is not a sub-parabolic point relative to the other principal vectorv j.

Moreover, the parallel surfacegt at distance t= 1/κi(u0, v0) is locally diffeomorphic to

the swallowtail atgt(u0, v0).

(3) If g(u0, v0) is a second order ridge point relative to the principal vectorvi, andκi(u0, v0) ,
0, thenφ has an A4 singularity at(u0, v0). In this case,Φ is aK-versal unfolding ofφ

if and only if (u0, v0) is a regular point of the ridge line relative to the same principal

vectorvi. Moreover, the parallel surfacegt at distance t= 1/κi(u0, v0) is the section of the

discriminant setD(Φ), which is locally diffeomorphic to the butterfly, with the hyperplane

t = 1/κi(u0, v0).

(4) If g(u0, v0) is a hyperbolic umbilic and not a flat umbilic, thenφ has a D+4 singularity

at (u0, v0). In this case,Φ is aK-versal unfolding ofφ if and only if g(u0, v0) is not a

right-angled umbilic. Moreover, the parallel surfacegt at distance t= 1/κi(u0, v0) is the

section of the discriminant setD(Φ), which is locally diffeomorphic to the4-dimensional

D+4 singularity, with the hyperplane t= 1/κi(u0, v0).

(5) If g(u0, v0) is an elliptic umbilic and not a flat umbilic, thenφ has a D−4 singularity at

(u0, v0). In this case,Φ is aK-versal unfolding ofφ. Moreover, the parallel surfacegt

at distance t= 1/κi(u0, v0) is the section of the discriminant setD(Φ), which is locally

diffeomorphic to the4-dimensional D−4 singularity, with the hyperplane t= 1/κi(u0, v0).

A proof of this theorem is given in Section 5.

Again, we remark that the parallel surfacesgt of a regular surfaceg are the front. Since the

unit normal vector of the parallel surfacegt coincides with the unit normal vectorn of the initial

surfaceg, the discriminant function ofgt is given by

λ(u, v) = det(gt
u(u, v), g

t
v(u, v),n(u, v)).

Moreover, the Jacobian matrixJgt of gt is given by

Jgt = Jg − tJgI
−1II = Jg(I2 − tI−1II) ,(3.1)

whereJg is the Jacobian matrix ofg and I2 is the 2× 2 identity matrix. Applying criteria for

singularities of fronts (Theorem 3.1–3.3) to the parallel surfacegt, we obtain Theorem 3.5 as

corollaries of these criteria.

Theorem 3.5. Let g : U → R3 be a regular surface andgt the parallel surface ofg at

distance t, where U is an open subset ofR2.
(1) Suppose thatg(p) is a second order ridge point relative to the principal vectorvi which is

not a sub-parabolic point relative to the other principal directionv j, and thatκi(p) , 0.

Then the parallel surfacegt at distance t= 1/κi(p) is locally diffeomorphic to the cuspidal

butterfly atgt(p).
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(2) Suppose thatg(p) is a ridge point relative to the principal directionvi and a sub-parabolic

point relative to the other principal directionv j, and thatκi(p) , 0. Then the parallel

surfacegt at distance t= 1/κ1(p) is locally diffeomorphic to the cuspidal lips(resp.

cuspidal beaks) at gt(p) if det(Hess(v1,v2)κi(p)) > 0 (resp.det(Hess(v1,v2)κi(p)) < 0 and the

order of ridge is one), whereHess(v1,v2)κi is the Hessian matrix ofκi with respect tov1 and

v2.

(3) Suppose thatg(p) is an umbilic which is not a flat umbilic. Then the parallel surfacegt

at distance t= 1/κ1(0,0) = 1/κ2(0,0) is locally diffeomorphic to a 3-dimensional D+4
singularity (resp. D−4 singularity) at gt(p) if g(p) is a hyperbolic umbilic(resp. elliptic

umbilic).

Proof. (1) We may assume thatp = (0, 0) and that the initial regular surfaceg given in

Monge form as in (2.1). We remark thatk1 , k2. Now we prove in the caset = 1/κ1(0,0) = 1/k1.

From Lemma 2.1 and 2.3, we have

a30 = 3a21
2 + (a40− 3k1

3)(k1 − k2) = 0,

15a2
21a12+ 10a21a31(k1 − k2) + a50(k1 − k2)

2 , 0, and a21 , 0.
(3.2)

Suppose thatt = 1/k1. Then we haveλ(0,0) = 0. Moreover, from (3.2), we have

λu(0,0) =
a30(k2 − k1)

k1
2

= 0 and λv(0,0) =
a21(k2 − k1)

k1
2

, 0.(3.3)

It turns out that (0,0) is a non-degenerate singular point ofgt. Therefore, the set of singular

points ofgt is a locally smooth curve near (0,0), which is the CPC lineΣk1, and there exists

a null directionη with dgt(η) = 0 along this smooth curve. It follows form (3.1) that the null

directionη has the same direction as the principal vectorv1. From (3.2), we have

v1λ(0,0) = −a30(k1 − k2)2

k1
2

= 0,

v1
2λ(0,0) = −(k1 − k2)2[a30(a30− 3a12) + 3a21

2 + (a40− 3k1
3)(k1 − k2)]

k1
2

= 0, and

v1
3λ(0,0) = −

(k1 − k2)2[15a2
21a12+ 10a21a31(k1 − k2) + a50(k1 − k2)2]

k1
2

, 0.

Therefore, we obtain thatηλ(0, 0) = η2λ(0,0) = 0, η3λ(0,0) , 0.

If the two map germs areA-equivalent, their images are locally diffeomorphic. Hence, by

Theorem 3.1 the parallel surfacegt at distancet = 1/k1 is locally diffeomorphic to the cuspidal

butterfly.

(2) We may assume thatp = (0,0) and that the initial regular surfaceg given in Monge

form as in (2.1). We remark thatk1 , k2. Now we prove in the caset = 1/κ1(0,0) = 1/k1.

From Lemma 2.1 and 2.3, we have

a30 = a21 = 0.(3.4)
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Suppose thatt = 1/k1. Then we haveλ(0,0) = 0 and

Jgt(0,0) =


0 0

0 (k1 − k2)/k1

0 0

 .
Moreover, from (3.4), we haveλu(0,0) = λv(0,0) = 0. It follows that (0, 0) is a degenerate

singular point ofgt with rank(dgt
p) = 1. Using (3.4), we obtain that

det(Hessλ(0,0)) =
(k1 − k2)2

k1
4

a40− 3k1
3 a31

a31
2a12

2 + (a22− k1k2
2)

k1 − k2

and

det(Hess(v1,v2)κ1(0,0)) =
a40− 3k1

3 a31

a31
2a12

2 + (a22− k1k2
2)

k1 − k2

.(3.5)

Therefore, the sign of det(Hessλ(0,0)) is the same as the sign of det(Hess(v1,v2)κ1(0,0)). Besides,

since rank(dgt
p) = 1, there exists a non-zero vectorη with dgt

p(η) = 0. From (3.1), the non-zero

vectorη has the same direction as the principal vectorv1. Hence,η2λ(0,0) , 0 if and only if

v1
2λ(0,0) , 0. From (3.4), we have

v1
2λ(0,0) = − (a40− 3k1

3)(k1 − k2)3

k1
2

.

Therefore, this shows that (0,0) is a first order blue ridge point if and only ifη2λ(0,0) , 0

(cf. Lemma 2.1). Applying Theorem 3.2 to the argument indicated above, we obtain (2).

(3) We may assume thatp = (0,0) and that the initial regular surfaceg given in Monge

form as in (2.9). We remark thatκ1(0,0) = κ2(0,0) = k. Suppose thatt = 1/k. Then we have

λ(0, 0) = 0,

λu(0,0) = t(kt− 1)(a30+ a21) = 0, λv(0,0) = t(kt− 1)(a12+ a03) = 0, and

Jgt(0, 0) =


1− kt 0

0 1− kt

0 0

 =

0 0

0 0

0 0

 .
Hence, (0,0) is a degenerate singular point ofgt with rank(dgt

p) = 0. Moreover, we have

det(Hessλ(0,0)) = − 1
k4

(a30
2a03

2 − 6a30a21a12a03+ 4a30a12
3 + 4a21

3a03− 3a21
2a12

2) = − 1
k4
Γ,

whereΓ is as in Section 2.4. It follows that det(Hessλ(0,0)) < 0 (resp. det(Hessλ(0,0)) > 0) if

and only ifg(0,0) is a hyperbolic umbilic (resp. elliptic umbilic). Therefore, using Theorem 3.3,

we obtain (3). �
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Remark 3.6. Suppose thatg(p) is a ridge point relative to the principal directionvi and a

sub-parabolic point relative to the other principal directionv j. It follow from (2.5), (2.8) and

(3.5) that det(Hess(v1,v2)κi(p)) = 0 if and only if the ridge line relative tovi and the sub-parabolic

line relative tov j are tangent atp.

These theorems imply that the configuration of CPC lines, ridge lines, and sub-parabolic

lines determines types of singularities of parallel surfaces. For example, it follows from The-

orem 3.4 (1) and Lemma 2.4 (1) that if the CPC lineΣκi (u0,v0) (κi(u0, v0) , 0) does not meet

the ridge line relativevi at (u0, v0) then the parallel surfacegt at distancet = 1/κi(u0, v0) is the

cuspidal edge atgt(u0, v0). Moreover, it follows from Theorem 3.4 (2) and Lemma 2.4 (1) that

if CPC lineΣκi (u0,v0) (κi(u0, v0) , 0) crosses the ridge line relative to the principal vectorvi and

does not cross the sub-parabolic line relative to the other principal vectorv j at (u0, v0) then the

parallel surfacegt at distancet = 1/κi(u0, v0) is the swallowtail atgt(u0, v0). Therefore, Fig-

ure 1 (i) and (ii) show that there are three swallowtails neargt(u0, v0) on the parallel surfacegt

at distancet = 1/(κi(u0, v0) ± ε) if g(u0, v0) is an elliptic umbilic which is not flat. Similarly,

Figure 1 (iii)–(v) show that there is one swallowtail neargt(u0, v0) on the parallel surfacegt at

distancet = 1/(κi(u0, v0) ± ε) if g(u0, v0) is a hyperbolic umbilic which is either flat nor right-

angled. These bifurcations of parallel surfaces near umbilics are depicted in Figure 4. These

are also shown in [1, p. 384].

Figure 4: From top to bottom: Elliptic umbilic, Hyperbolic umbilic.

4 Criteria for A1, A2, A3, A4 and D±4 singularities Before we present proof of Theo-

rem 3.4, we shall provide a convenient criteria forA≤4 andD4 singularities in this section.
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We consider the functionf : (R2, 0)→ (R, 0) whose Taylor expansion at (0,0) is

f (u, v) =
∑
i, j

1
i! j!

ci j u
iv j .

4.1 Criteria for Ak-singularities (k ≤ 4) We assume thatf is singular at (0,0) (i.e.,

c10 = c01 = 0). It is well known that the functionf has anA1-singularity at (0,0) if and only ifc20 c11

c11 c02


is of full rank. Now we set

cn(u, v) :=
∑
i+ j=n

1
i! j!

ci j u
iv j .

It is easy to see that the following conditions are equivalent.

(1) The matrix

c20 c11

c11 c02

 is of rank 1.

(2) There exists a non-zero vector (λ, µ) such that

c20 c11

c11 c02

 λ
µ

 = 00
 .

(3) There exist a non-zero vector (λ, µ) and non-zero real numbers such thatc20 c11

c11 c02

 = s

 µ2 −λµ
−λµ λ2

 .(4.1)

The rank of the Hesse’s matrix off is 1 if and only if one of these conditions holds. Under this

assumption, we have the followings.

Theorem 4.1. (1) The function f is A2-singularity at(0,0) if and only if c3(λ, µ) , 0.

(2) The function f is A3-singularity at(0,0) if and only if c3(λ, µ) = 0,

ĉ4(λ, µ) := c4(λ, µ) +
1
8s

∣∣∣∣∣∣∣∣∣∣
µ2 −λµ λ2

c30 c21 c12

c21 c12 c03

∣∣∣∣∣∣∣∣∣∣ , 0.

(3) The function f is A4-singularity at(0,0) if and only if c3(λ, µ) = ĉ4(λ, µ) = 0 and one of

the following conditions holds.

(a) λ , 0, c5(λ, µ) − 1
sλ2

c4v(λ, µ)c3v(λ, µ) +
1

2s2λ4
c3v(λ, µ)2c3vv(λ, µ),

(b) µ , 0, c5(λ, µ) − 1
sµ2

c4u(λ, µ)c3u(λ, µ) +
1

2s2µ4
c3u(λ, µ)2c3uu(λ, µ).

Here,(λ, µ) is a non-zero vector and s is a non-zero real number that satisfy(4.1).
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Proof. (1) If λ , 0, the coefficient ofu2, v2, andu3 in f (u, v + (µ/λ)u) are 0,sλ2/2, and

c3(λ, µ)/λ3 respectively. Hence, we obtain the result. The case thatµ , 0 is similar.

(2) We assume thatc3(λ, µ) = 0. Suppose thatλ , 0. Settingc = c3v(λ, µ)/(sλ4), we

obtain that the coefficients ofv2, u2v, andu4 in f (u, v + (µ/λ)u− cu2) aresλ2/2, 0, and

1
λ4

(
c4(λ, µ) − 1

2sλ2
c3v(λ, µ)2

)
,(4.2)

respectively. Since

λ2

∣∣∣∣∣∣∣∣∣∣
λ2 −λµ µ2

c30 c21 c12

c21 c12 c03

∣∣∣∣∣∣∣∣∣∣ + 4c3v(λ, µ)2 = 6c3vv(λ, µ)c3(λ, µ),

ĉ4(λ, µ) , 0 implies that (4.2) is not zero. The case thatµ , 0 is similar.

(3) We keep the notation above and assumec3(λ, µ) = ĉ4(λ, µ) = 0. We shall consider case

(a). (Case (b) is similar and we omit the detail.) Ifλ , 0, the coefficients ofv2, u2v, u4, andu5

in f (u, v + (µ/λ)u− cu2) aresλ2/2, 0, 0, and

1
λ5

(
c5(λ, µ) − 1

sλ2
c4v(λ, µ)c3v(λ, µ) +

1
2s2λ4

c3v(λ, µ)2c3vv(λ, µ)

)
,

respectively. The case thatµ , is similar.

�

4.2 Criterion for D±4-singularity We assume thatc10 = c01 = c20 = c11 = c02 = 0. Then

f is at leastD4-singularity at (0, 0). We have the following.

Theorem 4.2. The function f is D+4-singularity(resp. D−4-singularity) at (0,0) if and only if∣∣∣∣∣∣∣∣∣∣∣∣∣
c30 2c21 c12 0

0 c30 2c21 c12

c21 2c12 c03 0

0 c21 2c12 c03

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.3)

takes positive values(resp. negative values).

Proof. The function f is D+4-singularity orD−4-singularity at (0, 0) if the cubic partc3 of f

has one real root or three real roots, respectively. The discriminant∆ of c3 is given by

∆ = − 1
48

(a30
2a03

2 − 6a03a21a12a30+ 4a30a12
3 + 4a21

3a03− 3a21
2a12

2).

Expanding (4.3), we have ∣∣∣∣∣∣∣∣∣∣∣∣∣
c30 2c21 c12 0

0 c30 2c21 c12

c21 2c12 c03 0

0 c21 2c12 c03

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −48∆,

and we complete the proof. �
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5 Singularities ofφ andK-versality Let g be given in Monge from as (2.1). If we write

downΦ as

Φ = c00+ xu+ yv +
1
2

(k̂1u
2 + k̂2v

2) +
∑
i+ j≥3

1
i! j!

ci j u
iv j ,

then we obtain that

c00 =
t2 − x2 − y2 − z2

2
, k̂i = kiz− 1 (i = 1,2), ci j = ai j z (i + j = 3),

c40 = a40z− 3k1
2, c31 = a31z, c22 = a22z− k1k2, c13 = a13z,

c04 = a04z− 3k2
2, c50 = a50z− 10k1a30, c05 = a05z− 10k2a03.

We recall that we take a pointq0 = (x0, y0, z0) or q0 = (x0, y0, z0, t0), where

(x0, y0, z0) = g(u0, v0) + t0n(u0, v0) and t0 =
1

κi(u0, v0)
,

and that we setφ(u, v) = Φ(u, v, q0) or φ(u, v) = Φt(u, v, q0). Now we assume that (u0, v0) =

(0,0). So we have

(x0, y0, z0) =

(
0,0,

1
k i

)
, t0 =

1
k i
.

We note thatΦ (resp.Φt) is aK-versal unfolding ofφ if and only if

E2 = ⟨φ, φu, φv⟩E2 + ⟨Φx|R2×q0
,Φy|R2×q0

,Φz|R2×q0
,Φt|R2×q0

⟩R + ⟨u, v⟩k+1

(resp.E2 = ⟨φ, φu, φv⟩E2 + ⟨Φt
x|R2×q0

,Φt
y|R2×q0

,Φt
z|R2×q0

⟩R + ⟨u, v⟩k+1)

whenφ is k-determined.

5.1 A2-singularity

Proof of Theorem3.4 (1). Using Theorem 4.1 (1), we haveφ isK-equivalent toA2 at (0,0) if

and only if one of the following conditions holds:

(a) k̂1 = 0, k̂2 , 0, c30 , 0;

(b) k̂1 , 0, k̂2 = 0, c03 , 0.

We consider Case (a). (Case (b) is similar and we omit the detail.) Conditions (a) are equivalent

to

z0 = 1/k1, k1 , k2, a30 , 0

in the original coefficients of the Monge form. From Lemma 2.1, this implies the first assertion.

We next remark thatA2-singularity is 3-determined. To showK-versality ofΦt, it is enough to

verify that

(5.1) E2 = ⟨φu, φv, φ⟩E2 + ⟨Φt
x|R2×q0

,Φt
y|R2×q0

,Φt
z|R2×q0

⟩R + ⟨u, v⟩4.

Then the coefficients ofuiv j of functions appearing in (5.1) are given by the following table:
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1 u v u2 uv v2 u3 u2v uv2 v3

Φt
x 0 1 0 0 0 0 0 0 0 0

Φt
y 0 0 1 0 0 0 0 0 0 0

Φt
z −z0 0 0 1

2k1 0 1
2k2

1
6a30

1
2a21

1
2a12

1
6a03

φu 0 0 0 1
2c30 c21

1
2c12

1
6c40

1
2c31

1
2c22

1
6c13

φv 0 0 k̂2
1
2c21 c12

1
2c03

1
6c31

1
2c22

1
2c13

1
6c04

φ 0 0 0 0 0 1
2k̂2

1
6c30

1
2c21

1
2c12

1
6c03

uφu 0 0 0 0 0 0 1
2c30 c21

1
2c12 0

vφu 0 0 0 0 0 0 0 1
2c30 c21

1
2c12

uφv 0 0 0 0 k̂2 0 1
2c21 c12

1
2c03 0

vφv 0 0 0 0 0 k̂2 0 1
2c21 c12

1
2c03

u2φv 0 0 0 0 0 0 0 k̂2 0 0

uvφv 0 0 0 0 0 0 0 0 k̂2 0

v2φv 0 0 0 0 0 0 0 0 0 k̂2

By Gauss’s elimination method using boxed elements as pivots, we show the matrix presented

by this table is full rank, and we obtain (5.1) �

Remark 5.1. The functionΦt is anR+-versal unfolding ofφ if and only if

E2 = ⟨φu, φv⟩E2 + ⟨Φt
x|R2×q0

,Φt
y|R2×q0

,Φt
z|R2×q0

⟩R + ⟨1⟩R + ⟨u, v⟩4

whenφ is 3-determined. By using the table appearing in the proof of Theorem 3.4 (1), it follows

thatΦt is also anR+-versal unfolding ofφ whenφ is A2-singularity.

5.2 A3-singularity

Proof of Theorem3.4 (2). Using Theorem 4.1 (2), we haveφ isK-equivalent toA3 at (0,0) if

and only if one of the following conditions holds:

(a) k̂1 = 0, k̂2 , 0, c30 = 0, k̂2c40− 3c21
2 , 0;

(b) k̂1 , 0, k̂2 = 0, c03 = 0, k̂1c04− 3c12
2 , 0.

We consider Case (a). (Case (b) is similar and we omit the detail.) Conditions (a) are equivalent

to

z0 = 1/k1, k1 , k2, a30 = 0, 3a21
2 + (a40− 3k1

3)(k1 − k2) , 0

in the original coefficients of the Monge form. Form Lemma 2.1, these conditions imply the

first assertion. We next remark thatA3-singularity is 4-determined. To showK-versality ofΦt,

it is enough to verify that

(5.2) E2 = ⟨φu, φv, φ⟩E2 + ⟨Φt
x|R2×q0

,Φt
y|R2×q0

,Φt
z|R2×q0

, ⟩R + ⟨u, v⟩5.
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Settingc = c21/(2k̂2) and replacingv by v − cu2, we see that the coefficients ofuiv j of functions

appearing in (5.2) are given by the following table:

1 u v u2 uv v2 u3 u2v uv2 v3 u4

Φt
x 0 1 0 0 0 0 0 0 0 0 0

Φt
y 0 0 1 −c 0 0 0 0 0 0 0

Φt
z −z0 0 0 1

2k1 0 1
2k2 0 ∗ ∗ ∗ ∗

φu 0 0 0 0 0 1
2c12

1
6ĉ40

1
2ĉ31

1
2ĉ22

1
6c13

1
24ĉ50

φv 0 0 k̂2 0 c12
1
2c03

1
6ĉ31

1
2ĉ22

1
2c13 0 1

24ĉ41

φ 0 0 0 0 0 1
2k̂2 0 0 1

2c12
1
6c03

1
24ĉ40

uφu 0 0 0 0 0 0 0 0 1
2c12 0 1

6ĉ40

vφu 0 0 0 0 0 0 0 0 0 1
2c12 0

uφv 0 0 0 0 k̂2 0 0 c12
1
2c03 0 1

6ĉ31

vφv 0 0 0 0 0 k̂2 0 0 c12
1
2c03 0

u2φv 0 0 0 0 0 0 0 k̂2 0 0 0

uvφv 0 0 0 0 0 0 0 0 k̂2 0 0

v2φv 0 0 0 0 0 0 0 0 0 k̂2 0

uiv j (i + j ≤ 3) u4 u3v u2v2 uv3 v4

u3φu 0 0 k̂2 0 0 0

u2vφu 0 0 0 k̂2 0 0

uv2φu 0 0 0 0 k̂2 0

v3φu 0 0 0 0 0 k̂2

,

where

ĉ40 = (k̂2c40− 3c21
2)/k̂2, ĉ31 = (k̂2c31− 3c21c12)/k̂2, ĉ22 = (k̂2c22− c21c03)/k̂2,

ĉ50 = (k̂2
2c50− 10k̂2c21c31+ 15c21

2c12)/k̂
2
2, ĉ41 = (k̂2

2c41− 6k̂2c21c22+ 3c21
2c03)/k̂

2
2,

and so on. The coefficients mentioned by “∗” are not important. The conditionc = 0 is equiv-

alent toa21 = 0, that is, the origin is a sub-parabolic point relative tov2 (see Lemma 2.3).

Therefore, by using Gauss’s elimination method using boxed elements as pivots, it follows that

the matrix presented by this table is full rank, that is, (5.2) holds if and only if the origin is not

a sub-parabolic point relative tov2. �

Remark 5.2. The functionΦt is anR+-versal unfolding ofφ if and only if

E2 = ⟨φu, φv⟩E2 + ⟨Φt
x|R2×q0

,Φt
y|R2×q0

,Φt
z|R2×q0

⟩R + ⟨1⟩R + ⟨u, v⟩5

whenφ is 4-determined. By using the table appearing in the proof of Theorem 3.4 (2), it follows

thatΦt is anR+-versal unfolding ofφ whenφ is A3-singularity.
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5.3 A4-singularity

Proof of Theorem3.4 (3). From Theorem 4.1 (3),φ isK-equivalent toA4 at (0,0) if and only

if one of the following conditions holds:

(a) k̂1 = 0, k̂2 , 0, c30 = 0, k̂2c40− 3c21
2 = 0, k̂2

2c50− 10k̂2c21c31+ 15c21
2c12 , 0;

(b) k̂1 , 0, k̂2 = 0, c03 = 0, k̂1c04− 3c12
2 = 0, k̂2

1c05− 10k̂1c12c13+ 15c21c12
2 , 0.

We work on Case (a). (Case (b) is similar and we omit the detail.) Conditions (a) are equivalent

to

z0 = 1/k1, k1 , k2, a30 = 0, 3a2
21+ (a40− 3k1

3)(k1 − k2) = 0,

15a21
2a12+ 10a21a31(k1 − k2)

2 + a50(k1 − k2)
2 , 0,

in the original coefficients of the Monge form. By Lemma 2.1, we obtain the first assertion.

We next remark thatA4-singularity is 5-determined. To showK-versality ofΦ, it is enough to

verify that

(5.3) E2 = ⟨φu, φv, φ⟩E2 + ⟨Φx|R2×q0
,Φy|R2×q0

,Φz|R2×q0
,Φt|R2×q0

⟩R + ⟨u, v⟩6

Settingc = c21/(2k̂2) and replacingv by v − cu2, we see that the coefficients ofuiv j of functions

appearing in (5.3) are given by the following table:

1 u v u2 uv v2 u3 u2v uv2 v3 u4 u5

Φx 0 1 0 0 0 0 0 0 0 0 0 0

Φy 0 0 1 −c 0 0 0 0 0 0 0 0

Φz −z0 0 0 1
2k1 0 1

2k2 0 ∗ ∗ ∗ ∗ ∗
Φt t0 0 0 0 0 0 0 0 0 0 0 0

φu 0 0 0 0 0 1
2c12 0 1

2ĉ31
1
2ĉ22

1
6c13

1
24ĉ50 ∗

φv 0 0 k̂2 0 c12
1
2c03

1
6ĉ31

1
2ĉ22

1
2c13 0 1

24ĉ41 ∗
φ 0 0 0 0 0 1

2k̂2 0 0 1
2c12

1
6c03 0 1

120ĉ50

uφu 0 0 0 0 0 0 0 0 1
2c12 0 0 1

24ĉ50

vφu 0 0 0 0 0 0 0 0 0 1
2c12 0 0

uφv 0 0 0 0 k̂2 0 0 c12
1
2c03 0 1

6ĉ31
1
24ĉ41

vφv 0 0 0 0 0 k̂2 0 0 c12
1
2c03 0 0

u2φv 0 0 0 0 0 0 0 k̂2 0 0 0 1
6ĉ31

uvφv 0 0 0 0 0 0 0 0 k̂2 0 0 0

v2φv 0 0 0 0 0 0 0 0 0 k̂2 0 0
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uiv j (i + j ≤ 3) u4 u3v u2v2 uv3 v4 u5

u3φv 0 0 k̂2 0 0 0 0

u2vφv 0 0 0 k̂2 0 0 0

uv2φv 0 0 0 0 k̂2 0 0

v3φv 0 0 0 0 0 k̂2 0

uiv j (i + j ≤ 4) u5 u4v u3v2 u2v3 uv4 v5

u4φv 0 0 k̂2 0 0 0 0

u3vφv 0 0 0 k̂2 0 0 0

u2v2φv 0 0 0 0 k̂2 0 0

uv3φv 0 0 0 0 0 k̂2 0

v4φv 0 0 0 0 0 0 k̂2

We claim thatΦ isK-versal when ˆc31 , 0. The condition ˆc31 , 0 is equivalent to

3a12a21+ a31(k1 − k2) , 0

in the original coefficients of the Monge form. From Lemma 2.2,Φ isK-versal unfolding ofφ

if and only if (0,0) is a regular point of the ridge line relative tov1. �

5.4 D±4-singularity

Proof of Theorem3.4 (4). From Theorem 4.2,φ isK-equivalent toD+4 at (0,0) if

k̂1 = k̂2 = 0, and

∣∣∣∣∣∣∣∣∣∣∣∣∣
c30 2c21 c12 0

0 c30 2c21 c12

c21 2c12 c03 0

0 c21 2c12 c03

∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

These conditions are equivalent to

k1 = k2 =
1
z0
, and

∣∣∣∣∣∣∣∣∣∣∣∣∣
a30 2a21 a12 0

0 a30 2a21 a12

a21 2a12 a03 0

0 a21 2a12 a03

∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

in the original coefficients of the Monge form. Therefore,φ is K-equivalent toD+4 at (0,0) if

the origin is an elliptic (see Section 2.4). SinceD±4-singularity is 3-determined,Φ isK-versal

unfolding ofφ if and only if

(5.4) E2 = ⟨φu, φv, φ⟩E2 + ⟨Φx|R2×q0
,Φy|R2×q0

,Φz|R2×q0
,Φt|R2×q0

⟩R + ⟨u, v⟩4

The coefficients ofuiv j of functions appearing in (5.4) are given by the following tables:
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1 u v u2 uv v2 u3 u2v uv2 v3

Φx 0 1 0 0 0 0 0 0 0 0

Φy 0 0 1 0 0 0 0 0 0 0

Φz −z0 0 0 1
2k1 0 1

2k2
1
6a30

1
2a21

1
2a12

1
6a03

Φt t0 0 0 0 0 0 0 0 0 0

Φu 0 0 0 1
2c30 c21

1
2c12

1
6c40

1
2c31

1
2c22

1
6c13

Φv 0 0 0 1
2c21 c12

1
2c03

1
6c31

1
2c22

1
2c13

1
6c04

uΦu 0 0 0 0 0 0 1
2c30 c21

1
2c12 0

vΦu 0 0 0 0 0 0 0 1
2c30 c21

1
2c12

uΦv 0 0 0 0 0 0 1
2c21 c12

1
2c03 0

vΦv 0 0 0 0 0 0 0 1
2c21 c12

1
2c03

Thus we obtain thatΦ isK-versal if and only if∣∣∣∣∣∣∣∣∣∣
1 0 1

c30 c21 c12

c21 c12 c03

∣∣∣∣∣∣∣∣∣∣ , 0.

This condition is equivalent to ∣∣∣∣∣∣∣∣∣∣
1 0 1

a30 a21 a12

a21 a12 a03

∣∣∣∣∣∣∣∣∣∣ , 0

in the original coefficients of the Monge form. Hence, we complete the proof. �

Since the proof of Theorem 3.4 (5) is completely parallel to that of Theorem 3.4 (4), we

omit the detail. We remark that an elliptic umbilic is not right-angled.
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