SINGULARITIES OF PARALLEL SURFACES

TosHIZUMI FUKUI AND M ASARU HASEGAWA

Abstract

We investigate singularities of all parallel surfaces to a given regular surface. In generic
context, the types of singularities of parallel surfaces are cuspidal edge, swallowtail, cus-
pidal lips, cuspidal beaks, cuspidal butterfly and 3-dimensibrjasingularities. We give
criteria for these singularities types in terms dfeliential geometry (Theorem 3.4 and 3.5).

1 Introduction Classically, a wave front is the locus of points having the same phase of
vibration. A wave front is described by Huygens principle: The wave front of a propagating
wave of light at any instant conforms to the envelope of spherical wavelets emanating from
every point on the wave front at the prior instant (with the understanding that the wavelets have
the same speed as the overall wave).

It is well known that a wave front may have singularities at some moment. Singularities
of wave fronts are classified in generic context (see [1, p. 336]). The local classification of
bifurcations in generic one parameter families of fronts in 3-dimensional spaces are also given
in [1, p. 348]. To understand their singularities, it is important to know when the given front is
generic and when the given one parameter family is generic.

In the diferential geometric context, a wave front can be described as the parallel surface

g:U->R, g'(u,v) := g(u,v) + tn(u, v),

of a regular surface : U — R® at timet. HereU is an open set oR? andn denotes the

unit normal vector given by = (g4 X 9.)/llgu X g.ll. It is well known that whert is either

of the principal radii of curvature at a point of the initial surfagehe parallel surface' has

a singularity at the corresponding point (see, for example, [13]). So singularities of parallel
surfaces should be investigated in terms d@fedlential geometry of the regular map
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By Huygens principle, the wave front can be seen as the discriminant set of the distance
squared unfolding

1
PLUXR SR (Woxsd) o =5 (10652 - g(u I - 7).

wherety is a constant. Porteous [14, 15] investigated the (Thom-Boardman) singularities of
the unfolding (,v, X, y,2) — @' + %ll(x, y,2)|*> with t = 0. He discovered that the notion of
normal vectors, principal radii of curvature, and umbilics correspord, teingularities,A,-
singularities, andD,-singularities or worse, respectively. Moreover, he discovered the notion of
ridge points corresponding #-singularities or worse.

It is now natural to ask a description of the singularity typeg'dh terms of diferential
geometry, which we answer in this paper. We fix a general regular grapd investigate
singularities ofg' for all t. In other words, we investigate changes of singularities due to time
evolution of fronts generated gy To do this we need the notion of sub-parabolic points which
is introduced by Bruce and Wilkinson [5] to study singularities of folding maps. The main
theorem (Theorem 3.4) states criteria of the singularity typgsfof all t in terms of diferential
geometry. For example, we show that, at a first order ridge pgihs swallowtail singularity
when it is not sub-parabolic whetés the corresponding principal radius of curvature. This is
enough to find a normal form wheb' is an unfolding ofA;, A,, andA; singularities. This is
proved by given a characterization for the unfoldibigto be K-versal in terms of dferential
geometry.

We now know thatd' is not a%-versal unfolding at a sub-parabolic ridge point, a higher
order ridge, and an umbilic. At these points, we are interested in the unfalddegined by

1
®:UxR SR (oxy.zt) o =5 (I(xy.2) - guo)f - ).

Theorem 3.4 also gives a characterization for the unfoldirig be’X-versal in terms of dfer-

ential geometry. For example, at a ridge point, we show ¢hat K-versal without any other
condition. The parallel surface is the section of discriminant set of this unfolding with the hy-
perplane defined bly= constant. FOA4-singularities, that is, at a second order ridge point, we
also show (Theorem 3.5 (1)) thathas cuspidal butterfly when it is not sub-parabolic where

t is the corresponding principal radius of curvature. At a sub-parabolic ridge point vihere
fails to bek-versal, we show (Theorem 3.5 (2)) the singularitieg/'ofire cuspidal beaks or
cuspidal lips when the corresponding CPC (constant principal curvature) lines are Morse sin-
gularities. ForDy4-singularities, we also show a similar result (Theorem 3.5 (3)). These results
are satisfactory in the context of generiéfdrential geometry.

2 Preliminary from di fferential geometry We recall some dierential geometric no-
tions and their properties of regular surfaces in Euclidean space, which we need in this paper.
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We present the definitions of ridge points, sub-parabolic points and umbilics, and their fun-
damental properties. We then discuss constant principal curvature (CPC) lines, which are the
locus of singular points of the parallel surface. We state a characterization of these notions in
terms of the coicients of a Monge normal form of the surface.

2.1 Fundamental forms Consider a surfacg defined by the Monge form:
(2.1) g(u,v) = (u,v, f(u,v)), f(u,0) = %(klu2 + kov?) + ili.laiju‘vj.
i+j=3 7"

The codficients of the first fundamental form are given by

E=(gung)=1+1°%  F={(gug)=ff, G={(g.g)=1+f>2
Here subscripts denotes partial derivatives angldenotes the Euclidean inner productrt
The unit normal vector is given by

(S S . )

A1+ f2+ 2

The codficients of the second fundamental form are given by

fUU

1+ f 2+ 2
fu
A1+ f2+ £2
fUU
N = <guu’ n> =

N1+ f2+ fvz'

We consider the matrices of the first fundamental form and the second fundamental form:

(el

2.2 Principal curvatures We say that is a principal curvatureif there is a non-zero
vector ¢, ) such that

02 o W)+(5 ol

or, equivalently,

L = <guu’ n> =

M = (gwa n) =



This is rewritten as

1 1+fU2 _fufu fuu fuv é: g
=K .
L+ f2+ £ -fuf, 1+ f2)\fu )\ 'S

The eigenvectorq, ) (i = 1,2) of the equation (2.2) corresponding to the eigenvajue
gives the principal vector;. We can choose them so that the tangent ve&grst+ ¢ig, are of
the unit length.

At a point on the surface where two principal curvatures are distinct, there are two principal
vectors and these vectors are mutually orthogonal. These principal vectors are often colored
(blue or red) to distinguish between the two vectors. We assumethatthe blue principal
vector andv; is the red principal vector.

If two principal curvatures are equal at a point on the surface, we call such a point an
umbilic. At an umbilic every direction through the umbilic is principal and the umbilic is an
isolated singularity of the direction field.

If only one principal curvature is zero, such a point is called a parabolic point. If both
principal curvatures are zero, such a point is called a flat umbilic or a planer point.

We can consider the focal surface. Away form umbilics the focal surface consists of two
sheets, the blue and red sheets giveylayn/«; andg + n/«,, respectively. The two sheets
come together at umbilics. We note that at parabolic points only one of the two sheets exits, and
at flat umbilics the common focal point lies at infinity.

The focal surface might have a singular point where the same colored principal curvature
has an extreme value along the same colored line of curvature. Such a peirns called a
ridge point and on focal surface a rib. Ridges were first studied in details by Porteous [14].

The locus of points where the principal curvature has extreme value along the other colored
line of curvature is also of importance. This locus is called a sub-parabolic line. The sub-
parabolic line were studied in details by Bruce and Wilkinson [5] in terms of folding maps. The
sub-parabolic line is also the locus of points on the surface whose image is the parabolic line on
the same colored sheet of the focal surface. In [12] the sub-parabolic line appear as the locus of
points where the other colored line of curvature has the geodesic inflections.

2.3 Ridge points and sub-parabolic points Let g(p) be not an umbilic of a regular sur-
faceg, with principal vectors; (‘blue’), v, (‘red’) corresponding principal curvatukg, .

We say that the poing(p) is aridge pointrelative tov; (‘blue ridge point’ fori = 1, ‘red’
fori = 2) if viki(p) = 0, wherevix; is the directional derivative of; in vi. Moreover,g(p) is a
k-th order ridge pointrelative tov; if

WP =0 (@<m<k) and  v(p) %0

wherev¥; is thek-times directional derivative of, in v;. The set of ridge points is called a
ridge lineor ridges



LemMma 2.1. Suppose that a surfaggis given in Monge form as i(2.1), and that the origin
is not an umbilic.
(1) The origin is a first order blue ridge point if and only if

a3 =0 and 3+ (auo— 3k°)(ki — ko) £ 0.
(2) The origin is a second order blue ridge point if and only if

30 = 3a1° + (w0 — 3K *)(ki — k) =0 and
15a%a15 + 10ap1831(K1 — Ko) + aso(Ky — Ko)? # 0.

Proor. We remark that the principal curvatures at the originkarés, (k; # k») with corre-
sponding principal vectong, = (1,0), v, = (0, 1).

The principal curvatures are the eigenvalues il So the principal curvature; is ex-
pressed as

2.3) k1(u,v) = K1 + agoU + a1 + m{[zazlz + (A40 — 3ke®) (k1 — ko)U?

+ 2[28z1812 + azi(ky — K2)Juv + [2551122 + (a2 — k1k22)(kl — ko)] 0%} + O(u, 0)3,

and we have

3 6a21%(—az0 + a1) + 6a21831(Ky — ko) + (50 — 1830k ®) (kg — kz)2

3,
a0 6k —to)?

Let (¢1, &1) be the eigenvector of HI with the eigenvalueq. It thus follows form (2.2) that
there is a real number # 0 such that

(é1,41) = u(N = k4G, =M + k1 F).

Selection of the vecto&(, 1) in order for the tangent vectdig, + {19, to be of the unit length
shows that the principal vectoy is expressed as

(2.4) va(u, v) (1 +O(u, v) )_ + (

kl k2 (a21u + alzv) + O(U, U)2 —

and that

2ap1(a12 — agg) + Az1(ky — ko)
2(ky — kp)?

4

—2(0.0) =

Therefore, we have

V161(0,0) = 20,0 = aup

2 , v
vi%k1(0,0) = 6 =5 0.0)+ 3’“ =0, 0)5’4“1 38g1° + (240 = 3ki) (ki — ko)

(0,0) = -




Moreover, whervi«(0, 0) = v;%«;(0, 0) = 0, we obtain

Vi3 (0) = ik Kl(O) 3(9 K1 (0)(951(0) %(0) (9(1(0)5&(0) 92 (1(0)
153212312 + 10a21a31(k1 — ko) + aso(ky — k2)2
(k1 — k2)?

O

LemMma 2.2. Suppose that a surfaggis given in Monge form as i(2.1), and that the origin
is a blue ridge point. Then the blue ridge line through the origin fails to be smooth at the origin
if and only if

3a21% + (o — 3Ki®) (ke — ko) = 3aziay2 + agi(ky — ko) = 0.

Proor. It follows form (2.3) and (2.4) that the equation of the blue ridge line through the
origin is expressed as

(2.5) [3821” + (240 — 3k1®) (k1 — kp)]U + [3321812 + Bg1(Ke — Kp)]v + -+ = 0.
This equation implies the assertion. ]

We turn to sub-parabolic points. A poig{p) which is not an umbilic is &ub-parabolic
pointrelative tov; (‘blue sub-parabolic point’ for = 1, ‘red’ fori = 2) if vikj(p) = 0 (i # j).
The set of sub-parabolic points is calledub-parabolic line

LemMma 2.3. Suppose that a surfaggis given in Monge form as i(2.1), and that the origin
is not an umbilic. Then the origin is a red sub-parabolic point if and onlyif-a0.

Proor. Since the principal vectong, andv, are orthogonal, it follows from (2.4) that the
principal vectorv; is expressed the following form:

(2.6) Vo(Uu,v) =

1
K (@21u + a52v) + O(u, 0)2)% + (1 + O(u, 0)2)%

From (2.3) and (2.6), the directional derivativg; is given by

ap1(2a12 — agg) + agi(ky — kz)

Vak1(U,0) = a1 +

2.7) ki — ka
' 812(2312 — ago) + (A22 — kika?) (ks — ko) 0+ O(U, )2,
ki — ka
This equation implies the assertion. |

We can deduce from (2.7) that the equation of the red sub-parabolic line through the origin
has the form

(2.8) agi(ky — ko)u + [a12(2a12 — agg) + (a2 — k1k22)(k1 -k)lv+---=0.



2.4 Umbilics Umbilicsof a regular surface are points where the two principal curvatures
coincide. At these points the principal direction field is singular and the lines of curvature fail to
cross at right angle. The classification of generic umbilics is due to Darboux [6]. He gave three
configurations of the lines of curvature. The three configurations were given the names lemon,
star, and monstar by Berry and Hannay [2]. Their classification was provided by Gutierrez and
Sotomayor [7].

Suppose that the origin is an umbilic of a surfgcand thay is given in Monge form

(2.9) g(u,v) = (u,v, f(u,v)), f(uo) = l%(u2 +0%) + Z %a,-juivj,
i+j>3 =

wherek is the common value for the principal curvatures at the origin.

At an umbilic the cubic parts of f in (2.9) determines its type. An umbilic of the surface
g is said to beelliptic or hyperbolicif f; has three real roots or one real root, respectively.
Moreover, An umbilic is said to beght-angledif the root directions of the quadratic form
which is the determinant of the Hessian matrixfgare mutually orthogonal with respect to the
standard scalar product &®f. Such an umbilic necessarily is a hyperbolic umbilic.

We shall present the conditions for types of umbilics in terms of thdficeents of the
Monge form. We set

agg 2ax; a;p O

0 a 28,1 @& 1o 1
30 b1 g2

I':= , and I := dzgp A1 A2 |
ap 2a;2 as O

dy1 12 dos

0 ayn Z2app ag

The discriminant offs is given by—-I". Hence, the origin is an elliptic umbilic or hyperbolic
umbilic if and only if " < O orI" > O, respectively. Moreover, the determinant of the Hessian
matrix of f3 is given by

—36[(61212 — 830a12) u? + (821812 — Ag0803)U + (61122 - a216103)02]-

It follows that the origin is a right-angled umbilic if and onlyIif = O.

Itis shown in [15] that there is one ridge line passing through a hyperbolic umbilic and three
ridge lines passing through an elliptic umbilic. It is also shown in [15] that ridge lines change
their color as they pass through a generic umbilic.

It is known that when there is one direction for lines of curvature at an umbilic, there is
one sub-parabolic line through the umbilic in the same direction, while, when there are three
directions for lines of curvature at an umbilic, there are three sub-parabolic lines through the
umbilic in the same three directions [5, 12].



2.5 Constant principal curvature lines We set
e :={(u,v) € U ; k(u,v) = cfor somei}.

We callX. the constant principal curvature (CPC) line with the value oflhere are two CPC
linesX,,p (colored by blue) and,, (colored by red) locally through a non-umbilical point
g(p). We recall that a poinp € U is a singular point of the parallel surfageat distance if
and only ift = 1/« (p) for somei. This means that the set of singular pointsjofs the CPC
line Z,p).

Firstly, we investigate the CPC lines away form umbilics. Suppose that a syrfacgven
in Monge form as in (2.1). From (2.3:(u, v) = k; is expressed by the equation

_ 1 2 a3y, 2
0 = agou + apw + 26—k kz){[zaZl + (840 — 3Kk1”) (k1 — ko)]u

+ 2[2a181 + Ag1(Ky — Ko)]Uv + [2815% + (A2 — kako?) (K — ko)]o?) + - - - .

(2.10)

Hence, the CPC linE,, is locally given by the equation (2.10) at the origin. The equation (2.10)
shows that the CPC linEy, is singular at the origin if and only #sy = a,1 = 0O, that is, the
origin is a blue ridge point and a red sub-parabolic point (Lemma 2.1 and 2.3).

Lemma 2.4. Suppose that the origin is a blue ridge point which is not a red sub-parabolic
point.
(1) The CPC linexy, is transverse to the blue ridge line at the origin if and only if the order
of the ridge is one.
(2) the CPC linex,, is tangential to the blue ridge line at the origin if and only if the order
of the ridge is more than one.

Proor. It follows from (2.5) and (2.10) that the CPC lig, is transverse to the blue ridge
line at the origin if and only if

331" + (840 — 3k:®)(Ky — ko) # 0.
On the other hand, both lines are tangential at the origin if and only if
331" + (a0 — 3k ®)(ky — ko) = 0.
Hence, the statement of the lemma follows from Lemma 2.1 i

Lemma 2.5. Suppose that the origin is a blue ridge point and red sub-parabolic point. Then
the CPC lineZy, is locally either an isolated point or two intersecting smooth curves at the
origin, if the blue ridge line crosses the red sub-parabolic line at the origin.



Proor. First we remark that

6K1

Ok
%(O, 0)=a3 =0 and a—vl(o, 0)=ay =0.

The equations of the blue ridge line (2.5) and the red sub-parabolic line (2.8) reduce
(40 — 3k *) (ks — ko)u + @ga(ks — kp)v + -+ = 0

and
a31(k1 - kz)U + [2a122 + (3.22 - klkzz)(kl - kz)]l) +...=0,
respectively. From these equations, the blue ridge line crosses the red sub-parabolic line at the
origin if and only if
(a0 — k) (k1 — ko)[2a12° + (B2 — Kiko?) (K1 — ko)] — @a1°(ky — ko)® # O.
In addition, from (2.3), the determinant of the Hessian matrix; Gt (Q 0) is given by
(a0 — 3k:®) (k1 — ka)[2815” + (822 — kako?) (K1 — k2)] — Bg1’(Ky — ko).
By the Morse lemma (see, for example, [3]), we complete the proof. O

Secondly, we investigate the CPC line near an umbilic.
Tueorem 2.6. (1) The CPC lineXy is locally an isolated point at the elliptic umbilic,
where k is the common value for the principal curvatures at the umbilic.
(2) The CPC lineXy is locally two intersecting smooth curves at a hyperbolic umbilic. The
locally two curves change their color as they pass through the hyperbolic umbilic.

Proor. We suppose that the origin is an umbilic of a surfacand that the surfaggis given
in Monge form as in (2.9). The principal curvatures are the roots of the quadric equation

(EG-F?)k* - (EN—-2FM + GL)x + (LN — M?) = 0.

Replacingk by k which is the common value for the principal curvatures at the origin, we can
express the equation in the form

(2.11) (8g0812 — 821°)U° + (830803 — Bp1812)Ub + (821803 — 81270 + -+ - = .

The locus of this equation is the CPC liig We denote the quadric part of (2.11) by? +
28uv + yv®. Then we have? — ay = I'/4, wherel is as in Section 2.4. Hence, the CPC IKe
at an umbilic is locally either an isolated pointif< O (i.e., the origin is an elliptic umbilic) or
two smooth intersecting curveslif> O (i.e., the origin is a hyperbolic umbilic).



We investigate the case of hyperbolic umbilics in detail. For a hyperbolic umbilic, we may
assume thaj is locally given in the form

(2.12) g(u,v) = (u,v, f(u,v)), f(uv) = IE((u2 +0%) + gu(u2 +2Qw + R?) + - -

for someP, Q, andR with P # 0 andQ? — R < 0. Then the principal curvatures (maximum
curvature) ko, (minimum curvature) are expressed as

k1(U,v) = K + é(P[(R+ 3)u + 2Qu]

+P|V[16Q? + (R— 3)?]u? + 12Q(R+ L)uv + 4(Q? + RA)?) + - - -,
(2.13)

Ka(U,0) = K + %(P[(R+ 3)u + 2Qu]

—IP|V[16Q? + (R - 3)?]u? + 12Q(R+ 1)uv + 4(Q? + RO)u?) + - - .

Therefore, the locally two smooth curves change their color as they through the hyperbolic
umbilic. ]
Remark 2.7. (1) A simple calculation give$” = a + y, wherel” is as in Section 2.4.
It follows that the tangents to the locally two smooth curves of the CPC line through
the right-angled umbilic are mutually orthogonal. We note that the right-angled umbilic
necessarily is a hyperbolic umbilic.
(2) Equation (2.11) shows that the CPC liBgis approximated by a conic near the origin

when the origin is not a parabolic umbilic.

Finally, We investigate bifurcations of the CPC lines at an umbilic. We start with the case of
an elliptic umbilic. There are three ridge lines through the elliptic umbilic. The bifurcation of
the CPC lines at the elliptic umbilic is shown in Figure 1 (i), (i) (cf. [4], Figure 2). We now turn
to the case of a hyperbolic umbilic. We may assume that the surface given in the from (2.12).
There is one ridge line through the hyperbolic umbilic. Calculations show that the ridge line is
tangent to Du+ Rv = 0 at the origin (cf. [15], corollary (iii) of Theorem 11.10) and that the
locally two smooth curves of the CPC liiig are tangent toQR+ /R3(—Q? + R)]u + R =
0. Thus it follows that the bifurcation of the CPC lines at the hyperbolic umbilic is given in
Figure 1 (iii)—(v) (cf. [4], Figure 2), in the generic context.

As shown in Figure 1, there are three intersection points of the CPC line and the same col-
ored ridge line near an elliptic umbilic, and there is one such intersection point near a hyperbolic
umbilic, in the generic context.

3 Singularities of parallel surfaces In this section we present our main theorem.
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(i)

(ii)

(iii)

(V) oot

(V) e

c=k-¢ c=k c=k+e
blue ridge line  --------. red ridge line
blue CPCline&;, - red CPC line;

Figure 1: Bifurcations of the CPC lines near an elliptic umbilic (i) and (ii), and a hyperbolic
umbilic (iii)—(v) , whereeg is a small positive number.
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3.1 Augmented distance squared functionsLet f : (R",0) — (R, 0) be a smooth func-
tion germ. We say that a smooth function gefm (R" x R",0) — (R, 0) is anunfoldingof f
if F(u,0) = f(u). We define thaliscriminant sebf F by

F F
D(F) = {X €eR"; F(u,x) = a—(u,X) = -~~a—(u,x) = 0 for someu € U},
ouq ou

n

where (1,X) = (U, ..., Un, X1,..., %) € (R"x R",0). We say that thé& is a%-versal unfolding
if any unfoldingG : (R" x R®,0) — (R, 0) of f is representable in the form

G(U, y) = h(u7 y) : F(‘P(U, y)a lﬁ(y)),

where¥ : (R" x R% 0) — (R",0) is a smooth map germ witf(u,0) = u, ¢ : (R%0) — (R',0)
is a smooth map germ with(0) = 0 andh : (R" x R®,0) — R is a smooth function germ with
h(0,0) # O (cf. [1, §8]). This condition is equivalent to that

of of oF
_ __f> <_
&n <6u1 ou, 5n+ 0%

oF

k+1
S, — + M
R"x{0} 0%

R"x{0} >R

when f(u) is k-determined (see [1&3] and [11, p.75]). Here&, is the set of smooth func-
tion germs R",0) — R, which is the local ring with the unique maximal ide&l, = {f €
&En; f(0) = 0). We say that two function germsandg : (R",0) — (R, 0) are’ K-equivalent
if there exist a difeomorphism germy : (R",0) — (R",0) and a smooth function germ
h: (R",0) - Rwith h(0) # 0 such thay(u) = h(u) - f oy(u). If F,G: (R"x R",0) = (R,0)
areK-versal unfoldings ofK-equivalent function germs, g, respectively. Then, there exist a
diffeomorphism gern¥ : (R" x R,0) — (R" x R',0), (u,x) — (¥(u, x),¥(x)) and a smooth
function germh : (R" x R", 0) —» R with h(0, 0) # 0 such that

G(u, x) = h(u, x) - F(¥(u, X), ¥(X)).

(cf. [1, §8]). Moreover, calculation shows th&l(F) = ¢(D(G)).
In order to investigate singularities of parallel surfaces, we consider the functions

o' :UxR =R, definedby (v, X y,2) — —% (||(x, y,2) — g(u,v)|* - toz),
wheretp € R\ {0}, and
O:UxR'> R, definedby @, X y,21t) —% (||(x, y,2) — g(u,v)|*> - tz).

We call themaugmented distance squared functions
Calculating the discriminant set df', we have

DD = {(xy,2 € R®; (X,y,2) = g(u,v) + ton(u, v) for some (,v) € R?},
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which is the parallel surface gfat a distancé,. Besides, the discriminant set®fis given by
D(D) = {(xy,zt) € R®; (X, y,2) = g(u,v) + tn(u, v) for some (I, v) € R?}.

Its intersection with the hyperplane- t, is the parallel surface af at distance,.
We take a pointjy = (Xo, Yo, Z0) OF Qo = (X0, Yo, 20, to) Where
1

~ «i(Uo, vo)

(X0, Yo, 20) = g(Uo, vo) + ton(Uo, o), to
possibly withx;(Ug, vo) = k2(Uo, vg), and set

QO(U, U) = (Dt(u’ v, CIO) or QO(U, U) = (D(U, v, QO)

Then the augmented distance functidnand®' are the unfoldings ap.

If ¢ is K-equivalent toA; (resp. Agz) and @' is a K-versal unfolding ofp, then the dis-
criminant set of®! is locally diffeomorphic to the discriminant set of the versal unfolding
G:(UxR30) - (R,0),

GUv, %y, 2) = >+ X+yu (resp.G(u,v, X, y, 2) = U* £ v? + X+ yu + zLF)
y y

of g(u,v) = U + v? (resp.g(u, v) = U* + v?). The singularity of the discriminant set Gfis the
cuspidal edge (resp. swallowtail).

Here, thecuspidal edges a set locally dieomorphic to the image of a map gef@k :
(R?,0) = (R3,0), (u,v) — (u,v? 1% and theswallowtailis a a set locally dieomorphic to the
image of a map ger8 W: (R%,0) — (R3,0), (u,v) — (u,3v* + uv?, 4v® + 2uv). The pictures of
the cuspidal edge and the swallowtail are shown in Figure 2.

Figure 2: From left to right: Cuspidal edge, Swallowtalil.

If ¢ is K-equivalent toA, (resp. D7) and® : (U x R, (Uo, vo, %o)) — (R, 0) is a%-versal
unfolding ofp, then the discriminant set df is locally diffeomorphic to the discriminant set of
the versal unfoldings : (U x R* 0) — (R, 0),

G, v, Xy, 2t) = U +v* + x+yu+zE+tu®  (resp.G(u,v, X, y, Z t) = WPo+ 0> + X+ yu+ 20 +tv?)
y

of g(u,v) = U* + v? (resp.g(u,v) = U + 1v°). The singularity of the discriminant set Gfis a
butterfly (resp.D7 singularities).
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Here, thebutterflyis a set locally dfeomorphic to the image of a map geBF : (R®,0) —
(R%,0), (u,v,w) = (U, 5v*+2up+3v?w, 4v°+ Uv? + 2v°w, w) and the 4dimensional B singularity
is a set locally dfeomorphic to the image of a map gefd* : (R 0) — (R* 0), (u,v,w) —

(Uo, U? + 20w + 3v?, 2U0% + v’w + 203, w).

3.2 Criteria for singularities of fronts in R® It is well known that the parallel surface
g is a front. Fronts were first studied in details by Arnol'd and Zakalyukin. They showed that
the generic singularities of fronts iR® are cuspidal edges and swallowtails. Moreover, they
showed that the singularities of the bifurcations in generic one parameter families of fronts in
R® are cuspidal lips, cuspidal beaks, cuspidal butterflies and 3-dimens§lgsahgularities (cf.

[1]).

Here, thecuspidal lipsis a set locally dieomorphic to the image of a map gefiLP :
(R%,0) — (R3,0), (u,v) — (3u* + 2u%?, u® + u’, v), thecuspidal beakss a set locally dfeo-
morphic to the image of a map ge®BK : (R?,0) — (R3,0), (u,v) — (3u*—2u?, U —ur?, v),
the cuspidal butterflyis a set of the image of a map ge@BF : (R%,0) — (R3,0), (u,v) —

(4w® + u?v,5u* + 2w, v) and the dimensional [} singularity (resp. D, singularity) is a set
of the image of a map germD* : (R%,0) — (R30), (u,v) — (U, U* + 302, U2 + v°) (resp.
TD : (u,v) — (U, u? — 3v?, u?v — v3)). Their pictures are shown in Figure 3.

Figure 3: From top left to bottom right: Cuspidal lips, Cuspidal beaks, Cuspidal butterfly, 3-
dimensionaDj singularity, 3-dimensiondD, singularity.

Recently, criteria for these singularities are shown in [8], [9], [10], [16]. To present these
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criteria, we prepare basic notions of frontsRA A smooth mapf : U — R®is called afront if
there exists a unit vector fieldof R® along f such thal; = (f,v) : U — T;R%is a Legendrian
immersion, wherd@;R® is the unit tangent bundle & (cf. [1], see also [10]). For a frorft, we
define a functiom : U — R by A(u,v) = det(f,, f,, v). The functiont is called adiscriminant
functionof f. The set of singular pointS(f) of f is the zero set of. A singular pointp € U

of f is said to benon-degeneratd dA(p) # 0. Let p be a non-degenerate singular point of a
front f. ThenS(f) is parameterized by a regular curv@) : (-&,&) — U nearp. Moreover,
there exists a a unique directig(t) € T,)U up to scalar multiplications such thaf (n(t)) = O.

We calln(t) thenull direction Under these notations, we present the criterion for the cuspidal
butterfly.

Tueorem 3.1 ([8]). Let f : U — R® be a front and p a non-degenerate singular point
of f. Then the germ of the front f at p j&-equivalent to the map germ CBF if and only if

nA(p) = n?A(p) = 0 andn3(p) # 0.

Here, two map germs$,, f, : (R% 0) — (R, 0) are A-equivalentf there exist difeomor-
phism germsy; : (R?,0) — (R?,0) andy;, : (R®,0) — (R® 0) such thaiy, o f; = f, oy, and
nA denotes the directional derivative .0fn the direction of;.

We now turn to degenerate singularities. lpdie a degenerate singular point of the frént
If rank(d f,) = 1, then there exists the non-zero vector figldearp such that ifg € S(f) then
dfy(n(q)) = 0. Criteria for degenerate singularities are as follows:

Tueorem 3.2 ([9]). Let f: U — R3be a front and p a degenerate singular point of f.
(1) The germ of the front f at p igl-equivalent to the map germ CLP if and onlyahk( f,) =
1 and thedet(Hessl(p)) > 0, wheredet(Hessi(p)) denotes the determinant of the Hes-
sian matrix ofa at p.
(2) The germ of the front f at p isA-equivalent to the map germ CBK if and only if
rank(d f,) = 1, det(Hessl(p)) < 0 andn?A(p) # O.

Tueorem 3.3 ([16)). Let f : U — R3 be a front and pa degenerate singular point of f. Then
the germ of the front f at p is1-equivalent to the map germ TQresp. TD) if and only if
rankd f), = 0 anddet(Hessi(p)) < O (resp.det(Hessi(p)) > 0).

3.3 Singularities of parallels surfaces Now we are ready to state our main theorem.

Tueorem 3.4. Letg : U — R® be a regular surface angl the parallel surface o§ at dis-
tance t, where U is an open subsetR5f Assume thab, ®!, andy is defined as in Sectidh1.
(1) If g(uo, vo) is neither a ridge point relative to the principal vectarnor an umbilic, and
ki(Uo,v0) # O, theny has an A singularity at(ug,vg). In this case®' is a K-versal
unfolding ofp. Moreover, the parallel surfacg' at distance t= 1/«;(Ug, vo) is locally
diffeomorphic to the cuspidal edgegi(uo, v).
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(2) If g(uo, vo) is a first order ridge point relative to the principal vectar, andx; (U, vo) # O,
theny has an A singularity at(uo, vo). In this case®' is a K-versal unfolding ofp if
and only ifg(uo, vo) is not a sub-parabolic point relative to the other principal vector
Moreover, the parallel surfacg! at distance t= 1/«;(Uo, vo) is locally diffeomorphic to
the swallowtail aty* (U, vo).

(3) If g(ug, vo) is a second order ridge point relative to the principal veotgrandx;(Uo, vo) #

0, theny has an A singularity at(up, vg). In this case® is a K-versal unfolding ofp

if and only if (ug, vo) IS a regular point of the ridge line relative to the same principal
vectorv;. Moreover, the parallel surfacg at distance = 1/«;(Uo, vo) is the section of the
discriminant setO(®), which is locally dffeomorphic to the butterfly, with the hyperplane
t = 1/ki(Uo, vo).

(4) If g(uo, vo) is a hyperbolic umbilic and not a flat umbilic, thenhas a O singularity
at (up, vg). In this case® is a K-versal unfolding ofp if and only if g(up, vg) iS not a
right-angled umbilic. Moreover, the parallel surfageat distance t= 1/«;(Uo, vo) is the
section of the discriminant s&(®), which is locally difeomorphic to the-dimensional
D; singularity, with the hyperplane=t 1/«;(Uo, vo).

(5) If g(uo, vo) is an elliptic umbilic and not a flat umbilic, thep has a O singularity at
(Uo, vp). In this case® is a K-versal unfolding ofp. Moreover, the parallel surfacg'
at distance t= 1/«;(uo, vo) is the section of the discriminant s&(®), which is locally
diffeomorphic to thel-dimensional [) singularity, with the hyperplane= 1/x;(uo, vo).

A proof of this theorem is given in Section 5.

Again, we remark that the parallel surfagg®f a regular surface are the front. Since the
unit normal vector of the parallel surfagecoincides with the unit normal vectarof the initial
surfacey, the discriminant function aoft is given by

A(u,v) = det@!,(u,v), g'(u, v), n(u, v)).
Moreover, the Jacobian matriy of ¢' is given by
(3.1) Jp =3, =317 = I, (1, = t17Hn),

whereJ, is the Jacobian matrix af andl, is the 2x 2 identity matrix. Applying criteria for
singularities of fronts (Theorem 3.1-3.3) to the parallel surficeve obtain Theorem 3.5 as
corollaries of these criteria.

Tueorem 3.5. Letg : U — R be a regular surface ang' the parallel surface of at

distance t, where U is an open subseR3f
(1) Suppose thaj(p) is a second order ridge point relative to the principal vectpwhich is

not a sub-parabolic point relative to the other principal directio and thatx;(p) # O.
Then the parallel surfacg at distance t= 1/«;(p) is locally diffeomorphic to the cuspidal
butterfly atg'(p).
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(2) Suppose thaj(p) is a ridge point relative to the principal direction and a sub-parabolic
point relative to the other principal direction;, and that«(p) # 0. Then the parallel
surfaceg' at distance t= 1/«k1(p) is locally diffeomorphic to the cuspidal lipgesp.
cuspidal beaksat ¢'(p) if det(Hesg, v,)«i(p)) > O (resp.det(Hesg, v,)«i(p)) < 0 and the
order of ridge is ong whereHess,, v, is the Hessian matrix of with respect to/; and
Va.

(3) Suppose thag(p) is an umbilic which is not a flat umbilic. Then the parallel surfate
at distance t= 1/«1(0,0) = 1/«»(0,0) is locally difeomorphic to a 3-dimensional ;D
singularity (resp. Dj singularity) at g'(p) if g(p) is a hyperbolic umbiliqresp. elliptic
umbilic).

Proor. (1) We may assume that = (0,0) and that the initial regular surfagegiven in
Monge form asin (2.1). We remark that+ k.. Now we prove in the cage= 1/«,(0,0) = 1/k;.
From Lemma 2.1 and 2.3, we have

ago = 3ap1” + (auo — 3k %) (k1 — ko) = 0,
158381, + 10821831 (K; — ko) + aso(ky — k) 20, and ap; # 0.
Suppose that= 1/k;. Then we havel(0,0) = 0. Moreover, from (3.2), we have
aso(kzz— ki) _ 0 and 1,(0.0)= aZl(kZZ_ ki) 4

Ky Ky
It turns out that (00) is a non-degenerate singular pointgdf Therefore, the set of singular
points ofg' is a locally smooth curve near,@), which is the CPC lin&,,, and there exists

a null directionn with dg'(s) = 0 along this smooth curve. It follows form (3.1) that the null
directionn has the same direction as the principal vegtorFrom (3.2), we have

_ago(ks - ko)’ _

(3.2)

(3.3) ,(0,0) = 0.

v,1(0,0) = _ 0,
ke
v12(0,0) = — (K1 — k2)*[@30(@30 — 3212) +k323212 + (2u0 - 3k°) (ka — ko)l _ 0. and
1
(ki — k»)*[1585 21 + 1081831(K1 — ko) + @so(ky — ko)?]
v122(0,0) = — %1 . £0,

Therefore, we obtain thai1(0, 0) = 721(0, 0) = 0, (0, 0) # 0.

If the two map germs aré&l-equivalent, their images are locallyfidiomorphic. Hence, by
Theorem 3.1 the parallel surfageat distance = 1/k; is locally difeomorphic to the cuspidal
butterfly.

(2) We may assume that = (0,0) and that the initial regular surfagegiven in Monge
form as in (2.1). We remark th&g # k.. Now we prove in the case= 1/«1(0,0) = 1/k;.
From Lemma 2.1 and 2.3, we have

(34) azp=ay; = 0.
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Suppose that= 1/k;. Then we havel(0,0) = 0 and

0 0
320,0)= [0 (ki - ko)/ke |
0 0

Moreover, from (3.4), we have,(0,0) = 1,(0,0) = 0. It follows that (Q0) is a degenerate
singular point ofy* with rank(dg,,) = 1. Using (3.4), we obtain that

(kl _ k2)2 a0 — 3k13 az1

det(Hesa(0,0)) = ———— 28152 + (agp — kikz?)
1 da; K — Ky
and
dao — 3k13 ds
(3.5) det(Hesg, v,)k1(0, 0)) = a 2a;5% + (A2 — kiko?) |
31
ki — ko

Therefore, the sign of det(HeH®, 0)) is the same as the sign of det(Hgss)«1(0, 0)). Besides,
since rankajg‘p) = 1, there exists a non-zero vectpwith dg‘p(n) = 0. From (3.1), the non-zero
vectorn has the same direction as the principal vestorHence 5?1(0,0) # 0 if and only if
v121(0,0) # 0. From (3.4), we have

(20 — 3Ki®) (kg — kz)s.

Vlz/l(O, O) = - K >
1

Therefore, this shows that ,(0) is a first order blue ridge point if and only 4f2(0,0) # 0
(cf. Lemma 2.1). Applying Theorem 3.2 to the argument indicated above, we obtain (2).

(3) We may assume that = (0,0) and that the initial regular surfagegiven in Monge
form as in (2.9). We remark that(0, 0) = (0, 0) = k. Suppose that= 1/k. Then we have
A(0,0) =0,

Au(0,0) = t(kt— 1)(agp + @21) = 0, 1,(0,0) = t(kt — 1)(@;2 + ap3) = 0, and

1-kt O 00
J#(0,0)=| 0O 1-kt|=|0 O].
0 0 00
Hence, (00) is a degenerate singular pointgfwith rankdg,) = 0. Moreover, we have

1 1
det(Hesg(0,0)) = —F(asozamz — Bagod1812803 + 4a30812° + 4ap1°a03 — 3ap1°ar,’) = _FF’

wherer is as in Section 2.4. It follows that det(Ha$8, 0)) < O (resp. det(Hes0, 0)) > 0) if
and only ifg(0, 0) is a hyperbolic umbilic (resp. elliptic umbilic). Therefore, using Theorem 3.3,
we obtain (3). |
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Remark 3.6. Suppose thag(p) is a ridge point relative to the principal directiepand a
sub-parabolic point relative to the other principal directign It follow from (2.5), (2.8) and
(3.5) that det(Hess v,)«i(p)) = O if and only if the ridge line relative tg; and the sub-parabolic
line relative tov; are tangent ap.

These theorems imply that the configuration of CPC lines, ridge lines, and sub-parabolic
lines determines types of singularities of parallel surfaces. For example, it follows from The-
orem 3.4 (1) and Lemma 2.4 (1) that if the CPC IBgy,., («i(Uo,v0) # 0) does not meet
the ridge line relativey; at (U, vo) then the parallel surfacg at distance = 1/«;(Ug, vo) is the
cuspidal edge aj'(uo, vg). Moreover, it follows from Theorem 3.4 (2) and Lemma 2.4 (1) that
if CPC line X, w0 (xi(Uo, vo) # 0) crosses the ridge line relative to the principal veetand
does not cross the sub-parabolic line relative to the other principal wecabi(uo, vo) then the
parallel surfaces' at distance = 1/«;(Uo, vo) is the swallowtail aty'(ug, vg). Therefore, Fig-
ure 1 (i) and (ii) show that there are three swallowtails ng@u, v) on the parallel surfacg
at distance = 1/(ki(Uo, vo) = &) if g(ug, vo) is an elliptic umbilic which is not flat. Similarly,
Figure 1 (iii)—(v) show that there is one swallowtail ne&iu,, vo) on the parallel surfacg' at
distancet = 1/(k;i(Uo, vo) + &) if g(Up, vo) is a hyperbolic umbilic which is either flat nor right-
angled. These bifurcations of parallel surfaces near umbilics are depicted in Figure 4. These
are also shown in [1, p. 384].

Figure 4. From top to bottom: Elliptic umbilic, Hyperbolic umbilic.

4 Criteria for A4, Ay, A3, A, and Dy singularities Before we present proof of Theo-
rem 3.4, we shall provide a convenient criteria /oy andD, singularities in this section.
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We consider the functiof : (R? 0) — (R, 0) whose Taylor expansion at,(@ is
1 .
fuo)=> Wci,-u'ul.
— il]!

4.1 Criteria for Ag-singularities (k < 4) We assume that is singular at (00) (i.e.,
C10 = Co1 = 0). It is well known that the functiori has anA;-singularity at (Q0) if and only if

Co Cn1
Ci1 Co2

1 .
cn(u,v) = Z Wciju'v‘.

i+j=n

is of full rank. Now we set

It is easy to see that the following conditions are equivalent.

. [C0 Ci11).
(1) The matrlx[ 20 11] is of rank 1.
Ci1 Co2

) Cpo C A 0
(2) There exists a non-zero vectar, {r) such tha[ 20 11) ) = ( ]
Ci1 Coz)\l 0
(3) There exist a non-zero vectot, (1) and non-zero real numbsisuch that
Co C 2 -2
(4.1) [ 20 11] _ S( H le '
Ci1 Coz —Au A

The rank of the Hesse’s matrix dfis 1 if and only if one of these conditions holds. Under this
assumption, we have the followings.
Tueorem 4.1. (1) The function f is Asingularity at(0, 0) if and only if g(4, i) # 0.
(2) The function f is Asingularity at(0, 0) if and only if g(2, u) = 0,

MZ —/l/.l /12
Ca(A, ) := CalA, ) + 8s Cao G Cig #0.
C1 Ci2 Co3

(3) The function f is Asingularity at(0, 0) if and only if (4, 1) = €4(2, 1) = 0 and one of
the following conditions holds.

1
(@ 2#0,cs(A,pu) - @C@(/L 1)Cay(A, 1) + @Csu(/l, 1)*Cau(4, ),

1 1
() p#0,cs(a,u) - g%u(/l, H)Cau( 4, p) + @Csu(/l,ﬂ)zcsuu(/l, H)-
Here, (1, 1) is a non-zero vector and s is a non-zero real number that sgidsty.
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Proor. (1) If 2 # 0, the codficient ofu?, v?, andu® in f(u,v + (u/A)u) are 0,s1%/2, and
cs(4, 1)/ A% respectively. Hence, we obtain the result. The caseitka0 is similar.

(2) We assume that;(1,u) = 0. Suppose that # 0. Settingc = c3,(4, 1)/ (s1%), we
obtain that the ca@icients ofv?, u?v, andu® in f(u,v + (u/A)u — c?) aresi?/2, 0, and
42) e - opeatn).
respectively. Since

o P
A%|czo Co1 Cua| + 4Ca(A, 1) = 6Ca(d, 1)Ca(A, ),
C1 Ci2 Cos
Ca(A, 1) # 0 implies that (4.2) is not zero. The case that O is similar.
(3) We keep the notation above and assug(g, 1) = €4(1, 1) = 0. We shall consider case
(a). (Case (b) is similar and we omit the detail. Ml 0, the codficients ofv?, u?v, u*, andu®
in f(u,v+ (u/A)u - c¥) arest?/2, 0, 0, and

252/14031)(/1 ,Ll) Cva(/l /.l)

1 1
T (C5(/l K — P —5Cao(4, (1) Ca0( A, 1) +
respectively. The case that# is similar.

O

4.2 Criterion for Dy-singularity We assume thatp = Cp; = Cpo = C11 = Cp2 = 0. Then
f is at leasiD,4-singularity at (00). We have the following.

Tueorem 4.2. The function f is -singularity (resp. D;-singularity) at (0, 0) if and only if
Cao 261 C2 O
0 C3 2c1 C2
Ca1 2C12 Coz O
0 € 2 Cos
takes positive valugsesp. negative valugs

(4.3)

Proor. The functionf is D} -singularity orD,-singularity at (Q0) if the cubic pari; of f
has one real root or three real roots, respectively. The discrimimaht; is given by

A= —4—18(613026\032 — 603821812830 + 4330812° + 48p1°803 — 3ap1°127).
Expanding (4.3), we have
Cao 21 C2 O
0 cC 2ca Cr2 _ _48A
Ca1 2C12 Coz O ’
0 Cau 2C12 Cos
and we complete the proof. ]
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5 Singularities ofp and K-versality Letg be givenin Monge from as (2.1). If we write
down® as 1. A 1 B
® = Coo+ XU+ yv + E(klu2 + kov?) + i;; ﬁciju'u‘,
then we obtain that _
tz_ngyz_zz, k=kz-1 (=12, cj=az(i+]=3),
Cao = AaoZ— 3K, Ca1=agiZ Cpp=AnZ—Kiky, Ci3=asz

Cos = AoaZ— 3ko%,  Csp = Aoz — 101830, Cos = ApsZ — 10KAg3.

Coo =

We recall that we take a poiay = (Xo, yo, Zo) Or 0o = (Xo, Yo, 20, to), Where
1
«i(Uo, vo)”
and that we sep(u,v) = ®(u,v,do) or ¢(u,v) = ®'(u,v,dy). Now we assume thatd, vy) =
(0,0). So we have

(X0, Yo, 20) = g(Uo, vo) + ton(Uo, v0) and to =

1 1
(XO’ Yo, ZO) - (0’ O’ Rl) ’ tO - Ri.

We note thatb (resp.®') is aK-versal unfolding ofp if and only if

k+1
82 = <Q0, Pu, 901)>82 + <q)X|R2><qoa q)y|R2><qoa (DZ| R?xqp? q)thzqu>R + <U, U) *

(resp82 = <‘;0, QOLh 90U>82 + <(D§(|R2><q0’ q)tleZqu, qbtZ|R2><qo>R + <u’ U>k+l)

wheng is k-determined.

5.1 A,-singularity

Proof of Theoren3.4 (1). Using Theorem 4.1 (1), we hayeis K-equivalent toA; at (Q 0) if
and only if one of the following conditions holds:

(a) k1201&2;'501(:?@;&0;
(b) ky # 0,k = 0, Co3 # 0.

We consider Case (a). (Case (b) is similar and we omit the detail.) Conditions (a) are equivalent
to
Zp=1/k;, ki#ky,, agzx#0

in the original coéicients of the Monge form. From Lemma 2.1, this implies the first assertion.
We next remark tha#,-singularity is 3-determined. To sho¥-versality of®!, it is enough to
verify that

(51) 82 = <SOU’ ("8 ¢>82 + <(DtX|R2xqov (Dtlezxqoa (thlexq0>R + <U, U>4-

Then the cofficients ofu'v’ of functions appearing in (5.1) are given by the following table:
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1 u v u? U v? us Vo  w? v°
o, | 0 0| 0 0 0 O O 0 O
@ | 0 |0 o o0 o0 0O 0O 0 O
O, [[-%]| 0 0| sk 0 ko | gas0 a1 3812 Faos
Pu 0 0 0 %C3o C1  5C12 %040 5C31 %sz %013
v 0 0 k %021 C12 %Cos §C31 %sz 5C13 (13004
®p 0 0 O 0 0 %&2 (-13030 %Czl %012 §Co3
Up, | O 0 O 0 0 O ||3C0| Ca 3C2 O
vQy 0 0 O 0 0 0 0 3Co Cau 3Ci
up, | 0 |0 ol 0 0 | ey o e O
e, | 00 0] 0 0 |kl| 0 lecn co les
e,/ 00 ol 0 o o 0o |kl 0o o
we, 0 /O 0 0 0 0| 0 0 0
e, | 00 0/ 0 0o 0| 0 0 0 [k
By Gauss’s elimination method using boxed elements as pivots, we show the matrix presented
by this table is full rank, and we obtain (5.1) O

Remark 5.1. The functiond! is anR*-versal unfolding ofp if and only if

82 = <‘10U7 ¢U>82 + <(D§(|R2xqo, (Dty|R2xqo’ (thlexq())R + <1>R + <u? U>4

wheng is 3-determined. By using the table appearing in the proof of Theorem 3.4 (1), it follows
that®! is also arR*-versal unfolding ofp wheng is A,-singularity.

5.2 As-singularity

Proof of Theoren3.4 (2). Using Theorem 4.1 (2), we haweis K-equivalent toA; at (Q 0) if
and only if one of the following conditions holds:

(@) ky = 0,k; # 0, g0 = 0, koCao — 3¢212 # O;
(b) ke # 0, ko = 0, Coz = 0, kaCos — 3c12% # 0.

We consider Case (a). (Case (b) is similar and we omit the detail.) Conditions (a) are equivalent
to
Zo=1/k, Ki#ky, azx=0, 3a®+ (au0—3k’)(ki—ks)#0

in the original coéicients of the Monge form. Form Lemma 2.1, these conditions imply the
first assertion. We next remark thég-singularity is 4-determined. To shoi-versality of®!,
it is enough to verify that

(52) 82 = <S0U’ Do, ‘70>82 + <(Dtx|R2><q0’ q)tlezxqoa (D;|R2><q07 >R + (u’ U>5'
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Settingc = ¢,1/(2k:) and replacing by v — cl?, we see that the céiicients ofuv! of functions
appearing in (5.2) are given by the following table:

1 |u v | v w v v ow? B u
o | 0 0O/, 0 0 0] O 0O 0 0| O
o | 0|0 1 o o] 0o o 0o o]0
o ]| 0 0 ik 0 k| 0O + x = | x
Pu O [0 0| 0 0 3Co||gtwn| 3C1 3C gCia| 260
@y 0 0 W O Ci2 3Cs| gCar 3G 3Ciz O | 5tm
¢ 0 0 O 0 0 %Az 0 0 2Cio £Cos | 35C40
upy | 0 /0 0/ 0 0 0| 0 0 icp 0 |[le
beu | 0|0 0] 0 0 0] 0 0 0 cp| O
up, | 0 |0 0] 0 0 | 0 cp ics 0 | i&m
v, | 00 0] 0 0 ||| 0 0 o fes| O
e, 0 |0 0|0 o of| o0 |kl 0 o] 0O
wg,| 0|0 0/ 0 0 0] 0 O 0| 0
e, 0 /o 00 0o 0| 0 0 o0 k|| O
uol i+j<3)|u* v v wd®
o, 0 0 lk] 0 0o o
Wopy 0 0 0 |kl 0 o0,
W, 0 0 0 0 0
Ve, 0 0 0 0 0 |k

where
G40 = (KoCao — 3¢21%) /Ko, Ba1 = (KaCa1 — 3C21C10) /Ko, B2 = (KaCaz — C21C03) /Ko,
Cs0 = (%050 - 10r<2021031 + 150212C12)/ RZ, Cu = (%041 - 6&2021022 + 30212003)/ RZ,

and so on. The cdicients mentioned by«” are not important. The condition= 0 is equiv-

alent toa,; = 0, that is, the origin is a sub-parabolic point relativevio(see Lemma 2.3).
Therefore, by using Gauss’s elimination method using boxed elements as pivots, it follows that
the matrix presented by this table is full rank, that is, (5.2) holds if and only if the origin is not
a sub-parabolic point relative tg. |

Remark 5.2. The functiond! is anR*-versal unfolding ofp if and only if
82 = <‘10U7 ¢U>82 + <(D§(|R2>(qo, (Dty|R2xqoa (thlexq())R + <1>R + <u, U>5
wheng is 4-determined. By using the table appearing in the proof of Theorem 3.4 (2), it follows

that®' is anR*-versal unfolding ofp wheny is As-singularity.
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5.3 Ay4-singularity

Proof of Theoren3.4 (3). From Theorem 4.1 (3)y is K-equivalent toA, at (0, 0) if and only
if one of the following conditions holds:

(a) ki = 0,k; # 0, c30 = 0, koCao — 3212 = 0, %Cso — 10kpCp1Ca1 + 15C21%Cy2 # O;
(b) ks # 0,k = 0, coz = 0, ks Cos — 3c127 = 0, RfCos — 10K1C12C13 + 15621€12% # O,

We work on Case (a). (Case (b) is similar and we omit the detail.) Conditions (a) are equivalent
to

Zo=1/ki, ki #ky, agp=0, 3a5 +(aw—3k’)(ki—ky) =0,
15ap:%a17 + 1081831 (Ky — K2)? + aso(Ky — ko)? # 0,

in the original coéicients of the Monge form. By Lemma 2.1, we obtain the first assertion.
We next remark tha#-singularity is 5-determined. To shoW-versality of®, it is enough to
verify that

(53) 82 = <90u, Dy Q0>82 + <q)X|R2><qO, (Dy|R2><qo’ (Dz| R2xqp? thlequ>R + <U, U>6

Settingc = ¢,1/(2ky) and replacing by v — cl?, we see that the cfiicients ofuv! of functions
appearing in (5.3) are given by the following table:

1 |u v| v w ¥ e v w? 8 ut u
o, | 0 0O/ 0 0O 0] O 0O 0 O 0 0
® | 0|0 < 0 0] O 0O 0 O 0 0
®, |- 0 0|k 0 ko| O % = . .
@y o 0/l 0O O O] 0O 0O O O] O 0
ew | 0[O0 0] O 0 3C2| O 38 3G &Ci3||33Cs0 *
v 00 k 0 C12 %003 %631 %622 %013 0 2—14(341 *
¢ |00 0| 0 0 ikk| 0 0 o fcos| O | 1360
w,| 0|0 0] 0 O O] 0O 0 icp O 0 ||4es
oy | 0O 0O O 0 0| 0 0 0 ZLcp| O 0
up, 0|0 0 0 0 | 0 e Zcos O | 6 | Abu
e, | 00 0| 0 0 |k|]| 0 0 cp les| 0 | O
Wp, 0/0 0/ 0 0 0] 0 |kl 0 0| 0 | ity
we,| 00 0[O0 0O 0| 0 O o o | o
e,/ 00 0| 0 0 0] 0 0 o0 |kl| o 0
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ol i+j<3)|ut v u? wd o | °
e, 0 0o |k, 0 o o]o
W, 0 0 o0 0 00
wg, 0 0 0 O 0|0
R, 0 O 0 o k|| 0

0
uol i+j<4) | v ud? v w

1)5
U, 0 0 lk,] 0 0 0 O
o, 0 0 0 0 0 0
W22, 0 0 0 O 0 0
we, 0 0 0 0 o0 0
o, 0 0 0 0 0 0 |k

We claim that® is K-versal whercs; # 0. The conditiorcs; # 0 is equivalent to
3a18p; + agi(ky — k) # 0

in the original coéficients of the Monge form. From Lemma 2® s K-versal unfolding ofp
if and only if (O, 0) is a regular point of the ridge line relativeg. O

5.4 Djy-singularity
Proof of Theoren8.4 (4). From Theorem 4.2y is K-equivalent taD; at (0 0) if

Cao 2C1 C2 O
0 Co 21 C2

Cn 2C12 Coz O
0 Cu 2C12 Cos

Rlzkzzo,and >0

These conditions are equivalent to

ag 281 a;p O
1 0 a: 2a. a

ki =k, = =, and 0l T2 0
V4| A, 2a;, az O

0 ay Z2a;p ap

in the original coéicients of the Monge form. Therefore,is K-equivalent toD; at (Q 0) if
the origin is an elliptic (see Section 2.4). Siridg-singularity is 3-determinedd is K-versal
unfolding of¢ if and only if

(5.4) Ez = (pu, v, Ple, + <(DX|R2><q0’ (Dy|R2><qo’ @ R2x0p? (Dt|R2><q0>R +{u, U>4

The codficients ofu'v! of functions appearing in (5.4) are given by the following tables:
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1 |u ol ¥ w ¢? us Vo  w? v°
o, | 0|1 0] O 0 0 0 0 0 0
o, | 0|0 1 0 0 0 0 0
D, |20 0| sk O 3Zk; | 2ag0 381 3d12 gdos
Q | top |O O] O 0 0 0 0 0 0
®, | 0 |0 O %C3o C21 %CIZ %040 %031 %sz %C13
®, | 0 |0 O|3cn Cio 3Co3| gCar 3Co2 3Ci3  £Cos
ub,| 0 |0 0/ 0O O O |3CHp Cu 3Cp O
v@, | 0 [0 O O O O | O 3Cp Cu 3C
ub,| 0 |0 0| 0O O 0 |3cu ¢ 3cs O
v® | 0|0 O] O O O O 2Cu Ci»  3Cos
Thus we obtain thab is K-versal if and only if
1 0 1
Cgo Co1 Ciof #0.
C21 C12 Cos
This condition is equivalent to
1 0 1
Az A a #0
Q1 a2 Qo3
in the original coéicients of the Monge form. Hence, we complete the proof. O

Since the proof of Theorem 3.4 (5) is completely parallel to that of Theorem 3.4 (4), we
omit the detail. We remark that an elliptic umbilic is not right-angled.
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