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QUASI-CONSTANT CHARACTERS:

MOTIVATION, CLASSIFICATION AND APPLICATIONS

WUSHI GOLDRING AND JEAN-STEFAN KOSKIVIRTA

Abstract. In [13], initially motivated by questions about the Hodge line bundle of a Hodge-type Shimura variety,
we singled out a generalization of the notion of minuscule character which we termed quasi-constant. Here we prove
that the character of the Hodge line bundle is always quasi-constant. Furthermore, we classify the quasi-constant
characters of an arbitrary connected, reductive group over an arbitrary field. As an application, we observe that, if µ
is a quasi-constant cocharacter of an Fp-group G, then our construction of group-theoretical Hasse invariants in loc.
cit. applies to the stack G-Zipµ, without any restrictions on p, even if the pair (G, µ) is not of Hodge type and even
if µ is not minuscule. We conclude with a more speculative discussion of some further motivation for considering
quasi-constant cocharacters in the setting of our program outlined in loc. cit.
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1. Introduction

This paper is the fourth installment in a series on our program to connect the three areas (A) Automorphic
Algebraicity, (B) G-Zip-Geometricity and (C) Griffiths-Schmid Algebraicity. Our program was introduced in [13]
and developed further in [14, 12]. For more advances in the program, see our forthcoming joint work with Stroh
and Brunebarbe [3]. Some key aspects of the program are discussed in §5.3 below.

The present paper dissects the notion of ‘quasi-constant character’ introduced in [13, Def. N.5.3]. The idea
behind quasi-constancy is to isolate those (co)characters which are simplest from the point of view of pairings with
Weyl-Galois orbits of (co)roots. The quasi-constant condition simultaneously incorporates those of ‘minuscule’ and
‘cominuscule’. As observed in loc. cit., it is also well-adapted to the study of (i) the Hodge line bundle of a symplectic
embedding of Shimura varieties, (ii) the existence of group-theoretical Hasse invariants on stacks G-Zipµ.

The following recalls the definition of quasi-constant characters and proceeds to summarize the topics covered in
the main body of the text.

1.1. Quasi-constant characters. Throughout this article, fix a field k and a connected, reductive k-group G. Let
T be a maximal torus in G (defined over k). Write

(1.1.1) (X∗(T ),Φ;X∗(T ),Φ
∨)

for the root datum of the pair (Gk̄, Tk̄), where: X∗(T ) (resp. X∗(T )) denotes the character (resp. cocharacter)
group of Tk̄ and Φ = Φ(G, T ) (resp. Φ∨ = Φ∨(G, T )) denotes the set of roots (resp. coroots) of Tk̄ in Gk̄. Denote
the perfect pairing X∗(T )×X∗(T ) → Z by 〈, 〉. Set W to be the Weyl group of Tk̄ in Gk̄.

In [13], our investigation of Hasse invariants on Ekedahl-Oort strata of Hodge-type Shimura varieties led us to
single out the following notion (see Def. N.5.3 of loc. cit.):

Definition 1.1.2. A character χ ∈ X∗(T ) is quasi-constant if, for every root α ∈ Φ satisfying 〈χ, α∨〉 6= 0 and all

σ ∈W ⋊Gal(k/k), one has

〈χ, σα∨〉

〈χ, α∨〉
∈ {−1, 0, 1}.

Note the resemblance with the definition of ‘minuscule character’ (recalled in §2.2.1). One defines quasi-constant
cocharacters in the same way, by replacing coroots with roots. It is then clear that, over an algebraically closed field,
a quasi-constant character (resp. cocharacter) of a pair (G, T ) is the same thing as a quasi-constant cocharacter
(resp. character) of the dual pair (G∨, T∨) associated to the dual of the root datum (1.1.1).

1.2. Classification. One of the main results of this paper is a classification of quasi-constant (co)characters for
any connected reductive group G, over any field k. The classification is given in two steps: Th. 1.2.1 treats the
case that k is algebraically closed and G is simple and simply-connected (resp. adjoint). Th. 1.2.4 explains how the
general classification reduces to the former special case. Note that in this paper, ‘semisimple and simply-connected’
is always taken in the sense of root data, i.e., it means that the Z-span of Φ∨ is X∗(T ).

The classification of quasi-constant (co)characters is in terms of minuscule and cominuscule (co)characters. For
the convenience of the reader, the latter two notions are recalled in §§2.2.1–2.2.2.

Theorem 1.2.1. Suppose k is an algebraically closed field and G is a simple and simply-connected (resp. adjoint)
k-group. A character (resp. cocharacter) of T is quasi-constant if and only if it is a multiple of one which is either
minuscule or cominuscule.

Remark 1.2.2. It is clear from the definitions that a multiple of a minuscule (co)character is quasi-constant. More-
over, if χ ∈ X∗(T ) is cominuscule but not minuscule, then by looking at tables (cf. Bourbaki [2, Chap. VI, Planches
I-IX] or Knapp [22, Appendix C.1-C.2]) one finds that G is of type Bn or Cn (n ≥ 2); in type Cn the character
χ is (conjugate to) the fundamental weight corresponding to the unique long simple root, while in type Bn it is
(conjugate to) the fundamental weight corresponding to the extremal vertex of the Dynkin diagram which is farthest
from the unique short simple root. In both of these cases, one checks that χ is quasi-constant. Thus, the primary
content of Th. 1.2.1 is that there are no other characters which are quasi-constant.

Remark 1.2.3. In the same vein as Rmk. 1.2.2, when the root system Φ is simply-laced, the quasi-constant characters
of T are exactly the multiples of the minuscule ones.

Let G̃ be the simply-connected cover of the derived subgroup of G. Let Gad denote the adjoint quotient of G.

Theorem 1.2.4. Suppose k is an arbitrary field and G is a connected, reductive k-group.

(a) A character (resp. cocharacter) of T is quasi-constant if and only if its pullback to every k-simple factor of

G̃ is quasi-constant (resp. its projection to every k-simple factor of Gad is quasi-constant).
2



(b) Suppose G is k-simple and simply-connected (resp. adjoint). A character (resp. cocharacter) of T is quasi-

constant if and only if, with respect to the k̄-simple factors of G̃k̄ (resp. Gad
k̄

), it has the form m(ξ1, . . . , ξd),
where m, ξ1, . . . , ξn satisfy
(i) m ∈ Z≥1;
(ii) Every ξi is either trivial, minuscule or cominuscule;
(iii) The nontrivial ξj are either all minuscule or all cominuscule.

Remark 1.2.5. A particularly easy case of Th. 1.2.4 is the following: AssumeG is absolutely simple. Then χ ∈ X∗(T )

(resp. µ ∈ X∗(T )) is quasi-constant if and only if its pullback to G̃ (resp. projection onto Gad) is.

1.3. Duality. When G is semisimple, there is a duality between the rays spanned by quasi-constant cocharacters
and quasi-constant characters. For general reductive G, this duality still allows to associate a quasi-constant
character to a quasi-constant cocharacter (and vice-versa), albeit in a non-canonical way.

A ray in a Q-vector space will mean the Q≥0 multiples of a nonzero vector, i.e., a one-dimensional cone.

Definition 1.3.1. A ray r in X∗(T )Q (resp. X∗(T )Q) is called quasi-constant if some (equivalently every) element
of X∗(T ) ∩ r (resp. X∗(T ) ∩ r) is quasi-constant.1

Proposition 1.3.2 (see Construction 3.3.1 and Prop. 3.3.4). Suppose G is semisimple. Given a choice of simple
roots ∆ ⊂ Φ, the linear map X∗(T ) → X∗(T ) which associates to a fundamental coweight the corresponding
fundamental weight (§2.1.7) restricts to a bijection r ↔ r

∨ between ∆-dominant, quasi-constant rays in X∗(T ) and
those in X∗(T ). This bijection satisfies the following properties:

(a) The quasi-constant ray r
∨ is the restriction of a ray in X∗(Cent(r))Q (see Rmk. 3.3.5).

(b) The Levi Cent(r) of G is the maximal Levi satisfying (a).

1.4. Applications I: Shimura varieties of Hodge type. Consider a symplectic embedding

(1.4.1) ψ : (G,X) →֒ (GSp(2g),Xg)

of a Shimura datum of Hodge type (G,X) into a Siegel Shimura datum (GSp(2g),Xg). Given a neat, open, compact
subgroup K ⊂ G(Af ), let Sh(G,X)K denote the associated Shimura variety at level K over C. There exists
Kg ⊂ GSp(2g,Af) such that ψ(K) ⊂ Kg and ψ induces a closed embedding of Sh(G,X)K into Sh(GSp(2g),Xg)Kg

(cf. [10, 1.15]). The Hodge line bundle ωg of the Siegel Shimura variety Sh(GSp(2g),Xg)Kg
is defined as

(1.4.2) ωg := det Fil1H1
dR,

where H1
dR is the universal weight one variation of Hodge structure over Sh(GSp(2g),Xg)Kg

and Fil1 refers to the

Hodge filtration. For g ≥ 2, sections of ωkg are what are most classically called "Siegel modular forms of weight k and
level Kg". The Hodge line bundle ω(ψ) = ω((G,X), ψ) of the pair ((G,X), ψ) on the Shimura variety Sh(G,X)K
is then defined by pullback:

(1.4.3) ω(ψ) := ψ∗(ωg).

Choose h ∈ X. Define hg ∈ Xg by hg := ψ ◦ h. As usual, set µ = (h ⊗C)(z, 1) and µg = (hg ⊗C)(z, 1). One
has µ ∈ X∗(G) and µg ∈ X∗(GSp(2g)). Let E be the reflex field of (G,X). The centralizers L := CentGE

(µ)
and Lg := CentGSp(2g)E (µg) are Levi subgroups of GE and GSp(2g)E . The line bundle ωg arises from a character
ηg of Lg; the line bundle ω(ψ) arises from the character ψ∗ηg of L. The character ηω(ψ) := ψ∗ηg is called the
Hodge character of the symplectic embedding ψ.

Theorem 1.4.4. For every symplectic embedding (1.4.1), the Hodge character ηω(ψ) = ψ∗ηg is quasi-constant.

Th. 1.4.4 was applied in [13] to show that Ekedahl-Oort strata of Hodge-type Shimura varieties admit Hasse
invariants at all primes p 6= 2 of good reduction (see §4.3 of loc. cit.). For further applications of quasi-constant
characters to Hasse invariants, see §1.5. The proof of Th. 1.4.4 given in §4 was previously given in Appendix A of
an earlier draft of loc. cit.

Let L̃ be the preimage of L in G̃E and write s : L̃ → L for the natural map (in particular L̃ is not the simply-
connected cover of the derived group of L). The following invariance property of the Hodge character and Hodge
line bundle under functoriality is a simple consequence of Th. 1.5.2:

Corollary 1.4.5. Assume that the adjoint group Gad is Q-simple. Then the positive ray generated by the (pullback

of) the Hodge character s∗ψ∗ηg in X∗(L̃)Q is independent of the choice of embedding ψ. In other words, the positive
ray generated by the Hodge line bundle ω(ψ) in the Picard group Pic(Sh(G,X)K)Q is independent of ψ.2

1Throughout, a subscript ‘Q’ indicates base change from Z to Q.
2Note that the Picard group here is the usual one of line bundles without additional structure; greater care must be taken if one wants
a statement concerning line bundles which are equivariant with respect to a group action, e.g., the G(Af )-action related to the action
of Hecke algebras on spaces of automorphic forms.
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Remark 1.4.6. It is easy to give examples of two embeddings ψ1, ψ2 such that ω(ψ2) is a nontrivial positive multiple
of ω(ψ1) (cf. [13, §2.1.6, Footnote 7]). Furthermore, we explain in §4.5 below why the assumption that Gad is
Q-simple is essential. Thus Cor. 1.4.5 exhibits the best possible invariance property of the Hodge line bundle under
functoriality.

1.5. Applications II: Group-theoretical Hasse invariants. In this §, suppose p is a prime and k = Fp. So
G is an Fp-group. Let µ ∈ X∗(G). Pink-Wedhorn-Ziegler associate to the pair (G,µ) a zip datum and a stack
G-Zipµ of G-Zips of type µ [25, 24]. The stack G-Zipµ admits a stratification parameterized by a certain subset
IW of the Weyl group W . The zip stratification of G-Zipµ is a group-theoretic generalization of the Ekedahl-Oort
stratification. Cf. [13, 14] for the basic facts about G-Zipµ, including the connection with the special fibers of
Hodge-type Shimura varieties.

Let w ∈ IW , Sw the corresponding zip stratum and Sw its Zariski closure. Let L := Cent(µ) and λ ∈ X∗(L).
There is an associated line bundle V (λ) on G-Zipµ. Recall from the introduction of [14] that a group-theoretical

Hasse invariant or characteristic section for (λ, Sw) is a section t ∈ H0(Sw,V (nλ)) for some n ≥ 1, whose non-
vanishing locus is precisely Sw. Recall further that the stratification of G-Zipµ is termed principally pure if every
stratum admits a characteristic section for some λ ∈ X∗(L) and uniformly principally pure if a single λ admits
characteristic sections on all strata. In the latter case, such a λ is called a Hasse generator for G-Zipµ.

One of the basic questions studied in [13] and [14] was:

Question 1.5.1. For what pairs (G,µ) is the zip stratification of G-Zipµ (uniformly) principally pure?

In [13, Th. 3.2.3], it was shown that G-Zipµ is uniformly principally pure as long as p satisfies a mild bound in
terms of (G,µ) (see §5.1 for the precise result). An explicit bound is recorded in Appendix A. As an application of the
quasi-constancy of the Hodge line bundle (Th. 1.4.4), it was shown that, when (G,µ) arises from a Shimura datum
of Hodge-type, the zip stratification is uniformly principally pure (without any assumption on p). These results were
reproved in [14] by a somewhat different method, using zip data of higher exponent. Finally, a counter-example to
principal purity when p = 2 was given in [14, §5.3].

In this paper, the classification and duality of quasi-constant characters are used to improve upon the results of
[13] and [14].

Theorem 1.5.2. Suppose G is an Fp-group and µ ∈ X∗(G) is a quasi-constant cocharacter. Then

(a) Construction 3.3.1 equips the Levi L := Cent(µ) of G with a quasi-constant character µ∗.
(b) The quasi-constant character −µ∗ afforded by part (a) is a Hasse generator for G-Zipµ. Consequently, the

stratification of G-Zipµ is uniformly principally pure.

We stress that Th. 1.5.2 contains no assumption on p and makes no reference to Shimura varieties. In particular,
it provides a result for all p in some cases when µ is not minuscule. An interesting feature of Th. 1.5.2 is that it
uses both quasi-constant characters and cocharacters simultaneously.

1.6. Outline. §2 sets up the basic notation and structure theory concerning reductive groups that is used in the
rest of the paper. §3 concerns the classification and duality of quasi-constant (co)characters. The classification
(Ths. 1.2.1 and 1.2.4) is proved in §§3.1-3.2; the duality construction 3.3.1 is given in §3.3. The quasi-constancy of
the Hodge line bundle (Th. 1.4.4) is established in §4.

§5 discusses further applications, motivation and open questions concerning quasi-constant (co)characters. §5.1
gives the application to uniform principal purity (Th. 1.5.2). Motivation for the quasi-constant condition as a
unification of ‘minuscule’ and ‘cominuscule’ is provided in §5.2. Finally §5.3 includes a more speculative discussion
of the potential role of the quasi-constant condition in our program: We mention open questions concerning Griffiths-
Schmid manifolds and stacks of G-Zips and how quasi-constant cocharacters offer an interesting test case for these
questions.

Appendix A records explicit bounds for the uniform principal purity of G-Zipµ depending only on the type of G
and that of L.
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2. Notation and structure theory

Let (G, T ) as in §1.1, with root datum (1.1.1).

2.1. Structure theory.

2.1.1. Simply-connected covering and adjoint projection. Write Gder (resp. Gad) for the derived subgroup (resp.

adjoint quotient) of G and G̃ for the simply-connected cover of Gder. Write pr : G։ Gad for the natural projection

and s : G̃→ G for the "quasi-section" of pr, composition of the projection G̃։ Gder with the inclusion Gder →֒ G.
The root datum (1.1.1) canonically induces ones of Gder, G̃ and Gad as follows (see [19, Part II, 1.18]): Let

X∗
0 (T ) := {χ ∈ X∗(T )|〈χ, α∨〉 = 0 for all α ∈ Φ} and T der :=

⋂

χ∈X∗

0
(T )

kerχ.

Then T der is a maximal torus in Gder and (X∗(T der),Φ;X∗(T
der),Φ∨) is the root datum of (Gder, T der), where the

roots Φ are restricted to T der. Let T̃ (resp. T ad) denote the preimage of T der in G̃ (resp. the image of T der in

Gad). Then T̃ and T ad are maximal tori in G̃ and Gad respectively; the roots (resp. coroots) of the three pairs

(G̃, T̃ ), (Gder, T der), (Gad, T ad) are identified via the central isogenies (G̃, T̃ ) → (Gder, T der) → (Gad, T ad).

2.1.2. Decompositions over an algebraically closed field. Let K be an algebraically closed field extension of k. Over
K, one has the decompositions

(2.1.3) G̃K ∼=

d
∏

i=1

G̃i and Gad
K

∼=

d
∏

i=1

Gad
i ,

where each G̃i is a simple, simply-connected K-group and Gad
i is its adjoint group. Set si : G̃i → GK (resp.

pri : GK → Gad
i ) for the composition of s (resp. pr) with the embedding along (resp. projection onto) the ith

component by means of (2.1.3).
In view of (2.1.3), one has

(2.1.4) T̃K ∼=

d
∏

i=1

T̃i and T ad
K

∼=

d
∏

i=1

T ad
i ,

where T̃i ⊂ G̃i, T
ad
i ⊂ Gad

i are maximal tori and T̃i is the inverse image of T ad
i under the projection G̃i ։ Gad

i .

2.1.5. Dynkin diagram. Fix a basis of simple roots ∆ ⊂ Φ. Write ∆ =
⊔d
i=1 ∆i and Φ =

⊔d
i=1 Φi for the decompo-

sitions of ∆ and Φ corresponding to (2.1.3). Denote by D (resp. Di) the Dynkin diagram of ∆ (resp. ∆i). Given
α ∈ ∆, write vα for the corresponding vertex of D. Recall that D is called simply-laced if no two vertices of D are
joined by more than one edge (equivalently all roots have the same length); otherwise we say D is multi-laced.

2.1.6. (Co)Root multiplicities. When GK is simple, write hα (resp. hα∨) for the highest root (resp. highest coroot).
Let (hα)∨ be the coroot corresponding to the highest root under the bijection Φ → Φ∨, α 7→ α∨. Beware that
hα∨ 6= (hα)∨ precisely when Φ is multi-laced. One has decompositions into simple (co)roots

hα =
∑

α∈∆

m(α)α and hα∨ =
∑

α∈∆

m∨(α)α∨

with m(α),m∨(α) ∈ Z≥1 for all α ∈ ∆. Recall that a vertex vα of D is called special if α satisfies m(α) = 1. Say
that vα is co-special if m∨(α) = 1.

2.1.7. Fundamental (Co)weights. Suppose G is semisimple. Then the set of simple roots ∆ (resp. simple coroots
∆∨) is a basis of X∗(T )Q (resp. X∗(T )Q). For α ∈ ∆, write η(α) ∈ X∗(T )Q (resp. η(α∨) ∈ X∗(T )Q) for the
corresponding fundamental weight (resp. fundamental coweight) defined by

〈η(α), β∨〉 = 〈β, η(α∨)〉 =

{

1 if β = α
0 if β ∈ ∆, β 6= α

.

2.2. Minuscule and cominuscule (co)characters.

2.2.1. Minuscule (co)characters. Let χ ∈ X∗(T ) and µ ∈ X∗(T ). Recall that χ (resp. µ) is minuscule if, for
every root α, one has 〈χ, α∨〉 ∈ {0, 1,−1} (resp. 〈α, µ〉 ∈ {0, 1,−1}). Note the resemblance with the definition of
quasi-constant (co)characters (Def. 1.1.2).
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2.2.2. Cominuscule (co)characters. Suppose G is semisimple. Then the literature also contains a far less standard
(and arguably less natural, see §5.2) notion of cominuscule (co)character. Following [1, Def. 9.0.14], χ ∈ X∗(T ) is
termed cominuscule if there exists a basis ∆ ⊂ Φ of simple roots such that

(a) χ = η(α) for some α ∈ ∆, and
(b) the fundamental coweight η(α∨) is minuscule.3

A cominuscule cocharacter is defined by replacing ‘roots’ with ‘coroots’ and ‘fundamental weights’ with ‘fundamental
coweights’.

2.2.3. Relation to fundamental (co)weights. The notions of §§2.1.5–2.1.7 and those just recalled in §§2.2.1–2.2.2 are
linked as follows: A fundamental weight η(α) is minuscule (resp. cominuscule) if and only if the vertex vα of D is
cospecial (resp. special). Dually, a fundamental coweight η(α∨) is minuscule (resp. cominuscule) if and only if vα
is special (resp. cospecial).

3. Classification and duality

§3.1 is devoted to the proof of Th. 1.2.1. We treat the case of characters; the case of cocharacters is completely
analogous and left as an exercise. Following some preliminaries, the proof is divided into two cases, according to
whether the Dynkin diagram D is simply-laced or not. The simply-laced case is much simpler. In the multi-laced
case, the crux of the argument is to show that a ∆-dominant, quasi-constant character is a multiple of a fundamental
weight, see Lemma 3.1.3.

§3.2 deduces Th. 1.2.4 from the special case given by Th. 1.2.1. The duality between quasi-constant characters
and cocharacters is described in §3.3.

3.1. The absolutely simple and simply-connected case. Throughout §3.1, suppose k is algebraically closed
and that the k-group G is simple and simply-connected. Consequently, the fundamental weight η(α) ∈ X∗(T ) for
all α ∈ ∆.

Assume χ ∈ X∗(T ) is quasi-constant and nontrivial. Without loss of generality, we may assume that χ is
∆-dominant. Write χ as a linear combination of fundamental weights

(3.1.1) χ =
∑

α∈∆

mα(χ)η(α)

with mα(χ) ∈ Z≥0 for all α ∈ ∆. Using §2.1.6, put

(3.1.2) M(χ) =
∑

α∈∆

m∨(α)mα(χ).

For all α ∈ ∆, one has 〈χ, α∨〉 = mα(χ) and 〈χ,hα∨〉 =M(χ). Since χ 6= 0, there exists β ∈ ∆ such that mβ(χ) > 0.
Fix such a β for the rest of §3.1.

Proof of Th. 1.2.1, simply-laced case. Assume the Dynkin diagram D is simply-laced; equivalently W acts transi-
tively on both Φ and Φ∨. In particular, all the simple coroots and the highest coroot are in the same W-orbit.

Since χ is quasi-constant and mβ(χ),M(χ) > 0, one has mβ(χ) = M(χ). As mα(χ) ≥ 0 and m∨(α) ≥ 1 for all
α ∈ ∆, we deduce from (3.1.2) that mα(χ) = 0 for all α 6= β and m∨(β) = 1. Therefore χ = mβ(χ)η(β). Finally,
m∨(β) = 1 means that the vertex vβ of D is cospecial (§2.1.6); equivalently η(β) is minuscule (§2.2.3). �

Proof of Th. 1.2.1, multi-laced case. Assume for the rest of the proof that D is multi-laced (so G is of type Bn, Cn,
G2 or F4, n ≥ 2). Then Φ (resp. Φ∨) is the (disjoint) union of two Weyl group orbits; two roots (resp. coroots) are
in the same orbit if and only if they have the same length.

Lemma 3.1.3. Assume χ ∈ X∗(T ) is quasi-constant and ∆-dominant. Then χ is a multiple of a fundamental
weight.

Proof. Suppose the conclusion does not hold. Then, in addition to mβ(χ) > 0, there must exist γ ∈ ∆, distinct
from β, such that mγ(χ) > 0. Since D is multi-laced, it admits at most one minuscule fundamental weight (zero
for G2 and F4, one for Bn and Cn, n ≥ 2). Therefore at least one of η(β) and η(γ) is not minuscule.

Without loss of generality, we may assume η(β) is not minuscule. Equivalently, vβ is not cospecial, or what
amounts to the same, 〈η(β),hα∨〉 > 1.

Let M =
∑

α∈∆m
∨(α). (In terms of (3.1.2), one has M =M(ρ), where ρ is the half-sum of the positive roots.)

One knows that the highest coroot hα∨ can be written as a sum of simple coroots hα∨ =
∑M

i=1 α
∨
i such that every

partial sum SM ′ =
∑M ′

i=1 α
∨
i , (1 ≤M ′ ≤M) is a coroot [22, II.12, Problem 7].

We claim that there exists a positive coroot δ∨ whose decomposition into simple coroots either (i) involves both
β∨ and γ∨ with m∨(β) = 1 and m∨(γ) ≥ 1, or (ii) involves β∨ with multiplicity ≥ 2 and does not involve γ∨.

3Our definition is an equivalent variant of the one given in loc. cit.
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Indeed, the largest partial sum SM = hα∨ contains β∨ with multiplicity m∨(β) ≥ 2 and γ∨ with m∨(γ) ≥ 1. Let
M∗, 2 ≤M∗ ≤M be the smallest integer such that the partial sum SM∗ has the same property. Then SM∗−1 is a
coroot which satisfies the claim.

Put δ∨ = SM∗−1. By construction, one has the sequence of inequalities

〈χ,hα∨〉 > 〈χ, δ∨〉 > 〈χ, β∨〉 > 0.

Hence the pairings of χ with coroots take on at least 3 strictly positive values. Since the coroots form two Weyl
group orbits, there exists a W -orbit whose pairing with χ takes on at least two strictly positive values. Thus χ is
not quasi-constant. �

It is left to show that fundamental weights which are neither minuscule, nor cominuscule are not quasi-constant,
by using the tables cited in Rmk. 1.2.2. This is done case-by-case in Lemmas 3.1.4, 3.1.5 and 3.1.6 below. Let ei
denote the ith coordinate vector in Zk.

Lemma 3.1.4. If G has type G2, then T admits no quasi-constant characters.

Proof. Let α1 = e1 − e2 and α2 = −2e1 + e2 + e3. Following [2, Chap. VI, planche IX], choose an identification of
the root datum of (G, T ) so that X∗(T )Q = X∗(T )Q = {(x1, x2, x3) ∈ Q3|x1 + x2 + x3 = 0}, ∆ = {α1, α2} and 〈, 〉
is the standard inner product on Q3 restricted to X∗(T )Q. Then the Weyl group orbit of long coroots is

O3 = {±(e1 − e2),±(e1 − e3),±(e2 − e3)}

and the orbit of short coroots is

O1 = {±
1

3
(2e1 − e2 − e3),±

1

3
(2e2 − e1 − e3),±

1

3
(2e3 − e1 − e2)}.

Moreover, η(α1) = e3 − e2, η(α2) = 2e3 − e1 − e2. The computation

{ |〈η(α1), γ
∨〉| | γ∨ ∈ O3} = {1, 2} = { |〈η(α2), γ

∨〉| | γ∨ ∈ O1}

shows that neither η(α1), nor η(α2) is quasi-constant. �

Lemma 3.1.5. If G has type F4, then T admits no quasi-constant characters.

Proof. As in [2, Chap. VI, planche VIII], set α1 = e2 − e3, α2 = e3 − e4, α3 = e4 and α4 = (e1 − e2 − e3 − e4)/2 in
Q4. Choose an identification of the root datum of (G, T ) so that X∗(T )Q = X∗(T )Q = Q4, ∆ = {α1, α2, α3, α4}
and 〈, 〉 is the standard inner product on Q4. The two Weyl group orbits of short and long coroots are respectively

O1 = {±ei ± ej|1 ≤ i 6= j ≤ 4} and O2 = {±2ei|1 ≤ i ≤ 4} ∪ {±e1 ± e2 ± e3 ± e4}.

The fundamental weights are: η(α1) = e1 + e2, η(α2) = 2e1 + e2 + e3, η(α3) = (3e1 + e2 + e3 + e4)/2, η(α4) = e1.
The computations

{ |〈η(α1), α
∨〉| | α∨ ∈ O1} = { |〈η(α3), α

∨〉| | α∨ ∈ O1} = { |〈η(α4), α
∨〉| | α∨ ∈ O2} = {0, 1, 2}

and
{ |〈η(α2), α

∨〉| | α∨ ∈ O1} = {0, 1, 2, 3}.

show that none of the fundamental weights η(αi) (1 ≤ i ≤ 4) are quasi-constant. �

Lemma 3.1.6. Suppose G is of type Bn or Cn (n ≥ 2). Then the quasi-constant characters of T are precisely the
multiples of the two fundamental weights corresponding to the extremities of the Dynkin diagram D.

Proof. Let

(3.1.7)
O1 = {±ei ± ej |1 ≤ i < j ≤ n},
O2 = {±2ei|1 ≤ i ≤ n},
O1/2 = {±ei|1 ≤ i ≤ n}.

Identify X∗(T )Q and X∗(T )Q with Qn in such a way that Φ = O1 ∪ O2, Φ∨ = O1 ∪ O1/2 in type Cn and
Φ = O1 ∪O1/2, Φ

∨ = O1 ∪O2 in type Bn. In each of the above four cases, the two W -orbits are O1 and Oj , with

j ∈ {2, 1/2}. In case Cn (resp. Bn), choose ∆ = {ei − ei+1}
n−1
i=1 ∪ {2en} (resp. ∆ = {ei − ei+1}

n−1
i=1 ∪ {en}). Then

the fundamental weights are given by

η(ej − ej+1) =
∑j
i=1 ei for 1 ≤ j ≤ n− 1

η(en) = (
∑n

i=1 ei)/2
η(2en) =

∑n
i=1 ei.

In both cases Bn and Cn, when n ≥ 3 and 1 < j < n, one has

{ |〈η(ej − ej+1), α
∨〉| | α∨ ∈ O1} = {0, 1, 2}.

Hence η(ej − ej+1) is not quasi-constant for all j, 1 < j < n. �

Since all multi-laced cases Bn, Cn, G2 and F4 have been treated, the proof of Th. 1.2.1 is complete. �
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3.2. Classification II: The general case.

Lemma 3.2.1. Each of the three properties ‘minuscule’, ‘cominuscule’ and ‘quasi-constant’ is closed under the
action of W ⋊Gal(k/k). In other words, suppose χ ∈ X∗(T ) and σ ∈ W ⋊Gal(k/k). Then χ is minuscule (resp.
cominuscule, quasi-constant) if and only if σχ is minuscule (resp. cominuscule, quasi-constant).

Proof. The action of W ⋊Gal(k/k) is orthogonal relative to the perfect pairing 〈, 〉. Hence

〈σχ, α∨〉 = 〈χ, σ−1α∨〉

for all α ∈ Φ. The result follows. �

Proof of Th. 1.2.4(a). It is clear that χ ∈ X∗(T ) is quasi-constant for (G, T ) if and only if s∗(χ) ∈ X∗(T̃ ) is quasi-

constant for (G̃, T̃ ). The pair (G̃, T̃ ) decomposes as a product of pairs (Hj , Sj), where each Hj is k-simple, and Sj
is a maximal torus of Hj defined over k. The X∗(Sj) are stable under the action of W ⋊Gal(k/k). Consequently,

a character of T̃ is quasi-constant if and only if its pullback to Sj is so for every j. �

Given that Th. 1.2.4(a) has been proved, it will be assumed for the rest of §3.2 that G is k-simple.

Proof of Th. 1.2.4(b) ,“=⇒”: Suppose χ ∈ X∗(T ) is quasi-constant. We show that χ satisfies (i)-(iii) of (b).
Without loss of generality, we may assume χ is ∆-dominant.

For all i (1 ≤ i ≤ d), the pullback s∗i (χ) ∈ X∗(T̃i) is quasi-constant for G̃i. Define ξi ∈ X∗(T̃i) as follows: If
s∗i (χ) = 0, set ξi = 0. Otherwise, Th. 1.2.1 yields ci ∈ Z≥1 such that s∗i (χ)/ci is either minuscule or cominuscule;
set ξi = s∗i (χ)/ci. In this case, there exists αi ∈ ∆i such that ξi = η(αi), see §2.2.3.

For every pair (i, j) with ξi 6= 0 and ξj 6= 0, it remains to show that ci = cj and that ξi, ξj are either both minuscule

or both cominuscule. Since G is k-simple, Gal(k/k) acts transitively on {Ds}ds=1 (see §2.1.5). In particular, the

Dynkin diagrams D1, . . . ,Dd are pairwise isomorphic (and so too are the groups G̃1, . . . G̃d, as they are simply-
connected). Fix a pair (i, j) with ξi, ξj 6= 0 and σ ∈ Gal(k/k) mapping Di to Dj .

Assume first that all the Ds are simply-laced. Then Φj forms a single Weyl group orbit. Thus σαi ∈ Wαj , so

αi and αj are conjugate under W ⋊ Gal(k/k). Moreover, since Di and Dj are simply-laced, both ξi and ξj are

minuscule (Rmk. 1.2.2). Finally, ci = cj , for otherwise the set { |〈χ, τα∨
i 〉| | τ ∈W ⋊Gal(k/k)} would contain the

two nonzero distinct values ci, cj (and 0 when |Di| > 1 ).
We are left with the case that neither Di nor Dj is simply-laced. So each of Di and Dj admits no non-trivial

automorphisms. Hence an element of Gal(k/k) which maps Di to itself (as a set) must in fact fix it pointwise.
Moreover, by Rmk. 1.2.2, either both Di and Dj are of type Bn, or both are of type Cn. In each of the cases

Bn and Cn, one extremity of the Dynkin diagram is special but not cospecial, while the other is cospecial but not
special. All of the other vertices in types Bn and Cn are neither special nor cospecial.

We claim that either αi and αj are both special, or both cospecial. Assume for a contradication that this is
not the case. By symmetry we may assume that αi is special and αj is cospecial. Using the notation (3.1.7), for

j ∈ {1/2, 1, 2}, let Õj be a W ⋊Gal(k/k)-orbit of coroots which identifies with Oj on both the ith and jth factors.
In case Cn, one has

(3.2.1b) { |〈χ, α∨〉| | α∨ ∈ Õ1} = {0, 2ci, cj},

(3.2.1c) { |〈χ, α∨〉| | α∨ ∈ Õ1/2} = {0, ci, cj}.

Since χ is quasi-constant, (3.2.1b) implies 2ci = cj , while (3.2.1c) implies ci = cj . This is a contradiction since
ci 6= 0 and cj 6= 0 by assumption. The same contradiction is reached in case Bn, where (O1, O1/2) is replaced by
(O2, O1). This contradiction proves the claim.

By Lemma 3.2.1, σ maps the unique special (resp. cospecial) vertex of Di to the unique special (resp. cospecial)
vertex of Dj . Together with claim that was just established, this shows that σαi = αj .

Finally, σαi = αj implies that { |〈χ, α∨〉| | α∨ ∈ Õ1} is equal to either {0, ci, cj}, {0, 2ci, 2cj} or {ci, cj}. (4).
Since χ is quasi-constant, we conclude either way that ci = cj . This completes the proof that χ satisfies conditions
(i)-(iii) of Th. 1.2.4(b) �

Proof of Th. 1.2.4(b) ,“⇐=”: Conversely, suppose that χ ∈ X∗(T ) and that s∗χ = m(ξ1, . . . , xd), wherem, ξ1, . . . , ξd
satisfy (i)-(iii) of (b). We need to check that χ is quasi-constant.

Assume σ ∈ Gal(k/k), α ∈ Φ and 〈χ, α∨〉, 〈χ, σα∨〉 6= 0. We have to show that |〈χ, α∨〉| = |〈χ, σα∨〉|. Let
i, j ∈ {1, 2, . . . , d} such that α ∈ Di and σα ∈ Dj (the possibility i = j is not excluded).

Since 〈χ, α∨〉, 〈χ, σα∨〉 6= 0, ξi and ξj are both nontrivial. By condition (iii) of (b), ξi and ξj are either both
minuscule or both cominuscule. By Rmk. 1.2.2, ξi = η(αi) and ξj = η(αj) for some αi ∈ ∆i and αj ∈ ∆j).

4Although it is not used in the proof, we note that the third possibility {ci, cj} can only occur in type B2 = C2.
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Suppose first that ξi and ξj are both minuscule. Then

|〈χ, α∨〉| = m|〈ξi, α
∨〉| = m = m|〈ξj , σα

∨〉| = |〈χ, σα∨〉|.

Now assume ξi and ξj are both cominuscule. Since G is k-simple, Di and Dj are either both of type Bn or both
of type Cn. One checks directly using (3.1.7) that in type Cn both |〈η(αi), α∨〉| and |〈η(αj), σα∨〉| are equal to

1 (resp. 2) if α∨ belongs to the W ⋊ Gal(k/k) orbit Õ1/2 (resp. Õ1) and that in type Bn both |〈η(αi), α∨〉| and

|〈η(αj), α∨〉| are equal to 1 (resp. 2) if α∨ belongs to Õ1 (resp. Õ2). �

3.3. Duality. Here we explain the duality between quasi-constant characters and cocharacters of semisimple G, see
Construction 3.3.1 . The key properties of the construction follow directly from the classification and are provided
in Prop. 3.3.4.

If r ⊂ X∗(T )Q (resp. r ⊂ X∗(T )Q whose image is not contained in the center of G) is a quasi-constant ray

(Def. 1.3.1), then s∗i (r) (resp. pri∗(r)) is a quasi-constant ray in X∗(T̃i) (resp. X∗(T
ad
i )).

Construction 3.3.1. Let r be a quasi-constant ray in X∗(T )Q. We construct a “dual quasi-constant ray” r
∨ ⊂

X∗(T )Q. By Th. 1.2.4(b) and §2.2.3, there exists a basis of simple roots ∆ ⊂ Φ such that, for every i (1 ≤ i ≤ d),
pri∗(r) is either trivial or contains a fundamental coweight η(α∨

i ) for some αi ∈ ∆i. Let r∨ad be the ray in X∗(T ad)Q =
∏n
i=1X

∗(T ad
i )Q spanned by the vector χ = (χi)

n
i=1 whose ith coordinate is defined by

(3.3.2) χi =

{

η(αi) if pri∗(r) 6= 0
0 if pri∗(r) = 0

Set r
∨ := pr∗(r∨ad).

Remark 3.3.3. It is clear that there is a construction dual to 3.3.1 which starts with a quasi-constant ray in X∗(T )Q
and produces a quasi-constant ray in X∗(T )Q.

Proposition 3.3.4. Construction 3.3.1 satisfies the following properties:

(a) The ray r
∨
ad in X∗(T ad)Q is quasi-constant.

(b) The ray r
∨ ⊂ X∗(T )Q is quasi-constant.

(c) The quasi-constant ray r
∨ ⊂ X∗(T )Q is the restriction of a ray in X∗(Cent(r)) (see Rmk. 3.3.5).

(d) The Levi Cent(r) of G is the maximal Levi satisfying property (c).
(e) If G is semisimple, then r → r

∨ is a bijection between quasi-constant rays in X∗(T ) and those in X∗(T ).

Remark 3.3.5. If ν ∈ X∗(T ) and m ∈ Z \ {0}, then Cent(ν) = Cent(mν). Indeed, as centralizers of subtori of T ,
both Cent(ν) and Cent(mν) are Levi subgroups of G containing the maximal torus T . Thus each is determined by
the subset of ∆ orthogonal to the cocharacter. But for all α ∈ ∆, one has 〈α, ν〉 = 0 if and only if 〈α,mν〉 = 0.
Therefore the centralizer of a ray (or line) in X∗(T )Q is well-defined.

Proof of Prop. 3.3.4: Part (a) is a direct consequence of Th. 1.2.4(b). A ray m ⊂ X∗(T ad)Q is quasi-constant if
and only if every element of pr∗ m ∩X∗(T ) is. This gives (b).

The combination of Parts (c) and (d) is equivalent to 〈r∨, α∨〉 = 0 for α ∈ ∆ if and only if α ∈ Φ(Cent(r), T )∩∆
(the simple roots pertaining to the Levi Cent(r)). By (3.3.2), 〈r∨, β∨〉 6= 0 for β ∈ ∆ if and only if β = αi for
some i satisfying pri∗(r) 6= 0. The latter holds if and only if pri∗(r) contains the fundamental coweight η(α∨

i ). Since
〈αi, η(α∨

i )〉 = 1, we deduce that 〈αi, pri∗(r)〉 6= 0 (and so also 〈αi, r〉 6= 0) if and only if β = αi 6∈ Φ(Cent(r), T ).
Finally, if G is semisimple, then its fundamental weights (resp. fundamental coweights) furnish a basis of X∗(T )Q

(resp. X∗(T )Q). Thus (e) follows from Th. 1.2.4. �

4. The Hodge line bundle is quasi-constant

This § proves Th. 1.4.4, that the Hodge line bundle is quasi-constant. The proof relies heavily on Deligne’s
analysis of symplectic embeddings of Shimura data [11, §1.3].

As in loc. cit., throughout §4 fix Q to be the algebraic closure of Q in C. This choice is justified by the fact
that the reflex field E of the Shimura datum (G,X) is defined as a subfield of C. We use the notation of §1.4 and
§2. In particular, ∆ denotes the set of simple roots of TQ in GQ and h ∈ X with associated cocharacter µ. Let

Φ+ be the system of positive roots corresponding to ∆. We normalize µ so that 〈α, µ〉 = 1 for α ∈ Φ if and only if
α ∈ Φ+ \ Φ(L,T).

Let V be a 2g-dimensional Q-vector space and Q a non-degenerate, Q-valued alternating form on V . Let
GSp(V,Q) be the group of symplectic similitudes of (V,Q). Let Std : GSp(V,Q) → GL(V ) be the tautological
representation. Set ρ := Std ◦ψ, where ψ is the symplectic embedding (1.4.1).

The crux of the proof is to reduce to a question about fundamental weights by a careful analysis of the restriction
of ρ to the Levi L (§4.2). The latter can be solved by a simple case-by-case computation (§4.3).
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4.1. Set-up of the proof. As usual, put S = ResC/R Gm. Throughout the proof, we abbreviate ηω := ηω(ψ) for
the Hodge character of ψ.

The representation ρ := Std ◦ψ of G is defined over Q, since it is the composition of two morphisms which are
both defined over Q. The composition of ρR := ρ ⊗R with h : S → GR yields a polarized R-Hodge structure of
type {(−1, 0), (0,−1)}; denote it hψ : S → GL(V ⊗R). The pair (V, hψ) is a polarized Q-Hodge structure.

4.2. Restriction to the Levi. The restriction of ρQ to LQ is equal to V −1,0 ⊕ V 0,−1, the sum of the graded

pieces5 of the R-Hodge structure (VR, hψ). The character −ηω is the determinant of the LQ-representation V −1,0.

Hence −ηω is the sum of the TQ-weights of V −1,0 (counted with multiplicity).

Let ρ̃ (resp. Ṽ −1,0, Ṽ 0,−1) be the pullback of ρ (resp. V −1,0, V 0,−1) to G̃ (resp. L̃Q). One has

Res
G̃

Q

L̃
Q

ρ̃Q = Ṽ −1,0 ⊕ Ṽ 0,−1.

The L̃Q-representations Ṽ −1,0 and Ṽ 0,−1 are dual to one another via the alternating form Q.

Since µ is minuscule, so is its projection pr∗ µ to Gad. Let µ̃ be the fractional lifting ("relèvement fractionaire",

[11, 1.3.4]) of pr∗ µ to G̃Q. Let ρ′ be an irreducible factor of ρ̃Q. By Lemma 1.3.5 of loc. cit., ρ′ has two µ̃-weights

given by a and a + 1 for some a ∈ Q. In other words, as ξ runs through the T̃Q-weights of ρ̃Q, the pairing 〈ξ, µ̃〉
takes the two values a and a+ 1.

Lemma 4.2.1. Let ξ be a weight of ρ′. Then ξ is a weight of Ṽ −1,0 (resp. Ṽ 0,−1) if and only if 〈ξ, µ̃〉 = a + 1
(resp. 〈ξ, µ̃〉 = a).

Proof. This follows easily from the proof of the aforementioned Lemma 1.3.5 of loc. cit. �

Let L̃i be the intersection of G̃i with the centralizer, in G̃Q, of the fractional lifting µ̃. Then for every i, either

L̃i is the Levi of a maximal parabolic of G̃i, or L̃i = G̃i. For every i with L̃i 6= G̃i, let αi be the unique simple root
of G̃i which is not a root of L̃i.

Lemma 4.2.2. Let ρ′ be an irreducible factor of ρ̃Q with highest weight ξ. Then ξ is a weight of Ṽ −1,0.

Proof. Let a and a+1 be the two µ̃-weights of ρ′. Since ρ′ admits two distinct µ̃-weights, it admits a T̃Q-weight ξ′

whose pairing with µ̃ is different from that of ξ with µ̃. By the property characterizing the highest weight, ξ− ξ′ is
a non-negative, Z-linear combination of simple roots. Since µ̃ is ∆-dominant, 〈ξ − ξ′, µ̃〉 ≥ 0. But by our choice of

ξ′, one has 〈ξ − ξ′, µ̃〉 6= 0. Hence 〈ξ − ξ′, µ̃〉 = 1 and 〈ξ, µ̃〉 = a+ 1. So ξ is a weight of Ṽ −1,0 by Lemma 4.2.1. �

We use Lemma 4.2.2 to deduce a positivity statement characterizing those weights of ρ̃Q which are weights of

Ṽ −1,0.

Lemma 4.2.3. Let ξ be a T̃Q-weight of ρ̃Q.

(a) If ξ is a weight of Ṽ −1,0, then 〈ξ, α∨
i 〉 ≥ 0 for all i.

(b) As a partial converse, if 〈ξ, α∨
i 〉 > 0 for some i, then ξ is a weight of Ṽ −1,0.

Proof. Since ρ̃Q is self-dual, its T̃Q-weights are closed under x 7→ −x. Since Ṽ −1,0 is dual to Ṽ 0,−1, the weights of

Ṽ −1,0 are mapped bijectively onto those of Ṽ 0,−1 via x 7→ −x. It follows that parts (a) and (b) of the lemma are

equivalent. So assume ξ is a weight of Ṽ −1,0 and consider (a).

Let ρ′ be an irreducible factor of ρ̃Q, which admits ξ as a T̃Q-weight. Let ξh be the highest weight of ρ′. Since

the highest weight is ∆-dominant, one has 〈ξh, α∨
i 〉 ≥ 0. We need to use the hypothesis that ξ is a weight of Ṽ −1,0

to conclude that also 〈ξ, α∨
i 〉 ≥ 0. Write

(4.2.4) ξh − ξ =
∑

α∈∆

n(α)α,

with n(α) ≥ 0 for all α ∈ ∆.
Since µ is minuscule and αi ∈ Φ+ \ Φ(L,T), one has 〈αi, µ〉 = 1. Since µ = µ̃ν with ν : Gm → GQ fractional

and central, the adjoint actions of µ(z) and µ̃(z) coincide. Hence also 〈αi, µ̃〉 = 1 and µ̃ is ∆-dominant.

Combining our assumption that ξ is a weight of Ṽ −1,0 with Lemmas 4.2.1 and 4.2.2, we have 〈ξh − ξ, µ̃〉 = 0.
Therefore the multiplicity n(αi) = 0 in (4.2.4). A simple property of root data states that if 〈α, β∨〉 > 0 for some
α, β ∈ ∆, then α = β [22, Lemma 2.51]. Hence 〈ξh − ξ, α∨

i 〉 ≤ 0. But 〈ξh, α
∨
i 〉 ≥ 0 because ξh is ∆-dominant. So

〈ξ, α∨
i 〉 ≥ 0, as was to be shown. �

5Note that, in general, the two graded pieces V −1,0, V 0,−1 are not irreducible as L
Q

-representations. However, they are irreducible in

the special case (G,X) = (GSp(2g),Xg).
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4.3. Equality of fundamental weight multiplicities. Since ηω ∈ X∗(L), one has 〈ηω, α∨〉 = 0 for all α ∈
Φ(L,T). Set s∗i (ηω) := ηω,i, the pullback of ηω to L̃i (§2.1.2). Suppose L̃i 6= G̃i. Then ηω,i is a multiple, say mi, of
the fundamental weight η(αi). Since µ is minuscule, αi is special (§2.2.3). By definition, mi = 〈ηω,i, α∨

i 〉 = 〈ηω , α∨
i 〉.

The next lemma shows that the multiplicities mi are constant on Gal(Q/Q)-orbits.

Lemma 4.3.1. Suppose G̃i is Gal(Q/Q)-conjugate to G̃j. Then mi = mj.

Proof. Let σ ∈ Gal(Q/Q) conjugate G̃i to G̃j . Observe that the coroots σα∨
i and α∨

j are in the same Weyl group

orbit. Indeed, αi and αj are both special, hence have the same length (§2.1.5). Finally, two roots are in the same
Weyl group orbit if and only if the same is true of the corresponding coroots. Write wσα∨

i = α∨
j with w ∈ W .

Denote the set of T̃Q-weights of Ṽ −1,0 by S . Given ξ ∈ S , let m(ξ) denote the multiplicity of ξ as a weight of

Ṽ −1,0. For ǫ ∈ {i, j}, let Sǫ = {ξ ∈ S |〈ξ, αǫ〉 > 0}. Then

(4.3.2) mǫ =
∑

ξ∈S

m(ξ)〈ξ, α∨
ǫ 〉.

By Lemma 4.2.3(a), every summand in (4.3.2) is nonnegative. Since S ∪−S is the set of T̃Q-weights of ρ̃Q, it

is closed under x 7→ τx for all τ ∈ W ⋊Gal(Q/Q). By Lemma 4.2.3(b), the map S ∪−S → S ∪−S , x 7→ wσx,
restricts to a bijection of Si onto Sj . Another application of Lemma 4.2.3(a) gives Sǫ ∩ −S = ∅. Thus m(ξ)

equals the multiplicity of ξ as T̃Q-weight of ρ̃Q for all ξ ∈ Si ∪ Sj . Hence ξ ∈ Si implies m(ξ) = m(wσξ). Thus
mi = mj .

�

Proof of Th. 1.4.4: Since G and G̃ have the same adjoint group, one has 〈ηω, α∨〉 = 〈η̃ω, α∨〉 for all roots α.
It is therefore equivalent to show that η̃ω is quasi-constant. Suppose a root α and σ ∈ W ⋊ Gal(Q/Q) satisfy

〈η̃ω , α
∨〉 6= 0 and 〈η̃ω, σα

∨〉 6= 0. Let G̃i (resp. G̃j) be the unique factor of G̃Q of which α (resp. σα) is a

root. Then 〈η̃ω , α∨〉 = 〈η̃ω,i, α∨〉 and 〈η̃ω , σα∨〉 = 〈η̃ω,j , σα∨〉. By Lemma 4.3.1, one has η̃ω,i = mη(αi) and
η̃ω,j = mη(αj)).

In types An and Dn, the fundamental weights η(αi), η(αj) are minuscule, hence |〈η(αi), α∨〉| = |η(αj), σα∨〉| = 1
(by the assumptions above both pairings are nonzero).

In types Bn and Cn (n ≥ 2), the pairing 〈η(αi), α∨〉 has absolute value 1 if α∨ is short and 2 if α∨ is long (again
because the pairing was assumed nonzero). We conclude by observing that the property of being long (resp. short)
is preserved under W ⋊Gal(Q/Q).

�

4.4. Invariance of the Hodge ray.

Proof of Cor. 1.4.5: By the proof of Th. 1.4.4, specifically §4.3, one has m ∈ Z such that ηω,i = mη(αi) when

L̃i 6= G̃i and ηω,i = 0 when L̃i = G̃i. It remains to show that m < 0. For this purpose, we use the dictionary
between ample line bundles on a flag variety and dominant regular weights (cf. [19, II.4.4] and the ensuing remarks).

Let P be the parabolic subgroup of GE with Levi L which stabilizes the Hodge filtration of ad ◦h. By our
conventions, given α ∈ Φ \ Φ(L,T), the root group Uα is contained in PQ if and only if α is negative. Let I ⊂ ∆
be the type of P.

Write P for the flag variety GQ/PQ and Pg in the Siegel case. Over C, the projective variety PC is known as

the compact dual of X. Given λ ∈ X∗(L), the associated line bundle L (λ) on P is ample if and only if 〈λ, α∨〉 > 0
for all α ∈ ∆ \ I (loc. cit.).

The embedding (1.4.1) induces an embedding of compact duals P →֒ Pg. A first application of the above
dictionary gives that, in the Siegel case, the Hodge line bundle ωg is anti-ample on Pg. Since the pullback of an
ample line bundle along a finite map is ample, the line bundle ω(ψ) is anti-ample on P . Thus a second application
of the dictionary gives 〈ηω, α∨〉 < 0 for all α ∈ ∆ \ I. It follows that m < 0 as desired.

�

4.5. A counter-example when Gad is not Q-simple. In Rmk. 1.4.6, it was claimed that the assumption "Gad

is Q-simple" is necessary for the invariance of the ray generated by the Hodge line bundle (Cor. 1.4.5). Intuitively,
it seems natural to expect that the factors of the Hodge line bundle ω(ψ) corresponding to different Q-factors of
G can vary independently of one another as one varies the symplectic embedding ψ (1.4.1). Some extra care is
required because of the technical restrictions that a symplectic embedding of (G,X) imposes on the center of G.
So we give an example to show that the above intuition is in fact correct.

Let g ≥ 1 be an integer. Let Hg be the connected, reductive, split Q-group defined as the subgroup of the g-fold
product GL(2)g where the g components have the same determinant. Then the center of Hg is one-dimensional
and one has an isomorphism of Q-groups Had

g
∼= PGL(2)g.
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Let a, b be positive integers. For every Q-algebra R, mapping (A,B) ∈ H2(R) to the vector (A, . . . , B, . . .) ∈
Ha+b(R) with a components equal to A followed by b components equal to B gives an embedding fa,b : H2 →֒ Ha+b.

The group Hg is isomorphic to the maximal rank subgroup of GSp(2g) given by the sub-root system of all
long roots in GSp(2g) (in the notation of (3.1.7), this sub-root system is O2). This gives an embedding of split
Q-groups kg : Hg →֒ GSp(2g). Equivalently, if one defines GSp(2g) using the alternating form on Q2g given by

Jg :=

(

0 −Ig
Ig 0

)

, then the image may also be described as g "embedded squares", where the ith 2 × 2 square

occupies the (i, i), (i, g+ i), (g+ i, i), (g+ i, g+ i) entries of a 2g× 2g matrix in GSp(2g,R) (and all the other entries
are 0).

As usual write z = x+ iy for z ∈ S(R) (§4.1). Define hg : S → GSp(2g)R corresponding to the standard formula

hg(z) 7→

(

xIg −yIg
yIg xIg

)

.

Recall that the GSp(2g,R)-conjugacy class of hg is Xg pertaining to the Siegel datum (GSp(2g),Xg).
Define jg : S → (Hg)R by jg(z) = (h1(z), . . . , h1(z)), i.e., jg is h1 followed by the diagonal embedding. Let Yg

be the Hg(R)-conjugacy class of jg. Note that Yg is different from the product Xg
1. The pair (Hg,Yg) is a Shimura

datum.
Fix g = a+ b. One has jg = fa,b ◦ j2 and hg = kg ◦ jg. Thus:

Example 4.5.1. The embeddings fa,b : H2 →֒ Ha+b and kg : Hg →֒ GSp(2g) defined above satisfy:

(a) Both fa,b and kg induce morphisms of Shimura data.
(b) Both kg and kg ◦ fa,b are symplectic embeddings; in particular (Hg,Yg) is of Hodge type.

It remains to understand the Hodge characters associated to the embeddings in Example 4.5.1. With respect
to the alternating form J above, a Q-split maximal torus Tg in GSp(2g) is given by the diagonal matrices of

the form diag(t1c, . . . , tgc, t
−1
1 c, . . . t−1

g c). The Hodge character ηg ∈ X∗(Tg) of (GSp(2g),Xg) is then given by

(t1 · · · tg)−1c−g and the pullback s∗ηg to T̃g in Sp(2g) is (t1 · · · tg)−1).
A compatible choice of Q-split maximal torus in Hg is given by g-tuples of the form

(

c

(

s1
s−1
1

)

, . . . , c

(

sg
s−1
g

))

.

Thus one finds:

Example 4.5.2. The Hodge characters of Example 4.5.1 satisfy the following:

(a) The Hodge character k∗gηg is given by (s1 · · · sg)−1c−g.

(b) The Hodge character (kg ◦ fa,b)∗ηg is given by s−a1 s−b2 c−g.

(c) The pullback of (kg ◦ fa,b)∗ηg to the corresponding maximal torus of H̃2 = SL(2)× SL(2) is s−a1 s−b2 .

In particular, Cor. 1.4.5 fails miserably for the symplectic embedding (kg ◦ fa,b) : (H2,Y2) →֒ (GSp(2g),Xg).

The example above for H2 is easily generalized in several ways, in particular to all Hg.

5. Further applications, motivation and open problems

5.1. Uniform principal purity for quasi-constant cocharacters. As a further application of quasi-constant
(co)characters, we combine the duality construction for quasi-constant cocharacters (Prop. 3.3.4) with our previous
results on Hasse generators in [13, 14] to deduce Th. 1.5.2.

For the convenience of the reader, we recall the main result [13, Th. 3.2.3] and the notions ‘orbitally p-close’, ‘L-
ample’ and ‘(p, L)-admissible’ which are used in its formulation (loc. cit., Defs. N.5.1, N.5.3). Let G be a connected,
reductive Fp-group, µ ∈ X∗(T ) a cocharacter and set L := Cent(µ). Define ∆L ⊂ ∆ by ∆L := ∆ ∩ Φ(L, T ). A

character χ ∈ X∗(T ) is orbitally p-close if, for all α ∈ Φ satisfying 〈χ, α∨〉 6= 0 and all σ ∈ W ⋊ Gal(Fp/Fp), one
has

(5.1.1)

∣

∣

∣

∣

〈χ, σα∨〉

〈χ, α∨〉

∣

∣

∣

∣

≤ p− 1.

Further, χ is L-ample if 〈χ, α∨〉 < 0 for all α ∈ ∆ \∆L. Finally, χ is (p, L) admissible if it is both orbitally p-close

and L-ample. Then Th. 3.2.3 of loc. cit. states that every (p, L)-admissible χ ∈ X∗(T ) is a Hasse generator of
G-Zipµ (§1.5).

The orbitally p-close condition 5.1.1 is a natural weakening – depending on p – of the quasi-constant one (1.1.2);
in particular a quasi-constant character is orbitally p-close for all primes p. As for ‘quasi-constant’, the condition
‘orbitally p-close’ naturally extends to an element of X∗(T )Q, even if it is not a character. The character χ is
L-ample if and only if the associated line bundle L (χ) is anti-ample on the flag variety G/P , where P is the
parabolic of type ∆L containing L (§4.5).
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Proof of Th. 1.5.2: By assumption µ is quasi-constant. Without loss of generality, we may assume µ is ∆-dominant.
Let 〈µ〉 be the quasi-constant ray spanned by µ. By Prop. 3.3.4, the dual ray 〈µ〉∨ ⊂ X∗(T )Q afforded by
Construction 3.3.1 is quasi-constant. Let µ∗ be a nontrivial element of 〈µ〉∨ ∩X∗(T ). Then µ∗ is quasi-constant.
This proves (a).

By construction, µ∗ is ∆-dominant. Thus −µ∗ is ∆-anti-dominant. By (3.3.2), −µ∗ is L-ample. Therefore −µ∗

is (p, L)-admissible. So part (b) follows from [13, Th. 3.2.3]. �

5.2. ‘Quasi-constant’ as unification of ‘minusucule’ and ‘cominuscule’. In view of Th. 1.2.1, when G is
simple and k is algebraically closed, the property ‘quasi-constant’ captures the union of the two properties ‘minuscule’
and ‘cominuscule’, up to scalar multiples.

The equivalent definitions of ‘cominuscule’ which appear in the literature (cf. §2.2.2) have several drawbacks.
First, they are only valid for semisimple G (6). This goes against the philosophy of Deligne, Serre, Langlands
and others which highlights the importance (and necessity) of considering all connected reductive groups. Second,
even for semisimple G, the definition of cominuscule requires choosing a basis ∆ ⊂ Φ of simple roots. Third, the
definition of cominuscule makes reference to ‘minuscule’ and presupposes that the relationship between ‘minuscule’
and ‘fundamental weights’ has already been understood in the semisimple case.

By contrast, both the definitions of ‘minuscule’ (cf. §2.2.1) and ‘quasi-constant’ (Def. 1.1.2) have none of these
issues: They apply uniformly to general G, require no choice of basis and do not presuppose anything beyond the
root datum of (G, T ).

For these reasons, we suggest that a conceptual implication of Th. 1.2.1 may be that, among ‘cominuscule’ and
‘quasi-constant’, the latter is the more natural notion. The validity of our suggestion should be tested by applying
the above two notions in various different contexts.

5.3. ‘Quasi-constant’ as a test case in our program. Recall that, as mentioned in §1, our general program
aims to connect (A) Automorphic Algebraicity, (B) G-Zip-Geometricity, and (C) Griffiths-Schmid Algebraicity. The
basic objects in (B) and (C) – stacks G-Zipµ and Griffiths-Schmid manifolds – are both essentially associated to
data (G, [µ]), where G is a connected, reductive k-group and [µ] is the conjugacy class of a cocharacter µ ∈ X∗(G).
In the case of G-Zipµ, k = Fp, while for Griffiths-Schmid manifolds k = Q. As we briefly recall below, much more
is known about both (B) and (C) when the cocharacter µ is minuscule, thanks to the theory of Shimura varieties7.

It is therefore natural to seek generalizations of the minuscule condition on which to test questions and con-
jectures regarding G-Zipµ, Griffiths-Schmid manifolds and the connections between the two. We propose the
quasi-constant condition as such a generalization. Below, we single out three questions concerning (B)-(C) about
which a considerable amount is known in the minuscule case, but which are wide-open beyond that.

In addition to their intrinsic interest and contribution to our program, progress on these questions is likely to have
significant applications to the Langlands correspondence between automorphic representations and Galois represen-
tations. The link between the Langlands correspondence and Griffiths-Schmid algebraicity was studied extensively
in Carayol’s program (see [5, 6, 7, 8] and [16]). In the context of Hodge-type Shimura varieties, applications of the
link with G-Zips to the Langlands correspondence were studied in [13], where in many cases Galois representations
were associated to automorphic representations with non-degenerate limit of discrete series archimedean component,
and pseudo-representations were associated to spaces of coherent cohomology modulo a prime power.

5.3.1. Griffiths-Schmid manifolds. The complex manifolds that bear their name were introduced by Griffiths-Schmid
almost half-a-century ago in 1969, [18]. However, their study underwent several decades of relative hibernation,
until it was revived by Carayol in a series of papers initiated in the late 1990’s and later also in a series of works by
Griffiths and his school (cf. [15, 16, 20, 17]). The main cause for the dormant period was probably that, since their
introduction, it was widely believed that – in a precise sense recalled below – ‘most’ Griffiths-Schmid manifolds are
not algebraic. This belief was recently confirmed by Griffiths-Robles-Toledo [17].

Suppose G is a connected, reductive Q-group and X is a G(R)-conjugacy class of a morphism of R-groups
h : S → GR satisfying Deligne’s axioms for a Shimura variety (2.1.1.2) and (2.1.1.3) of [11], but not necessarily
satisfying axiom (2.1.1.1) of loc. cit. That is, assume that adh(i) is a Cartan involution of Gad

R and that no Q-simple
factor of Gad has compact real points; contrary to the case of a Shimura variety we do not assume that the Hodge
structure ad ◦h on Lie(G)C is of type {(1,−1), (0, 0), (−1, 1)}.

By the work of Griffiths-Schmid [18], reinterpreted in the language of [11] (see also [8] and [23] for the translation),
one has a projective system of Griffiths-Schmid (complex) manifolds

(5.3.2) (GS(G,X)K)K⊂G(Af ),

6An artificial extension to reductive G can be given, for instance, by declaring that χ is cominuscule if its restriction to a maximal torus
of the derived subgroup of G is cominuscule.
7Many of the more sophisticated results concerning Shimura varieties require the more stringent hypothesis that µ is of Hodge or abelian
type.
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indexed by (neat) open compact subgroups K of G(Af ). The system (5.3.2) admits an action of G(Af ) in the
sense of [11, 2.1.4]. In [17], it is shown that GS(G,X)K is not algebraic – in the sense that GS(G,X) is not the
analytification Xan of a C-scheme X – unless the following condition, termed the ‘classical case’ 8 in loc. cit., is
satisfied:

(Cl) There exists a Shimura datum (G,X′) (with the same underlying group G) such that the natural smooth
map X → X′ is holomorphic.

One way to understand the map X → X′ is as follows: The centralizer of h′ ∈ X′ is a maximal connected, compact
modulo center subgroup of G(R). The centralizer of any h ∈ X is also connected and compact modulo center, but
possibly not maximal. Thus one can choose h ∈ X so that Stab(h) ⊂ Stab(h′). The map X → X′ is then simply
the projection G(R)/ Stab(h) → G(R)/ Stab(h′).

Condition (Cl) is equivalent to GS(G,X)K being the analytification of a (partial) flag space associated to the
Shimura variety Sh(G,X)K as defined in [14] (an important special case is already discussed in [13, §9.1]). Briefly,
the (partial) flag spaces of a Shimura variety are algebraic fibrations over the Shimura variety with (partial) flag
variety fibers. For Shimura varieties of Hodge type, the integral models of Kisin [21] and Vasiu [26] can be used to
construct integral models of the associated flag spaces, see [14].

Following Deligne, one sets µ = µh = (h⊗C)(z, 1) for h ∈ X to obtain a cocharacter µ ∈ X∗(G) and thus a pair
(G, [µ]). Conversely, the pair (G, [µ]) almost determines a pair (G′,X); there are subtleties having to do with the
center and the real form G′

R determined by µ may be different than GR, see [11, 1.2.4] for details.

5.3.3. Algebraicity of Griffiths-Schmid manifolds. Notwithstanding the negative result of [17], there are several
poignant reasons to believe that there is a hidden algebraicity underlying all Griffiths-Schmid manifolds. Some
such reasons which arise from Hodge theory are discussed in the aforementioned references of Griffiths and his
collaborators. We shall now briefly mention the reason underlying Carayol’s program.

Carayol observed cases where automorphic representations π with degenerate limit of discrete series archimedean
component contribute to the cohomology of non-classical Griffiths-Schmid manifolds. More precisely, this means
that one has a G(Af )-equivariant embedding of the finite part πf into lim

−→K
Hi(GS(G,X)K,L (λ)), for some i and

some automorphic line bundle L (λ). When GS(G,X)K is also compact, Carayol shows that in fact every cohomol-
ogy class in Hi(GS(G,X)K,L (λ)) is represented by automorphic forms. The relationship between automorphic
representations and the cohomology of Griffiths-Schmid manifolds observed by Carayol in particular examples (see
also Kerr [20] and Charbord [9] for further examples) are expected to hold for all Griffiths-Schmid manifolds.

At this point, an intuition for some form of algebraicity for Griffiths-Schmid manifolds comes from the Langlands
program. The automorphic representations π which contribute to the cohomology of Griffiths-Schmid manifolds are
all necessarily C-algebraic in the sense of Buzzard-Gee [4]. The Langlands program conjectures that C-algebraic
automorphic representations π should enjoy a wide variety of algebraicity properties. For example, the Hecke
eigenvalues (Satake parameters) of π should be algebraic numbers and there should be a compatible system of
Galois representations (ultimately a motive) associated to π. See loc. cit. for some precise conjectures along these
lines.

Combining the remarks above about the link between cohomology and automorphic representations on the one
hand and the Langlands program on the other, one is led to suspect, as Carayol did, that at least the coherent
cohomology of automorphic line bundles on Griffiths-Schmid manifolds is deeply algebraic; for example that it
should admit a Q-structure. Since properties of the cohomology of a space X should reflect those of X itself, we
are led to ask:

Question 5.3.4. Is there a generalized notion of algebraicity which is satisfied by all Griffiths-Schmid manifolds?

5.3.5. Geometrization of G-Zipµ. The underlying topological space of G-Zipµ is a finite set of points. Thus it seems
that G-Zipµ lacks some global geometric richness. One way to apply the theory of G-Zipµ to schemes X is to study
morphisms X → G-Zipµ. This raises two problems: The first is to exhibit interesting examples of X → G-Zipµ.
The second was singled out as Question B in the introduction to [12]: To what extent is the geometry of X controlled
by G-Zipµ and properties of a morphism X → G-Zipµ?

Regarding the first problem, Shimura varieties of Hodge type furnish important examples of morphisms X →
G-Zipµ. More precisely, suppose (G,X) is a Shimura datum of Hodge type, p is a prime at which G is unramified
and (G,µ) arises from (G, [µ]) by reduction mod p. If K ⊂ G(Af ) is hyperspecial at p, then a theorem of Zhang
asserts that there is a smooth morphism from the special fiber of the Kisin-Vasiu p-integral model of Sh(G,X)K to
G-Zipµ, [27].

Concerning the second problem, the works [13, 14, 12, 3] give various positive examples of geometric properties
that are to a large extent controlled by properties of a morphism X → G-Zipµ. These include the existence of
global sections and positivity of certain vector bundles on X , as well as the affineness of Ekedahl-Oort strata.

Our second question is then:

8This condition is sometimes also called the ‘semi-classical’ case, to distinguish it from the case of an actual Shimura datum.
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Question 5.3.6. Is there a generalization of Zhang’s morphism

(5.3.7) X → G-Zipµ

for more general pairs (G,µ)?

In analogy with the case of Hodge-type Shimura varieties, a more optimistic and more precise question would be
to ask for an entire system (XK)K ⊂ G(Af ) mapping to G-Zipµ, where K runs over subgroups which are (a fixed)
hyperspecial at p.

5.3.8. Extending the link between Griffiths-Schmid and G-Zipµ. Since Shimura varieties of Hodge-type are a very
special case of Griffiths-Schmid manifolds, Zhang’s theorem provides a direct link between a subclass of Griffiths-
Schmid manifolds and subclass of the G-Zipµ.

Question 5.3.9. Does the link between the stacks G-Zipµ and the Griffiths-Schmid manifolds GS(G,X)K extend
beyond the case that µ is of Hodge type and even beyond the case that µ is minuscule?

In a small number of cases, this is achieved by the theory of Zip flags, see [13, §§2,9.1] and especially [14], where
the scheme X is given by the partial flag spaces of a Shimura variety.

5.3.10. The case of quasi-constant cocharacters. Returning to the fundamental notion of this paper – the quasi-
constant condition – we conclude with:

Question 5.3.11. Is there a special approach or simpler answer to Questions 5.3.4, 5.3.6 and 5.3.9 when µ is
quasi-constant?

In this paper, we gave an example of a different question about cocharacter data, namely Question 1.5.1 on
the uniform principal purity of G-Zipµ, where we were able to provide a positive answer to the analogue of Ques-
tion 5.3.11.

Appendix A. Explicit bounds for uniform principal purity

Return to the setting of §1.5 and §5.1: G is a connected, reductive Fp-group, µ ∈ X∗(G) and L = Cent(µ).
For simplicity, we shall assume throughout the appendix that Gad is absolutely simple, i.e., that Gad

Fp
is simple.

Fundamental weights will refer to those of Gad.
It is natural to seek an explicit bound C(∆,∆L), depending only on the root system of G and the type of L, such

that G-Zipµ is uniformly principally pure provided that p > C(∆,∆L). When µ is quasi-constant, it was shown
in Th. 1.5.2 that uniform principal purity holds for all p, i.e., one may take C(∆,∆L) = 1. Below we record an
explicit upper bound for C(∆,∆L), for every irreducible ∆ and every Levi type ∆L.

To this end, we use an elementary application of our result on group-theoretical Hasse invariants [13, Th. 3.2.3]
(which was recalled in §5.1). Recall also the notation for fundamental weights in §2.1.7. Given S ⊂ ∆, write
η(S) =

∑

α∈S η(α).

Lemma A.1. Assume η(∆ \ ∆L) is orbitally p-close (§5.1). If χ ∈ X∗(T ad) is a strictly negative multiple of
η(∆ \∆L), then pr∗ χ is a Hasse generator for G-Zipµ (§1.5). Consequently, G-Zipµ is uniformly principally pure.

Proof. Suppose χ is a character of T ad which is a negative multiple of η(∆ \ ∆L). By definition, the condition
‘orbitally p-close’ is closed under non-zero scalar multiples: For every c ∈ Q×, ξ ∈ X∗(T )Q is orbitally p-close if
and only cξ is. Further ξ is orbitally p-close if and only if pr∗(χ) is. Thus both χ and pr∗ χ are orbitally p-close by
assumption. Since χ is a negative multiple of η(∆\∆L), pr

∗ χ is L-ample (§5.1). By op. cit., χ is a Hasse generator
of G-Zipµ. �

One can simplify the computation of whether η(∆ \∆L) is orbitally p-close using a reduction to the ∆-dominant
elements of Φ∨. If D is simply-laced (§2.1.5), then Φ∨ contains a unique ∆-dominant element, namely the highest
coroot hα∨ (§2.1.6). Otherwise D is multi-laced and then Φ∨ contains precisely two ∆-dominant elements: the
highest coroot hα∨ and the coroot (hα)∨ corresponding to the highest root.

Lemma A.2.

(a) Assume that either D is simply-laced or ∆ \∆L contains a short root. Then η(∆ \∆L) is orbitally p-close
if and only if 〈η(∆ \∆L),

hα∨〉 ≤ p− 1.
(b) Assume D is multi-laced and every root in ∆ \∆L is long. Then η(∆ \∆L) is orbitally p-close if and only

if 〈η(∆ \∆L), (
hα)∨〉 ≤ p− 1.
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Proof. Since G is assumed absolutely simple, the orbits of W ⋊Gal(Fp/Fp) on Φ and Φ∨ agree with those of W .
Recall that for every positive coroot α∨, the difference hα∨ − α∨ is a nonnegative Z-linear combination of simple
coroots. Since the fundamental weights are ∆-dominant, for α ranging over Φ, the value of 〈η(∆ \ ∆L), α

∨〉 is
maximal when α∨ = hα∨. Moreover, when D is multi-laced, the highest coroot is always long.

Under either assumption in (a), ∆∨ \∆∨
L contains a long coroot γ∨. Thus γ∨ is in the same Weyl group orbit

as hα∨. Since 〈η(∆ \∆L), γ
∨〉 = 1, as α ranges over those roots in Φ satisfying 〈η(∆ \∆L), α

∨〉 6= 0 and σ ranges
over W ⋊Gal(Fp/Fp), the maximal value of

(A.3)

∣

∣

∣

∣

〈η(∆ \∆L), σα
∨〉

〈η(∆ \∆L), α∨〉

∣

∣

∣

∣

is 〈η(∆ \∆L),
hα∨〉. This proves (a).

Now consider (b). The hypothesis ensures that every coroot in ∆∨ \∆∨
L is in the same W -orbit as (hα)∨. The

same reasoning as in (a) shows that the maximal value attained in A.3 is 〈η(∆ \∆L), (
hα)∨〉, at least when α∨ is

in the short W -orbit of coroots. It remains to check that no larger value occurs in (A.3) when α∨ is in the long
orbit of coroots. This can be checked by hand, using the identifications recalled in the proofs of Lemmas 3.1.4, 3.1.5
and 3.1.6. �

Remark A.4. The pairing 〈η(∆ \∆L),
hα∨〉 equals the sum of the coroot multiplicities

∑

α∈∆\∆L
m∨(α) (§2.1.6).

These multiplicities are given in both [2, Chap. VI, Planches I-IX] and [22, Appendix C.1-C.2].

For every Dynkin diagram D of a reduced and irreducible root system, α ∈ ∆ and ∆L = ∆\{α}, the table below
gives the bound C(∆,∆L) for uniform principal purity gotten by combining Lemmas A.1 and A.2. The names
of the simple roots refer to [2, Chap. VI, Planches I-IX]; in the multi-laced case they agree with the notation of
Lemmas 3.1.4, 3.1.5 and 3.1.6.

Table 1. Bounds for uniform principal purity

Type of D Simple root α C(∆,∆L)

An αi = ei − ei+1, (1 ≤ i ≤ n) 1

Bn
α1 = e1 − e2, αn = en 1

αi = ei − ei+1, (2 ≤ i ≤ n− 1) 2

Cn
α1 = e1 − e2, αn = 2en 1

αi = ei − ei+1, (2 ≤ i ≤ n− 1) 2

Dn
α1 = e1 − e2, αn−1 = en−1 − en, αn = en−1 + en 1

αi = ei − ei+1, (2 ≤ i ≤ n− 2) 2

G2 α1, α2 2

F4
α1, α4 2

α2, α3 3

E6

α1, α6 1

α2, α3, α5 2

α4 3

E7

α7 1

α1, α2, α6 2

α3, α4, α5 3

E8

α1, α8 2

α2, α3, α6, α7 3

α4, α5 5

An immediate corollary of the table is:

Corollary A.5.

(a) If L is maximal and p ≥ 7, then G-Zipµ is uniformly principally pure.
(b) If L is maximal, G is classical (type An, Bn, Cn or Dn) or of type G2 and p ≥ 3, then G-Zipµ is uniformly

principally pure.
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Remark A.6. In all but the types E7, E8, the coroot multiplicities satisfy m∨(α) ∈ {1, 2, 3}, so a bound C(∆,∆L)
is obtained for a non-maximal L by adding the bounds given in the table for the various α ∈ ∆ \∆L. For E7, E8

there are α ∈ ∆ for which m∨(α) = m(α) is composite (and >1): m∨(α4) = 4 for E7, while m∨(α3) = m∨(α6) = 4
and m∨(α4) = 6 for E8. In these cases, one must add the true coroot multiplicity rather than the value in the table
(the table gives the largest prime smaller than the multiplicity). For example, let ∆\∆L = {α1, α3, α4} in type E8.
Then the bound obtained is C(∆,∆L) = 2 + 4 + 6 = 12, while adding the values in the table gives 2 + 3 + 5 = 10.
In this example, we do not know if uniform principle purity holds for p = 11.
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