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Abstract

We discuss singularities of central projections of a regular surface in R3. We describe
criteria of singularity types of central projections of a given surface in terms of its Monge
normal form and discuss their geometric meaning, which is often not clearly understood. We
consider all possible central projections of a fixed surface as a central projection unfolding
and discuss their A-versality. We obtain geometric criteria of versality for central projection
unfoldings. We also observe that geometric meaning of criteria of singularity types of central
projections become clear assuming the versality of central projection unfoldings.
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1 Introduction

The central projection of a point z from the center y (6= z) onto a plane H in 3-dimensional
Euclidean space R3, that does not contains y, is the intersection of the line L containing y and z
with the plane H. The center y = (y1, y2, y3) of this projection in often called a viewpoint and
the line L is called viewline. We are going to investigate central projections regarding centers
y as parameters.

Historically speaking, central projections (perspective projections) have been used since the
ancient Greece. For star charts Thales of Miletus used the gnomonic projection, which is the
central projection of the sphere from the center onto a plane tangent to the sphere. In the
Renaissance period, there was interest in central projections as the drawing in perspective. G.
Desargues (see, for instance, [6, Theorem 2.32]) gave a mathematical comprehension to the
central projections.

Nowadays, computer vision (for instance, [3]) motivates to study singularities of central pro-
jection. One good example is to analyze view of pinhole camera model, which is also a central
projection. To understand the shape of a surface in R3, it is important to analyze its contours
by central projections. The key step is understanding the distribution of singularities of central
projections, which often have geometric meaning. Our main results contribute to give criteria for
distribution of singularities in generic context. The theory of singularities enables us to analyze
more complex image in computer vision.

In this paper, we investigate singularities of central projections of regular surfaces in R3

changing center as parameter. Let us prepare several notation. Let S be a surface parameterized
by f(x) : U → R3. Here U is an open set of R2 containig the origin. We are interestrd in local
behavior of S at f(0), and we express f as in the following form:

f = (f1(x), f2(x), f3(x)) : U → R3 : (x1, x2) 7→ f(0) + x1u+ x2v +Q(x)w (1.1)

where {u,v,w} is an orthonormal frame of R3. Here, Q(x) denotes a C∞-function whose k-th
Taylor polynomial is

k∑
l≥2

Hl(x1, x2), Hl(x1, x2) :=
∑
i+j=l

aij
i! j!

x1
ix2

j , (1.2)

for any k at the origin. We call the expression (1.1) Monge normal form for {u,v,w}.
We can fix H to be the z1z2-plane, since we can send H to the z1z2-plane by certain rotation

and translation. In the rest of this paper, we fix H to be the z1z2-plane. We denote Euclidean
inner product by 〈 , 〉. Then, a restriction of a central projection to S is written as follows:

π : U × R3 −→ R2 : (x1, x2, y) 7→ πy(x1, x2) (1.3)

where

πy(x1, x2) :=

(
〈t(x, y)f(x) + (1− t(x, y)) y, e1〉
〈t(x, y)f(x) + (1− t(x, y)) y, e2〉

)
,

t(x, y) :=
y3

y3 − 〈f(x), e3〉
and e1, e2, e3 : the standard basis of R3.

πy is written as
1

y3 − f3(x)

(
y3

(
f1(x)
f2(x)

)
− f3(x)

(
y1
y2

))
. (1.4)

We regard π as an unfolding of πy with parameters y. We call π a central projection
unfolding. Our main result for versality of π is the following Theorem:
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Theorem 1.1. Let S be a regular surface parameterized by f as in (1.1). Then, the criteria of
the family π to be a versal unfolding of the singularities of Ae-codim. ≤ 3 of πy are given as in
Table 1.

type criteria for Ae-versality geometric interpretation

fold always

cusp always
swallowtail always
butterfly 2a31 k1 − 3a221 6= 0 the flecnodal curve is not singular

elder butterfly 2a31 k1 − 3a221 6= 0 and the flecnodal curve is not singular

(a60 k1 − 3a21 a50) p1 − 18a50 k1 ̸= 0 and y is not in a special position

unimodal not versal

lips always
beaks always
goose k2 6= 0 f is not flat umbilic

ugly goose
gulls a40 k2 − 3a221 6= 0 f is the first order blue ridge

ugly gulls
type 12 not versal
type 16 not versal

Table 1: Criteria of versality of π at each singularity

We quickly review the history of mathematical research on central projection from singular-
ity theory viewpoint (cf. [4]). C.T.C.Wall [25] started to consider central projections from a
perspective of singularity theory and stated a general transversality theorem due to his student
J.M. S.David. He considered “generic” projections including central projections in [7].

J. H.Rieger and M.A. S.Ruas [21, 22] classified all corank one map germs withAe-codimension
≤ 3. Criteria of singularities of πy have been given by O.A.Platnova [19] and V. I. Arnold [1, 2].
O.A. Platnova recognized that asymptotic straight lines appear as a set of viewpoints y so that
πy is not fold. She states the following paragragh ([19], p. 2798):

The only exclusions concern some points on isolated asymptotic lines in a hyperbolic
domain with fourth order contact (no more than two on a line) and on asymptotic
lines passing through parabolic points of the surface (not more than one on a line).

The asymptotic line here is that we call asymptotic straight line (in §2, Definition 2.5). She
called the excluded points “h-focal” (“h” for “hyperbolic”) and “p-focal” (“p” for “parabolic”)
respectively. Since she mentioned “p′-focal” in [19, Table 1], the author believes that she was
aware of the following treatment: Once we fix f , πy has the same type Σ of singularity for a
viewpoint y on an asymptotic straight line except several points y. We call such a point Σ-focal
point.

Y.Kabata [15] has written criteria of singularities of Ae-codimension ≤ 4 from plane-to-plane
map-germs and applied them to central projections of regular surfaces in the projective space
P3. He also gave the conditions of Σ-focal point in terms of the coefficients of the Monge normal
form f . We recall these results in our terminology for criteria of singularity types of a central
projection πy in §3.

As an applications of singularities of πy, H. Sano, Y.Kabata and J. L.Deolindo Silva and
T.Ohmoto [24] classified regular surfaces on P3 by using the classification of singularities of
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central projections of them. And related to bifurcations, they have determined local topological
types of binary differential equations of asymptotic curves at parabolic point in P3 ([8]). From
these, we are motivated to investigate certain criteria of versality of central projection unfoldings.

Versality for several geometric unfoldings are already investigated in [10] and [14]. T. Fukui
and M.Hasegawa show (K)-versality of distance squared unfoldings ([10]). In [14], criteria of
A-versality of orthogonal projection unfoldings are given. Both of them are concerned with ge-
ometric interpretation of conditions of versality. In this article, we show criteria of A-versality
of the central projection in §4. The key step is to compute the Ae-tangent space. The compu-
tation is often complicated and we completed them using the aid of computer. The source code
of Maxima scripts are available at https://github.com/Shuhei-singularity123/Versality_
of_central_projection_of_regular_surface.

In §5 we show an application of our criteria of versality of π to geometric interpretations
of singularities of πy. Versal gulls series singularity of central projections is related to contact
type with a cone. J.Montaldi [18] defines the notion of contact between two submanifolds
and established the relation to K-equivalence which is introduced by J.Mather ([16, §2]). For
criteria of contact types of a surface, for instance, T. Fukui, M.Hasegawa, and K.Nakagawa [11]
investigated contact type of a regular surface with right circular cylinders in R3.

2 Preliminary

2.1 Definitions from differential geometry

We consider a regular surface S parameterized by f as in (1.1). Let

E := 〈fx1 , fx1〉, F := 〈fx1 , fx2〉, G := 〈fx2 , fx2〉

and
L := 〈fx1x1 ,n〉, M := 〈fx1x2 ,n〉, N := 〈fx2x2 ,n〉

where n is the unit normal vector
fx1

×fx2

|fx1×fx2 |
. The function E, F and G (resp. L, M and N) are

called the first (resp. second) fundamental of S. The Gauss curvature is given by

K :=
LN −M2

EG− F 2
.

Then,

• If K > 0 at x, the point f(x) is elliptic,

• If K = 0 at x, the point f(x) is parabolic,

• If K < 0 at x, the point f(x) is hyperbolic.

If there is a non-zero vector v such that(
L M
M N

)
v = κ

(
E F
F G

)
v for some κ,

we call κ a principal curvature and a unit eigenvector generated by v for κ a principal vector
on R3. We set κ1 and κ2 the principal curvatures of f at x. If κ1 = κ2 at x, we call a point f(x)
umbilic point. We call a point f(x) flat umbilic point if κ1 = κ2 = 0 at x.
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Definition 2.1. We assume that f(0) is not an umbilic of a regular surface S parametrized by
f , with principal vectors v1 (‘blue’) and v2 (‘red’) corresponding to principal curvature κ1, κ2.
We say that the point f(0) is a vi-ridge point (‘blue ridge point’ for i = 1, ‘red ridge point’ for
i = 2) if viκi(0) = 0, where viκi is the directional derivative of κi in vi.
Moreover, f(0) is a k-th order ridge point relative to vi if

v
(m)
i κi(0) = 0 (1 ≤ m ≤ k) and v

(k+1)
i κi(0) 6= 0,

where v
(m)
i κi(0) is the m-times directional derivative of κi in vi. We call the set of ridge points

a ridge line or ridges.

The notion of ridge was introduced by Porteous [20] for the first time.

Lemma 2.2. Let S be the regular surface parameterized by f as in 1.1 and f(0) is a parabolic
point. Then, the origin is a first order blue ridge point if and only if

a30 = 0 and 3a221 − a40k2 6= 0.

Proof. See [10, Lemma 2.1], for example.

Bruce and Wilkinson [5] studied subparabolic points in terms of folding maps in details.

Definition 2.3. We assume that f(0) is not an umbilic of a regular surface S, with principal
vectors v1 (’blue’) and v2 (’red’) corresponding to principal curvature κ1, κ2. We say that the
point f(0) is a vi-sub-parabolic point (’blue sub-parabolic point’ for i = 1, ’red sub-parabolic
point’ for i = 2) if viκj(0) = 0 (i 6= j). We call the set of sub-parabolic points a sub-parabolic
line.

Lemma 2.4. Let S be the regular surface parameterized by f as in 1.1 and f(0) is a parabolic
point. Then, the origin is not red sub-parabolic point if and only if

a21 6= 0.

Proof. See [10, Lemma 2.3], for example.

Definition 2.5. We say (dx1, dx2) represents an asymptotic direction of S at f(0) if the
second fundamental form

II := Ldx21 + 2Mdx1dx2 +Ndx22

vanishes at x = 0. The tangent space of S at x = 0 contains a line L which is generated by the
corresponding direction. We call L an asymptotic straight line of S at f(0).

Remark 2.6. Asymptotic lines usually means the integral curves of asymptotic directions on
the surface. Thus, we do not call asymptotic straight line as asymptotic line in order to avoid
confusion.

Definition 2.7. Let α(t) := (x1(t), x2(t)) be a regular plane curve and let β another plane curve
given as the zero set of a smooth function Φ : R2 → R. We say that the curve α has (k+1)-point
contact (k-th order contact) at t0 with the curve β if t0 is a zero of order k of the function
g(t) = Φ(α(t)) = Φ(x1(t), x2(t)), that is,

g(t0) = g′(t0) = · · · = g(k)(t0) = 0 and g(k+1)(t0) 6= 0

where g(i) denotes the ith-derivative of the function g.
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Definition 2.8. A point p on S is a flecnodal point if there is an asymptotic straight line
through p which has at least 4-point contact with S at p. Equivalently, p is a flecnodal point if
it is in the closure of the set of points where the projection along an asymptotic direction has a
swallowtail singularity. The flecnodal curve of S is the set of flecnodal points.

Theorem 2.9 ([14, Theorem 6.6 (ii)]). We assume that the origin of regular surface S is hy-
perbolic and πy has the butterfly singularity at this point. Then, the flecnodal curve of S is not
singular if and only if 2k1a31 − 3a221 6= 0.

2.2 Definitions from singularity theory

In this paper, “smooth” means C∞. We set Em to be the R-algebra of smooth map-germs
Rm, 0 → R with a unique maximal ideal mm := 〈x1, · · · , xm〉Em

. We define

Enm := {f : (Rm, 0) −→ (Rn, f(0)) : f is a smooth map germ at 0}

which is an Em-module. In particular,

mmEnm := {f ∈ Enm : f(0) = 0}.

In this section, suppose that f and fi (i = 1, 2) be smooth map germs in Enm. We say f1 and f2
are A-equivalent (f1 ∼A f2) if there exist diffeomorphism germs φ and ψ so that the following
diagram commutes:

Rm, 0 f1−−−−→ Rn, f1(0)

φ

y yψ
Rm, 0 f2−−−−→ Rn, f2(0)

.

Definition 2.10 (A-stability). 1. Let F : (Rm × Rk, 0 × 0) −→ (Rn, F (0, 0)) be a smooth
map germ. If F (x, 0) = f(x), F is called an unfolding of f .

2. An unfolding F is trivial if there exist germs of diffeomorphisms h : (Rm × Rk, 0 × 0) →
(Rm × Rk, 0× 0) and H : (Rn × Rk, 0× 0) → (Rn × Rk, 0× 0) such that

(i) h(x, 0) = (x, 0) and H(X, 0) = (X, 0).

(ii) The following diagram is commutative ;

Rm × Rk, 0× 0
(F,Π)−−−−→ Rn × Rk, 0× 0

Π′

−−−−→ Rk, (0)

h

y yH yid
Rm × Rk, 0× 0

(f,Π)−−−−→ Rn × Rk, 0× 0
Π′

−−−−→ Rk, (0)

where Π : (Rm × Rk, 0× 0) → Rk, 0 is the canonical projection.

3. We call f : Rm, 0 → Rn, 0 is A-stable if every unfolding of f is trivial.

Definition 2.11 (Ae-versal unfolding). 1. Let Fi : (Rm×Rki , 0×0) → (Rn, Fi(0, 0))(i = 1, 2)
be unfoldings of f . A triplet (s, t, φ) is an Ae-morphism from F1 to F2 if φ : (Rk1 , 0) →
(Rk2 , 0) is a smooth map germ, s : (Rm×Rk1 , 0×0) → (Rm, 0) and t : (Rn×Rk1 , F2(0, 0)×
0) → (Rn, F1(0, 0)) are unfoldings of idm and idn respectively such that

F1(x, y) = t(F2(s(x, y), φ(y)), y).
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2. Let F : (Rm×Rk, 0) → (Rn, F (0, 0)) be unfoldings of f with parameter y in Rk. F is called
an Ae-versal unfolding if for any unfolding (Rm×Rl, 0) → (Rn, G(0, 0)) of f , there exists
an Ae-morphism from G to F .

Let ξ : Rm, 0 → TRn be a smooth map germ such that Π ◦ ξ = f where Π is a projection of
tangent vector bundle. We call ξ the vector field along f or infinitesimal deformation of f . We
write θ(f) for the set of all the vector field along f . θ(f) is a Em-module. For the identity maps
idm : Rm, 0 → Rm, 0 and idn : Rn, 0 → Rn, 0, we write θm = θ(idm) and θn = θ(idn) which are
the module of vector field germs. We define

tf : θm → θ(f) : ξ 7→ df ◦ ξ, ωf : θn → θ(f) : η 7→ η ◦ f

and Ae-tangent space of f

TAe(f) := tf(θm) + ωf(θn) ⊂ θ(f).

Then, the Ae-codimension of f is defined by

cod(Ae, f) := dimR
θ(f)

TAe(f)
.

Definition 2.12 (Ae-infinitesimal versal unfolding). Let f : (Rm, 0) → (Rn, fi(0)) be a smooth
map germ, and (Rm × Rk, 0× 0) → (Rn, F (0, 0)) be an unfolding of f with parameter y in Rk.
Then, F is called an infinitesimal Ae-versal unfolding if

TAe(f) +

k∑
i=1

R
∂ F

∂ yi
(x, 0) = θ(f)

Theorem 2.13. Let f : (Rm, 0) → (Rn, fi(0)) be a smooth map germ and F : (Rm×Rk, 0×0) →
(Rn, F (0, 0)) be an unfolding of f . Then, F is Ae-versal if and only if F is infinitesimal Ae-
versal.

Proof. See [26, Theorem 3. 3 and Theorem 3. 4 (i)].

Theorem 2.14. Let f : (Rm, 0) → (Rn, fi(0)) be a smooth map germ and F : (Rm×Rk, 0×0) →
(Rn, F (0, 0)) be an unfolding of f . If f is A-stable, any F is Ae-versal.

Proof. From [17, Theorem 1], we know TAe(f) = θ(f) if f is A-stable.

Definition 2.15 (finite A-determinacy). A germ f is said to be k-A-determined if any g with
jkg = jkf is A-equivalent to f . The least integer k with this property is called the degree of
determinacy of f . A finitely A-determined germ is a k-A-determined germ for integer k.

The following Theorem for k-A-determinacy is important to prove versality of unfoldings.

Theorem 2.16 ([26, Thorem 1.2 (i)]). For a smooth map germ f in Enm,

mk+1
n θ(f) ⊂ TAe(f)

if f is k-A-determined.
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2.3 Criteria of singularity types of central projections

First of all, we recall several results for criteria of singularity type of smooth map germ g :
R2, 0 −→ R2, 0 with corank one at the origin. Let (x1, x2) be coordinates of source. We define

λ(x1, x2) := det
(
∂g
∂x1

, ∂g∂x2

)
and take an arbitrary vector field η near the origin of the source such

that η spans ker dg on λ = 0. We denote ηkλ := η(ηk−1λ).

Theorem 2.17 (Whitney [27, §4], Saji [23, Theorem 3]). For a plane-to-plane map-germ g,
A-types of fold, cusp, swallowtail, lips and beaks are characterized by the following table:

Type Normal form Criteria

fold (x1, x
2
2) dλ(0) 6= 0, ηλ(0) 6= 0

cusp (x1, x1x2 + x32) dλ(0) 6= 0, ηλ(0) = 0, η2λ(0) 6= 0
swallowtail (x1, x1x2 + x42) dλ(0) 6= 0, ηλ(0) = η2λ(0) = 0, η3λ(0) 6= 0

lips(+), beaks(-) (x1, x
3
2 ± x21x2) dλ(0) = 0, detHλ(0) 6= 0, η2λ(0) 6= 0

where detHλ(0) is the Hessian of λ at the origin.

We introduce a well-known fact as the following Lemma 2.18.

Lemma 2.18. The projection πy has a singular point at x = 0 if and only if the viewline L is
contained in the tangent space of S at f(0).

Now, we consider criteria of singularity types of πy. Thus, from Theorem 2.18, we suppose
that L is a tangent of f at the origin and p1, p2 are coefficients which satisfy

y − f(0) = p1fx1(0) + p2fx2(0). (2.1)

Using the results of Kabata [15], we obtain criteria of A-types of Ae-codimension 2 to 4
for corank 1 plane-to-plane map-germ. We summarize preliminal results of criteria of Ae-
codimension ≤ 3 singularity types of πy as the following theorem.

Theorem 2.19 (Kabata [15]). Suppose the regular surface S is parameterized by f as in (1.1)
and a viewpoint y is in u-axis, that is, y − f(0) = p1 u. Then, criteria of Ae-codimension ≤ 3
singularities of πy are written as in table 2.

Remark 2.20. If f(0) is elliptic, πy has only the fold singualrity at 0 for any y.

Remark 2.21. From criteria of butterfly and elder butterfly singualrites, it turns out that the
only exclusions concern some points on isolated asymptotic straight lines in a hyperbolic domain
with 4-th order contact (no more than two on a line). We call the excluded points h-focal (“h”
for “hyperbolic”). This is introduced by Platnova [19] and is characterized by the coefficients of
Monge form f from Kabata [15]. We often call this point butterfly-focal point.

In the same way, we define u-focal point (“u” for “unimodal”) as exceptional points charac-
terized as the formula in the table 2.

Remark 2.22. 1. As seen in Remark 2.21, we also have an exceptional point on asymptotic
straight lines passing through parabolic points of the surface (not more than one on a line).
If a30 6= 0 for parabolic surface at the origin, the lips or beaks singularities appears from
viewpoints on the line except for the point. The exceptional point are called p-focal point
(“p” for parabolic) by Platonova [19] and characterized by the condition in the table 2 from
Kabata [15]. We often call p-focal point goose-focal point.
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type A-normal form criteria for A-type

fold (x1, x
2
2) a20 6= 0

cusp (x1, x1x2 + x32) a20 = 0, a11 6= 0, a30 6= 0
swallowtail (x1, x1x2 + x42) a20 = 0, a11 6= 0, a30 = 0, a40 6= 0
butterfly (x1, x1x2 + x52 ± x72) a20 = 0, a11 6= 0, a30 = a40 = 0,(

(48a50 a70−35a260) a
2
11+42(a21 a60−40a31 a50) a50 a11

+ 2205a221 a
2
50

)
p21

+(−84a50 a60 a211 + 252a21 a250 a11) p1 + 756a250 a
2
11 ̸= 0

elder butterfly (x1, x1x2 + x52) a20 = 0, a11 6= 0, a30 = a40 = 0,(
(48a50 a70−35a260) a

2
11+42(a21 a60−40a31 a50) a50 a11

+ 2205a221 a
2
50

)
p21

+(−84a50 a60 a211 + 252a21 a250 a11) p1 + 756a250 a
2
11 = 0

unimodal (x1, x1x2 + x6
2 ± x8

2 + αx9
2) a20 = 0, a11 6= 0, a30 = a40 = a50 = 0(

(35a60 a80−24a270) a
2
11+28(a21 a60 a70−70a31 a260) a11

+ 2646a221 a
2
60

)
p21

−28a60 a11 (2a70 a11 − 7a21 a60) p1 + 784a260 a
2
11 ̸= 0

lips (x1, x
3
2 + x21x2) a20 = a11 = 0, a30 6= 0,

(resp. beaks) (resp. (x1, x
3
2 + x21x2)) H2(−a21, a30) < H3x1

(−a21, a30) p1 (resp. >)
goose (x1, x

3
2 + x31x2) a20 = a11 = 0, a30 6= 0,

H2(−a21, a30) = H3x1
(−a21, a30) p1 and

H3(−a21, a30) 6= 1
2H4x1

(−a21, a30) p1
ugly goose (x1, x

3
2 ± x41x2) a20 = a11 = 0, a30 6= 0,

H2(−a21, a30) = H3x1
(−a21, a30) p1,

H3(−a21, a30) = 1
2H4x1

(−a21, a30) p1 and
a30(H5x1

(−a21, a30)p1 − 3H4(−a21, a30))p1
̸= 1

2
(H4x1x1

(−a21, a30)p1 − 2H3x1
(−a21, a30))

2

gulls (x1, x1x
2
2 + x42 + x52) a20 = a11 = 0, a30 = 0, a40 6= 0, a21 6= 0,

(3a221 a50 + 5a12 a240 − 10a21 a31 a40) p1 ̸= 5a40 (a40 a02 − 3a221)

ugly gulls (x1, x1x
2
2 + x42 + x72) a20 = a11 = 0, a30 = 0, a40 6= 0, a21 6= 0,

(3a221 a50 + 5a12 a240 − 10a21 a31 a40) p1 = 5a40 (a40 a02 − 3a221),
225a321 a

2
40 a70 − 315a221 a40 (3a21 a50 − 5a31 a40) a60

− 1575a221 a
3
40 a51

+

(
756a321 a

2
50 − 3150a221 a40 (a31 a50 −a40 a41)

− 1575a21 a22 a340 + 4200a21 a231 a
2
40

)
a50

− 5250a21 a31 a340 a41
−875a13 a540+2625(a21 a32+a22 a31) a440−1750a331 a

3
40

 p21

−70a40

5a40

(
9a221 (a21 a60 − 5a40 a41)
−5a240 (a03 a40−9a21 a22)

)
−3(3a21 a50−5a31 a40)

(
9a221 a50+5a12 a240
− 20a21 a31 a40

)
 p1

+3150a21 a240 (3a
2
21 a50 + 5a12 a240 − 10a21 a31 a40) ̸= 0

type 12 (x1, x1x
2
2 + x52 + x62) a20 = a11 = 0, a30 = a40 = 0, a50 6= 0, a21 6= 0,

(a21 a60 − 5a31 a50)p1 + 6a21 a50 6= 0
type 16 (x1, x

2
1x2 + x42 ± x52) a20 = a11 = 0, a30 = 0, a40 6= 0, a21 = 0,

(a12 a50 − 10a22 a40 + 10a2
31)p

2
1

−(a50 a02 − 25a12 a40)p1 − 5a40 a02 ̸= 0

Table 2: Criteria of A-type of πy
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2. As seen in the above, there is an exceptional point on asymptotic straight lines passing
through parabolic points of the surface (not more than one on a line) if a30 = 0 and a40 6= 0
for parabolic surface at the origin. It is called p′-focal by Platonova [19]. piy has the ugly
gulls singularity where a viewpoint y is p′-focal. Kabata [15] has characterized by the
condition in the table 2. We often call p′-focal point gulls-focal point.

3. In the same way, we define 12-focal point (“12” for “type 12 singularity”) and 16-focal
point (“16” for “type 16 singularity”) as exceptional points characterized as the formula in
the table 2.

3 Versality of central projection unfoldings

We can set an orthonormal frame

u =

cos θ
0

sin θ

 ,v =

0
1
0

 ,w =

− sin θ
0

cos θ


with θ in (0, π2 ] by certain rotation and translation. Let S be given by Monge form as in (1.1)
where the degree 2 polynomial of Q(x) is written as

H2(x) = k1 x1 x2 +
k2
2
x22. (3.1)

In the rest of this paper, we define the central projection πy and its unfolding π in 1 as germs
at x = 0. Our main claims summarized the table 1 are the following Theorem 3.1 to 3.4.

Theorem 3.1. Suppose the origin is a singularity of πy with Ae-codimension ≤ 1. Then, π is
an Ae-versal unfolding of the singularity of πy.

Theorem 3.2. 1. If the origin is a butterfly singularity of πy, then the following two condi-
tions are equivalent.

(i) π is an Ae-versal unfolding of the singularity of πy;

(ii) the flecnodal curve is not singular at 0, that is, 2a31 k1 − 3a221 6= 0.

2. Suppose that πy has the elder butterfly singularity at the origin. Then, π is an Ae-versal
unfolding of the singularity of πy if and only if

2a31 k1 − 3a221 6= 0 and (a60 k1 − 3a21 a50) p1 − 18a50 k1 6= 0

The later condition means that there is a special degenerate position of a viewpoint y for
Ae-versality.

3. Suppose that πy has an unimodal singularity at the origin. Then, π is not an Ae-versal
unfolding of the singularity of πy.

Theorem 3.3. 1. Suppose that πy has a gulls or ugly gulls singularity at the origin. Then,
the following two conditions are equivalent.

(i) π is an Ae-versal unfolding of the singularity of πy;

(ii) the origin is the first order blue ridge point, that is, a40 k2 − 3 a221 6= 0.

10



2. If πy has a type 12 singularity at the origin, then π is not an Ae-versal unfolding of the
singularity of πy.

Theorem 3.4. 1. If the origin is a goose or ugly goose singularity of πy, then the following
two conditions are equivalent.

(i) π is an Ae-versal unfolding of the singularity of πy;

(ii) the origin is not flat umbilic point, that is, k2 6= 0.

2. Suppose that the origin is a type 16 singularity of πy. Then, π is not an Ae-versal unfolding
of the singularity of πy.

Remark 3.5. The conditions (Theorem 3.2 (ii), Theorem 3.3 (ii) and Theorem 3.4 (ii)) above
have already appeared as criteria of versality of orthogonal projection (cf.[14, Theorem 6.8]).

From Theorem 2.13 and 2.16, to prove the versality of π of a singularity of πy which is
k-A-determined, we only need to show that the following equality

TAeπy +

〈
∂πy
∂y1

,
∂πy
∂y2

,
∂πy
∂y3

〉
R
= θ(πy). (3.2)

holds modulo mkε2.
We write the k-th order Taylor polynomial of the central projection πy at the origin as follows:

πy(x) =

k∑
i+j≥1

(
cij
dij

)
xi1 x

j
2

i! j!
. (3.3)

In the proof of the theorems above, we assume that H2(x) = k1 x1x2+
k2
2 x

2
2 in (1.2) and suppose

that L is the asymptotic straight line written as f(0) + tu. Then, p1 6= 0 and p2 = 0 in (2.1).
Thus, the coefficients of the 3-jet of πy are as follows:

c10 = d10 = c01 = 0, d01 = c := y3
p1 sin θ 6= 0,

c20 = d20 = 0, c11 = − k1 c
sin θ , d11 = c

p1
6= 0, c02 = − k2 c

sin θ , d02 = 0,

c30 = − a30 c
y3 sin θ , c21 = −(a21 p1 + 2k1)

c
p1 sin θ , c12 = −(a12 p1 + k2)

c
p1 sin θ , c03 = −a03 c

sin θ ,

d30 = 0, d21 = 2 c
p21

6= 0, d12 = 2 k1 c cos θ
p1 sin θ , d03 = 3 k2 c cos θ

p1 sin θ .

We also assume that πy(0, 0) = (0, 0).

3.1 Proof of Theorem 3.1 for the case of Ae-cod.πy≤ 1

3.1.1 Fold and cusp

These singularities are stable. It is clear that the central projection unfolding π is Ae-versal
unfolding in this case by Theorem 2.14.
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3.1.2 Swallowtail

Proof of Theorem 3.1 in the hyperbolic case. The swallowtail singularity is 4-A-deternined. Thus,
it is enough to show (3.2) that

TAeπy +

〈
∂πy
∂y1

,
∂πy
∂y2

,
∂πy
∂y3

〉
R

(3.4)

spans θ(πy) over R modulo m5
2E2

2 . From criteria of the swallowtail singularity, k1 6= 0, a40 6= 0
and a30 = 0. Thus, we have c30 = 0 and several coefficients of degree 4 monomials of πy at 0 as
follows:

c40 = −a40 c
sin θ

and d40 = 0.

Since

(
0
O4

)
= 1

d01
O4

∂πy

∂x2
in TAeπy/m

5
2E2

2 , we know all degree 4 monomials of the second

component

(
0
O4

)
are contained in TAeπy/m

5
2E2

2 . Working modulo these monomials,

(
x2O3

0

)
=

1
c11
O3

∂πy

∂x1
is contained in TAeπy modulo

(
m5

2

m4
2

)
. This means that all degree 4 monomials except(

x41
0

)
are in TAeπy.

Using

(
0

x2O2

)
= 1

d01
x2O2

∂πy

∂x2
in TAeπy modulo

(
x2m

3
2 +m5

2

m4
2

)
, degree 3 monomials of the

second component except

(
0
x31

)
is in TAeπy. From

(
x2O2

0

)
= 1

c11
O2

∂πy

∂x1
in TAeπy modulo(

x2m
3
2 +m5

2

x2m
2
2 +m4

2

)
, we know that the degree 3 monomial

(
x2O2

0

)
is contained in TAeπy.

We also know that degree 2 monomials

(
0

x2O1

)
and

(
x22
0

)
are in TAeπy modulo

(
x2m

2 +m5

x2m
2 +m4

)
from (

0
x2O1

)
=

1

d01
x2O1

∂πy
∂x2

and

(
x22

d11
c11
x22

)
=

1

c11
x2
∂πy
∂x1

.

From this,

(
x1x2
0

)
and

(
x41
0

)
are in TAeπy modulo

(
x22 + x2m

2 +m5

x2m+m4

)
from the following two

vectors (〈πy, e1〉e1
x1

∂πy

∂x1

)
=

(
c11 c40/24
c11 c40/6

)(
x1x2e1
x41e1

)
.

The determinant of the above matrix is
a40 k1 p

2
1 c

4

8y23
. This does not vanish from criteria of swal-

lowtail singularity. Working modulo these monomials, the following elements are written as(
x2
0

)
=

1

d01

(
〈πy, e2〉

0

)
,

(
0
x2

)
=

1

d01

(
0

〈πy, e2〉

)
,

(
0
x31

)
=

1

d01
x31
∂πy
∂x2

and are in TAeπy modulo (x2m + m4)ε2. Therefore, the three monomials

(
x2
0

)
,

(
0
x2

)
and(

0
x31

)
are contained in TAeπy/m

5ε2. From this, we know

(
x31
0

)
= 1

c40

∂πy

∂x1
is in TAeπy modulo

(x2 + x2m)ε2 +

(
m4

m3

)
.
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Finally, we consider the following four vectors
∂πy

∂y2
∂πy

∂x2

x1
∂πy

∂x2

x21
∂πy

∂x2

 =


0 −c/p1 0 −c/p21
c11 d11 c21/2 d21/2
0 d01 c11 d11
0 0 0 d01



x1e1
x1e2
x21e1
x21e2


in (3.4) modulo (x2 + x2m + m3)ε2. The determinant of the above matrix is

k21 p1 c
6

y23
and does

not vanish. It follows that

(
x1
0

)
,

(
0
x1

)
,

(
x21
0

)
and

(
0
x21

)
are contained in (3.4).

Therefore equality (3.2) is satisfied.

3.1.3 Lips/Beaks

Proof of Theorem 3.1 in the parabolic case. From criteria of the lips/beaks singularity, k1 = 0,
k2 6= 0 and a30 6= 0. Then, we know c11 = 0 and c02 6= 0.
The lips/beaks singularities are 3-A-deternined. Thus, we need to prove equality (3.2) where
k = 3.

Since

(
0
O3

)
= 1

d01
O3

∂πy

∂x2
and

(
x32
0

)
= 1

d301

(
〈πy, e2〉3

0

)
, degree 3 monomials

(
0
O3

)
and

(
x32
0

)
are in TAeπy/m

4
2E2

2 . In the same way, we know

(
0
x22

)
is in TAeπy modulo

(
x32 +m4

2

m3
2

)
from(

0
x22

)
= 1

d01
x22

∂πy

∂x2
.

The determinant of the following 6× 6 matrix D defined by the following:

t

( 0
〈πy, e2〉

,
〈πy, e2〉2

0

, x1
∂πy
∂x1

, x2
∂πy
∂x1

, x2
∂πy
∂x2

, x1x2
∂πy
∂x2

)
= D t

( 0
x2

,
 0
x1x2

,
x22
0

,
x31
0

,
x21x2

0

,
x1x22

0

)
where

D :=


d01 d11 0 0 0 0
0 0 d201 0 0 2d01 d11
0 0 0 0 c30/2 c21
0 d11 0 c30/2 c21 c12/2
d01 d11 c02 0 c21/2 c12
0 d01 0 0 0 c02


on TAeπy modulo

(
x32 +m4

2

x22 +m3
2

)
is a30

(a12 a30−a221)p1−k2 a30
4p18 sin10θ

y73 . From criteria of lips and beaks, this

does not vanish. Thus, we get monomials

(
0
x2

)
,

(
0

x1x2

)
,

(
x22
0

)
,

(
x31
0

)
,

(
x21x2
0

)
and

(
x1x

2
2

0

)
in TAeπy/m

4
2E2

2 .

Next, we consider the generation of degree 1 monomials and remaining degree 2 monomials. A

degree 2 monomial

(
0
x21

)
= 1

d01
x21

∂πy

∂x2
is contained in TAeπy modulo

(
x22

x2 + x2m2

)
+m3

2E2
2 . Fur-
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themore, we consider linear independence of the following elements in TAeπy modulo

(
x22 +m3

2

x2 +m2
2

)
:


〈πy, e2〉e1

∂πy

∂x1
∂πy

∂x2

x1
∂πy

∂x2

 =


0 d01 0 d11
0 0 c30/2 c21
d11 c02 c21/2 c12
d01 0 0 c02




x1 e2
x2 e1
x21 e1
x1x2 e1

 .

The determinant of the above matrix is − (a12 a30−a221)p1−k2 a30
2p15 sin6θ

y43 . From criteria of lips and beaks,

This does not vanish. Therefore,

(
0
x1

)
,

(
x2
0

)
,

(
x21
0

)
and

(
x1x2
0

)
are in TAeπy/m

4
2E2

2 .

Finally, we get the remaining monomial

(
x1
0

)
in (3.4) modulo

(
x2 +m2

2

m2

)
since

(
x1
0

)
=

−p1
c
∂πy

∂y1
.

3.2 Hyperbolic surfaces with Ae-cod.πy = 2, 3

Using criteria of the butterfly singularity, we know two coefficients both of two coefficients k1
and a50 does not vanish and a30 = a40 = 0. Thus, coefficients of the 3-jet of πy is the same as in
the case of the swallowtail singularity. The coefficients of the 7-jet of πy at 0 are as follows:

c40 = d40 = 0, c31 = −(a31 p
2
1 + 3a21 p1 + 6k1)

c2

p1 y3
, d31 =

6 c

p31
,

c50 = −a50 p1 c
2

y3
6= 0, d50 = 0, c41 = −(a41 p

3
1 + 4a31 p

2
1 + 12a21 p1 + 24k1)

c2

p21 y3
, d41 =

24 c

p41
,

c60 = −(a60 p1 + 6a50)
c2

y3
, d60 = 0, c70 = −(a70 p

2
1 + 7a60 p1 + 42a50)

c2

p1 y3
, d70 = 0.

3.2.1 Butterfly

Proof of 1 in Theorem 3.2. Since the butterfly singularity is 7-A-deternined, it is enough to show
that (3.4) spans θ(πy) over R modulo m8

2E2
2 .

Since

(
0
O7

)
= 1

d01
O7

∂πy

∂x2
in TAeπy/m

8
2E2

2 , we get all monomials

(
0
O7

)
in TAeπy/m

8ε2.(
x2O6

0

)
is generated by

(
x2O6

0

)
= 1

c11
O6

∂πy

∂x1
in TAeπy/m

8
2E2

2 over R.

In the same way, all monomials

(
0

x2Ok

)
and

(
x2Ol
0

)
for k = 3 to 5, l = 4 to 6 are in TAeπy

modulo

(
x2m

6
2 +m8

2

m7
2

)
since

1

d01
x2Ok

∂πy
∂x2

=

(
0

x2Ok

)
and

1

c11
Ol
∂πy
∂x1

=

(
x2Ol

d11
c11
x2Ol

)
.

From

(
x22O2

0

)
= 1

c11
x2

2O2
∂πy

∂x1
in TAeπy modulo

(
x2m

4
2 +m8

2

x2m
3
2 +m7

2

)
,

(
x22O2

0

)
is in TAeπy. Thus,
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degree 3 monomials

(
x22O1

0

)
and

(
0

x22O1

)
are in TAeπy modulo

(
x22m

2
2 + x2m

4
2 +m8

2

x2m
3
2 +m7

2

)
since

1

c11
x2O1

∂πy
∂x1

=

(
x22O1

d11
c11
x22O1

)
and

1

d01
x22O1

∂πy
∂x2

=

(
0

x22O1

)
.

Using the following linearly independent elements in TAeπy modulo

(
x22m2 + x2m

4
2 +m8

2

x22m2 + x2m
3
2 +m7

2

)
1

c11
x2
∂πy
∂x1

=

(
x22

d11
c11
x22

)
and

1

d01
x22
∂πy
∂x2

=

(
0
x22

)
,

we know degree 2 monomials

(
x22
0

)
and

(
0
x22

)
are in TAeπy/m

8
2E2

2 .

We consider the following fifteen elements

t

(〈πy, e1〉e1, 〈πy, e1〉e2, 〈πy, e2〉e1, 〈πy, e2〉e2,
∂πy

∂x1
, x1

∂πy

∂x1
, x2

∂πy

∂x2
, x21

∂πy

∂x1
, x1x2

∂πy

∂x2
, x31

∂πy

∂x1
, x31

∂πy

∂x2
, x21x2

∂πy

∂x2
, x41

∂πy

∂x2
, x51

∂πy

∂x2
, x61

∂πy

∂x2

)

= D1
t

(
x2e1, x2e2, x1x2e1, x1x2e2, x

3
1e2, x

2
1x2e1, x

2
1x2e2,

x41e1, x
4
1e2, x

3
1x2e1, x

5
1e1, x

5
1e2, x

6
1e1, x

6
1e2, x

7
1e1

)
,

D1 :=



0 0 c11 0 0 c21/2 0 0 0 c31/6 c50/120 0 c60/720 0 c70/5040
0 0 0 c11 0 0 c21/2 0 0 0 0 c50/120 0 c60/720 0
d01 0 d11 0 0 d21/2 0 0 0 d31/6 0 0 0 0 0
0 d01 0 d11 0 0 d21/2 0 0 0 0 0 0 0 0
c11 d11 c21 d21 0 c31/2 d31/2 c50/24 0 c41/6 c60/120 0 c70/720 0 ∗
0 0 c11 d11 0 c21 d21 0 0 c31/2 c50/24 0 c60/120 0 c70/720
0 d01 c11 d11 0 c21/2 d21/2 0 0 c31/6 0 0 0 0 0
0 0 0 0 0 c11 d11 0 0 c21 0 0 c50/24 0 c60/120
0 0 0 d01 0 c11 d11 0 0 c21/2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 c11 0 0 0 0 c50/24
0 0 0 0 d01 0 0 c11 d11 0 c21/2 d21/2 c31/6 d31/6 c41/24
0 0 0 0 0 0 d01 0 0 c11 0 0 0 0 0
0 0 0 0 0 0 0 0 d01 0 c11 d11 c21/2 d21 c31/6
0 0 0 0 0 0 0 0 0 0 0 d01 c11 d11 c21/2
0 0 0 0 0 0 0 0 0 0 0 0 0 d01 c11


.

in TAeπy modulo x22E2
2 +

(
x2m

4
2 +m8

2

x2m
3
2 +m7

2

)
. The determinant of D1 is{(

(48a50 a70 − 35a260) k
2
1

+42(a21 a60−40a31 a50) a50 k1
+ 2205a221 a

2
50

)
p21 − 84a50 k1 (a60 k1 − 3a21 a50) p1 + 756a250 k

2
1

}
a250 k

2
1 p

6
1 c

23

10450944000y83
.

Thus, the fifteen monomials above are in TAeπy since y is not butterfly-focal point.
Finally, we consider the following five elements

t
(
∂πy

∂y1
,
∂πy

∂y2
,
∂πy

∂x2
, x1

∂πy

∂x2
, x21

∂πy

∂x2

)
= D2

t

(x1
0

,
 0
x1

,
x21
0

,
 0
x21

,
x31
0

)
where

D2 :=


−c/p1 0 −c/p21 0 c/p31

0 −c/p1 0 −c/p21 0
c11 d11 c21/2 d21/2 c31/6
0 d01 c11 d11 c21/2
0 0 0 d01 c11

 ,
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∂2πy
∂y1∂x1

=

(
− c
p1

0

)
,
1

2

∂3πy
∂y1∂x21

=

(
− c
p21
0

)
and

1

6

∂3πy
∂y1∂x31

=

(
− c
p31
0

)
.

The determinant of D2 is (2a31 k1 − 3a221)
c7

12y23
. Therefore, the five monomials above are in (3.4)

if and only if 2a31k1 − 3a221 does not vanish.

Remark 3.6. Our source code for computation the determinant of D1 and D2 is available at
[12].

3.2.2 Elder butterfly

Proof of 2 in Theorem 3.2. The elder butterfly singularity is 7-A-determined which is equal to
the determinacy of the butterfly singularity. Thus, we should prove equality (3.2) holds for
k = 7. We know the fifteen elements expressed by D1 in the subsection 3.2.1 are not linearly
independent since y is butterfly-focal. The other elements used in the subsection 3.2.1 of (3.4)
are linearly independent if 2a31k1 − 3a221 does not vanish. Thus, we retake the following fifteen

elements in (3.4) modulo x22E2
2 +

(
x2m

4
2 +m8

2

x2m
3
2 +m7

2

)
:

t


∂πy

∂y3
+

∂πy

∂y1
tan θ,

〈πy, e1〉e1, 〈πy, e1〉e2, 〈πy, e2〉e1, 〈πy, e2〉e2,
∂πy

∂x1
, x1

∂πy

∂x1
, x21

∂πy

∂x1
, x1x2

∂πy

∂x2
, x31

∂πy

∂x1
, x31

∂πy

∂x2
, x21x2

∂πy

∂x2
, x41

∂πy

∂x2
, x51

∂πy

∂x2
, x61

∂πy

∂x2


=

(
d11

D12

)
t

(
x2e1, x2e2, x1x2e1, x1x2e2, x

3
1e2, x

2
1x2e1, x

2
1x2e2,

x41e1, x
4
1e2, x

3
1x2e1, x

5
1e1, x

5
1e2, x

6
1e1, x

6
1e2, x

7
1e1

)
,

where the (14, 15)-matrix D12 is



0 0 c11 0 0 c21/2 0 0 0 c31/6 c50/120 0 c60/720 0 c70/5040
0 0 0 c11 0 0 c21/2 0 0 0 0 c50/120 0 c60/720 0
d01 0 d11 0 0 d21/2 0 0 0 d31/6 0 0 0 0 0
0 d01 0 d11 0 0 d21/2 0 0 0 0 0 0 0 0
c11 d11 c21 d21 0 c31/2 d31/2 c50/24 0 c41/6 c60/120 0 c70/720 0 ∗
0 0 c11 d11 0 c21 d21 0 0 c31/2 c50/24 0 c60/120 0 c70/720
0 0 0 0 0 c11 d11 0 0 c21 0 0 c50/24 0 c60/120
0 0 0 d01 0 c11 d11 0 0 c21/2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 c11 0 0 0 0 c50/24
0 0 0 0 d01 0 0 c11 d11 c02 c21/2 d21/2 c31/6 d31/6 c41/24
0 0 0 0 0 0 d01 0 0 c11 0 0 0 0 0
0 0 0 0 0 0 0 0 d01 0 c11 d11 c21/2 d21/2 c31/6
0 0 0 0 0 0 0 0 0 0 0 d01 c11 d11 c21/2
0 0 0 0 0 0 0 0 0 0 0 0 0 d01 c11


and

d11 := c3

y33

0, − f3(0) y3
c

, f3(0) k1 p1, − (y3+f3(0)) y3
p1 c

, 0,

(2k1 (y3+f3(0))+a21 f3(0) p1)
2

, − (2y3+f3(0)) y3
p21 c

, 0, 0,
3a21 p1 (y3+f3(0))+6k1 (2y3+f3(0))+a31 f3(0) p

2
1

6 p1
,

a50 f3(0) p1
120

, 0, 6a50 (y3+f3(0))+a60 f3(0) p1
720

, 0,
7a60 p1 (y3+f3(0))+42a50 (2a50 y3+f3(0))+a70 f3(0) p

2
1

5040 p1

 .

The determinant of D12 is a350 k1
3 ((a60 k1 − 3a21 a50) p1 − 18a50 k1)

p61 c
24

62208000 y93
. Therefore, we get

the claim. Our source code for the computation of the determinant of D12 is available at [12].
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3.2.3 Unimodal

Proof of 3 in Theorem 3.2. From the assumption and criteria, a50 = 0 and a60 does not vanish.
The unimodal singularity is 8-A-deternined. If we know versality of this type, we check equality

(3.2) where k = 8. We consider whether seven monomials

(
x1
0

)
,

(
0
x1

)
,

(
x21
0

)
,

(
0
x21

)
,

(
x31
0

)
,(

0
x31

)
and

(
x41
0

)
are in (3.4) modulo m9

2E2
2 . However, we can only choose the following elements

in (3.4) modulo m9
2E2

2 to generate the monomials above:

t
(
∂πy

∂y1
,

∂πy

∂y2
,

∂πy

∂y3
,

∂πy

∂x2
, x1

∂πy

∂x2
, x21

∂πy

∂x2
, x31

∂πy

∂x2

)

=



− y3
p21 sin θ

0 − y3
p31 sin θ

0 − y3
p41 sin θ

0 − y3
p51 sin θ

0 − y3
p21 sin θ

0 − y3
p31 sin θ

0 − y3
p41 sin θ

0
y3 cos θ
p21 sin2θ

0 y3 cos θ
p31 sin2θ

0 y3 cos θ
p41 sin2θ

0 y3 cos θ
p51 sin2θ

c11 d11 c21 d21 c31 d31 c41
0 d01 c11 d11 c21 d21 c31
0 0 0 d01 c11 d11 c21
0 0 0 0 0 d01 c11





x1e1
x1e2
x21e1
x21e2
x31e1
x31e2
x41e1


+ · · · .

From
∂πy

∂y1
and

∂πy

∂y3
are not linearly independent in this part, these monomials cannot generate

the seven elements. Therefore, we know that an unfolding π is not versal at the unimodal
singularity.

3.3 Parabolic surfaces so that πy has gulls series singularities with Ae-
cod.πy ≤ 3

The Taylor series of central projection πy is (3.3) where c21 6= 0 from criteria of the gulls series
singularities which are a30 = 0 and a21 6= 0. Several coefficients of the 7-jet of πy are expressed
as follows:

c40 = −a40 p1 c
2

y3
, d40 = 0, c31 = −(a31 p1 + 3a21)

c2

2y3
, d31 = 6 c

p31
,

c22 = −(a22 p
2
1 + 2a12 p1 + 2k2)

c2

p1 y3
, c13 = −(a13 p1 + a03)

c2

y3
,

c50 = −(a50 p1 + 5a40)
c2

y3
, c41 = −(a41 p

2
1 + 4a31 p1 + 12a21)

c2

p1 y3
,

c32 = −(a32 p
3
1 + 3a22 p

2
1 + 6a12 p1 + 6k2)

c2

p21 y3
,

c60 = −(a60 p
2
1 + 6a50 p1 + 30a40)

c2

p1 y3
, c51 = −(a51 p

3
1 + 5a41 p

2
1 + 20a31 p1 + 60a21)

c2

p21 y3
,

c70 = −(a70 p
3
1 + 7a60 p

2
1 + 42a50 p1 + 210a40)

c2

p21 y3
.

3.3.1 Gulls

Proof of 1 in Theorem 3.3 at gulls singularity. Since gulls type is 5-A-determined, we should
show that equality (3.2) holds for k = 5. From criteria of gulls singularity, a40 6= 0 and

c40 6= 0. From the element 1
d01
O5

∂πy

∂x2
=

(
0
O5

)
, all degree 5 monomial of second component are

17



in TAeπy/m
6
2E2

2 . Thus, we know a monomial

(
0
x42

)
= 1

d401

(
0

〈πy, e2〉4
)

in TAeπy modulo

(
m6

2

m5
2

)
.

As same, a monomial

(
x52
0

)
is in TAeπy modulo

(
m6

2

x42 +m5
2

)
since

(
x52
0

)
= 1

d501
〈πy, e2〉5e1. Using

the following linearly independent elements of TAeπy modulo

(
x52 +m6

2

x42 +m5
2

)
:

x1O3
∂πy
∂x2

=

(
c02x1x2O3

d01x1O3

)
, x1O2

∂πy
∂x1

=

(
c21x

2
1x2O2 +

c12
2 x1x

2
2O2

d11x1x2O2

)
and x32

∂πy
∂x1

=

(
c21x1x

4
2

0

)
,

we get monomials

(
0

x1O3

)
and

(
x1x2O3

0

)
. Thus,

(
x42
0

)
= 1

d401
〈πy, e2〉4e1 is in TAeπy modulo(

x2m
4
2 +m6

2

m4
2

)
. An degree 3 monomial

(
0
x32

)
= 1

d01

(
0

〈πy, e2〉3
)
is in TAeπy modulo

(
x42 + x2m

4
2 +m6

2

m4
2

)
.

We consider the following fourteen elements

t

(
〈πy, e1〉e1, 〈πy, e1〉e2, 〈πy, e2〉e2, 〈πy, e2〉2e1, 〈πy, e2〉2e2, 〈πy, e2〉3e1,
x1

∂πy

∂x1
, x2

∂πy

∂x1
, x2

∂πy

∂x2
, x21

∂πy

∂x1
, x1x2

∂πy

∂x1
, x22

∂πy

∂x1
, x1x2

∂πy

∂x2
, x22

∂πy

∂x2

)

= D t

(
x2e2, x1x2e2, x

2
2e1, x

2
2e2, x

2
1x2e1, x

2
1x2e2, x1x

2
2e1, x1x

2
2e2, x

3
2e1,

x41e1, x
3
1x2e1, x

2
1x

2
2e1, x1x

3
2e1, x

5
1e1

)
where

D :=



0 0 c02/2 0 c21/2 0 c12/2 0 c03/6 c40/24 c31/6 c22/4 c13/6 c50/120
0 0 0 c02/2 0 c21/2 0 c12/2 0 0 0 0 0 0
d01 d11 0 0 0 d21/2 0 0 0 0 0 0 0 0

0 0 d201 0 0 0 2d01 d11 0 0 0 0 d01 d21+d
2
11 0 0

0 0 0 d201 0 0 0 2d01 d11 0 0 0 0 0 0

0 0 0 0 0 0 0 0 d301 0 0 0 3d201 d11 0

0 d11 0 0 c21 d21 c12/2 0 0 c40/6 c31/2 c22/2 c13/6 c50/24
0 0 0 d11 0 0 c21 d21 c12/2 0 c40/6 c31/2 c22/2 0
d01 d11 c02 0 c21/2 d21/2 c12 0 c03/2 0 c31/6 c22/2 c13/2 0
0 0 0 0 0 d11 0 0 0 0 c21 c12/2 0 c40/6
0 0 0 0 0 0 0 d11 0 0 0 c21 c12/2 0
0 0 0 0 0 0 0 0 0 0 0 0 c21 0
0 d01 0 0 0 d11 c02 0 0 0 c21/2 c12 c03/2 0
0 0 0 d01 0 0 0 d11 c02 0 0 c21/2 c12 0


.

The determinant of the matirx D is

−a
4
21 a40(3a

2
21 a50 p1 + 5a12 a

2
40 p1 − 10a21 a31 a40 p1 − 5a240 k2 + 15a221 a40) p

6
1 c

26

23040y83

Our source code for computation of the determinant of D is available at [12]. Thus, we can get
the monomials above at gulls type.

A monomial

(
0
x31

)
is in TAeπy modulo

(
x22 + x2m

2
2

x2ε1

)
+ m4

2E2
2 from 1

d01
x31

∂πy

∂x2
=

(
0
x31

)
. In

the same way, we know

(
0
x21

)
= 1

d01
x21

∂πy

∂x2
in TAeπy modulo

(
x22 + x2m

2
2 +m4

2

x2ε1 +m3
2

)
. A degree 1

monomial

(
0
x1

)
= −p1

c
∂πy

∂y2
is in (3.4) modulo

(
x22 + x2m

2
2 +m4

2

x2 +m2
2

)
.

We have no other way to generate two monomials

(
x1x2
0

)
and

(
x31
0

)
which is to use pair of

elements (
∂πy

∂x1
, x1

∂πy

∂x2

)
=

((
x1x2
0

)
,

(
x31
0

))(
c21 c02
c40
6

c21
2

)
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in TAeπy modulo

(
x22 + x2m

2
2 +m4

2

m2

)
. This two elements are linearly independent to each other

if and only if f is the 1-st order blue ridge point at the origin (that is, a40 k2 − 3 a221 6= 0).

Finally, we get remaining monomials

(
x1
0

)
,

(
x2
0

)
and

(
x21
0

)
by linearly independent elements

∂πy
∂y1

=

(
− c
p1
x1 − c

p21
x21

0

)
,

(
〈πy, e2〉

0

)
=

(
d01x2
0

)
and

∂πy
∂x2

=

(
c02x2 +

c21
2 x

2
1

0

)

in (3.4) modulo

(
x2m2 +m3

2

m2

)
respectively.

3.3.2 Ugly gulls

Proof of 1 in Theorem 3.3 at ugly gulls singularity. The ugly gulls singularity is 7-A-deternined.
Thus, if we know versality of this type, we check the equality (3.2) in the case of k = 7. The
4-jet of each derivative of central projection πy is the same as the case of gulls singularity.

If a40 k2 − 3 a221 = 0, πy is not versal at the origin from the same reason in the gulls case. We
assume that f is the 1-st order blue ridge at the origin.

Since d01 6= 0 and

(
0
O7

)
= 1

d01
O7

∂πy

∂x2
in TAeπy/m

8
2E2

2 , degree 7 monomials of the second

component are in TAeπy. Degree 7 monomials of the first component except

(
x71
0

)
and all degree

6 monomials

(
0
O6

)
are in TAeπy modulo

(
m8

2

m7
2

)
from the following linearly independent vectors

O5
∂πy
∂x1

= O5

(
c21x1x2 + c12x

2
2/2

d11x2

)
,

(
〈πy, e2〉7

0

)
=

(
d701x

7
2

0

)
and O6

∂πy
∂x2

= O6

(
c02x2
d01

)
.

In the same way, monomials

(
x22O4

0

)
and

(
0

x2O4

)
are in TAeπy modulo

(
x2m

6
2 +m8

2

m6
2

)
from

the following linearly independent vectors

x2O3
∂πy
∂x1

= x2O3

(
c21x1x2 + c12x

2
2/2

d11x2

)
,

(
〈πy, e2〉6

0

)
=

(
d601x

6
2

0

)
and x2O4

∂πy
∂x2

= x2O4

(
c02x2
d01

)
.

Furthermore, we get

(
x32O2

0

)
and

(
0

x22O2

)
from the following linearly independent vectors

x22O1
∂πy
∂x1

= x22O1

(
c21x1x2 + c12x

2
2/2

d11x2

)
,

(
〈πy, e2〉5

0

)
=

(
d501x

5
2

0

)
and x22O2

∂πy
∂x2

= x22O2

(
c02x2
d01

)

in TAeπy modulo

(
x22m

4
2 + x2m

6
2 +m8

2

x2m
4
2 +m6

2

)
respectively. We know two elements

(
x42
0

)
and

(
0
x32

)
are in TAeπy modulo

(
x32m

2
2 + x22m

4
2 + x2m

6
2 +m8

2

x22m
2
2 + x2m

4
2 +m6

2

)
from

(
〈πy, e2〉4

0

)
=

(
d401x

4
2

0

)
and x32

∂πy
∂x2

=

(
c02x

4
2

d01x
3
2

)
.
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To show that

(
0
x2

)
and remaining monomials whose degree is degree 2 or more except

(
x21
0

)
,(

0
x21

)
,

(
x1x2
0

)
,

(
x31
0

)
and

(
0
x31

)
are in (3.4), we consider the elements of (3.4) given by the

following elemnts:

t


∂πy

∂y3
+ 1

tan θ
∂πy

∂y1
+ f3(0)

y3 p1 sin θ

(
〈πy, e1〉
〈πy, e2〉

)
,

〈πy, e1〉e1, 〈πy, e1〉e2, 〈πy, e2〉e2, 〈πy, e1〉〈πy, e2〉e1, 〈πy, e2〉2e1, 〈πy, e2〉3e1,
x1

∂πy

∂x1
, x2

∂πy

∂x1
, x2

∂πy

∂x2
, x21

∂πy

∂x1
, x1x2

∂πy

∂x1
, x22

∂πy

∂x1
, x1x2

∂πy

∂x2
, x22

∂πy

∂x2
,

x21x2
∂πy

∂x1
, x21x2

∂πy

∂x2
, x1x

2
2
∂πy

∂x2
, x41

∂πy

∂x1
, x41

∂πy

∂x2
, x31x2

∂πy

∂x2
, x51

∂πy

∂x2


=

(
d
D1

)
t


x2 e2, x1x2 e2, x

2
2 e1, x

2
2 e2, x

2
1x2 e1,

x21x2 e2, x1x
2
2 e1, x1x

2
2 e2, x

3
2 e1,

x41 e1, x
4
1 e2, x

3
1x2 e1, x

3
1x2 e2, x

2
1x

2
2 e1, x1x

3
2 e1,

x51 e1, x
5
1 e2, x

4
1x2 e1, x

3
1x

2
2 e1, x

6
1 e1, x

5
1x2 e1, x

7
1 e1


where D1 is the (21, 22)-matrix expressed as follows:

0 0
c02
2 0

c21
2 0

c12
2 0

c03
6

c40
24 0

c31
6 0

c22
4

c13
6

c50
120 0

c41
24

c32
12

c60
720

c51
120

c70
5040

0 0 0
c02
2 0

c21
2 0

c12
2 0 0

c40
24 0

c31
6 0 0 0

c50
120 0 0 0 0 0

d01 d11 0 0 0
d21
2 0 0 0 0 0 0

d31
6 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
c02 d01

2 0 0 0 0
c21 d01

2
α13
2 0 0

c40 d01
24

α32
6 0

α51
120 0

0 0 d201 0 0 0 2d01 d11 0 0 0 0 0 0 β22 0 0 0 0
β32
3 0 0 0

0 0 0 0 0 0 0 0 d301 0 0 0 0 0 3d201 d11 0 0 0 0 0 0 0

0 d11 0 0 c21 d21
c12
2 0 0

c40
6 0

c31
2

d31
2

c22
2

c13
6

c50
24 0

c41
6

c32
4

c60
120

c51
24

c70
720

0 0 0 d11 0 0 c21 d21
c12
2 0 0

c40
6 0

c31
2

c22
2 0 0

c50
24

c41
6 0

c60
120 0

d01 d11 c02 0
c21
2

d21
2 c12 0

c03
2 0 0

c31
6

d31
6

c22
2

c13
2 0 0

c41
24

c32
6 0

c51
120 0

0 0 0 0 0 d11 0 0 0 0 0 c21 d21
c12
2 0

c40
6 0

c31
2

c22
2

c50
24

c41
6

c60
120

0 0 0 0 0 0 0 d11 0 0 0 0 0 c21
c12
2 0 0

c40
6

c31
2 0

c50
24 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 c21 0 0 0
c40
6 0 0 0

0 d01 0 0 0 d11 c02 0 0 0 0
c21
2

d21
2 c12

c03
2 0 0

c31
6

c22
2 0

c41
24 0

0 0 0 d01 0 0 0 d11 c02 0 0 0 0
c21
2 c12 0 0 0

c31
6 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c21 0
c40
6 0

0 0 0 0 0 d01 0 0 0 0 0 0 d11 c02 0 0 0
c21
2 c12 0

c31
6 0

0 0 0 0 0 0 0 d01 0 0 0 0 0 0 c02 0 0 0
c21
2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c21
c40
6

0 0 0 0 0 0 0 0 0 0 d01 0 0 0 0 0 d11 c02 0
c21
2 c12

c31
6

0 0 0 0 0 0 0 0 0 0 0 0 d01 0 0 0 0 0 c02 0
c21
2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d01 0 0 0 c02
c21
2



,

α13 := c02 d11 + c12 d01, α32 := d01 c31 + 3c21 d11, α51 := 5c40 d11 + c50 d01,
β22 := d01 d21 + d211, β32 := d01 d31 + 3d11 d21
and

d := c2

p1 y3

(
0, −1, 0, 0, 0, − 2

p1
, k2

2 sin θ , 0, 0, 0, 0,
a21

2 sin θ , −
3
p21
, a12 p1+2k2

2p1 sin θ , a03
6 sin θ ,

a40
24 sin θ , 0,

a31 p1+6a21
6p1 sin θ ,

a22 p
2
1+4a12 p1+6k2
4p21 sin θ

, a50 p1+10a40
120p1 sin θ ,

a41 p
2
1+8a31 p1+36a21
24p21 sin θ

,
a60 p

2
1+12a50 p1+90a40
720p21 sin θ

)
.

The determinant of

(
d
D1

)
does not vanish from the non-degenerate condition of ugly gulls

singularity. Our source code for Gauss elimination method of the determinant of

(
d
D1

)
is

available at [12].

The elements which generate remaining degree 1 to 3 monomials are nothing else the following
eight elements:
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t

(
∂πy

∂y1
,
∂πy

∂y2
,

(
〈πy, e2〉

0

)
,
∂πy

∂x1
,
∂πy

∂x2
, x1

∂πy

∂x2
, x21

∂πy

∂x2
, x31

∂πy

∂x2

)
= D2

t

((
x1
0

)
,

(
0
x1

)
,

(
x2
0

)
,

(
x21
0

)
,

(
0
x21

)
,

(
x1x2
0

)
,

(
x31
0

)
,

(
0
x31

))
where

D2 :=



− c
p1

0 0 − c
p21

0 0 − c
p31

0

0 − c
p1

0 0 − c
p21

0 0 − c
p31

0 0 d01 0 0 d11 0 0
0 0 0 0 0 c21 c40/6 0
0 d11 c02 c21/2 d21/2 c12 c31/6 d31/6
0 d01 0 0 d11 c02 c21/2 d21/2
0 0 0 0 d01 0 0 d11
0 0 0 0 0 0 0 d01


These are in (3.4) if and only if a40 k2 − 3a221 6= 0.

3.3.3 Type 12

Proof of 2 in Theorem 3.3. From the assumption and criteria, a40 = 0 and a50 does not vanish.
The type 12 singularity is 6-A-deternined. Thus, we need to prove equality (3.2) where k = 6. We

consider whether several seven elements in (3.4) modulo m6
2E2

2 generate seven elements

(
x1
0

)
,(

x2
0

)
,

(
x21
0

)
,

(
0
x21

)
,

(
x1x2
0

)
,

(
x31
0

)
and

(
x41
0

)
. However, we can only choose the following

elements in (3.4) modulo m6
2E2

2 :

t

(
∂πy

∂y1
,
∂πy

∂y3
,

(
〈πy, e2〉

0

)
,
∂πy

∂x1
,
∂πy

∂x2
, x1

∂πy

∂x2
, x21

∂πy

∂x2

)

=



− c
p1

0 − c
p21

0 0 − c
p31

− c
p41

c cos θ
y3

0 c cos θ
p1 y3

0 0 c cos θ
p21 y3

c cos θ
p31 y3

0 d01 0 0 d11 0 0
0 0 0 0 c21 0 c50/24
0 c02 c21/2 d21/2 c12 c31/6 c41/24
0 0 0 d11 c02 c21/2 c31/6
0 0 0 d01 0 0 c21/2





x1e1
x2e1
x21e1
x21e2
x1x2e1
x31e1
x41e1


+ · · ·

to generate the monomials above. Since
∂πy

∂y1
and

∂πy

∂y3
are not linearly independent in this part,

these elements cannot generate the seven elements and we know an unfolding π is not versal at
the type 12 singularity.

3.4 Parabolic surfaces so that πy has goose series singularities with
Ae-cod.πy ≤ 3

The Taylor series of central projection πy is (3.3) where c30 6= 0. Thus, the cofficients of terms
whose degree is upto 3 are expressed as the same in the case of lips/beaks. Several coefficients
of the 5-jet of πy are written as follows:

c40 = −(a40 p1 + 4a30)
c2

y3
, d40 = 0,

c31 = −(a31 p1 + 3a21)
c2

y3
, d31 = (6 sin θ + a30 p

2
1 cos θ)

c2

p21 y3
,
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c22 = −(a22 p
2
1 + 2a12 p1 + 2k2)

c2

p1 y3
, d22 = (2a21 cos θ)

c2

y3
,

c13 = −(a13 p1 + a03)
c2

y3
, d13 = (3(a12 p1 + 2k2) cos θ)

c2

p1 y3
,

c04 = −p1 (a04 + 6k22
c
y3

cos θ) c
2

y3
, d04 = 4a03 cos θ

c2

y3
,

c50 = −(a50 p
2
1 + 5a40 p1 + 20a30)

c2

p1 y3
, d50 = 0,

c41 = −(a41 p
2
1 + 4a31 p1 + 12a21)

c2

p1 y3
, d41 = {24 sin θ + (a40 p1 + 8a30) p

2
1 cos θ} c2

p31 y3
,

c32 = −{(a32 p31 + 3a22 p
2
1 + 6a12 p1 + 6k2) sin θ + 2a30 k2 p

2
1 cos θ} c3

p1 y23
,

d32 = 2(a31 p1 + 6a21) cos θ
c2

p1 y3
,

c23 = −{(a23 p21 + 2a13 p1 + 2a03) sin θ + 6a21 k2 p1 cos θ} c
3

y23
,

d23 = 3 (a22 p
2
1 + 4a12 p1 + 6k2) cos θ

c2

p21 y3
,

c14 = −12k2 (a12 p1 + k2) cos θ
c3

y23
− (a14 p1 + a04)

c2

y3
, d14 = 4(a13 p1 + 2a03) cos θ

c2

p1 y3
,

c05 = −20a03 k2 cos θ
p1 c

3

y23
− a05

p1 c
2

y3
.

3.4.1 Goose

Proof of 1 in Theorem 3.4 at goose singularity. Since the goose singularity is 4-A-determined,
we should show equality (3.2) holds for k = 4. We consider whether all monomial bases of
m2E2

2/m
5
2E2

2 are in TAeπy modulo m5
2E2

2 . First, we assume that the surface f is not flat umbilic at

the origin. Since d01 6= 0,

(
0
O4

)
= 1

d01
O4

∂πy

∂x2
and

(
x42
0

)
= 1

d401

(
〈πy, e2〉4

0

)
, degree 4 monomials(

0
O4

)
and

(
x42
0

)
are in TAeπy modulo m5

2E2
2 . Furthermore,

(
0
x32

)
= 1

d01
x32

∂πy

∂x2
is contained in

TAeπy modulo

(
x42 +m5

2

m4
2

)
.

To show that other monomials except a monomial

(
x1
0

)
are in (3.4) modulo

(
x42 +m5

2

x32 +m4
2

)
, we

consider the elements expressed as the following table:
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x1 e2 x2 e1 x2 e2 x2
1 e1 x2

1 e2 x1x2 e1 x1x2 e2 x2
2 e1 x2

2 e2

∂πy
∂y2

− c
p1

0 0 0 − c

p21
0 0 0 − k2 c2 cos θ

2y3

⟨πy, e2⟩e1 0 d01 0 0 0 d11 0 0 0
⟨πy, e2⟩e2 0 0 d01 0 0 0 d11 0 0

⟨πy, e2⟩2e1 0 0 0 0 0 0 0 d201 0

⟨πy, e2⟩3e1 0 0 0 0 0 0 0 0 0
∂πy
∂x1

0 0 d11 c30/2 0 c21 d21 c12/2 0
∂πy
∂x2

d11 c02 0 c21/2 d21/2 c12 0 c03/2 d03/2

x1
∂πy
∂x1

0 0 0 0 0 0 d11 0 0

x2
∂πy
∂x1

0 0 0 0 0 0 0 0 d11

x1
∂πy
∂x2

d01 0 0 0 d11 c02 0 0 0

x2
∂πy
∂x2

0 0 d01 0 0 0 d11 c02 0

x2
1

∂πy
∂x1

0 0 0 0 0 0 0 0 0

x1x2
∂πy
∂x1

0 0 0 0 0 0 0 0 0

x2
2

∂πy
∂x1

0 0 0 0 0 0 0 0 0

x2
1

∂πy
∂x2

0 0 0 0 d01 0 0 0 0

x1x2
∂πy
∂x2

0 0 0 0 0 0 d01 0 0

x2
2

∂πy
∂x2

0 0 0 0 0 0 0 0 d01

x3
1

∂πy
∂x2

0 0 0 0 0 0 0 0 0

x2
1x2

∂πy
∂x2

0 0 0 0 0 0 0 0 0

x1x
2
2

∂πy
∂x2

0 0 0 0 0 0 0 0 0

x3
1 e1 x3

1 e2 x2
1x2 e1 x2

1x2 e2 x1x
2
2 e1 x1x

2
2 e2 x3

2 e1 x4
1 e1 x3

1x2 e1 x2
1x

2
2 e1 x1x

3
2 e1

0 −d31/6 0 −d22/4 0 −d13/6 0 0 0 0 0

0 0 d21/2 0 0 0 d03/6 0 d31/6 d22/4 d13/6
0 0 0 d21/2 0 0 0 0 0 0 0

0 0 0 0 2d01 d11 0 0 0 0 d01 d21 + d211 0

0 0 0 0 0 0 d301 0 0 0 3d201 d11
c40/6 0 c31/2 d31/2 c22/2 d22/2 c13/6 c50/24 c41/6 c32/4 c23/6
c31/6 d31/6 c22/2 d22/2 c13/2 d13/2 c04/6 c41/24 c32/6 c23/4 c14/6

c30/2 0 c21 d21 c12/2 0 0 c40/6 c31/2 c22/2 c13/6
0 0 c30/2 0 c21 d21 c12/2 0 c40/6 c31/2 c22/2

c21/2 d21/2 c12 0 c03/2 d03/2 0 c31/6 c22/2 c13/2 c04/6
0 0 c21/2 d21/2 c12 0 c03/2 0 c31/6 c22/2 c13/2

0 0 0 d11 0 0 0 c30/2 c21 c12/2 0
0 0 0 0 0 d11 0 0 c30/2 c21 c12/2
0 0 0 0 0 0 0 0 0 c30/2 c21
0 d11 c02 0 0 0 0 c21/2 c12 c03/2 0
0 0 0 d11 c02 0 0 0 c21/2 c12 c03/2
0 0 0 0 0 d11 c02 0 0 c21/2 c12
0 d01 0 0 0 0 0 0 c02 0 0
0 0 0 d01 0 0 0 0 0 c02 0
0 0 0 0 0 d01 0 0 0 0 c02

where α30 := − (6 sin θ+a30 p
2
1 cos θ) c2

p21 y3
, α21 := −a21 c

2 cos θ
y3

and α12 := − (a12 p1+2k2) c
2 cos θ

p1 y3
.

From Gauss elimination method of which our source code is available on Github [12], the con-
dition of fullrank of this matrix expressed as the table above is the same as criteria of goose
singularity. Thus, they are in (3.4).

The remaining monomial

(
x1
0

)
is in (3.4) modulo

(
x2 +m2

2

m2

)
since

(
x1
0

)
= −p1

c
∂πy

∂y1
. Thus,

π is a versal unfolding of the singularity of πy if f(0) is not flat umbilic.

Next, we consider in the case of flat umbilic, that is, k2 = 0. In this case, we have only

way to generate monomials

(
x1
0

)
,

(
x2
0

)
,

(
x21
0

)
and

(
x1x2
0

)
. That is using the following five

elements:
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t

((
〈πy, e2〉

0

)
,
∂πy

∂y1
,
∂πy

∂y3
,
∂πy

∂x1
,
∂πy

∂x2

)
= D t

(x1
0

,
x2
0

,
x21
0

,
x1x2

0

),

D :=


0 d01 0 d11

− c
p1

0 − c
p21

0
c

p1 tan θ 0 c
p21 tan θ

0

0 0 c30/2 c21
0 0 c21/2 c12

 .

From criteria of goose singularity and non linearly independency of
∂πy

∂y1
and

∂πy

∂y3
in this part,

the rank of the above matrix is less than 4.
Therefore, we get criteria of versality of π at goose singularity.

3.4.2 Ugly goose

Proof of 1 in Theorem 3.4 at ugly goose singularity. From assumption and criteria, a30 6= 0. The
ugly goose singularity is 5-A-deternined. We should show equality (3.2) holds for k = 5. The
3-jet of each derivative of central projection πy is the same in the case of the goose singularity.
In the same way of proof at goose singularity, we know π is not an Ae-versal if f(x) is flat
umbilic. We enough to consider in the case of not flat umbilic.

Since(
0
O5

)
=

1

d01
O5

∂πy
∂x2

,

(
0

x42 +
2d301d11
d401

x1x
4
2

)
=

1

d401

(
0

〈πy, e2〉4
)
,

(
x52
0

)
=

1

d501

(
〈πy, e2〉5

0

)

in TAeπy modulo m6
2E2

2 and d01 6= 0, we get

(
0
O5

)
,

(
0
x42

)
and

(
x52
0

)
.

To show that the remaining monomials except

(
x1
0

)
are in (3.4) modulo

(
x52 +m6

2

x42 +m5
2

)
, we

consider the elements in (3.4) expressed as the following table:
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x1 e2 x2 e1 x2 e2 x2
1 e1 x2

1 e2 x1x2 e1 x1x2 e2 x2
2 e1 x2

2 e2
∂πy
∂y2

−d11 0 0 0 −d21/2 0 0 0 −d03/6

d 0 0 − c2 f3(0)

y2
3

0 0 0 − c2 (y3+f3(0))

p1y2
3

⟨d02, e1⟩ 0

⟨πy, e2⟩e1 0 d01 0 0 0 d11 0 0 0

⟨πy, e2⟩e2 0 0 d01 0 0 0 d11 0 0

⟨πy, e2⟩2e1 0 0 0 0 0 0 0 d201 0

⟨πy, e2⟩3e1 0 0 0 0 0 0 0 0 0

⟨πy, e2⟩4e1 0 0 0 0 0 0 0 0 0
∂πy
∂x1

0 0 d11 c30/2 0 c21 d21 c12/2 0

∂πy
∂x2

d11 c02 0 c21/2 d21/2 c12 0 c03/2 d03/2

x1
∂πy
∂x1

0 0 0 0 0 0 d11 0 0

x2
∂πy
∂x1

0 0 0 0 0 0 0 0 d11

x1
∂πy
∂x2

d01 0 0 0 d11 c02 0 0 0

x2
∂πy
∂x2

0 0 d01 0 0 0 d11 c02 0

x2
1

∂πy
∂x1

0 0 0 0 0 0 0 0 0

x1x2
∂πy
∂x1

0 0 0 0 0 0 0 0 0

x2
2

∂πy
∂x1

0 0 0 0 0 0 0 0 0

x2
1

∂πy
∂x2

0 0 0 0 d01 0 0 0 0

x1x2
∂πy
∂x2

0 0 0 0 0 0 d01 0 0

x2
2

∂πy
∂x2

0 0 0 0 0 0 0 0 d01

x3
1

∂πy
∂x1

0 0 0 0 0 0 0 0 0

x2
1x2

∂πy
∂x1

0 0 0 0 0 0 0 0 0

x1x2
2

∂πy
∂x1

0 0 0 0 0 0 0 0 0

x3
2

∂πy
∂x1

0 0 0 0 0 0 0 0 0

x3
1

∂πy
∂x2

0 0 0 0 0 0 0 0 0

x2
1x2

∂πy
∂x2

0 0 0 0 0 0 0 0 0

x1x2
2

∂πy
∂x2

0 0 0 0 0 0 0 0 0

x3
2

∂πy
∂x2

0 0 0 0 0 0 0 0 0

x4
1

∂πy
∂x2

0 0 0 0 0 0 0 0 0

x3
1x2

∂πy
∂x2

0 0 0 0 0 0 0 0 0

x2
1x2

2
∂πy
∂x2

0 0 0 0 0 0 0 0 0

x1x3
2

∂πy
∂x2

0 0 0 0 0 0 0 0 0

x3
1 e1 x3

1 e2 x2
1x2 e1 x2

1x2 e2 x1x
2
2 e1 x1x

2
2 e2 x3

2 e1 x3
2 e2

0 −d31/6 0 −d22/4 0 −d13/6 0 −d04/24
⟨d30, e1⟩ 0 ⟨d21, e1⟩ ⟨d21, e2⟩ ⟨d12, e1⟩ 0 ⟨d03, e1⟩ ⟨d03, e2⟩

0 0 d21/2 0 0 0 d03/6 0
0 0 0 d21/2 0 0 0 d03/6

0 0 0 0 2d01 d11 0 0 0

0 0 0 0 0 0 d301 0
0 0 0 0 0 0 0 0

c40/6 0 c31/2 d31/2 c22/2 d22/2 c13/6 d13/6
c31/6 d31/6 c22/2 d22/2 c13/2 d13/2 c04/6 d04/6

c30/2 0 c21 d21 c12/2 0 0 0
0 0 c30/2 0 c21 d21 c12/2 0

c21/2 d21/2 c12 0 c03/2 d03/2 0 0
0 0 c21/2 d21/2 c12 0 c03/2 d03/2

0 0 0 d11 0 0 0 0
0 0 0 0 0 d11 0 0
0 0 0 0 0 0 0 d11
0 d11 c02 0 0 0 0 0
0 0 0 d11 c02 0 0 0
0 0 0 0 0 d11 c02 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 d01 0 0 0 0 0 0
0 0 0 d01 0 0 0 0
0 0 0 0 0 d01 0 0
0 0 0 0 0 0 0 d01
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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x4
1 e1 x4

1 e2 x3
1x2 e1 x3

1x2 e2 x2
1x

2
2 e1 x2

1x
2
2 e2 x1x

3
2 e1 x1x

3
2 e2 x4

2 e1
0 −d41/24 0 −d32/12 0 −d23/12 0 −d14/24 0

⟨d40, e1⟩ 0 ⟨d31, e1⟩ ⟨d31, e2⟩ ⟨d22, e1⟩ ⟨d22, e2⟩ ⟨d13, e1⟩ ⟨d13, e2⟩ ⟨d04, e1⟩
0 0 d31/6 0 d22/4 0 d13/6 0 d04/24
0 0 0 d31/6 0 d22/4 0 d13/6 0

0 0 0 0 d01 d21 + d211 0 0 0 d01 d03/3

0 0 0 0 0 0 3d201 d11 0 0

0 0 0 0 0 0 0 0 d401
c50/24 0 c41/6 d41/6 c32/4 d32/4 c23/6 d23/6 c14/24
c41/24 d41/24 c32/6 d32/6 c23/4 d23/4 c14/6 d14/6 c05/24
c40/6 0 c31/2 d31/2 c22/2 d22/2 c13/6 d13/6 0

0 0 c40/6 0 c31/2 d31/2 c22/2 d22/2 c13/6
c31/6 d31/6 c22/2 d22/2 c13/2 d13/2 c04/6 d04/6 0

0 0 c31/6 d31/6 c22/2 d22/2 c13/2 d13/2 c04/6
c30/2 0 c21 d21 c12/2 0 0 0 0

0 0 c30/2 0 c21 d21 c12/2 0 0
0 0 0 0 c30/2 0 c21 d21 c12/2

c21/2 d21/2 c12 0 c03/2 d03/2 0 0 0
0 0 c21/2 d21/2 c12 0 c03/2 d03/2 0
0 0 0 0 c21/2 d21/2 c12 0 c03/2
0 0 0 d11 0 0 0 0 0
0 0 0 0 0 d11 0 0 0
0 0 0 0 0 0 0 d11 0
0 0 0 0 0 0 0 0 0
0 d11 c02 0 0 0 0 0 0
0 0 0 d11 c02 0 0 0 0
0 0 0 0 0 d11 c02 0 0
0 0 0 0 0 0 0 d11 c02
0 d01 0 0 0 0 0 0 0
0 0 0 d01 0 0 0 0 0
0 0 0 0 0 d01 0 0 0
0 0 0 0 0 0 0 d01 0

x5
1 e1 x4

1x2 e1 x3
1x

2
2 e1 x2

1x
3
2 e1 x1x

4
2 e1

0 0 0 0 0
⟨d50, e1⟩ ⟨d41, e1⟩ ⟨d32, e1⟩ ⟨d23, e1⟩ ⟨d14, e1⟩

0 d41/24 d32/12 d23/12 d14/24
0 0 0 0 0

0 0 (d01 d31 + 3d11 d21)/3 d01 d22/2 (d01 d13 + d03 d11)/3

0 0 0 3d01 (d01 d21 + 2d211)/2 0

0 0 0 0 4d301 d11
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

c50/24 c41/6 c32/4 c23/6 c14/24
0 c50/24 c41/6 c32/4 c23/6

c41/24 c32/6 c23/4 c14/6 c05/24
0 c41/24 c32/6 c23/4 c14/6

c40/6 c31/2 c22/2 c13/6 0
0 c40/6 c31/2 c22/2 c13/6
0 0 c40/6 c31/2 c22/2

c31/6 c22/2 c13/2 c04/6 0
0 c31/6 c22/2 c13/2 c04/6
0 0 c31/6 c22/2 c13/2

c30/2 c21 c12/2 0 0
0 c30/2 c21 c12/2 0
0 0 c30/2 c21 c12/2
0 0 0 c30/2 c21

c21/2 c12 c03/2 0 0
0 c21/2 c12 c03/2 0
0 0 c21/2 c12 c03/2
0 0 0 c21/2 c12
0 c02 0 0 0
0 0 c02 0 0
0 0 0 c02 0
0 0 0 0 c02

where d :=
∂πy

∂y3
+ 1

tan θ
∂πy

∂y1
and dij :=

1
i! j!

∂(1+i+j)d

∂xi
1 ∂x

j
2

(0).

From Gauss elimination method, we know that the matrix expressed as the table above is of
fullrank from criteria of ugly goose singularity and the assumption k2 6= 0. Our source code is
available on GitHub [12].

The degree 1 monomial

(
x1
0

)
= −p1

c
∂πy

∂y1
is in (3.4). Therefore, if f(0) is not flat umbilic, π

is versal unfolding of the singularity of πy.
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3.4.3 Type 16

Proof of 2 in Theorem 3.4. From assumption and criteria, a30 = a21 = 0 and a40 6= 0. The
type 16 singularity is 5-A-deternined. Thus, we need to check equality (3.2) holds for k = 5.

We consider whether two elements

(
x1
0

)
,

(
x21
0

)
are generated by several elements in (3.4).

However, we can only choose the following elements in (3.4) to generate elements above in
j5θ(πy):

t
(
∂πy

∂y1
,
∂πy

∂y3

)
=

(
− c
p1

− c
p21

c
p1 tan θ

c
p21 tan θ

)
t

((
x1
0

)
,

(
x21
0

))
+ · · · .

Since
∂πy

∂y1
and

∂πy

∂y3
are not linearly independent, these elements cannot generates the seven

elements and we know that an unfolding π is not versal at the type 16 singularity.

4 Geometric conditions of singularities for versality

We consider the contact of the surface S with cones. Since a cone in R3 is determined by its
vertex, direction of central axis and angle, the moduli space of cones is of dimension six.

Consider a cone which has a vertex y = (y1, y2, y3) in R3, a direction vector of central axis
d = (d1, d2, d3) in S2 and an angle θ in (0, π/2) where 〈d, y〉 6= 0 and d is not parallel to the
position vector of y. Then, its implicit function is given by

Cy,d,θ(z1, z2, z3) := 〈d, z − y〉2 − |z − y|2 cos2θ = 0. (4.1)

The contact between the cone (4.1) and the regular surface S parameterized by f(x1, x2) =
(x1, x2, Q(x)) is measured by the K-singularities of the function

C(x1, x2) = Cy,d,θ(x1, x2, Q(x)) (4.2)

=

m∑
k≥2

Ck(x1, x2)+o(x1, x2)
m+1 where Ck(x1, x2) :=

∑
i+j=k

cij
i j
xi1x

j
2.

We call C(x1, x2) the contact function with cones.
According to [18], we define the notion of contact type. We recall that two map-germs

f, g : (Rm, 0) → (Rn, 0) are K-equivalent if there are a diffeomorphism φ : (Rm, 0) → (Rm, 0)
and a smooth map A : (Rm, 0) → GL(Rn) such that g(φ(x)) = A(x) f(x).

In this section, we consider the Ak (or A±
k )-contact type which is a K-modal x21 ± xk+1

2 . We
introduce some results of A≤6-contact of cones with regular surfaces at a parabolic point. Before
stating the results, we need the following Lemma 4.1. In this section, we assume that the vertex
of cones is not the origin in R3.

Lemma 4.1. One of generatrix is passing through the origin in R3 if and only if the angle of
cones θ is equal to the angle between the position vector of the vertex y and the unit direction
vector of the central axis d of cones.

This lemma is shown by checking the condition of C(0) = 0.

Lemma 4.2. We assume that one of generatrix is passing through the origin in R3. Then, the
contact function C(x1, x2) with cones has critical point at 0 if and only if

y3 = d1 y2 − d2 y1 = 0. (4.3)
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This condition means that the vertex y is in the tangent plane of the regular surface S and the
orthogonal projection of the direction of central axis d belong to v = (0, 0, 1) is parallel to the
position vector of y.

The lemma above is proved by checking the rank of Jacobian matrix.

Lemma 4.3. We consider a cone Cy,d,θ whose vertex is satisfied (4.3) and is not origin in R3.
We measure contact between this cone with the regular surface S as follows:

1. The cone Cy,d,θ has A1-contact with S if and only if none of the following conditions hold.

(A2a) the origin is flat umbilic.

(A2b) the origin is parabolic but not flat umbilic and the vertex y is contained in an asymp-
totic straight line of S at 0, that is, y2 = 0 as same d2 = 0.

2. Suppose that S is parabolic but not flat umbilic at the origin. The cone Cy,d,θ has A2-
contact with S if and only if the condition (A2b) holds and none of the following conditions
hold.

(D4a) the vertex y is contained in the asymptotic straight line of S at x = 0 and

d3 = − d1
k2 y1

.

This is the condition in which the rank of the Hesse matrix is 0.

(A3b) the vertex y is contained in the asymptotic straight line of S at x = 0, d3 6= − d1
k2 y1

and the asymptotic straight line is 3-rd or higher order contact with S.

The first item 1. in Lemma 4.3 is proved by checking the rank of Hesse matrix of C(x1, x2).
To prove the second item 2. in Lemma 4.3, we use criteria of A3 and D4-singularity type (for
example, see Theorem 1.1. in [9]).

We consider more degenerate Ak-contact in the case of (A2b) in Lemma 4.3. It is relevant
to gulls series singularity of πy if π is versal at gulls series singularity. Using criteria of A≤6-
singularity (for example, see Theorem 1.2 to 1.4 in [9]), we have the following Theorem 4.4. The
proof is similar to that of the item 2. in Lemma 4.3. See [13] also, which is available in [12].

Theorem 4.4. Assume that the origin of the regular surface S has parabolic but not flat umbilic
and the vertex of the cone y is contained in the asymptotic straight line of S.

1. The cone Cy,d,θ has A3-contact with S if and only if S has the 3-rd or higher order contact
with the asymptotic straight line at the origin and

(k2 a40 − 3a221) d3 y1 + a40 d1 6= 0. (4.4)

After this, we assume that both of a40 and k2 a40 − 3a221 do not vanish.

2. The cone Cy,d,θ has A4-contact with S if and only if S has the 3-rd order contact with the
asymptotic straight line at the origin, (4.4) vanishes and

(3a221 a50 + 5a12 a
2
40 − 10a21 a31 a40) y1 − 5a40 (k2 a40 − 3a221) 6= 0. (4.5)
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3. The cone Cy,d,θ has A5-contact with S if and only if S has the 3-rd order contact with the
asymptotic straight line at the origin, both of (4.4) and (4.5) vanish and

AC5 := (45a321 a40 a60−54a321 a
2
50+180a221 a31 a40 a50−225a221 a

2
40 a41−25a03 a

4
40+225a21 a22 a

3
40−

150a21 a
2
31 a

2
40)y1 − 270a321 a40 a50 − 450a12 a21 a

3
40 + 900a221 a31 a

2
40

does not vanish.

4. The cone Cy,d,θ has A6-contact with S if and only if S has the 3-rd order contact with the
asymptotic straight line at the origin, (4.4), (4.5) and AC5 vanish and

AC6 :=
225a321 a

2
40 a70 − 945a321 a40 a50 a60 + 1575a221 a31 a

2
40 a60 − 1575a221 a

3
40 a51

+ 756a321 a
3
50 − 3150a221 a31 a40 a

2
50 + 3150a221 a

2
40 a41 a50 − 1575a21 a22 a

3
40 a50

+ 4200a21 a
2
31 a

2
40 a50 − 5250a21 a31 a

3
40 a41 − 875a13 a

5
40 + 2625a21 a32 a

4
40

+ 2625a22 a31 a
4
40 − 1750a331 a

3
40

 y21

+ 210a40 (3a21 a50 − 5a31 a40) (3a
2
21 a50 + 5a12 a

2
40 − 10a21 a31 a40)y1

− 3150a21 a
2
40 (3a

2
21 a50 + 5a12 a

2
40 − 10a21 a31 a40)

does not vanish.

Remark 4.5. Suppose that f(0) is not red subparabolic, that is, a21 6= 0.

1. The non degenerate condition of A4-contact in Theorem 4.4 means that criteria of gulls
singularity type of the central projection πy.

2. It follows from 3 and 4 in Theorem 4.4 that the sum of the non degenerate conditions of
A5-contact and A6-contact

AC6 − 70 a40AC5 (4.6)

is equal to the non degenerate condition of ugly gulls singularity of πy. We call (4.6) the
ug-focal condition.

Finally, we summarize geometric criteria of singularities of πy for versality.

Lemma 4.6. Suppose the regular surface S is parameterized by f as in (1.1) and a viewpoint y is
in u-axis, that is, y− f(0) = p1 u. Then, geometric criteria of Ae-codimension ≤ 3 singularities
of πy are written as in table 3 if π is versal at x = 0.
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type A-cod. c position of y other condition
fold 0 1 (L is not asymptotic straight line.)

cusp 0 2
swallowtail 1 3
butterfly 2 4 not h-focal

elder butterfly 3 4 h-focal
unimodal 3 5 not u-focal

lips (resp. beaks) 1 2 not p-focal y is farther (resp. nearer ) f(0) than p-focal
goose 2 2 p-focal viewlines passing through parabolic points

of S form cusipidal edge (cf. Platnova [19])
ugly goose 3 2 p-focal viewlines passing through parabolic points

of S form swallowtail (cf. Platnova [19])
type 16 3 3 not 16-focal 1-st or higher order red subparabolic

gulls 2 3 not p′-focal not red subparabolic
ugly gulls 3 3 p′-focal not red subparabolic

and not ug-focal condition
type 12 3 4 not 12-focal not red-subparabolic

Table 3: Geometric criteria of A-singularity of πy where c is contact order of S with L at x = 0.
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pp. 16 – 29. Research Institute for Mathematical Sciences Kyoto University, 9. 2011. (in
Japanese).

[10] T. Fukui and M. Hasegawa. Singularities of parallel surfaces. Tohoku Math. J. (2), Vol. 64,
No. 3, pp. 387–408, 2012.

[11] T. Fukui, M. Hasegawa, and K. Nakagawa. Contact of a regular surface in Euclidean 3-space
with cylinders and cubic binary differential equations. J. Math. Soc. Japan, Vol. 69, No. 2,
pp. 819 – 847, 2017.

[12] S. Honda. Computation of versality of central projections at singularities, 2021.
https://github.com/Shuhei-singularity123/Computation-of-versality-of-central-projections-
at-singularities.

[13] S. Honda. Singularity types of central projections and thier versality, March 2021. master
thesis in English, Saitama university.

[14] S. Izumiya, M. D. C. R. Fuster, M. A. S. Ruas, and F. Tari. Differential geometry from
a singularity theory viewpoint. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,
2016.

[15] Y. Kabata. Recognition of plane-to-plane map-germs. Topology and its Applications, Vol.
202, pp. 216 – 238, 2016.

[16] J. N. Mather. Stability of C∞ mappings. III. Finitely determined mapgerms. Inst. Hautes
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