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STRATIFICATIONS OF FLAG SPACES AND FUNCTORIALITY

WUSHI GOLDRING, JEAN-STEFAN KOSKIVIRTA

Abstract. We define stacks of zip flags, which form towers above the stack of G-zips of Moonen, Pink, Wedhorn
and Ziegler in [MW04], [PWZ11] and [PWZ15]. A stratification is defined on the stack of zip flags, and principal
purity is established under a mild assumption on the underlying prime p. We generalize flag spaces of Ekedahl-Van
der Geer [EvdG09] and relate them to stacks of zip flags. For large p, it is shown that strata are affine. We prove that
morphisms with central kernel between stacks of G-zips have discrete fibers. This allows us to prove principal purity
of the zip stratification for maximal zip data. The latter provides a new proof of the existence of Hasse invariants
for Ekedahl-Oort strata of good reduction Shimura varieties of Hodge-type, first proved in [GKb].

Introduction

This paper is the second in a series on our program, outlined in [GKb], to connect (A) Automorphic Algebraicity,
(B) G-Zip Geometricity and (C) Griffiths-Schmid Algebraicity. The two main themes motivating our program are
those of geometry-by-groups and characteristic shifting. For more details on our program and background on (A),
(B), (C), see the introduction of loc. cit. and the references therein.

The specific focus of this paper is to dig deeper into several aspects of (B) which were studied in loc. cit. More
precisely, four interrelated topics are pursued:

(1) The behavior of the zip stratification under functoriality.

(2) The construction of stacks G-ZipFlag(Z,P0) of zip partial flags, together with a stratification of Ekedahl-

Oort type. The stacks G-ZipFlag(Z,P0) lie between a stack of G-Zips and the stack of zip flags G-ZipFlagZ

defined in [GKb] :

G-ZipFlagZ → G-ZipFlag(Z,P0) → G-ZipZ .

(3) The construction of group-theoretical Hasse invariants on the above stacks, under mild bounds on the
characteristic. We view the existence of such Hasse invariants in terms of several strengthened notions of
purity.

(4) The construction of partial flag spaces, which lie in-between a Shimura variety of Hodge type and its flag
space.

The main results obtained in each of the four areas singled out above are summarized below. One of the technical
innovations in this paper over [GKb] is the use of zip data of higher exponent n (corresponding to the nth power of
Frobenius, see §1.1), while loc. cit. only considered zip data of exponent 1. Passing to a higher exponent is a key
method in Th. 2 below.

Another improvement is that a criterion is given for the existence of group-theoretical Hasse invariants on a
general zip datum, while loc. cit. only treated those zip data arising from cocharacters. This generalization is

necessary to obtain sections on the strata of G-ZipFlag(Z,P0).
The above topics have already had numerous applications. Some applications to the coherent cohomology of

Shimura varieties, automorphic forms and the Langlands Program were given in [GKb]. Applications to the existence
of global sections of automorphic vector bundles, in particular proving a conjecture of Diamond on mod p Hilbert
modular forms were given in [GKa]. The second author has applied the theory of partial flag spaces developed here
to determine the normalization of Ekedahl-Oort strata closures [Kos]. For additional applications to ampleness of
automorphic bundles and vanishing theorems for the coherent cohomology of Shimura varieties, see forthcoming
work with Brunebarbe and Stroh [BGKS]. We expect the above applications to be merely the tip of the iceberg:
many more will follow.

Stacks of zip flags and their stratification. LetG be a connected, reductive Fp-group; let Z = (G,P, L,Q,M,ϕn)

be a zip datum and let G-ZipZ be the associated stack of G-Zips (§1.1). The following summarizes some of the
basic constructions in §2 and §3.1.

Theorem 1. Let P0 be a sub-parabolic of P .

(1) There exists a smooth stack G-ZipFlag(Z,P0) of dimension dim(P/P0) of zip flags of type P0.

(2) There is a natural projection G-ZipFlag(Z,P0) → G-ZipZ , which is smooth with flag variety fibers P/P0.
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(3) If B ⊂ P0 is a Borel subgroup, then the projection G-ZipFlagZ → G-ZipZ factors through G-ZipFlagZ →

G-ZipFlag(Z,P0), with flag variety fibers P0/B.

(4) There is a second zip datum Z0 associated to (Z, P0) and a smooth map G-ZipFlag(Z,P0) → G-ZipZ0 . It

induces a stratification of G-ZipFlag(Z,P0) parameterized by I0W , where I0 is the type of P0.

The stratification in (4) is termed fine, see §3.1. We also define a coarse stratification of G-ZipFlag(Z,P0), see

§2.2; it generalizes the Bruhat stratification of G-ZipZ studied by Wedhorn [Wed14], which in turn generalizes the
a-number stratification studied by Oort and others (cf. introduction of loc. cit.).

In general, the zip datum Z0 is not attached to a cocharacter, unless P0 = P . There seems to be no known
algebraic counterpart of the stack G-ZipZ0 in the theory of Shimura varieties. Thus we see that the group-theoretic
approach of G-Zips reveals genuinely new structure. Nevertheless, following (i) the analogy between stacks of G-
Zips and Griffiths-Schmid manifolds suggested in [GKb] (see esp. §I.4) and (ii) the approach to Griffiths-Schmid

manifolds in [GGK13], it appears that there may be a complex-geometric analogue of G-ZipZ0 among the objects
studied in loc. cit.; see §6.4.

Th. 1 generalizes the construction of the stack of zip flags G-ZipFlagZ in [GKb] to an intermediate parabolic

B ⊂ P0 ⊂ P . In particular, when P0 = B one has G-ZipFlag(Z,P0) = G-ZipFlagZ and when P0 = P one has

G-ZipFlag(Z,P0) = G-ZipZ . In turn, the case of G-ZipFlagZ is a group-theoretical generalization of the flag space
– and its stratification – associated to the moduli space of abelian varieties Ag ⊗ Fp by Ekedahl and van der Geer
[EvdG09].

Functoriality of zip stratifications. The association Z → G-ZipZ is functorial: A morphism f : Z1 → Z2 of
zip data is a morphism of the underlying groups f : G1 → G2, compatible with the additional structure (see §1.1).

Such a morphims induces one of stacks f̃ : G1-Zip
Z1 → G2-Zip

Z2 (Lemma 1.5.3). It is then natural to question
how the zip stratification varies under functoriality.

Theorem 2 (Th. 5.1.1). Let f : Z1 → Z2 be a morphism of zip data, such that the underlying morphism of groups
f : G1 → G2 has central kernel. Then the induced morphism of stacks

f̃ : G1-Zip
Z1 → G2-Zip

Z2

has discrete fibers on the underlying topological spaces.

Concretely, the discreteness of fibers means that, if two strata S and S′ of G1-Zip
Z1 map into the same stratum

of G2-Zip
Z2 , then S and S′ are incomparable in the zip stratification of G1-Zip

Z1 (neither is contained in the
closure of the other).

An immediate application of Th. 2 is that the same type of functoriality is satisfied by the Ekedahl-Oort strati-
fication of Hodge-type Shimura varieties.

(Uniform) principal purity of strata. Recall that a stratification on a scheme (or stack) X is principally pure
if each stratum S ⊂ X is the non-vanishing locus of a section of a line bundle on the Zariski closure S. We call

such a section a characteristic section for S. In case S is a stratum of G-ZipFlag(Z,P0), due to the connection with
the classical Hasse invariant of an abelian scheme, we also call such a section a group-theoretical Hasse invariant.

The following question is central to this work:

Question. For which zip data Z is the zip stratification of G-ZipZ principally pure? More generally, for which

(Z, P0) is the fine stratification of G-ZipFlag(Z,P0) principally pure?

An example where the zip stratification is not principally pure is given in §4.3. However, the following shows that
such examples are extremely rare. In fact, the result below shows that a stronger property than principal purity
usually holds. We say that a stratification of a scheme (or stack) is uniformly principally pure if there exists a line
bundle that admits characteristic sections for all strata.

Let (Z, P0) be a pair as in Th. 1, with associated zip datum Z0. For a character λ ∈ X∗(P0), we define properties
"orbitally q-close" (Def. 4.1.2) and "Z0-ample" (Def. 4.1.3). Then one has:

Theorem 3 (Th. 4.2.4). Let q = pn. If there exists a Z0-ample, orbitally q-close character of P0, then the fine

stratification of G-ZipFlag(Z,P0) is uniformly principally pure.

Th. 2 and Th. 3 are closely related. To prove the former, we use the latter as a key ingredient. Conversely,
Th. 2 has consequences for the existence of characteristic sections for maximal zip data (see below and §1.4), and
in particular for Hodge-type zip data (Rmk. 1.4.4).

We say that a cocharacter datum (G,µ) is maximal if there exists a representation r : G→ GL(V ) with central
kernel such that µ ◦ r has exactly two weights. This implies that the parabolic subgroup of GL(V ) attached to r ◦µ
is maximal. A zip datum Z is called maximal if Z = Zµ for some maximal (G,µ). For example, a Shimura datum
with good reduction at p gives rise to a maximal cocharacter datum. We prove the following:
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Corollary 1 (Cor. 5.2.2). If (G,µ) is maximal, then the stratification of G-Zipµ is uniformly principally pure.

This gives another proof of the existence of Hasse invariants for good reduction Shimura varieties of Hodge-type,
first proved in [GKb]. In loc. cit. Cor. 3.1.3, we proved the special case of Cor. 1, when (G,µ) arises by reduction
modulo p from a Shimura datum of Hodge-type. The proof in loc. cit. used the methods of [Del79] to show that
the Hodge line bundle was orbitally p-close. By contrast with [GKb], no characteristic zero methods are used here
and no case-by-case examination is needed.

Flag spaces and affineness of strata. In [GKb], we generalized the construction of the flag space of [EvdG09]
to arbitrary Hodge-type Shimura varieties. Here we generalize this construction further to arbitrary parabolics.

Let (G, X) be a Shimura datum of Hodge-type. Let SK be the Kisin-Vasiu integral model of the associated
Shimura variety ShK(G, X) at a level K which is hyperspecial at p. Denote the special fiber of SK by SK . Recall

that Zhang [Zha] gives a smooth morphism ζ : SK → G-ZipZ , where G is the special fiber of an extension of G to
a smooth, reductive group scheme over Z(p).

Associated to a sub-parabolic P0 ⊂ P , we define a partial flag space F lK . It is a fibration over SK with fiber
P/P0. The special fiber FlK of F lK fits in a cartesian diagram:

FlK
ζP0 //

π

��

G-ZipFlag(Z,P0)

πP0

��

SK
ζ

// G-ZipZ

Fine flag strata of FlK are defined as the preimages by ζP0
of those in G-ZipFlag(Z,P0).

Theorem 4 (Th. 6.3.2). There exists an integer N = N(G, X,K) such that, for all p ≥ N , one has:

(1) ShK(G, X) has good reduction at all places p|p.
(2) The fine stratification of FlK is uniformly principally pure.
(3) If the closure S of a fine flag stratum S ⊂ FlK is proper, then S is affine.

The special case where the Shimura variety is of Siegel-type and P0 = B was treated in [EvdG09, Prop.10.5 ii)].
Note that the hypothesis of (2) is satisfied if SK is proper.

Outline. §1 reviews the theory of G-zips, cocharacter data and zip data, and explains the relation between
them. Maximal cocharacter data are also defined. Finally, we recall basic facts on the stack G-ZipZ , and give
a parametrization of the strata.

In §2, we introduce the stack of G-zip flags, represent it as a quotient stack and define coarse flag strata. §3 is
devoted to the definition of fine flag strata. The important notions of minimal and cominimal strata are defined. §4
studies sections of line bundles on fine flag strata and zip strata. In particular, Th. 4.2.4 is proved and a counter-
example to principal purity is given. Some aspects of functoriality are investigated in §5. The main results are
Th. 5.1.1 on discreteness of fibers and Cor. 5.2.2 for maximal zip data.

We look at some applications to Shimura varieties in §6, where generalized flag spaces and their stratifications
are defined. Finally, Th. 6.3.2 is proved.
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1. Review of G-Zips

We fix a prime number p and denote by k an algebraic closure of Fp.

1.1. The category of zip data. Let n ≥ 1 be an integer. In this paper, a zip datum of exponent n is a tuple
Z = (G,P, L,Q,M,ϕn), where G is a reductive group over Fp, ϕ : G → G the relative Frobenius morphism,
P,Q ⊂ Gk parabolics (not necessarily defined over Fp) with Levi subgroups L ⊂ P and M ⊂ Q, and n ≥ 1 an
integer. We impose the condition M = ϕn(L). Hence the pn-Frobenius map restricts to ϕn : L→M .

Zip data of exponent n form a category Dn, where morphisms are defined as follows. Let Zi = (G,Pi, Li, Qi,Mi, ϕ
n)

for i = 1, 2 two zip data of exponent n, and denote by Ui ⊂ Pi and Vi ⊂ Qi the unipotent radicals. A morphism of
zip data Z1 → Z2 is a group homomorphism f : G1 → G2 (defined over Fp) satisfying the conditions

(1.1.1) f(�1) ⊂ �2 for � = P,L,Q,M,U, V.
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For a zip datum Z = (G,P, L,Q,M,ϕn) and g ∈ G(k), we define a conjugate zip datum

gZ := (G, gP, gL, ϕ
n(g)Q, ϕ

n(g)M,ϕn).

1.2. Cocharacter data. Let K be a field with a fixed algebraic closure K. We define the category of cocharacter
data over a field K as the category of pairs (G,µ) where G is a reductive group over K and µ : Gm,K → GK is a
cocharacter.

The category of cocharacter data is denoted by Dco. Morphisms of cocharacter data (G1, µ1) → (G2, µ2) are
group homomorphisms f : G1 → G2 (defined over K) satisfying µ2 = f ◦ µ1.

Let (G,µ) be a cocharacter datum. The cocharacter µ gives rise to a pair of opposite parabolics (P−, P+) and a
Levi subgroup L := P− ∩ P+. The Lie algebra of the parabolic P− (resp. P+) is the sum of the non-positive (resp.
non-negative) weight spaces of Ad ◦ µ. More precisely, P+(K) consists of elements g ∈ G(K) such that the limit

(1.2.1) lim
t→0

µ(t)gµ(t)−1

exists, i.e such that the map Gm,K → GK , t 7→ µ(t)gµ(t)−1 extends to a morphism of varieties A1
K

→ GK . The

unipotent radical of P+ is the set of such elements g for which this limit is 1 ∈ G(K).
When K = Fp, we define P := P−, Q := ϕn (P+) and M := ϕn(L). The tuple Zµ := (G,P, L,Q,M,ϕn) is then

a zip datum of exponent n. We call it the zip datum of exponent n attached to the cocharacter datum (G,µ).

Proposition 1.2.1. The construction above gives rise to a faithful functor

(1.2.2) Zn : D
co −→ Dn, (G,µ) 7→ Zµ

Proof. This follows immediately from characterization (1.2.1) above. �

1.3. Frames of zip data. Let Z := (G,P, L,Q,M,ϕn) be a zip datum of exponent n ≥ 1. Let (B, T ) be a Borel
pair in G defined over Fp, which exists by Steinberg’s Theorem.

Write W :=W (G, T ) for the Weyl group of Gk. Let Φ ⊂ X∗(T ) (resp. ΦL ⊂ X∗(T )) be the set of T -roots of G
(resp. L). We define the set of positive roots Φ+ ⊂ Φ by the condition that α ∈ Φ+ when Uα ⊂ B. Write ∆ ⊂ Φ+

for the set of positive simple roots. For α ∈ Φ, let sα ∈W be the corresponding reflection. Then (W, {sα, α ∈ ∆})
is a Coxeter group and we denote by ℓ :W → N the length function.

Let I ⊂ ∆ (resp. J ⊂ ∆) be the type of P (resp. Q). For any subset K ⊂ ∆, let WK ⊂ W be the subgroup
generated by {sα, α ∈ K}. Let w0 (resp. w0,K) be the longest element in W (resp. WK). Denote by KW (resp.
WK) the subset of elements w ∈W which are minimal in the coset WKw (resp. wWK). The set KW (resp. WK)
is a set of representatives for the quotient WK\W (resp. W/WK).

Definition 1.3.1. Let (B, T ) be a Borel pair and z ∈ W . We call (B, T, z) a W -frame for Z if the following
conditions are satisfied:

(i) B, T are defined over Fp.
(ii) B ⊂ P .
(iii) zB ⊂ Q.
(iv) ϕ(B ∩ L) = zB ∩M .

Remark 1.3.2.

(1) If (B, T ) is defined over Fp, there exists z ∈W such that (B, T, z) is a W -frame (proof of [PWZ11, Prop. 3.7]).
(2) For any zip datum Z, there exists g ∈ G(k) such that gZ admits a W -frame.
(3) Similarly, for any cocharacter µ of G, there exists a G(k)-conjugate µ′ of µ such that Zµ′ admits a W -frame.
(4) Let (B, T, z) be a W -frame. For w ∈ W , choose a representative ẇ ∈ NG(T ), such that (w1w2)

· = ẇ1ẇ2

whenever ℓ(w1w2) = ℓ(w1) + ℓ(w2) (this is possible by choosing a Chevalley system, [ABD+66, XXIII, §6]).
Then (zB, T, ż−1) is a frame as defined in [PWZ11, Def. 3.6].

(5) If (B, T, z) is a W -frame, then condition (iv) of Def. 1.3.1 implies z ∈W J .

Definition 1.3.3. Let (B, T ) be a Borel pair and z ∈ W . We call (B, T, z) a dual W -frame for Z if the following
conditions are satisfied:

(i) B, T are defined over Fp.
(ii) B ⊂ Q.
(iii) zB ⊂ P .
(iv) ϕ(zB ∩ L) = B ∩M .

The convention B ⊂ P was used in [GKb], contrary to [PWZ11] and [PWZ15], who use the convention B ⊂ Q.
The advantage of our definition of W -frame is that the parabolic P exists naturally over the integral model of G,
in the context of Shimura varieties. However, the result on Hasse invariants (Th. 4.1.7) can be stated more easily
for a dual W -frame.
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Let (G,µ) a cocharacter datum and denote by Zµ = (G,P, L,Q,M,ϕn) its associated zip datum of exponent n.
Fix a Borel pair (B, T ) defined over Fp such that B ⊂ P . We leave the following easy lemma to the reader:

Lemma 1.3.4. The triple (B, T,w0w0,J) is a W -frame for the zip datum Zµ.

1.4. Maximal cocharacter data. Let (G,µ) be a cocharacter datum over Fp. We say that (G,µ) is maximal if
there exists a finite-dimensional Fp-vector space V and an Fp-representation with central (scheme-theoretic) kernel

(1.4.1) r : G→ GL(V )

such that rk ◦ µ : Gm,k → GL(V )k has exactly two weights. Equivalently, there is a morphism of cocharacter data
with central kernel (G,µ) → (GL(V ), µ′) such that µ′ defines a maximal parabolic subgroup in GL(V )k.

Proposition 1.4.1. Let (G,µ) be a cocharacter datum over Fp. The following assertions are equivalent:

(1) (G,µ) is maximal.
(2) There exists a finite-dimensional k-vector space W and a representation r′ : Gk → GL(W ) over k with

central kernel such that r′ ◦ µ has only two weights.

Proof. Clearly (1) implies (2). Conversely, let r′ : Gk → GL(W ) be a representation as in (2). Choosing a basis of
W , we obtain a representation r′ : Gk → GLm,k. There exists d ≥ 1 such that r′ is defined over Fq where q = pd,
hence r′ comes from a morphism r1 : GFq → GLm,Fq . Then the representation

(1.4.2) r :=
⊕

σ∈Gal(Fq/Fp)

σr1

is defined over Fp, so it comes from a morphism r : G→ GLm′,Fp and it is clear that r ◦µ has only two weights. �

Corollary 1.4.2. Let (G,µ) be a maximal cocharacter datum over Fp. Let H be a reductive group over Fp and
θ : Gk → Hk an isomorphism. Then (H, θ ◦ µ) is maximal.

Let (G,µ) be maximal and let r : G → GL(V ) over Fp such that µ′ := rk ◦ µ has exactly two weights. Let
P ⊂ Gk denote the parabolic attached to (G,µ) by §1.2. Similarly, write P ′

+, P
′
− ⊂ GL(V )k for the opposite

parabolic subgroups attached to µ′, as in §1.2. Then P ′
− (resp. P ′

+) is the stabilizer of a unique subspace V− ⊂ Vk
(resp. V+ ⊂ Vk), and Vk = V− ⊕ V+. Define a character χ′ = χ′(µ, r) ∈ X∗(P ′

−) by χ′(x) = det(x|V−).

Definition 1.4.3. Let (G,µ) be a maximal cocharacter datum over Fp and χ ∈ X∗(P ). We say that χ is maximal
if there exists r : (G,µ) → (GL(V ), µ′) as above such that χ = χ′|P .

Remark 1.4.4. A Hodge-type zip datum ([GKb, Def. 1.3.1]) is maximal.

1.5. Stack of G-zips. Let Z := (G,P,Q, L,M,ϕn) be a zip datum of exponent n. Recall the following definition:

Definition 1.5.1 ([PWZ15, Def. 3.1]). A G-zip of type Z over a k-scheme S is a tuple I = (I, IP , IQ, ι) where I

is a G-torsor over S, IP ⊂ I is a P -torsor over S, IQ ⊂ I is a Q-torsor over S, and ι : (IP )
(pn)/Ru(P )

(pn) →
IQ/Ru(Q) an isomorphism of M -torsors.

The category of G-zips of type Z over S is denoted by G-ZipZ(S). The G-ZipZ(S) give rise to a fibered category

G-ZipZ over the category of k-schemes, which is a smooth stack of dimension 0 ([PWZ15, Th. 1.5]).
We denote by x 7→ x the natural projections P → L and Q → M given by reduction modulo the unipotent

radical. The zip group is a subgroup of P ×Q defined by:

(1.5.1) EZ := {(x, y) ∈ P ×Q,ϕn(x) = y}.

The group G ×G acts naturally on G via (a, b) · g := agb−1, and we let P ×Q and E act on G by restricting this
action. We can decompose EZ as a semi-direct product:

(1.5.2) (U × V )⋊ L ≃ EZ , ((u, v), x) 7−→ (xu, ϕ(x)v).

Recall the following theorem:

Theorem 1.5.2 ([PWZ15], Prop. 3.11). The stack of G-zips of type Z is isomorphic to the quotient stack [EZ\G].

Lemma 1.5.3. The above construction gives rise to a functor

(1.5.3) ℜn : Dn −→ (k − Stacks), Z 7→ G-ZipZ .

Proof. Let (G1, P1, L1, Q1,M1, ϕ
n) → (G2, P2, L2, Q2,M2, ϕ

n) be a morphism of exponent n zip data. Define

(1.5.4) α : G1 × E1 → E2, (g1, p1, q1) 7→ (f(p1), f(q1)).

The fact that f is a morphism of zip data ensures that α is well-defined. Conditions (1.1.1) and (1.1.2) of §1.1 in
[GKb] are satisfied, hence (f, α) induces a morphism of stacks [E1\G1] → [E2\G2]. �
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By composition, we obtain a family of functors ℜn ◦ Zn from Dco to the 2-category of k-stacks. We call the
stack attached in this way to the cocharacter datum (G,µ) the stack of G-zips of type µ (and exponent n), and we
denote it by G-Zipµn. For n = 1, we denote it simply by G-Zipµ.

Proposition 1.5.4.

(1) Let µ be a cocharacter of Gk and µ′ = ad(g) ◦µ for some g ∈ G(k). Then the k-stacks G-Zipµn and G-Zipµ
′

n

are isomorphic.
(2) More generally, let Z = (G,P, L,Q,M,ϕn) be a zip datum, and g ∈ G(k). Then the k-stacks G-ZipZ and

G-Zip
gZ are isomorphic.

Proof. It is easy to check that the map G→ G given by x 7→ gxϕn(g)−1 induces an isomorphism of stacks. �

1.6. Stratification. We recall the results of [PWZ11], but reformulated using our convention (Def. 1.3.1). Choose
a system of representatives ẇ ∈ G for w ∈W as in Rmk. 1.3.2(4).

Let Z = (G,P, L,Q,M,ϕn) be a zip datum, and let (B, T, z) be a W -frame of Z. If h ∈ G(k) is an element of the
group, we denote by OZ(h) the E-orbit of h in G. Similarly, we write oZ(h) := [EZ\OZ(h)] for the corresponding
k-point in [EZ\G]. For w ∈W , define Gw := OZ(ẇż

−1).
By Ths. 7.5, 11.3 in loc. cit., the map w 7→ Gw restricts to two bijections

IW → {EZ -orbits in G}(1.6.1)

W J → {EZ -orbits in G}(1.6.2)

Furthermore, one has the following dimension formulas:

(1.6.3) dim(Gw) = ℓ(w) + dim(P ) for all w ∈ IW ∪W J .

2. The stack of zip flags

Let Z = (G,P, L,Q,M,ϕn) be a zip datum and set q := pn. We assume that Z admits a W-frame (B, T, z),
which we fix (this assumption is harmless by Rmk. 1.3.2 (2) and Prop. 1.5.4). As in subsection 1.3, we denote by
Φ,Φ+,∆ the roots, positive roots, simple roots with respect to (B, T ) respectively, and we denote by I, J ⊂ ∆ the
types of P,Q respectively.

2.1. Definition of the stack G-ZipFlag(Z,P0). We denote by P0 a parabolic subgroup such that B ⊂ P0 ⊂ P ,
and we let I0 ⊂ I denote the type of P0. We call (Z, P0) a flagged zip datum.

Definition 2.1.1. A G-zip flag of type (Z, P0) and exponent n over a k-scheme S is a pair Î = (I,J ) where
I = (I, IP , IQ, ι) is a G-zip of type Z and exponent n over S, and J ⊂ IP is a P0-torsor.

We denote by G-ZipFlag(Z,P0)(S) the category of G-zip flags over S of type (Z, P0). By the same arguments as

for G-zips, we obtain a stack G-ZipFlag(Z,P0) over k, which we call the stack of G-zip flags of type (Z, P0). There
is a natural morphism of stacks

(2.1.1) πP0
: G-ZipFlag(Z,P0) −→ G-ZipZ

which forgets the P0-torsor J on the level of categories G-ZipFlag(Z,P0)(S) → G-ZipZ(S). More generally, for each
pair of parabolics (P0, P1) such that B ⊂ P1 ⊂ P0 ⊂ P , we have a natural map of stacks

(2.1.2) πP1,P0
: G-ZipFlag(Z,P1) −→ G-ZipFlag(Z,P0) .

Note that when P0 = P , the stack G-ZipFlag(Z,P ) identifies with G-ZipZ through the isomorphism πP . Hence we

can identify the maps πP0
and πP0,P . We obtain a tower of stacks above G-ZipZ . Define a subgroup ÊP0

⊂ EZ by:

(2.1.3) ÊP0
:= {(x, y) ∈ EZ , x ∈ P0}.

To avoid confusion, we will also denote the group ÊP0
by ÊZ

P0
to emphasize that it depends on the zip datum Z.

Theorem 2.1.2.

(1) The stack G-ZipFlag(Z,P0) is a smooth stack of dimension dim(P/P0), isomorphic to
[

ÊP0
\G

]

.

(2) For all parabolics B ⊂ P1 ⊂ P0 ⊂ P , we have a commutative diagram

G-ZipFlag(Z,P1)
πP1,P0 //

≃

��

G-ZipFlag(Z,P0)

≃

��
[

ÊP1
\G

]

//

[

ÊP0
\G

]
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where the vertical maps are isomorphisms and the lower horizontal map is induced by the natural projection.
(3) The map πP1,P0

is proper and smooth, with fibers isomorphic to P0/P1.

Proof. The proof is entirely similar to the proof of [GKb, Th. 5.1.3]. The assertion on the dimension follows from

(3) and dim(G-ZipZ) = 0. �

In other words, (2) states that there is an isomorphism of towers G-ZipFlag(Z,P•) ≃
[

ÊP•
\G

]

. We set P0,L :=

P0 ∩L, and similarly BL := B ∩L. The inclusion G→ G×L, g 7→ (g, 1) induces an isomorphism of quotient stacks

(2.1.4)
[

ÊP0
\G

]

−→ [E\ (G× L/P0,L)] .

In this description, the same group E acts at all levels of the tower, and the natural projections are E-equivariant.

2.2. Coarse flag strata. We identify without explicit mention the stack of zip flags of type (Z, P0) and the quotient

stack
[

ÊP0
\G

]

(Th. 2.1.2). Define a parabolic subgroup Q0 by

(2.2.1) Q0 := (L ∩ P0)
(pn)Ru(Q)

Note that zB ⊂ Q0 ⊂ Q and ÊP0
⊂ P0 ×Q0. Denote by J0 ⊂ J the type of Q0. Hence we have a natural smooth

surjective morphism of stacks:

(2.2.2) ψP0
: G-ZipFlag(Z,P0) =

[

ÊP0
\G

]

→ [(P0 ×Q0)\G] .

We define the coarse flag strata of the stack G-ZipFlag(Z,P0) as the fibers of the morphism ψP0
(endowed with the

reduced structure). Hence the coarse flag strata are the quotient stacks [ÊP0
\C] for C a P0 ×Q0-orbit in G. Define

a closed coarse flag stratum as the preimage of the closure of a point in [(P0 ×Q0)\G] by ψP0
(endowed with the

reduced structure). Using the isomorphism (2.1.4), we obtain a map

(2.2.3) [E\ (G× L/P0,L)] → [(P0 ×Q0)\G] .

which is induced by the map: ψ̃P0
: G× L→ G, (g, x) 7→ x−1gϕn(x).

Recall that the underlying topological space of [(P0 ×Q0)\G] is isomorphic to I0W J0 endowed with the topology
attached to the Bruhat order. The parametrization is given by the map:

(2.2.4) I0W J0 → [(P0 ×Q0)\G] , w 7→ P0ẇż
−1Q0.

For w ∈ I0W J0 , we denote by CP0,w := P0ẇż
−1Q0 the corresponding P0 ×Q0-orbit, and define

ZP0,w :=
[

ÊP0
\CP0,w

]

the corresponding coarse flag stratum. Similarly, using the description given by isomorphism (2.1.4), we also define:

(2.2.5) HP0,w := {(g, x) ∈ G× L/P0,L, x
−1gϕn(x) ∈ CP0,w}.

Thus HP0,w is a locally closed E-stable subvariety of G× L/P0,L and ZP0,w = [E\HP0,w].

Proposition 2.2.1.

(1) The coarse flag strata are irreducible, smooth, and their closures are normal.
(2) The coarse closed flag strata coincide with the closures of coarse flag strata.
(3) Set Iw := J0 ∩ w

−1I0w. One has dim(HP0,w) = ℓ(w) + ℓ(w0,J0
)− ℓ(w0,Iw )− dim(P0).

Proof. The first two parts are a simple generalization of Th. 5.3.3 in [GKb]. The third one is a consequence of
Prop. 1.12 in [Wed14]. �

For parabolics B ⊂ P1 ⊂ P0 with corresponding subgroups zB ⊂ Q1 ⊂ Q0, we have a commutative diagram

G-ZipFlag(Z,P1)

πP1,P0

��

ψP1 // [(P1 ×Q1)\G]

��

G-ZipFlag(Z,P0)
ψP0 // [(P0 ×Q0)\G]

where the rightmost vertical map is the natural projection. Hence the maps (ψP0
)P0

define a morphism of towers

(2.2.6) ψ : G-ZipFlag(Z,P•) → [(P• ×Q•)\G] .

3. Fine flag strata

In this section, we define a stratification of G-ZipFlag(Z,P0) which is finer that the stratification given by ψP0
.
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3.1. Definition of fine flag strata. For a parabolic B ⊂ P0 ⊂ P with type I0 ⊂ I, we always denote by Q0 the
parabolic attached to P0 by formula (2.2.1) and by J0 its type. Let L0 (resp. M0) be the Levi subgroup of P0 (resp.
Q0) containing T . It follows from the definition that ϕn(L0) =M0. Hence the tuple

(3.1.1) Z0 := (G,P0, L0, Q0,M0, ϕ
n)

is a zip datum of exponent n. We obtain a stack G-ZipZ0 and a zip group EZ0
such that ÊP0

⊂ EZ0
⊂ P0 × Q0.

Hence we obtain a smooth surjective morphism of stacks

(3.1.2) ΨP0
: G-ZipFlag(Z,P0) → G-ZipZ0 ≃ [EZ0

\G]

which induces a factorization of ψP0
:

(3.1.3) G-ZipFlag(Z,P0)
ΨP0−−−→ G-ZipZ0 ≃

[

ÊP0
\G

]

β
−→ [(P0 ×Q0)\G] ,

where β is the natural projection. Define fine flag strata as the fibers of the map ΨP0
(endowed with the reduced

structure). Fine flag strata coincide with coarse flag strata when P0 = B and with usual zip strata when P0 = P .

We can decompose the groups EZ0
and ÊP0

as semi-direct products:

(U0 × V0)⋊ L0 ≃ EZ0
, ((u, v), x) 7−→ (xu, ϕ(x)v)(3.1.4)

(U0 ⋉ V )⋊ L0 ≃ ÊP0
, ((u, v), x) 7−→ (xu, ϕ(xθPL (u))v)(3.1.5)

where θPL : P → L denotes the reduction modulo the unipotent radical U .

Lemma 3.1.1. One has an isomorphism EZ0
/ÊP0

≃M ∩ V0 ≃ V0/V ≃ Adim(P/P0).

Proof. Using (3.1.4) and (3.1.5), one sees that the map V0 → EZ0
/ÊP0

taking u ∈ V0 to the class of (1, u) ∈ EZ0

is surjective, and induces an isomorphism V0/V ≃ EZ0
/ÊP0

. It is also clear that the inclusion M ∩ V0 ⊂ V0
induces an isomorphism M ∩ V0 ≃ V0/V . Since M ∩ V0 is unipotent, it is isomorphic as a variety to Ar, with
r = dim(M ∩ V0) = dim(P/P0). �

For parabolic subgroups B ⊂ P1 ⊂ P0 ⊂ P , one has inclusions

ÊP1
⊂ ÊP0

∩ ∩

EZ1
EZ0

but in general there is no inclusion between EZ0
and EZ1

.

Proposition 3.1.2. Let B ⊂ P1 ⊂ P0 ⊂ P be parabolic subgroups. Then the map πP1,P0
sends a fine flag stratum

for P1 to a union of fine flag strata for P0.

Proof. Denote by Z1 the zip datum attached to P1 as in (3.1.1). If C is an EZ1
-orbit in G, we must show that the

set X := ÊP0
· C is EZ0

-stable. Since X is clearly stable by ϕn-conjugation by L0, it suffices to show that X is

stable by elements (u, v) ∈ RuP0 × RuQ0. Let x ∈ X be an element. Since RuP × RuQ ⊂ ÊP0
, we may assume

that there exists a ∈ P0,L such that y := axϕn(a)−1 is in C. Write a = a′r for a′ ∈ L0 and r ∈ RuP0. Then

uxv = ua−1yϕn(a)v = a′−1u′yv′ϕn(a′)

for some elements (u′, v′) ∈ RuP0 × RuQ0. Since RuP0 × RuQ0 ⊂ RuP1 × RuQ1, we deduce that u′yv′ ∈ C, and
hence uxv ∈ X as claimed. �

For a parabolic B ⊂ P0 ⊂ P with type I0 ⊂ I and w ∈W , define

(3.1.6) ZP0,w := Ψ−1
P0

(

oZ0
(ẇż−1)

)

endowed with the reduced structure as locally closed substack. Similarly to the parametrizations (1.6.1) and (1.6.2)
for E-orbits in G, the map w 7→ ZP0,w restricts to two bijections

I0W −→{fine flag strata of G-ZipFlag(Z,P0)}(3.1.7)

W J0 −→{fine flag strata of G-ZipFlag(Z,P0)}.(3.1.8)

For w ∈ I0W ∪W J0 , define a locally closed subvariety of G× (L/P0,L) by

(3.1.9) HP0,w := {(g, x) ∈ G× L/P0,L, x
−1gϕn(x) ∈ OZ0

(ẇż−1)}.

It is E-stable and one has ZP0,w = [E\HP0,w].

Proposition 3.1.3. For w ∈ I0W ∪ W J0 , the variety HP0,w (resp. the stack ZP0,w) is smooth of dimension
ℓ(w) + dim(P ) (resp. ℓ(w) + dim(P )− dim(G)).
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Proof. This follows immediately from Prop. 3.1.1 and the dimension formula (1.6.3). �

If different zip data come into play, we write a superscript indicating the zip datum one considers. For example,
consider parabolics B ⊂ P1 ⊂ P0 ⊂ P . We have defined a zip datum Z0 = (G,P0, L0, Q0,M0, ϕ

n). Hence it makes

sense to speak of G-zip flags of type (Z0, P1). Therefore we define πZ0

P1
and ΨZ0

P1
as the maps attached to P1 with

respect to the zip datum Z0 by (2.1.2) and (3.1.2) respectively.

Proposition 3.1.4. Let B ⊂ P1 ⊂ P0 ⊂ P be parabolic subgroups. There is a natural map

Ψ
Z/P0

P1
: G-ZipFlag(Z,P1) → G-ZipFlag(Z0,P1)

such that the following diagram commutes:

G-ZipZ1

G-ZipFlag(Z,P1)
Ψ

Z/P0

P1 //

ΨZ

P1

99sssssssss

πZ

P1,P0

��

G-ZipFlag(Z0,P1)

Ψ
Z0

P1

ee❑❑❑❑❑❑❑❑❑

π
Z0

P1

��

G-ZipFlag(Z,P0)
ΨZ

P0 // G-ZipZ0

Moreover, the commutative square above is cartesian.

Proof. This follows simply from the bicartesian square

ÊZ
P1

ÊZ0

P1

ÊZ
P0

EZ0

We mean by this that the subgroups ÊZ0

P1
and ÊZ

P0
generate EZ0

and their intersection is exactly ÊZ
P1

. �

Remark 3.1.5. The morphism Ψ
Z/P0

P1
induces thus a bijection between fine flag strata of G-ZipFlag(Z,P1) and

G-ZipFlag(Z0,P1). Hence, any statement stable by base change regarding intermediate parabolics P1 ⊂ P0 can be
reduced to a result involving just the parabolic P1, by changing the zip datum to Z0.

Prop. 3.1.4 can be generalized as follows. The proof is similar, so we skip it. Consider four parabolics B ⊂ P� ⊂
P� ⊂ P� ⊂ P♦ ⊂ P . There is a commutative diagram with a cartesian square in the middle:

G-ZipZ�

G-ZipFlag(Z♦,P�)

Ψ
Z♦
P�

99rrrrrrrrrr
Ψ

Z♦/P�
P� //

π
Z♦
P�,P�

��

G-ZipFlag(Z�,P�)

π
Z�
P�,P�

��

Ψ
Z�
P�

ee▲▲▲▲▲▲▲▲▲▲

G-ZipFlag(Z♦,P�)
Ψ

Z♦/P�
P� //

Ψ
Z♦
P�

%%▲
▲▲

▲▲
▲▲

▲▲
▲

G-ZipFlag(Z�,P�)

Ψ
Z�
P�

yyrr
rr
rr
rr
rr

G-ZipZ�

3.2. Minimal, cominimal fine flag strata. In general, it is difficult to determine the image of a fine flag stratum
by πP1,P0

. In this section we give a partial result.

Definition 3.2.1. Let B ⊂ P1 ⊂ P0 ⊂ P be parabolics of type I1 ⊂ I0 ⊂ I. A P0-minimal (resp. P0-cominimal)

fine flag stratum of G-ZipFlag(Z,P1) is a stratum of the form ZP1,w for w ∈ I0W (resp. w ∈ W J0).
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This generalizes the concept of minimal strata introduced by Ekedahl and Van der Geer in [EvdG09] and also
studied by the authors in [GKb].

Proposition 3.2.2. Let B ⊂ P1 ⊂ P0 ⊂ P be parabolics of type I1 ⊂ I0 ⊂ I. For all w ∈ I0W ∪W J0 , one has:

(3.2.1) πP1,P0
(ZP1,w) = ZP0,w.

Moreover, the map πP1,P0
: ZP1,w → ZP0,w is finite.

Proof. In the special case P1 = B and P0 = P , the result follows from [GKb, Prop. 5.4.3]. Using Prop. 3.1.4, we
obtain the result for arbitrary P0 and P1 = B. Now, let P1 ⊂ P0 be arbitrary. By the special case, we have in
particular πB,P1

(ZB,w) = ZP1,w. Hence:

(3.2.2) πP1,P0
(ZP1,w) = πP1,P0

(πB,P1
(ZB,w)) = πB,P0

(ZB,w) = ZP0,w

where the last equality follows again from the special case.
For the finiteness of the map πP1,P0

: ZP1,w → ZP0,w, we reduce again to the case P1 = B, where it is known
by [GKb, Prop. 5.4.3]. We use the varieties HP0,w defined in (3.1.9) to use classical algebraic geometry. Notice
that πP1,P0

induces a surjective proper map π̃P1,P0
: HP1,w → HP0,w, and it suffices to show that this map is

quasi-finite. The map π̃B,P0
factors as a composition HB,w

π̃B,P1−−−−→ HP1,w
π̃P1,P0−−−−→ HP0,w. Since π̃B,P1

is surjective
and the composition is quasi-finite, the second map must be quasi-finite. This concludes the proof. �

3.3. Closure relations for G-ZipZ . For w ∈ IW , write Gw := O(ẇż−1) as in §1.6. Denote by ≤ the Bruhat
order on W . For w,w′ ∈ IW , define w � w′ if and only if there exists y ∈ WI such that yw′ϕn(y)−1 ≤ w. Recall
the following:

Theorem 3.3.1 ([PWZ11, Th. 6.2]). The Zariski closure of Gw is the union of all Gw
′

with w′ � w.

We show below how the flag space can be used to prove a similar result. Consider the flag space G-ZipFlag(Z,B),
which we denote simply by G-ZipFlagZ . Since we only consider the parabolic P , we shorten the term "P -minimal"
to "minimal" and similarly for "cominimal". For elements x, y ∈ G(k), we define two relations:

x ≤ y ⇐⇒ x ∈ ByzB(3.3.1)

x � y ⇐⇒ x ∈ OZ(y)(3.3.2)

We say that (g, l) ∈ G×L is minimal (resp. cominimal) if its image by the isomorphism (2.1.4) in G-ZipFlagZ lies
in a minimal (resp. cominimal) stratum. We say that g ∈ G is minimal (resp. cominimal) if (g, 1) is minimal (resp.
cominimal).

Proposition 3.3.2. Let x, y ∈ G, with y minimal or cominimal. Then:

(3.3.3) x � y ⇐⇒ ∃h ∈ L, hxϕn(h)−1 ≤ y.

Proof. We will assume that y is minimal, since the proof is entirely similar in the cominimal case. Let H ⊂
G × (L/BL) denote the minimal stratum containing the image of (y, 1). By Prop. 3.2.2, the image π(H) by the
projection π : G × (L/BL) → G is O(y). Now, the right-hand side of (3.3.3) amounts to the existence of h ∈ L
such that (x, h̄) ∈ H , where h̄ is the image of h by the map L → L/BL. But this means exactly that x belongs to

π(H) = O(y), so it is equivalent to x � y. �

Remark 3.3.3. For w ∈ IW , the element ẇż−1 is minimal. Applying Prop. 3.3.2 to this element gives a similar
result as [PWZ11, Th. 6.2] recalled above.

4. Sections over fine flag strata

4.1. Existence of sections on zip strata. We recall some results of [GKb, §3] on the existence of group-theoretical
Hasse invariants. The formulas generalize readily to an arbitrary exponent n ≥ 1.

Definition 4.1.1. Let S be locally closed in a scheme (or algebraic stack) X, with Zariski closure S (endowed with
the reduced structure), and let L be a line bundle on X. We say that a section f ∈ H0(S,L ) is a characteristic
section for S if the non-vanishing locus of f in S is exactly S.

Fix a zip datum Z of exponent n. Assume that there exists a torus T ⊂ L defined over Fp (we may achieve
this by replacing Z with gZ for an appropriate g ∈ G, see Prop. 1.5.4). Identify X∗(E) = X∗(L) via the maps
E → P → L (where the first map is the first projection, and the second map is the natural projection). For

λ ∈ X∗(L), denote by V (λ) the line bundle on [E\G] ≃ G-ZipZ naturally attached to λ by [GKb, §N.3.1].

Definition 4.1.2.
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(1) Let χ ∈ X∗(T ). We say that χ is orbitally q-close if
∣

∣

∣

〈χ,σα∨〉
〈χ,α∨〉

∣

∣

∣ ≤ q−1 for every α ∈ Φ satisfying 〈χ, α∨〉 6= 0

and for all σ ∈ W ⋊Gal(k/Fp).
(2) We say that χ is q-small if |〈χ, α∨〉| ≤ q − 1 for all α ∈ Φ.

Definition 4.1.3. A character λ ∈ X∗(L) is Z-ample if the associated line bundle on G/ϕ−n(Q) is anti-ample

(note that L ⊂ ϕ−n(Q) is a Levi subgroup).

Remark 4.1.4. Let (B, T, z) be a W -frame and (B′, T ′, z′) a dual W -frame. The following are equivalent:

(1) χ is Z-ample.
(2) One has 〈χ, ϕ−n(z)α∨〉 < 0 for all α ∈ ∆ \ ϕ−n(J) with respect to (B, T ).
(3) One has 〈χ, α∨〉 < 0 for all α ∈ ∆ \ ϕ−n(J) with respect to (B′, T ′).

Remark 4.1.5. Let µ ∈ X∗(G) and Z = Zµ. Let (B, T, z) be a W -frame, B ⊂ P0 ⊂ P a parabolic and Z0 defined
by (3.1.1). The following are equivalent:

(1) χ is Z0-ample.
(2) One has 〈χ, α∨〉 > 0 for all α ∈ I \ I0 and 〈χ, α∨〉 < 0 for all α ∈ Φ+ \ Φ+

L .

Remark 4.1.6. Condition 4.1.5(2) is precisely the one that arises in the work of Griffiths-Schmid concerning the
positivity of automorphic vector bundles on homogeneous complex manifolds, see the proof following (4.21)D on p.
276 of [GS69]. We will elaborate on the connection between [GS69] and sections on Zip strata in our forthcoming
work with Brunebarbe and Stroh [BGKS].

Fix N ≥ 1 such that dimkH
0([E\S] ,V (Nχ)) = 1 for all E-orbits S ⊂ G and for all χ ∈ X∗(L) (for the existence

of such N , see loc. cit. §3). Denote by hS,χ a nonzero element of H0([E\S] ,V (Nχ)). Let S be the Zariski closure
of S, endowed with the reduced structure.

Theorem 4.1.7 ([GKb, Th. 3.2.3]). If χ ∈ X∗(L) is Z-ample and orbitally q-close, then there exists d ≥ 1 such
that for all E-orbit S ⊂ G, the section (hS,χ)

d extends to
[

E\S
]

with non-vanishing locus [E\S].

One can state a more precise result. Let σ : k → k denote the inverse of the map x 7→ xp. For w ∈ W , define
w(0) = e and by induction w(r) := σ(w(r−1)w) for all r ≥ 1.

(i) Fix a W -frame (B, T, z) (Def. 1.3.1).
(ii) Fix m ≥ 1 such that T splits over Fqm , where q := pn.

(iii) For w ∈ IW ∪W J , choose rw ≥ 1 such that (wϕn(z))(rw) = e.
(iv) For w ∈ W , define Ew as the set of roots α ∈ Φ+ such that wsα < w and ℓ(wsα) = ℓ(w)− 1.
(v) For w ∈ IW ∪W J , denote by hw,χ the section hS,χ for S = Gw.

Proposition 4.1.8 ([GKb, Prop. 3.2.1]). Let w ∈ IW∪W J and χ ∈ X∗(L). The following assertions are equivalent:

(1) There exists d ≥ 1 such that (hw,χ)
d extends to

[

E\Gw
]

with non-vanishing locus [E\Gw] (i.e to a charac-

teristic section of
[

E\Gw
]

).
(2) For all α ∈ Ew, one has:

(4.1.1) nα :=

rwm−1
∑

i=0

〈(zw−1)(i)(σ
i

χ), wα∨〉pi > 0.

Corollary 4.1.9. Let Z = (G,P, L,Q,M,ϕn) be an exponent n zip datum such that Gk ≃ GLn,k and P is a
maximal parabolic. For a Z-ample character λ ∈ X∗(L), there exists N ≥ 1 such that V (Nλ) admits characteristic
sections on all zip strata.

Proof. It is clear that λ is orbitally q-close, so Th. 4.1.7 applies. �

4.2. Sections over fine flag strata. We fix a parabolic subgroup B ⊂ P0 ⊂ P with type I0 ⊂ I. We make the
identification X∗(ÊP0

) = X∗(L0) as above. For a character λ ∈ X∗(L0), we denote by LP0
(λ) (or LZ,P0

(λ) to

avoid confusion) the attached line bundle on G-ZipFlag(Z,P0) ≃
[

ÊP0
\G

]

.

Remark 4.2.1. Since Pic(G) is finite, there exists an integer m such that for all line bundle L on G-ZipFlag(Z,P0),
Lm = LP0

(λ) for some λ ∈ X∗(L).

Definition 4.2.2. A stratification of a topological space X is a decomposition X =
⊔

iXi into locally closed subsets
such that the closure of each Xi is a union of Xj.

Definition 4.2.3 (Types of purity). A stratification of a scheme or stack X is

(1) principally pure if for every stratum S, there exists a line bundle L on X and a characteristic section

f ∈ H0(S,L ) for S;
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(2) uniformly principally pure if L may be chosen independently of S.

This definition applies to the stack G-ZipFlag(G,P0) endowed with the fine stratification. By Rmk. 4.2.1, we may
equivalently ask for the existence of a character λ ∈ X∗(L0) such that LP0

(λ) satisfies these conditions. Note that

for P0 = P , this definition also applies to the stack G-ZipZ , endowed with the zip stratification.
As we mentioned in the introduction, a key problem is to understand when the zip stratification of G-ZipZ is

principally pure. If principal purity of the zip stratification would always hold (but it is not the case), that of the fine

stratification of G-ZipFlag(Z,P0) would follow by pulling back along the map ΨP0
: G-ZipFlag(Z,P0) → G-ZipZ0 .

We will give in §4.3 an example where the zip stratification of G-ZipZ is not principally pure. We will prove below
that when Z is maximal (in particular, if Z is of Hodge-type), then the zip stratification of G-ZipZ is uniformly
principally pure. However, note that the zip datum Z0 is usually not maximal even if Z is.

As a consequence of Th. 4.1.7, we obtain Th. 3 of the introduction:

Theorem 4.2.4. Let (Z, P0) be a flagged zip datum of exponent n and write q = pn. If there exists a Z0-ample,

orbitally q-close character of L0, then the fine stratification of G-ZipFlag(Z,P0) is uniformly principally pure.

Proof. Apply Th. 4.1.7 to the stack G-ZipZ0 and pull back along ΨP0
. �

Corollary 4.2.5. Let G be a reductive group over Fp. There exists N ≥ 1 (depending only on G) such that for all

n ≥ N and all flagged zip datum (Z, P0) for G of exponent n, the fine stratfication of G-ZipFlag(Z,P0) is uniformly
principally pure.

Another situation where Th. 4.2.4 applies is when we start with a cocharacter datum of characteristic 0. For
large p, the reduction modulo p will satisfy the conditions of the theorem. We will exploit this in §6.

4.3. Counter-examples. In this section, we give a counter-example to principal purity. It is rather easy to find a
counter-example to uniform principal purity. For example, consider a cocharacter zip datum (GL4,Fp , µ) where

(4.3.1) µ : Gm,k → GL4,k, z 7→ diag(1, z, z2, z3).

Let B ⊂ GL4,k denote the Borel subgroup of upper-triangular matrices and T ⊂ B the diagonal torus. The zip
datum of exponent 1 attached to (GL4,Fp , µ) is Z := (GL4,Fp , B, T,B−, T, ϕ), where B− is the opposite Borel. In
this case, the zip strata of GL4,k coincide with the B×B−-orbits in GL4,k. One can show that for p = 2, there is no
character λ ∈ X∗(T ) such that V (χ) admits characteristic sections on all zip strata, so the zip stratification is not
uniformly principally pure. However, it is clearly principally pure since it coincides with the Bruhat stratification.

To find a counter-example to principal purity, consider the following case. Consider the alternating matrix

(4.3.2) J :=

















1
1

1
−1

−1
−1

















.

Denote by G := Sp(J) the symplectic group over Fp attached to J and let µ be the cocharacter of G defined by

(4.3.3) µ : Gm,k → Gk, z 7→ diag(z, z, 1, 1, z−1, z−1).

Proposition 4.3.1. For p = 2, the zip stratification of G-Zipµ is not principally pure.

First we let p ≥ 2 be an arbitrary prime number. Let T be the Fp-split maximal torus given by the diagonal
matrices in G:

(4.3.4) T (R) := {diag(x1, x2, x3, x
−1
3 , x−1

2 , x−1
1 ), x1, x2, x3 ∈ R×}

for any Fp-algebra R. A Borel subgroup B over Fp containing T is given by the lower-triangular matrices in G. For

a triple (a, b, c) ∈ Z3, let λ(a,b,c) ∈ X∗(T ) sending diag(x1, x2, x3, x
−1
3 , x−1

2 , x−1
1 ) to xa1x

b
2x
c
3. Identify X∗(T ) with

Z3 via this isomorphism. Denoting by (e1, e2, e3) the standard basis of Z3, the T -roots of G, the positive roots, the
simple roots are respectively:

Φ := {ei ± ej , 1 ≤ i 6= j ≤ 3} ∪ {±2ei, 1 ≤ i ≤ 3}

Φ+ := {ei ± ej , 1 ≤ i < j ≤ 3} ∪ {2ei, 1 ≤ i ≤ 3}

∆ := {α1, α2, α3}

where α1, α2, α3 are defined by

(4.3.5) α1 := e1 − e2 ; α2 := e2 − e3 ; α3 := 2e3.
12



The Weyl group W := NG(T )/T is the group of permutations σ ∈ S6 satisfying σ(i)+σ(7− i) = 7 for all 1 ≤ i ≤ 6.
Following [EvdG09], we denote a permutation σ ∈ W by [σ(1)σ(2)σ(3)] (these three values determine σ ∈ W
uniquely). The identity element e ∈ W is [123] and the simple reflections are

(4.3.6) sα1
= [213] ; sα2

= [132] ; sα3
= [124].

The longest element in W is w0 = [654] and has length 9.
Define a maximal parabolic P containing B such that for any Fp-algebra R, the group P (R) is the set of elements

of G(R) of the form:

(4.3.7)





A 0 0
∗ B 0
∗ ∗ C



 , A,B,C ∈ GL2(R).

One sees immediately that such a matrix satisfies the conditions B ∈ SL2(R) and C = J0
tA−1J0 with J0 :=

(

0 1
1 0

)

.

In particular, the Levi subgroup L of P containing T is isomorphic to GL2,Fp × SL2,Fp and WL identifies with the
subgroup WL = 〈sα1

, sα3
〉. The longest element of WL is w0,L := [214] (length 2). We also define:

(4.3.8) z := w0w0,L = [563].

Let Q be the opposite parabolic subgroup of P with respect to L. We obtain a zip datum Z := (G,P, L,Q, L, ϕ).
Here is a representation of the zip strata. For w,w′ ∈ W , an arrow w → w′ indicates the closure relation

Gw ⊂ Gw′ . In this example, the order � coincides with the restriction of the Bruhat order ≤ to IW .

[123] [132]

[142]

[231]

[153]

[241]

[263]

[351]

[362]

[451]

[462] [563]

In the following, we take χ := λ(1,0,0), which is the fundamental weight of Q. Consider the element

(4.3.9) w := [351] ∈ IW.

One has ℓ(w) = 4. The set Ew of "lower neighbors" of w in W consists of 4 elements:

w1 := [153] = wsα1
with α1 = e1 − e3

w2 := [241] = wsα2
with α2 = e1 + e2

w3 := [315] = wsα3
with α3 = e2 − e3

w4 := [321] = wsα4
with α4 = 2e2

An easy computation shows that the multiplicities nα as in (4.1.1) are given by:

nα1
= p− 1

nα2
= 2p− 1

nα3
= p− 2

nα2
= p− 1

Hence for p = 2, one has nα3
= 0, so gw is non-vanishing along Xw3

. This shows that no power of hw,χ extends to

a characteristic function of Gw. Actually, one can show that no power of hw,χ extends at all to Gw.

5. Functoriality and discrete fiber theorem

5.1. Discrete fiber theorem. We consider a morphism f : Z1 → Z2 of zip data of exponent n, with Zi =
(Gi, Pi, Li, Qi,Mi, ϕ

n), and let Ii be the type of Pi (for i = 1, 2). We say that f has central kernel if the underlying
group homomorphism f : G1 → G2 has central (scheme-theoretic) kernel.

Theorem 5.1.1. Let f : Z1 → Z2 be a morphism with central kernel. Then the attached morphism of stacks

(5.1.1) f̃ : G1-Zip
Z1 → G2-Zip

Z2

has discrete fibers on the underlying topological spaces.

Proof. We first reduce the proof to the case when f is a closed embedding. Set K := Ker(f) and define �̃ = �/K for

� = G1, P1, L1, Q1,M1. We get a zip datum Z̃1 := (G̃1, P̃1, L̃1, Q̃1, M̃1, ϕ
n). The natural projection π : G1 → G̃1

induces a map of zip data Z1 → Z̃1 and the induced map

(5.1.2) π̃ : G1-Zip
Z1 → G̃1-Zip

Z̃1

13



is a bijection on the underlying topological spaces, by the proof of [KW, Prop. 3.20]. We may factor the map

f : G1 → G2 as the composition G1
π
−→ G̃1

ι
−→ G2 where ι is a closed embedding, so it suffices to prove the result

for the map ι. Hence we assume from now on that f is a closed embedding.

Lemma 5.1.2. Let χ2 ∈ X∗(L2) be a Z2-ample character. Then the restriction χ1 = χ2|L1
∈ X∗(L1) is Z1-ample.

Proof of Lemma 5.1.2. We first show that f−1(Q2) = Q1. By definition of a map of zip data, one has f(Q1) ⊂ Q2,
so Q1 ⊂ f−1(Q2). In particular, f−1(Q2) is a parabolic subgroup of G1. Then f−1(V2) is a unipotent normal
subgroup of f−1(Q2), hence its identity component is contained in the unipotent radical of f−1(Q2). Again by
definition we have V1 ⊂ f−1(V2), so we deduce that V1 is contained in the unipotent radical of f−1(Q2). This
implies Q1 = f−1(Q2). Since f is defined over Fp, we obtain an embedding G1/ϕ

−n(Q1) → G2/ϕ
−n(Q2). This

proves the result. �

We first prove Th. 5.1.1 for large n. More precisely, one has the following lemma:

Lemma 5.1.3. Assume that there exists a Z2-ample character χ2 ∈ X∗(L2) such that χ1 := χ2|L1
is pn-small.

Then f̃ has discrete fibers.

Proof of Lemma 5.1.3. By Lem. 5.1.2 above, χ1 is Z1-ample, so we may apply Th. 4.1.7 to χ1. If f̃ doesn’t have
discrete fibers, then we can find two zip strata C1 ⊂ G1 and C′

1 ⊂ C1 mapping to the same zip stratum C2 of G2.
By Th. 4.1.7, there exists N ≥ 1 such that V (Nχ1) admits a section H1 on C1 with non-vanishing locus C1. We
can also find r ≥ 1 and a non-vanishing section H2 of V (rχ2) on C2. The pull-back of HN

2 to C1 agrees (up to
a nonzero scalar) with Hr

1 , since they are both nonzero sections of V (Nrχ1), and the space H0(C1,V (Nrχ1) has
dimension one by [KW, Prop.1.18]. This contradicts the fact that H1 vanishes on C′

1. �

We now prove the general case. Fix an integer A such that all the groups Pi, Li, Qi,Mi for i = 1, 2 are defined
over FpA . For an integer N ≡ 1 (mod A), we consider new zip data

Z1,N = (G1, P1, L1, Q1,M1, ϕ
nN )

Z2,N = (G2, P2, L2, Q2,M2, ϕ
nN ).

By our assumption on N and A, the tuples Z1,N and Z2,N are zip data of exponent Nn. The map f induces a
morphism of zip data fN : Z1,N → Z2,N and a morphism of stacks

(5.1.3) f̃N : G1-Zip
Z1,N → G2-Zip

Z2,N .

By the parametrization (1.6.1), there exists a finite subset Σ1 ⊂ G1(k) (resp. Σ2 ⊂ G2(k)), independent of N ,
which is a system of representatives of the Z1,N -strata in G1 (resp. the Z2,N -strata in G2) for all N . Hence fN
induces a map of sets

(5.1.4) ΨN : Σ1 → Σ2

We believe that ΨN is independent of N , but we only need the following weaker result:

Lemma 5.1.4. Fix an integer C ≥ 1. Assume that x, y ∈ Σ1 satisfy Ψ1(x) = Ψ1(y). Then there exists arbitrary
large N ≡ 1 (mod C) such that ΨN(x) = ΨN(y).

Proof of Lemma 5.1.4. Since Ψ1(x) = Ψ1(y), the elements f(x) and f(y) are in the same Z2-zip stratum. Hence
we can find u ∈ U2, v ∈ V2 and a ∈ L2 such that

(5.1.5) f(y) = uaf(x)ϕn(a)−1v

Choose B ≥ 1 such that a ∈ G(FpB ). Then for N ≡ 1 (mod ABC), we can write f(y) = uaf(x)ϕnN (a)−1v, which
shows that ΨN(x) = ΨN(y). �

To finish the proof of Th. 5.1.1, denote by �N the relation (3.3.2) for the zip datum Z1,N . Assume that f̃ = f̃1
doesn’t have discrete fibers. Then there exists x, y ∈ Σ1 such that x �1 y and Ψ1(x) = Ψ1(y). By Prop. 3.3.2, there
exists h ∈ L1 such that hxϕn(x)−1 ≤ y. Choose C ≥ 1 such that h ∈ G(FpC ). Then

(5.1.6) hxϕnN (x)−1 = hxϕn(x)−1 ≤ y

for all N ≡ 1 (mod C), which shows that x �N y. By Lem. 5.1.4, there exists arbitrary large N ≡ 1 (mod C) such

that ΨN(x) = ΨN (y), hence the map f̃N does not have discrete fibers for each such N . But for large N , we can

find a Z2-ample character of L2 restricting to a pNn-small character of L1. By Lem. 5.1.3 the map f̃N has discrete
fibers, hence a contradiction. �

Corollary 5.1.5. Let f : Z1 → Z2 be a morphism with central kernel. If the zip stratification of Z2 is principally
pure (resp. uniformly principally pure), then so is the zip stratification of Z1.
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Example 5.1.6. We expand on the counter-example in §4.3. Take G = Sp(J) as in (4.3.2) and µ : Gm,k → Gk
as in (4.3.3). There is a natural embedding ι : G→ GL6,Fp , and the cocharacter datum (GL6,FP , ι ◦ µ) yields a zip

datum Z ′ for GL6,Fp . For p = 2, Cor. 5.1.5 implies that the zip stratification of GL6-Zip
Z′

is not principally pure.

5.2. Corollaries of the discrete-fiber theorem.

Corollary 5.2.1. Let Z = (G,P, L,Q,M,ϕn) be a zip datum and set q := pn. Assume G admits an embedding
G→ GLN,Fp defined over Fp. If q ≥ N , then the zip stratification of G is uniformly principally pure.

Proof. By Cor. 5.1.5, it suffices to consider the case G = GLN,Fp . We may assume that L is the Levi subgroup
corresponding to a decomposition N = N1 + ... + Nr, given by diagonal blocks of size N1,...,Nr. We identify a
character of L with a tuple (a1, ..., ar) ∈ Zr . Consider the character λ = (r, r − 1, ..., 1). This character is Z-ample
and orbitally q-close for q ≥ r, hence the result. �

The shortcoming of Th. 4.1.7 is that the set of Z-ample, orbitally q-close characters could be empty for small
values of p. However, we have the following result:

Corollary 5.2.2. Let (G,µ) be a maximal cocharacter datum over Fp, and let χ be a maximal character of L
(Def. 1.4.3). Then there exists N ≥ 1 such that the line bundle V (Nχ) admits characteristic sections on all zip
strata of G. In particular, the zip stratification of G-Zipµ is uniformly principally pure.

Proof. This follows immediately from Cor. 5.1.5 and Cor. 4.1.9. �

Corollary 5.2.3. Let (G,µ) be a cocharacter datum over Fp and assume µ is minuscule. For p > 2, the zip
stratification of G-Zipµ is uniformly principally pure.

Proof. Consider the adjoint representation Ad : G→ GL(g) where g is the Lie algebra of G. Since µ is minuscule,
the cocharacter Ad ◦ µ : Gm,k → GL(g)k has only weights −1, 0, 1. Hence we reduce to the case of GL(V ) (for
a finite-dimensional Fp-vector space V ) and a zip datum whose attached parabolic P is the stabilizer of a flag
0 ⊂ V1 ⊂ V2 ⊂ V . It is clear that P admits an Z-ample orbitally 3-close character, which proves the result. �

5.3. Functoriality of zip flags. Consider two zip data Z = (G,P, L,Q,M,ϕn) and Z ′ = (G′, P ′, L′, Q′,M ′, ϕn)
of exponent n. Choose parabolic subgroups P0 ⊂ P and P ′

0 ⊂ P ′, together with Levi subgroups L0 ⊂ P0 and
L′
0 ⊂ P ′

0 satisfying L0 ⊂ L and L′
0 ⊂ L′. Denote by U0 and U ′

0 the unipotent radicals of P0 and P ′
0 respectively.

Let f : Z → Z ′ be a morphism of zip data satisfying the additional conditions:

(i) f(L0) ⊂ L′
0

(ii) f(U0) ⊂ U ′
0.

For example, these conditions are satisfied if (P0, L0) and (P ′
0, L

′
0) are attached to cocharacters µ0 : Gm,k → Gk

and µ′
0 = f ◦ µ0 respectively (§1.2). The map f sends the subgroup EZ ⊂ Gk × Gk to EZ′ ⊂ G′

k × G′
k. Since

f(P0) ⊂ P ′
0, we also have f(ÊZ

P0
) ⊂ ÊZ′

P ′

0

. Furthermore, define zip data Z0 := (G,P0, L0, Q0,M0, ϕ
n) and Z ′

0 :=

(G′, P ′
0, L

′
0, Q

′
0,M

′
0, ϕ

n) as in (3.1.1). It follows from our assumptions that f induces a morphism of zip data
Z0 → Z ′

0 and a commutative diagram:

G-ZipZ0
f̃Z0

// G′-Zip
Z′

0

G-ZipFlag(Z,P0)

OO

ΨZ

P0

OO

f̃P0 //

πP0

��

G′-ZipFlag
(Z′,P ′

0
)

πP ′
0

��

ΨZ

P0

OO

G-ZipZ
f̃

// G′-Zip
Z′

Since the diagram commutes, the map f̃P0
induces a map between the fibers of πP0

and πP ′

0
. These fibers can be

identified with P/P0 and P ′/P ′
0 respectively, and the map f̃P0

then identifies with the natural map P/P0 → P ′/P ′
0

induced by f .

6. Flag spaces and stratifications

6.1. Shimura varieties of Hodge-type. Let (G, X) be a Shimura datum of Hodge type with reflex field E ⊂ C,
given by a reductive group G over Q and a G(R)-conjugacy class of morphisms S → GR. For h0 ∈ X , define
µ0 : Gm,C → GC as µ0(z) = h0,C(z, 1) using the identification SC ≃ Gm,C×Gm,C given by z 7→ (z, z) on R-points.

We choose an integer m ≥ 1 and a sufficiently small compact open subgroup K ⊂ G(Af ) such that the following
properties hold:
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(1) There is a reductive model G of G over Z
[

1
m

]

.

(2) The Shimura variety SK := ShK(G, X) admits a smooth integral model SK over R := OE

[

1
m

]

. This model
can be obtained by glueing the OE,p-models of [Vas99] and [Kis10] for primes p of good reduction.

(3) There is a cocharacter µ of GR such that µC lies in the conjugacy class of µ0.

For each prime p in R lying above a prime number p, we obtain a cocharacter datum (G,µ) where G := G⊗Fp.
Let f : A → SK be the universal abelian scheme obtained by pull-back from the Siegel case. For a prime p of R,

define SK := SK ⊗R/p the special fiber of SK and A := A ⊗R/p. The de Rham cohomology H1
dR(A/SK) together

with its Hodge filtration and conjugate filtration naturally defines a G-zip over SK ([Zha, Th. 2.4.1]). This induces
a smooth morphism of stacks ([Zha, Th. 3.1.2])

(6.1.1) ζ : SK −→ G-Zipµ .

The geometric fibers of ζ are the Ekedahl-Oort strata of SK . See the introduction of [GKb] for further references
and remarks about ζ. The Hodge line bundle of SK is defined as

(6.1.2) ω := f∗(det(ΩA /SK
)).

It is ample on SK . Denote by P ⊂ GQ the parabolic subgroup attached to (G, µE). For a character λ ∈ X∗(P),

there is an automorphic line bundle VK(λ) on SK attached to λ and its special fiber coincides with the line bundle
ζ∗(V(λ)). Furthermore, there exists a character ηω ∈ X∗(P) such that ω = V(ηω).

6.2. Flag spaces. Choose a parabolic subgroup P0 ⊂ P. We can find a finite extension E ⊂ E0 ⊂ C such that P

and P0 admit models P and P0 over R0 := OE0

[

1
m

]

and such that all automorphic line bundles are defined over
R0.

The scheme SK carries a universal P-torsor P arising from the Hodge filtration of the de Rham cohomology of
A , as defined in [Mad, Prop. 5.3.4] (see also §2.1.5 in [GKb]). Then the quotient of P by the group P0 defines a
smooth P/P0-bundle

(6.2.1) π : F lK −→ SK ⊗R0.

It generalizes the flag space considered by Ekedahl and Van der Geer in [EvdG09] and by the authors in [GKb]. We
call F lK the flag space attached to the parabolic P0. Define FlK := F lK ⊗ E0. For a given prime p0 ⊂ R0 lying
above p ⊂ R and p ∈ Z, write FlK for the reduction of F lK modulo p0. As explained in [GKb] (10.3.3), we have a
Cartesian diagram:

FlK
ζP0 //

π

��

G-ZipFlag(Z,P0)

πP0

��

SK
ζ

// G-ZipZ

A character λ ∈ X∗(P0) naturally gives rise to a line bundle LK(λ) on F lK (see [Jan03] §5.8). On the special
fiber, one has the following formula:

(6.2.2) LK(λ) = ζ∗P0
(LP0

(λ)).

6.3. Stratifications. We define a stratification on FlK by pulling back fine flag strata of G-ZipFlag(Z,P0) along
the smooth morphism ζP0

. Equivalently, we define strata as the fibers of the composition

(6.3.1) FlK
ζP0−−→ G-ZipFlag(Z,P0)

ΨP0−−−→ G-ZipZ0 .

For w ∈ I0W ∪W J0 , define the corresponding fine flag strata as:

(6.3.2) Flw := ζ−1
P0

(ZP0,w)

endowed with the reduced structure. Similarly, for w ∈ IW ∪W J , define Ekedahl-Oort strata of SK by:

(6.3.3) Sw := ζ−1 (ZP,w) .

For w ∈ I0W J0 , define the coarse flag strata by

(6.3.4) Fw := ζ−1
P0

(ZP0,w) .

The following is a simple consequence of the results in sections 2,3:

Proposition 6.3.1.

(1) For w ∈ I0W ∪W J0 , the fine flag stratum Flw is smooth of dimension ℓ(w).
(2) For w ∈ I0W J0 , the coarse flag stratum Fw is smooth of dimension ℓ(w) + ℓ(w0,J0

) − ℓ(w0,Iw ) − dim(P0),
where Iw := J0 ∩ w

−1I0w.
(3) The Zariski closure of a fine (resp. coarse) stratum is a union of fine (resp. coarse) strata.
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(4) The image by π∗
P0

of a fine stratum is a union of Ekedahl-Oort strata.

(5) For w ∈ I0W ∪W J0 one has π∗
P0
(Flw) = Sw and the map π : Flw → Sw is finite.

We now prove Th. 3 of the introduction, which states that for large p, the fine strata Flw of the flag space FlK
are affine and define a uniformly principally pure stratification for large p, which generalizes [EvdG09, Prop. 10.5(ii)]
in the Siegel case.

Theorem 6.3.2. There exists an integer N depending on G, X and K such that for all p ≥ N , the Shimura variety
ShK(G, X) has good reduction at all places p|p and the following holds:

(1) The fine stratification of FlK is uniformly principally pure.
(2) If the closure S of a fine flag stratum S ⊂ FlK is proper, then S is affine.

Proof. Property (1) is a simple consequence of Th. 4.2.4, so it remains to prove (2). Choose an Z0-ample character
η ∈ X∗(P0). By Rmk. 4.1.5, the line bundle L (η) is relatively ample with respect to the morphism π : F lK → SK .
By standard arguments, there exists an integer m ≥ 1 such that the line bundle

(6.3.5) R := LK(η)⊗ (π∗ω)m = LK(η +mηω)

is ample on F lK . The character η+mηω is Z0-ample and for large prime numbers p, it is also p-small. Hence there
exists an integer N such that for all primes p ≥ N , the ample line bundle R admits characteristic sections on all
fine flag strata, again by Th. 4.2.4. This concludes the proof. �

6.4. Is there an analogue of G-ZipZ0 at the level of Shimura varieties? We have seen that the flag spaces

FlK are counterparts of the stacks G-ZipFlag(Z,P0) in the context of Shimura varieties. Likewise, it would be
interesting to construct a counterpart S?

P0
to the stack G-ZipZ0 . Note that Z0 is usually not a zip datum arising

from a cocharacter datum. The properties that should be satisfied by the scheme S?
P0

are the following: There

should exist natural morphisms Ψ?
P0

: FlK → S?
K and ζ? : S?

P0
→ G-ZipZ0 (i.e S?

P0
should carry a universal G-zip

of type Z0). These maps should give rise to a commutative diagram

S?
K

ζ?
// G-ZipZ0

FlK

Ψ?

P0

OO

ζP0 //

π∗

P0

��

G-ZipFlag(Z,P0)

πP0

��

ΨP0

OO

SK
ζ

// G-ZipZ

such that both squares are Cartesian, that is

FlK ≃ S?
K ×G-ZipZ0 G-ZipFlag(Z,P0) .

In particular, the map Ψ?
P0

should be an affine bundle with fibers isomorphic to Ar where r = dim(G/P0).
As mentioned in the introduction, one of the main aspects of our program initiated in [GKb] is the anal-

ogy/connection between Griffiths-Schmid manifolds and stacks of G-Zips, see esp. §1.4 of loc. cit. More precisely, it
appears that stacks of G-Zips may be viewed as characteristic p analogues of Mumford-Tate domains. Recall that
Mumford-Tate domains are the Hodge-theoretic generalizations of period domains which admit Griffiths-Schmid
manifolds as arithmetic quotients.

This analogy may shed some light on the problem of constructing a pair (S?
K ,Ψ

?
P0
) as above. Specifically, in

[GGK13], Green-Griffiths-Kerr introduce and study several complex manifolds associated with a Mumford-Tate
domain D. In the terminology and notation of loc. cit. (see esp. Chap. 6), these include the correspondence space
W , the incidence variety J and the cycle space U . For more on the cycle space, see [FHW06].

The "basic diagram" of [GGK13, Chap. 6] is:

W

��✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍

��
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵

��

J

~~⑥⑥
⑥⑥
⑥⑥
⑥

  
❅❅

❅❅
❅❅

❅❅

D U

.
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It is reminiscent of the desired diagram above for the hypothetical pair (S?
K ,Ψ

?
P0
). For example, it is suggestive

that, as explained in loc. cit., the maps W → D and W → J are contractible. This should be compared with the
above desideratum that Ψ?

P0
be an affine bundle.
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