Survey on the theory of G-zips

Jean-Stefan Koskivirta

This survey was written for the 2018 RIMS conference "Algebraic Number Theory and Related Topics 2018".

1 Introduction

The theory of F-zips was first introduced by Moonen-Wedhorn in [2]. Roughly speaking, this theory aims at classifying geometric objects in positive characteristic. For example, let E be an elliptic curve over an algebraically closed field k of characteristic p and consider the p-torsion part E(k)[p] of the group E(k). There are two cases:

- If $E(k)[p] \simeq \mathbb{Z}/p\mathbb{Z}$, we say that E is ordinary.
- If $E(k)[p] = \{0\}$, we say that E is supersingular.

Hence, the group E(k)[p] is a discrete invariant for elliptic curves over k, in the sense that the number of possible cases is finite. The theory of F-zips is a similar attempt to attach invariants to geometric objects.

If we consider a family of elliptic curves $\mathscr{E} \to S$ over a base scheme S of characteristic p, then the fibers \mathscr{E}_s for $s \in S$ are usual elliptic curves over fields. Hence S is naturally the (set-theoretic) disjoint union

$$S = S^{\operatorname{ord}} \sqcup S^{\operatorname{ss}}$$

where S^{ord} (resp. S^{ss}) is the set of $s \in S$ such that \mathscr{E}_s is ordinary (resp. supersingular). It turns out that the ordinary locus S^{ord} is always open. This is related to the fact that an ordinary elliptic curve has a good deformation theory.

A concrete way of seeing that S^{ord} is open, is to express it as the non-vanishing locus of a section of a line bundle over S. Denote by ω the line bundle over S obtained by pulling back the sheaf $\Omega^1_{\mathscr{E}/S}$ along the unit section $S \to \mathscr{E}$ of the S-group scheme \mathscr{E} . There exists a section $\text{Ha} \in H^0(S, \omega^{p-1})$ called the Hasse invariant such that

$$S^{\text{ord}} = \{ s \in S \mid \text{Ha}(s) \neq 0 \}.$$

The theory of F-zips provides a geometric object (an algebraic stack), which carries naturally the line bundle ω and the Hasse invariant Ha. Concretely, let B denote the group of upper-triangular matrices in GL_2 , let B_- be the lower-triangular ones, and let T be the diagonal torus. Consider the set of pairs $(x, y) \in B_- \times B$ such that the diagonal coefficients of y are the p-th powers of the diagonal coefficients of x. In other words, x, y have the form

$$x = \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \quad , \quad y = \begin{pmatrix} a^p & b \\ 0 & d^p \end{pmatrix}$$

for some $a, d \in k^{\times}$ and $b, c \in k$. The set of such pairs forms a group $E \subset B_{-} \times B$. Let E act on GL_2 by the rule $(x, y) \cdot g = xgy^{-1}$. Then one sees that there are exactly two orbits for this action, an open orbit and a closed one. The open orbit is

$$GL_2^{\text{ord}} := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2 \mid a \neq 0 \right\}.$$

The closed one is GL_2^{ss} , defined by the condition a = 0.

The stack of F-zips in this context is the quotient stack $\mathcal{X} = [E \setminus GL_2]$, its underlying topological space consists of two points. We will see in this survey that the datum of an elliptic curve \mathscr{E} over S induces a map $S \to \mathcal{X}$. The ordinary and supersingular loci are the fibers of this map. This geometrization is very useful. The stack \mathcal{X} has a rich structure, and S inherits it by way of pulling back. For example, the section Ha previously mentioned is actually pulled back from a section Ha $\in H^0(\mathcal{X}, \omega^{p-1})$ for a certain line bundle ω on \mathcal{X} .

In the papers [3] and [4], Pink-Wedhorn-Ziegler define the notion of G-zips. The formalism of G-zips makes it possible to work with arbitrary reductive groups G, in place of GL_2 in the previous example. We will see that the Hasse invariant Ha possesses a vast generalization as well.

2 The category of F-zips

We start be recalling the definition of F-zips, as introduced by Moonen-Wedhorn in [2]. Basically, an F-zip over a scheme S of characteristic p is a locally free module endowed with two filtrations and Frobenius-linear isomorphisms between the graded pieces. Specifically, let S be a scheme and let \mathcal{M} be a locally free \mathcal{O}_S -module. By a descending filtration on \mathcal{M} , we mean a sequence of locally free \mathcal{O}_S -submodules $(\mathcal{C}^i)_{i\in\mathbb{Z}}$ such that

- (i) For all $i \in \mathbb{Z}$, $\mathcal{C}^{i+1} \subset \mathcal{C}^i$ is Zariski locally a direct factor of \mathcal{C}^i .
- (ii) One has $C^i = 0$ for $i \gg 0$ and $C^i = \mathcal{M}$ for $i \ll 0$.

We define $\operatorname{gr}^{i}(\mathcal{C}^{\bullet}) := \mathcal{C}^{i}/\mathcal{C}^{i+1}$, by assumption (i) it is a locally free \mathcal{O}_{S} -module. We say that $(\mathcal{D}_{i})_{i\in\mathbb{Z}}$ is an ascending filtration if $(\mathcal{D}_{-i})_{i\in\mathbb{Z}}$ is a descending filtration. In this case, we write $\operatorname{gr}_{i}(\mathcal{D}_{\bullet}) := \mathcal{D}_{i}/\mathcal{D}_{i-1}$. For an \mathcal{O}_{S} -module \mathcal{F} , we denote by $\mathcal{F}^{(p)}$ the pullback of \mathcal{F} under the absolute Frobenius map $\operatorname{Fr}_{S} : S \to S$.

Definition 2.1. An *F*-zip over *S* is a tuple $\underline{\mathcal{M}} = (\mathcal{M}, \mathcal{C}^{\bullet}, \mathcal{D}_{\bullet}, \iota_{\bullet})$, where

- (1) \mathcal{M} is a locally free \mathcal{O}_S -module of finite rank.
- (2) $\mathcal{C}^{\bullet} = (\mathcal{C}^i)_{i \in \mathbb{Z}}$ is a descending filtration on \mathcal{M} .
- (3) $\mathcal{D}_{\bullet} = (\mathcal{D}_i)_{i \in \mathbb{Z}}$ is an ascending filtration on \mathcal{M} .
- (4) For each $i \in \mathbb{Z}$, ι_i is an isomorphism $\operatorname{gr}^i(\mathcal{C}^{\bullet})^{(p)} \to \operatorname{gr}_i(\mathcal{D}_{\bullet})$ of \mathcal{O}_S -modules.

Next we describe homomorphisms of F-zips. If $\underline{\mathcal{M}}$ and $\underline{\mathcal{N}}$ are F-zips, a homomorphism $f : \underline{\mathcal{M}} \to \underline{\mathcal{N}}$ is a morphism of \mathcal{O}_S -modules $f : \mathcal{M} \to \mathcal{N}$ such that $f(\mathcal{C}^i \mathcal{M}) \subset \mathcal{C}^i \mathcal{N}$ and $f(\mathcal{D}^i \mathcal{M}) \subset \mathcal{D}^i \mathcal{N}$ for all $i \in \mathbb{Z}$, and such that the following diagram commutes

The category of F-zips is denoted by $\operatorname{F-Zip}(S)$, it is \mathbb{F}_p -linear (but not \mathcal{O}_S -linear, due to the presence of the Frobenius isogeny). We will see now that it is a tensor category. First, if \mathcal{M}, \mathcal{N} are locally free \mathcal{O}_S -modules endowed with descending filtrations $\mathcal{C}^{\bullet}\mathcal{M}$ and $\mathcal{C}^{\bullet}\mathcal{N}$ respectively, then $\mathcal{M} \otimes \mathcal{N}$ has a descending filtration defined by:

$$\mathcal{C}^i(\mathcal{M}\otimes\mathcal{N}):=\sum_{j\in\mathbb{Z}}\mathcal{C}^j\mathcal{M}\otimes\mathcal{C}^{i-j}\mathcal{N}.$$

There is of course a similar statement with ascending filtrations. Hence if $\underline{\mathcal{M}}$ and $\underline{\mathcal{N}}$ are F-zips over S, the locally free \mathcal{O}_S -module $\mathcal{M} \otimes \mathcal{N}$ is endowed with a descending filtration $\mathcal{C}^{\bullet}(\mathcal{M} \otimes \mathcal{N})$ and an ascending filtration $\mathcal{D}_{\bullet}(\mathcal{M} \otimes \mathcal{N})$. Furthermore, it is easy to see that the isomorphisms ι_{\bullet} for \mathcal{M} and \mathcal{N} induces similar isomorphisms between the graded pieces of these filtrations. We obtain an F-zip structure on $\mathcal{M} \otimes \mathcal{N}$, which we call the tensor product of $\underline{\mathcal{M}}$ and $\underline{\mathcal{N}}$ and denote it by $\underline{\mathcal{M}} \otimes \underline{\mathcal{N}}$. This shows that F-Zip(S) is an \mathbb{F}_p -linear tensor category.

There is a notion of type for an F-zip $\underline{\mathcal{M}} = (\mathcal{M}, \mathcal{C}^{\bullet}, \mathcal{D}_{\bullet}, \iota_{\bullet})$ over a base scheme S. Let $\eta : \mathbb{Z} \to \mathbb{Z}_{\geq 0}$ be a function with finite support (i.e $\eta(i) \neq 0$ for finitely many $i \in \mathbb{Z}$), then we say that $\underline{\mathcal{M}}$ has type η if the locally free sheaf $\operatorname{gr}^{i}(\mathcal{C}^{\bullet})$ has rank $\eta(i)$ for all $i \in \mathbb{Z}$. Denote by F-Zip^{η}(S) the full subcategory of F-zips of type η over S.

For an F-zip $\underline{\mathcal{M}}$, it is possible to shift the indexation of the filtrations by an index $r \in \mathbb{Z}$. The F-zip $\mathcal{M}[r]$ is defined by $\mathcal{C}^{\bullet}(\underline{\mathcal{M}}[r]) := \mathcal{C}^{\bullet+r}(\underline{\mathcal{M}})$ and $\mathcal{D}_{\bullet}(\underline{\mathcal{M}}[r]) := \mathcal{D}_{\bullet+r}(\underline{\mathcal{M}})$. Denote by $\mathcal{O}_S[r]$ the unique F-zip whose underlying sheaf is \mathcal{O}_S and whose type has support $\{r\}$. Then $\underline{\mathcal{M}}[r]$ is simply $\underline{\mathcal{M}} \otimes \mathcal{O}_S[r]$. Hence if we denote by $\eta[r]$ the function $i \mapsto \eta(r+i)$, then the categories F-Zip^{η}(S) and F-Zip^{η [r]}(S) are equivalent.

3 F-zips and Dieudonne spaces

We say that a commutative group scheme G over k is *n*-torsion (for an integer $n \in \mathbb{Z}_{\geq 1}$) if multiplication by n is the zero map of G(R) for any k-algebra R. Recall the classification of finite, commutative, *p*-torsion group schemes over k by Dieudonne theory.

Theorem 3.1 ([14, page 69]). There is a contravariant functor $\mathbb{D} : G \mapsto \mathbb{D}(G)$ between the category of finite, commutative, p-torsion group schemes over k and the category of triples (M, F, V) where M is a finite-dimensional k-vector space, $F : M \to M$ is a σ -linear map, $V : M \to M$ is a σ^{-1} -linear map, satisfying the conditions FV = 0 and VF = 0. Furthermore, this functor is an equivalence of categories.

Furthermore, if a triple (M, F, V) satisfies the extra conditions $\operatorname{im}(F) = \operatorname{Ker}(V)$ and $\operatorname{im}(V) = \operatorname{Ker}(F)$, then we call it a Dieudonne space over k. For example, if A is an abelian variety over k, the p-torsion A[p] is a finite, commutative, p-torsion group scheme over k and its associated object $\mathbb{D}(A[p])$ is a Dieudonne space over k ([15, §3.3.8]). A Dieudonne space (M, F, V) over k gives rise to an F-zip over k as follows.

- (i) The filtration C^{\bullet} of M is defined by $C^0 = M$, $C^1 = \text{Ker}(F)$, $C^2 = 0$.
- (ii) The filtration D_{\bullet} of M is defined by $D_{-1} = 0$, $D_0 = \text{Ker}(V)$, $D_1 = M$.
- (iii) The isomorphism $\iota_0 : (C^1)^{(p)} \to M/D_0$ is the inverse of the map induced by V. The isomorphism $\iota_1 : (M/C^1)^{(p)} \to D_0$ is the one induced by F.

Proposition 3.2. This construction gives an equivalence of categories between the category of Dieudonne spaces over k to the full subcategory of F-Zip(k) of F-zips whose type $\eta : \mathbb{Z} \to \mathbb{Z}_{\geq 0}$ has support in $\{0, 1\}$.

In particular, if A is an abelian scheme over k, we can attach an F-zip to A by applying Proposition 3.2 to the Dieudonne space $\mathbb{D}(A[p])$.

4 F-zips arising in geometry

It is not obvious at first glance why Definition 2.1 is relevant. We will see that F-zips arise naturally in geometry via de Rham cohomology. To define it, first recall the construction of hypercohomology. Let \mathcal{A} and \mathcal{B} be abelian categories, and suppose that \mathcal{A} has enough injective objects (i.e., any object has a monomorphism to an injective object). Let $T : \mathcal{A} \to \mathcal{B}$ be a left exact functor. Let K^{\bullet} be a bounded below complex of objects in \mathcal{A} . Choose a quasi-isomorphism $K^{\bullet} \to I^{\bullet}$ to a complex of injective objects (this is always possible). Then one defines the hypercohomology of K^{\bullet} as

$$\mathbb{R}^i T(K^\bullet) := H^i(T(I^\bullet)).$$

This gives a well-defined object in \mathcal{B} , that we call the hypercohomology of K^{\bullet} . It is possible to construct several spectral sequences that converge to the hypercohomology, by considering different filtrations on a complex K^{\bullet} . In this survey, the two spectral sequences of importance are the following two:

$${}^{\prime}\!E_1^{a,b} = R^b T(K^a) \Longrightarrow \mathbb{R}^{a+b} T(K^{\bullet}).$$
$${}^{\prime\prime}\!E_2^{a,b} = R^a T(H^b(K^{\bullet})) \Longrightarrow \mathbb{R}^{a+b} T(K^{\bullet}).$$

For example, let X be a scheme of finite-type over an arbitrary field k. The sheaves $\Omega^i_{X/k}$ are coherent \mathcal{O}_X -modules. However, since differentials are not \mathcal{O}_X -linear, the de Rham complex $\Omega^{\bullet}_{X/k}$ is a complex in the category of sheaves of k-vector spaces on X. Denote this abelian category by \mathcal{A} . Let \mathcal{B} be the category of k-vector spaces, and let $T : \mathcal{A} \to \mathcal{B}$ be the functor $\mathcal{F} \mapsto \Gamma(X, \mathcal{F})$. The formalism of hypercohomology yields a k-vector space $H^i_{\mathrm{dR}}(X/k) := \mathbb{R}^i T(\Omega^{\bullet}_{X/k})$ and spectral sequences converging to $H^*_{\mathrm{dR}}(X/k)$:

$${}^{\mathrm{H}}E_1^{a,b} := H^b(X, \Omega^a_{X/k}) \Longrightarrow H^{a+b}_{\mathrm{dR}}(X/k).$$
$${}^{\mathrm{conj}}E_2^{a,b} := H^a(X, \mathscr{H}^b(\Omega^{\bullet}_{X/k})) \Longrightarrow H^{a+b}_{\mathrm{dR}}(X/k).$$

We call them respectively the Hodge and the conjugate spectral sequences. When k has characteristic zero, things are particularly simple as both sequences degenerate immediately. Furthermore, if $k = \mathbb{C}$, a standard fact in Hodge theory states that the conjugate filtration is obtained from the Hodge filtration by applying complex conjugation.

When k has positive characteristic p, the degeneracy is no longer true, not even when X is proper smooth over k. Hence, we make the following assumption:

Assumption 4.1. The Hodge spectral sequence of X degenerates at E_1 .

Let $F_X : X \to X^{(p)}$ be the relative *p*-power Frobenius map and consider the complex $F_{X,*}(\Omega^{\bullet}_{X/k})$. This is a complex of $\mathcal{O}_{X^{(p)}}$ -modules whose maps are $\mathcal{O}_{X^{(p)}}$ -linear (easy computation). Hence the cohomology sheaves $\mathscr{H}^a(F_{X,*}(\Omega^{\bullet}_{X/k}))$ are $\mathcal{O}_{X^{(p)}}$ -modules. The Cartier isomorphisms are natural isomorphisms

$$\Omega^a_{X^{(p)}} \xrightarrow{\sim} \mathscr{H}^a(F_{X,*}(\Omega^{\bullet}_{X/k})).$$

for all $a \ge 0$ (see [16, Theorem 7.2]). Taking the *b*-th cohomology group over $X^{(p)}$ on each side, we obtain σ -linear isomorphisms for all $a, b \ge 0$:

$${}^{\mathrm{H}}E_1^{a,b} \simeq {}^{\mathrm{conj}}E_2^{b,a}$$

It also follows from this that the conjugate spectral sequence automatically degenerates at the second page. We now give the construction of the F-zip $\underline{M} := (M, C^{\bullet}, D_{\bullet}, \iota_{\bullet})$ over k attached to X.

- (i) Take $M = H^n_{dR}(X/k)$.
- (ii) Denote by $C^{\bullet} = (C^i)_{i \in \mathbb{Z}}$ the filtration obtained by the Hodge spectral sequence, indexed such that C^{\bullet} is descending and $\operatorname{gr}^i(C^{\bullet}) = H^{n-i}(X, \Omega^i_{X/k})$.
- (iii) Denote by $D_{\bullet} = (D_i)_{i \in \mathbb{Z}}$ the filtration obtained by the conjugate spectral sequence, indexed such that D_{\bullet} is ascending and $\operatorname{gr}_i(D_{\bullet}) = H^{n-i}(X, \mathscr{H}^i(\Omega^{\bullet}_{X/k})).$
- (iv) Let $\iota_i : \operatorname{gr}_i(C^{\bullet})^{(p)} \to \operatorname{gr}^i(D_{\bullet})$ be the linearized Cartier isomorphism.

We have just seen that if X is a proper smooth scheme over k satisfying Assumption 4.1, then $H^n_{dR}(X/k)$ is naturally endowed with an F-zip structure. There are many such schemes, for example abelian varieties, K3 surfaces, complete intersections in projective bundles... Also a theorem of Deligne-Illusie states that a proper smooth scheme X over k which lifts to $W_2(k)$ and of dimension $\dim(X) < p$ satisfies Assumption 4.1.

We now give the generalization of this construction to an arbitrary base scheme. Let $f: X \to S$ be a proper, smooth morphism of \mathbb{F}_p -schemes. Following the terminology of [2], we say that $f: X \to S$ satisfies condition (D) if the following properties hold.

- (1) The \mathcal{O}_S -modules $R^b f_*(\Omega^a_{X/S})$ are locally free of finite rank for all $a, b \ge 0$.
- (2) The Hodge spectral sequence degenerates at E_1 .

Assume that f satisfies condition (D), then just as in the previous case, for any integer n such that $0 \le n \le 2 \dim(X/S)$ the locally free \mathcal{O}_S -module $H^n_{dR}(X/S)$ is naturally endowed with an F-zip structure over S. We write $\underline{H}^n_{dR}(X/S)$ for this F-zip. This construction can be promoted to a contravariant functor

$$\underline{H}^n_{\mathrm{dR}} : \begin{pmatrix} \text{Proper smooth } X \to S \\ \text{satisfying condition (D)} \end{pmatrix} \longrightarrow \text{F-Zip}(S).$$

An important example is the case of abelian schemes $A \to S$. If g denotes the relative dimension of A/S, the F-zip $\underline{H}^1_{dR}(A/S)$ has type $\eta : \mathbb{Z} \to \mathbb{Z}_{\geq 0}$ where η is defined by

$$\eta(i) = \begin{cases} g & i = 0, 1\\ 0 & \text{otherwise} \end{cases}$$

In the case S = Spec(k), recall that we attached an F-zip to a Dieudonne space over k (Proposition 3.2). One can check that the F-zip $\underline{H}^1_{dR}(A/k)$ coincides with the F-zip attached to $\mathbb{D}(A[p])$.

5 Additional structure

From now on, k will denote an algebraic closure of \mathbb{F}_p . It is natural to consider F-zips endowed with additional structure. For example, let (A, λ) be a principally polarized abelian variety over k of dimension g. Let $\underline{H}_{dR}^1(A/k) = (M, C^{\bullet}, D_{\bullet}, \iota_{\bullet})$ be the attached F-zip. In particular, we have σ -linear isomorphisms $\iota_0 : M/C^1 \to D_0$ and $\iota_1 : C^1 \to M/D_0$. The polarization λ induces on M a perfect pairing $\langle -, - \rangle : M \times M \to k$ which satisfies the following conditions.

- (i) C_1 and D_0 are totally isotropic.
- (ii) One has $\langle \iota_0 x, \iota_1 y \rangle = \sigma \langle x, y \rangle$ for all $x \in M$ and all $y \in C^1$ (note that the expression $\langle \iota_0 x, \iota_1 y \rangle$ is well-defined because D_0 is totally isotropic).

More generally, we can define F-zips with G-structure for an arbitrary algebraic group G over \mathbb{F}_p . Denote by $\operatorname{Rep}(G)$ the category of algebraic representations of G over \mathbb{F}_p . Since we saw that the category of F-zips over a scheme S is a tensor category, we may define the following notion.

Definition 5.1. A *G*-zip functor over an \mathbb{F}_p -scheme *S* is an exact \mathbb{F}_p -linear tensor functor $\operatorname{Rep}(G) \to F\text{-}\operatorname{Zip}(S)$.

We denote by G-ZipFun(S) the category of G-zip functors over S. Our goal in this section is to explain a more down-to-earth definition of F-zips with G-structure over S. For this, we need to understand how to generalize the notion of type.

First of all, if $G = GL_n$, the category G-ZipFun(S) is equivalent to the category F-Zipⁿ(S) of F-zips $\underline{\mathcal{M}} = (\mathcal{M}, \mathcal{C}^{\bullet}, \mathcal{D}_{\bullet}, \iota_{\bullet})$ where \mathcal{M} is a locally free \mathcal{O}_S -module of rank n. If such an F-zip $\underline{\mathcal{M}}$ has type η , then it must satisfy

$$\sum_{i\in\mathbb{Z}}\eta(i)=n.$$

Giving such a function is the same as giving a conjugacy class of cocharacters of GL_n . The bijection is given as follows. If η is a function as above, the corresponding conjugacy class of cocharacters is given by considering a decomposition

$$\mathbb{F}_p^n = \bigoplus_{i \in \mathbb{Z}} V_i$$

where V_i has dimension $\eta(i)$ and letting $z \in \mathbb{G}_m$ act on V_i by z^i . Hence, it seems natural that the generalization of the notion of type for *G*-zip functors is a conjugacy class of cocharacters of *G*.

Definition 5.2. Let $\mu : \mathbb{G}_{m,k} \to G_k$ be a cocharacter. We say that a *G*-zip functor z :Rep $(G) \to F\text{-Zip}(S)$ has type μ if for all representations $(V, \rho) \in \text{Rep}(G)$, the *F*-zip $z(V, \rho)$ has type $\rho \circ \mu$. Denote by *G*-ZipFun^{μ}(S) the full subcategory of *G*-zip functors of type μ .

Now, we explain an equivalent definition of *G*-zips. Fix a cocharacter $\mu : \mathbb{G}_{m,k} \to G_k$. One obtains naturally a pair of opposite parabolic subgroups (P_-, P_+) in G_k and a common Levi subgroup $L := P_- \cap P_+ = \text{Cent}(\mu)$. The group $P_+(k)$ consists of those elements $g \in G(k)$ such that the limit

$$\lim_{t \to 0} \mu(t) g \mu(t)^{-1}$$

exists, i.e. such that the map $\mathbb{G}_{m,k} \to G_k$, $t \mapsto \mu(t)g\mu(t)^{-1}$ extends to a morphism of varieties $\mathbb{A}^1_k \to G_k$. The Lie algebra of the parabolic P_+ (resp. P_-) is given by

$$\operatorname{Lie}(P_+) = \bigoplus_{n \ge 0} \operatorname{Lie}(G)_n \quad (\operatorname{resp. Lie}(P_-) = \bigoplus_{n \le 0} \operatorname{Lie}(G)_n)$$

where $\text{Lie}(G)_n$ is the subspace where $z \in \mathbb{G}_m$ acts by z^n via the cocharacter μ . We set $P := P^-, Q := (P^+)^{(p)}$ and $M := L^{(p)}$, so that M is a Levi subgroup of Q. We denote by U and V the unipotent radicals of P and Q, respectively. For a k-scheme S, one defines:

Definition 5.3. A G-zip of type μ over S is a tuple $\underline{I} = (I, I_P, I_Q, \iota)$ where

- (i) I is a G-torsor over S,
- (ii) $I_P \subset I$ is a P-torsor over S,
- (iii) $I_Q \subset I$ is a Q-torsor over S,
- (iv) $\iota: (I_P/U)^{(p)} \to I_Q/V$ is an isomorphism of M-torsors.

In the case $G = GL_n$, one recovers the usual notion of F-zip. Denote by G-Zip^{μ}(S) the category of G-zips of type μ . By a result of Pink-Wedhorn-Ziegler ([4, §1.4]), there is an equivalence of categories

$$G$$
-ZipFun ^{μ} $(S) \simeq G$ -Zip ^{μ} (S) .

6 The stack of *G*-zips

It is convenient to use the language of stacks to study F-zips and G-zips. Roughly speaking, a stack is an object that generalizes the notion of scheme by allowing automorphisms of points. First, recall that a groupoid is a category in which every map is an isomorphism. A category fibred in groupoids over the category of k-schemes is a family of groupoids $\mathcal{X}(S)$ for each k-scheme S, such that if $\varphi : S \to T$ is a map of k-schemes, there is a functor $\varphi^* : \mathcal{X}(T) \to \mathcal{X}(S)$. This is called a base change functor and is denoted by $(-)_S$. Furthermore, if $\varphi : S \to T$ and $\psi : T \to U$ are maps of k-schemes, there is an isomorphism of functors $(\psi \circ \varphi)^* \simeq \varphi^* \circ \psi^*$ (and these isomorphisms satisfy a cocycle relation). A stack over k is a particular kind of category fibred in groupoids over the category of k-schemes.

Specifically, one requires two conditions to hold:

- (1) For all k-schemes S and all $x, y \in \mathcal{X}(S)$, the functor from S-schemes to sets which takes T to $\operatorname{Hom}_{\mathcal{X}(T)}(x_T, y_T)$ is a sheaf for the etale topology.
- (2) All descent data are effective.

Roughly speaking, the second condition means that if $(T_i \to S)_{i \in I}$ is an etale covering, we may glue objects $x_i \in \mathcal{X}(T_i)$ to obtain an object $x \in \mathcal{X}(S)$. Specifically, write $V_{ij} := V_i \times_S V_j$. Then if $f_{ij} : (x_i)_{V_{ij}} \to (x_j)_{V_{ij}}$ are isomorphisms satisfying the usual cocycle relation, then there exists an object $x \in \mathcal{X}(S)$ such that $x_i = x_{V_i}$.

For example, a k-scheme X may be viewed as a stack over k. The groupoid X(S) is simply the set $\operatorname{Hom}_k(S, X)$, viewed as a category where the only maps are the identities of objects.

For each k-scheme S, consider the category \mathbb{F} -**Zip**(S) whose objects are F-zips over S and whose morphisms are isomorphisms of F-zips. Clearly, this is a groupoid. If $f: T \to S$ is a map of k-schemes, then there is a base change functor $f^*: \mathbb{F}$ -**Zip**(S) $\to \mathbb{F}$ -**Zip**(T). Indeed, let $\underline{\mathcal{M}} = (\mathcal{M}, \mathcal{C}^{\bullet}, \mathcal{D}_{\bullet}, \iota_{\bullet})$ be an F-zip over S. Then $f^*\underline{\mathcal{M}} = (f^*\mathcal{M}, f^*\mathcal{C}^{\bullet}, f^*\mathcal{D}_{\bullet}, f^*\iota_{\bullet})$ is its pull-back to T.

Definition 6.1. The above construction gives rise to a stack over k. We denote it by F-Zip and call it the stack of F-zips. Similarly, if $\eta : \mathbb{Z} \to \mathbb{Z}_{\geq 0}$ is a function with finite support, then the categories F-Zip^{η}(S) give rise to a stack over k, that we denote by F-Zip^{η}. More generally, if G is a connected \mathbb{F}_p -reductive group and $\mu : \mathbb{G}_{m,k} \to G_k$ is a cocharacter, the categories G-Zip^{μ}(S) give rise to a stack G-Zip^{μ} over k. This turns out to be an algebraic stack. In our case, this means that there is a smooth surjective morphism from a scheme to this stack. For an algebraic stack \mathcal{X} , it is possible to define an underlying topological space by taking the equivalence classes of pairs (K, x)where $k \subset K$ is a field extension and $x \in \mathcal{X}(K)$. Two pairs (K, x) and (K', x') are equivalent if there exists a common field extension L of K and K' such that $x_L \simeq x'_L$. The set of equivalence classes is denoted by $|\mathcal{X}|$. This set is endowed with a topology, as follows. Say that a map of stacks $\mathcal{Y} \to \mathcal{X}$ is an open immersion if the map $\mathcal{Y} \times_{\mathcal{X}} X \to X$ is an open immersion of schemes for any scheme X mapping to \mathcal{X} . In this case, $|\mathcal{Y}|$ is naturally a subset of $|\mathcal{X}|$. Subsets of this kind form a topology, called the Zariski topology of $|\mathcal{X}|$. Similarly, one can define a closed substack $\mathcal{Y} \to \mathcal{X}$ as a map of stacks that becomes a closed immersion (of schemes) after base change to a scheme $X \to \mathcal{X}$.

For a function $\eta : \mathbb{Z} \to \mathbb{Z}_{\geq 0}$ with finite support, the substack $F-Zip^{\eta} \subset F-Zip$ is both open and closed. The stack F-Zip decomposes as a disjoint union

$$F-Zip = \bigsqcup_{\eta} F-Zip^{\eta}$$

and the substacks $F-Zip^{\eta}$ are the connected components of F-Zip. In particular, this implies that an F-zip over a connected scheme S has a type, because the corresponding map $S \rightarrow F-Zip$ must factor through a certain component $F-Zip^{\eta}$.

7 Representation as a quotient stack

A nice property of stacks is the existence of quotients. If H is a smooth k-algebraic group acting on the left on a k-scheme X, then the quotient stack $\mathcal{X} := [H \setminus X]$ is defined as follows. For any k-scheme S, the groupoid $\mathcal{X}(S)$ is the category of pairs (T, α) where T is an H-torsor on S and $\alpha : T \to X \times_k S$ is an $H \times_k S$ -equivariant map. It is clear that $\mathcal{X}(S)$ is a groupoid, and one can check that \mathcal{X} is a stack over k. For example, when X = Spec(k)is endowed with the trivial action of H, the quotient stack $B(H) = [H \setminus \text{Spec}(k)]$ is the classifying stack of H. For a k-scheme S, a morphism of stacks $S \to B(H)$ is essentially the same as an H-torsor over S.

Fix a connected reductive \mathbb{F}_p -group G and a cocharacter $\mu : \mathbb{G}_{m,k} \to G_k$. We will see that the k-stack G-Zip^{μ} can be written as a quotient stack. Let P, Q, L, M, U, V be the attached groups, as defined in §5. The Frobenius restricts to a map $\varphi : L \to M$. The isomorphisms $L \simeq P/U$ and $M \simeq Q/V$ yield natural maps $P \to L$ and $Q \to M$ which we both denote by $x \mapsto \overline{x}$. Define the zip group E as:

$$E := \{ (a, b) \in P \times Q \mid \varphi(\overline{a}) = \overline{b} \}.$$

The group E acts on G by the rule $(a, b) \cdot g := agb^{-1}$.

Theorem 7.1 ([4, Th. 1.5]). There is an isomorphism $G\operatorname{-Zip}^{\mu} \simeq [E \setminus G]$.

In particular, the underlying topological space $|G-\operatorname{Zip}^{\mu}|$ coincides with the set of *E*orbits in *G*. Each such orbit is locally closed for the Zariski topology of *G*. We now give a parametrization of these *E*-orbits. Fix a Borel pair (B,T) satisfying $B \subset P$ and suppose for simplicity that (B,T) are defined over \mathbb{F}_p . After possibly changing μ to a conjugate cocharacter, it is always possible to find such a Borel pair. Denote by Φ the set of *T*-roots and Δ the set of simple roots. Recall that there is a bijection between subsets of Δ and conjugacy classes of parabolic subgroups of G_k . We normalize this bijection such that Borel subgroups correspond to the empty set. Let $I, J \subset \Delta$ be the types of P, Q respectively. Since $B \subset P$, the set *I* consists of the simple roots of *L*. Write W = N(T)/T for the Weyl group of *T*, it is a Coxeter group. There is a length function $\ell : W \to \mathbb{Z}_{\geq 0}$. Write w_0 for the longest element in *W*. For a subset $K \subset \Delta$, let $w_{0,K}$ be the longest element of the subgroup $W_K \subset W$ generated by $\{s_\alpha \mid \alpha \in K\}$. Also define W^K as the set of elements $w \in W$ which are of minimal length in the coset wW_K .

For $w \in W$, choose a representative $\dot{w} \in N_G(T)$, such that $(w_1w_2)^{\cdot} = \dot{w}_1\dot{w}_2$ whenever $\ell(w_1w_2) = \ell(w_1) + \ell(w_2)$ (this is possible by choosing a Chevalley system, see [13], Exp. XXIII, §6). Define $z := w_0w_{0,J}$.

For $w \in W$, define G_w as the *E*-orbit of $\dot{w}\dot{z}^{-1}$. The *E*-orbits in *G* form a stratification of *G* by locally closed subsets.

Theorem 7.2 ([3, Th. 11.3]). The map $w \mapsto G_w$ induces a bijection from W^J onto the set of *E*-orbits in *G*. Furthermore, for $w \in W^J$, one has

$$\dim(G_w) = \ell(w) + \dim(P).$$

Endow G_w with the reduced subscheme structure. Then the quotient stack $\mathcal{X}_w = [E \setminus G_w]$ is a locally closed substack of $\mathcal{X} = G$ -Zip^{μ}. We call \mathcal{X}_w a zip stratum. This gives a stratification of \mathcal{X} . Note that the underlying topological space of \mathcal{X}_w is a single point.

8 Vector bundles on G-Zip^{μ}

It is possible to define a notion of vector bundles for algebraic stacks. If \mathcal{X} is an algebraic stack, one could define a vector bundle over \mathcal{X} as a family of vector bundles $\mathscr{V} = (\mathscr{V}_S)_S$ for each scheme S and each morphism of stacks $S \to \mathcal{X}$. Furthermore, this family should be compatible in an obvious sense. The space of global sections of \mathscr{V} over \mathcal{X} is then defined as an inverse limit of the spaces $H^0(S, \mathscr{V}_S)$.

Let G be a smooth algebraic group over k acting on a k-variety X. Let \mathcal{X} be the quotient stack $[G \setminus X]$. Then there is a natural way to attach a vector bundle on \mathcal{X} to an algebraic representation $\rho : G \to GL(V)$. Specifically, if $S \to \mathcal{X}$ is a map from a scheme S, then by definition of the quotient stack, we have a natural G-torsor on S. Applying the representation ρ , we obtain a GL(V)-torsor on S, hence a vector bundle of rank dim(V). This construction is functorial in S, so we obtain a vector bundle $\mathscr{V}(\rho)$ on the stack \mathcal{X} . Explicitly, the space of global sections $H^0(\mathcal{X}, \mathscr{V}(\rho))$ is identified with

$$H^0(\mathcal{X}, \mathscr{V}(\rho)) = \{ f : X \to V, \ f(g \cdot x) = \rho(g)f(x), \ \forall g \in G, \ \forall x \in X \}.$$

Recall that the stack of G-zips of type μ is isomorphic to a quotient stack $[E \setminus G]$, as explained earlier. Hence, the previous construction attaches to each algebraic representation $\rho : E \to GL(V)$ a vector bundle $\mathscr{V}(\rho)$ on G-Zip^{μ}. Furthermore, $\mathscr{V}(\rho)$ is a line bundle if and only if ρ is a character of E.

For the time being, we consider only line bundles. There are natural identifications between characters of E, P and L via the first projection $E \to P$ and the Levi projection $P \to L$. Indeed, all these groups coincide up to a unipotent group, which has no nontrivial characters. Hence, we parametrize line bundles on G-Zip^{μ} by characters of L: If $\lambda \in X^*(L)$, we denote by $\mathscr{V}(\lambda)$ the line bundle attached to the character $E \to \mathbb{G}_m$, $(a, b) \mapsto \lambda(\overline{a})$.

9 Hasse invariants

One interesting feature of the stack of G-zips is the existence (in many cases, but not always) of Hasse invariants for zip strata. Let us start with a definition of what we mean

by a Hasse invariant. Let \mathcal{X} be an algebraic stack. We may thus consider its underlying topological space $|\mathcal{X}|$. Let $\mathcal{Y} \subset \mathcal{X}$ be a locally closed subset, and denote by $\overline{\mathcal{Y}}$ its Zariski closure. Endow both \mathcal{Y} and $\overline{\mathcal{Y}}$ with the reduced substack structure. Finally, let \mathscr{L} be a line bundle over \mathcal{X} .

Definition 9.1. A Hasse invariant for \mathcal{Y} with respect to \mathscr{L} is a section $h \in H^0(\overline{\mathcal{Y}}, \mathscr{L}^n)$ (some $n \geq 1$) such that the non-vanishing locus of h is exactly \mathcal{Y} .

Recall that any character $\lambda \in X^*(L)$ gives rise to a line bundle $\mathscr{V}(\lambda)$ on the stack $\mathscr{X} = G\operatorname{-Zip}^{\mu}$. Taking \mathscr{Y} to be a single zip stratum $\mathscr{X}_w \subset \mathscr{X}$ (for some $w \in W^J$) in Definition 9.1, we have the notion of Hasse invariants for \mathscr{X}_w with respect to $\mathscr{L}(\lambda)$. It is possible to give a combinatorial criterion for the existence of such Hasse invariants. For an element $w \in W$, we write E_w for the set of positive roots α satisfying $ws_\alpha < w$ and $\ell(ws_\alpha) = \ell(w) - 1$. Write σ for the action of Frobenius on W and $X^*(T)$. For $w \in W$ and an integer $n \geq 1$, let $w^{(n)}$ be the product $\sigma^n(w)\sigma^{n-1}(w)\ldots\sigma(w)$ and set by convention $w^{(0)} = 1$. It is easy to see that there exists $r \geq 1$ such that $w^{(r)} = 1$. Furthermore, the set of integers $r \geq 1$ such that $w^{(r)} = 1$ is stable under addition. Hence we can find $r \geq 1$ such that $w^{(r)} = 1$ for all $w \in W$. We fix such an integer $r \geq 1$. We also fix an integer $m \geq 1$ such that T is split over \mathbb{F}_{p^m} .

Proposition 9.2 ([6, Prop. 3.2.1]). Let $w \in W^J$ and $\lambda \in X^*(L)$. The following assertions are equivalent:

- (i) There is a Hasse invariant for \mathcal{X}_w with respect to $\mathscr{L}(\lambda)$.
- (ii) For all $\alpha \in E_w$, one has:

$$\sum_{i=0}^{m-1} \langle (zw^{-1})^{(i)} \sigma^i(\lambda), w\alpha^{\vee} \rangle p^i > 0.$$

$$(9.0.1)$$

First, we want to mention negative results. The above proposition can provide a counterexample for the principal purity of the stratification $(\mathcal{X}_w)_w$. Principal purity means that every stratum admits a Hasse invariant (for some $\lambda \in X^*(L)$). The easiest counter-example that we could find is in the case of G = Sp(6) for a cocharacter μ that corresponds to the middle point of the Dynkin diagram. For the prime number p = 2, there exists a stratum \mathcal{X}_w which does not admit Hasse invariants (for any $\lambda \in X^*(L)$).

To obtain a positive results for the existence of Hasse invariants, it is of course very cumbersome to check that condition (ii) is satisfied in general. Hence we want to mention a result which has a much easier statement.

Theorem 9.3. Assume that $\lambda \in X^*(L)$ satisfies the following conditions:

- (i) One has $\langle \lambda, \alpha^{\vee} \rangle < 0$ for all $\alpha \in \Delta \setminus I$.
- (ii) For all $\alpha \in \Phi$ such that $\langle \lambda, \alpha^{\vee} \rangle \neq 0$, for all $w \in W$ and all $j \in \mathbb{Z}$ we have

$$\left|\frac{\langle \lambda, w\sigma^j(\alpha)^\vee \rangle}{\langle \lambda, \alpha^\vee \rangle}\right| \le p - 1.$$

Then $\mathscr{L}(\lambda)$ admits Hasse invariants on all zip strata.

Theorem 9.3 is an elementary consequence of Proposition 9.2. One checks that the expression (9.0.1) is positive as follows: View this expression as a polynomial in p. The leading coefficient is

 $\langle (zw^{-1})^{(rm-1)}\sigma^{rm-1}(\lambda), w\alpha^{\vee} \rangle = \langle wz^{-1}\sigma^{-1}(\lambda), w\alpha^{\vee} \rangle = \langle \lambda, \sigma(z\alpha)^{\vee} \rangle.$

We claim that this leading coefficient is positive. First, since $w \in W^J$ and $\alpha \in E_w$, we have $\alpha \notin J$. Since $z = w_0 w_{0,J}$, we deduce easily that $z\alpha$ is a negative root not contained in M. It follows that $\sigma(z\alpha)$ is a negative root, not contained in L. Hence one can write $-\sigma(z\alpha)^{\vee} = \sum_j \alpha_j^{\vee}$ for $\alpha_j \in \Delta$, with at least one α_j in $\Delta \setminus I$. It follows from Condition (i) that $\langle \lambda, \sigma(z\alpha)^{\vee} \rangle > 0$, hence the claim.

Divide the expression (9.0.1) by this leading coefficient. Then Condition (ii) implies that the coefficients of this monic polynomial are $\leq p-1$. The result then follows from the inequality

$$(p-1)\sum_{i=0}^{r-2} p^i = p^{r-1} - 1 < p^{r-1}.$$

10 Ekedahl-Oort strata

Consider an abelian variety A of dimension $g \ge 1$ over k. The p-torsion A[p] is a finite commutative p-torsion group scheme over k. Not all finite commutative p-torsion group scheme over k appear in this way. Those which do are exactly those whose Dieudonne module $\mathbb{D}(A[p])$ satisfies $\operatorname{im}(F) = \operatorname{Ker}(V)$ and $\operatorname{im}(V) = \operatorname{Ker}(F)$ (we say that A[p] is a BT_1).

If $\mathscr{A} \to S$ is an abelian scheme over a base scheme of characteristic p, then S is naturally decomposed as a (set-theoretic) disjoint union

$$S = \bigsqcup_{\gamma} S_{\gamma}$$

where γ varies in the set of isomorphism classes of BT_1 's. The subset S_{γ} is the set of points $s \in S$ such that $\mathscr{A}_s[p]$ is in γ . By a theorem of Oort, this decomposition is locally closed. However, in general it may not be a stratification of S in the sense that the closure of S_{γ} may not be a union of $S_{\gamma'}$ for certain γ' .

As we explained, we may attach to $\mathscr{A} \to S$ an F-zip $\underline{\mathcal{M}} = (\mathcal{M}, \mathcal{C}^{\bullet}, \mathcal{D}_{\bullet}, \iota_{\bullet})$ over S whose type η has support in $\{0, 1\}$ and satisfies $\eta(0) = \eta(1) = g$. This gives rise to a morphism of stacks

$$\zeta: S \longrightarrow \operatorname{F-Zip}^{\eta}.$$

The strata S_{γ} of S coincide with the fibers of this morphism. The stack $F-Zip^{\eta}$ coincides with the stack $G-Zip^{\mu}$ for the group $G = GL_{2q}$ and the cocharacter

$$\mu: z \mapsto \begin{pmatrix} z \operatorname{Id}_g \\ & \operatorname{Id}_g \end{pmatrix}$$

In particular, the Levi subgroup $L \subset G$ attached to μ is the set of matrices of the form

$$\begin{pmatrix} A & 0\\ 0 & D \end{pmatrix}, \quad \text{where } A, D \in GL_g.$$
(10.0.1)

Thus $X^*(L)$ is a free \mathbb{Z} -module of rank 2. Consider the character $\lambda_{\omega} \in X^*(L)$ given by mapping the matrix (10.0.1) to $\det(A)^{-1}$. We have an associated line bundle $\mathscr{V}(\lambda_{\omega})$ over $\mathcal{X} = F\text{-}\operatorname{Zip}^{\eta}$.

The Hodge vector bundle Ω of the abelian scheme $\mathscr{A} \to S$ is defined as the pullback along the unit section $S \to \mathscr{A}$ of the sheaf of relative differentials $\Omega^1_{\mathscr{A}/S}$. It is a rank gvector bundle on S. Denote by $\omega = \wedge^g \Omega$ its determinant. Then one has the following equation.

$$\zeta^*\mathscr{V}(\lambda_\omega) = \omega.$$

It is easy to check that the character λ_{ω} satisfies the conditions (i) and (ii) of Theorem 9.3 (for any value of the prime p). The first one is immediate, and for the second one, note that λ_{ω} is minuscule, hence for all $\alpha \in \Phi$ such that $\langle \lambda_{\omega}, \alpha^{\vee} \rangle \neq 0$, the quotient

$$\left|\frac{\langle\lambda_{\omega}, w\alpha^{\vee}\rangle}{\langle\lambda_{\omega}, \alpha^{\vee}\rangle}\right|$$

only takes the value 0 or 1 for any $w \in W$, hence is always $\leq p - 1$, even for p = 2. Thus we may apply the theorem to the line bundle $\mathscr{V}(\lambda_{\omega})$. By pulling back to S, we deduce:

Proposition 10.1. For each isomorphism class γ of BT_1 's over k, there exists $n \geq 1$ and a section $\operatorname{Ha}_{\gamma} \in H^0(\overline{S}_{\gamma}, \omega^n)$ over the Zariski closure \overline{S}_{γ} which satisfies

$$\{s \in \overline{S}_{\gamma} \mid \operatorname{Ha}_{\gamma}(s) \neq 0\} = S_{\gamma}.$$

11 Sketch of proof

We sketch the proof of Proposition 9.2. It relies heavily on the stack of *G*-zip flags. It is a stack \mathcal{Y} with a natural projection map $\pi : \mathcal{Y} \to \mathcal{X}$. It carries a stratification $(\mathcal{Y}_w)_{w \in W}$ indexed by the whole Weyl group. Specifically, we give the following definition.

Definition 11.1. A G-zip flag of type μ over a k-scheme S is a pair $I = (\underline{I}, J)$ where $\underline{I} = (I, I_P, I_Q, \iota)$ is a G-zip of type μ over S, and $J \subset I_P$ is a B-torsor.

We denote by G-ZipFlag^{μ}(S) the category of G-zip flags over S. By similar arguments as for G-zips, we obtain a stack $\mathcal{Y} := G$ -ZipFlag^{μ} over k, which we call the stack of G-zip flags of type μ . There is a natural projection $\pi : \mathcal{Y} \to \mathcal{X}$ given by forgetting the B-torsor. To stratify \mathcal{Y} , we need the following result. Define a subgroup $E' \subset E$ by $E' := E \cap (B \times G)$. By adapting the proof of Theorem 7.1, one can prove the following.

Theorem 11.2. There is a commutative diagram, where the vertical maps are isomorphisms and the lower horizontal map is the natural projection:

We explain now how \mathcal{Y} admits a natural stratification. It is based on the observation that the group E' is contained in the product $B \times {}^{z}B$, where ${}^{z}B := zBz^{-1}$ (this is an easy verification). In particular, there is a natural projection map

$$\psi: \mathcal{Y} \to [B \backslash G/^z B] \simeq [B \backslash G/B]$$

By the Bruhat decomposition of G, the latter stack has a stratification $(\mathcal{B}_w)_{w \in W}$ parametrized by the Weyl group W. The strata $(\mathcal{Y}_w)_{w \in W}$ of \mathcal{Y} are defined as the fibers of the map ψ . Now we give the main steps of the proof of Proposition 9.2.

- (1) First, one shows that for any $\lambda \in X^*(L)$, there exists $n \ge 1$ such that $\mathscr{V}(\lambda)^n$ admits a nonzero section $h_{\lambda,w}$ on the strata \mathscr{X}_w of \mathscr{X} for all $w \in W^J$. Furthermore, these sections are unique up to nonzero scalar. To prove Proposition 9.2, we need to understand for which λ the section $h_{\lambda,w}$ extends to a Hasse invariant of \mathscr{X}_w .
- (2) In general, for $w \in W$, the image of \mathcal{Y}_w by π is a union of several strata $\mathcal{X}_{w'}$. However, when $w \in W^J$, one has $\pi(\mathcal{Y}_w) = \mathcal{X}_w$. Furthermore, the map $\pi : \mathcal{Y}_w \to \mathcal{X}_w$ is finite etale.
- (3) One shows that $h_{\lambda,w}$ extends to a Hasse invariant if and only if $\pi^* h_{\lambda,w}$ extends to a Hasse invariant for \mathcal{Y}_w . One implication is clear. The other is the following lemma:

Lemma 11.3. Let $f : X \to Y$ a proper surjective morphism of integral schemes of finite-type over k. Let \mathscr{L} be a line bundle on Y. Let $U \subset Y$ be a normal open subset and $h \in \mathscr{L}(U)$ a non-vanishing section over U. Assume that the section $f^*(h) \in$ $H^0(f^{-1}(U), f^*\mathscr{L})$ extends to X with non-vanishing locus $f^{-1}(U)$. Then there exists $d \geq 1$ such that h^d extends to Y, with non-vanishing locus U.

- (4) One shows that the pull-back $\pi^* h_{\lambda,w}$ coincides with $\psi^* f_{\lambda,w}$ for a certain function $f_{\lambda,w}$ on the stratum \mathcal{B}_w of $[B \setminus G/B]$ parametrized by w. Similarly, $\psi^* f_{\lambda,w} = \pi^* h_{\lambda,w}$ extends to a Hasse invariant for \mathcal{Y}_w if and only if $f_{\lambda,w}$ extends to a Hasse invariant for \mathcal{B}_w .
- (5) Finally, the last part is just a computation. It is based on Chevalley's formula, which makes it possible to compute the divisor of the section $f_{\lambda,w}$. The result is that it extends to a Hasse invariant if and only if Condition (ii) of Proposition 9.2 is satisfied, because the expressions that appear (for α varying in E_w) are the multiplicities of the divisor of $f_{\lambda,w}$. This terminates the proof.

12 Global sections of vector bundles

Recall that any algebraic representation $\rho : E \to GL(V)$ gives rise to a vector bundle $\mathscr{V}(\rho)$ over $\mathscr{X} = G\text{-}\operatorname{Zip}^{\mu}$. If $\rho : L \to GL(V)$ is a representation of L, we may view it as a representation of E via the map $E \to L$ defined as the composition of the first projection $E \to P$ and the Levi projection $P \to L$.

So far, we have only considered characters of L, which is the rank 1 case, and constructed Hasse invariants for those vector bundles. In what follows, we want to study higher rank vector bundles. Of particular interest are the vector bundles attached to L-dominant characters by induction. For a character $\lambda \in X^*(T)$, view λ as a character $B \to \mathbb{G}_m$ and consider the induced representation

$$V(\lambda) = \operatorname{Ind}_B^P(\lambda).$$

It is a representation of P where the unipotent radical of P acts trivially, so we may view it as a representation of L. Note that if λ is not an L-dominant character, we have $V(\lambda) = 0$. We denote by $\mathscr{V}(\lambda)$ the vector bundle over \mathscr{X} attached to $V(\lambda)$. This provides an interesting family of vector bundles $(\mathscr{V}(\lambda))_{\lambda}$ on \mathscr{X} indexed by the L-dominant characters $\lambda \in X^*(T)$.

We end this survey with a result that determines the space of global sections of $\mathscr{V}(\lambda)$ over \mathscr{X} . To simplify, we assume that μ is defined over \mathbb{F}_p . We choose again a Borel pair (B,T) defined over \mathbb{F}_p and we assume also that T is split over \mathbb{F}_p . For a character $\lambda \in X^*(T)$, our goal is to determine the space $H^0(\mathscr{X}, \mathscr{V}(\lambda))$. Denote by $\mathcal{U} \subset \mathcal{X}$ the unique open zip stratum. The first step is to determine the space $H^0(\mathcal{U}, \mathcal{V}(\lambda))$. This is elementary, and can be done for an arbitrary representation $\rho: L \to GL(V)$. Specifically, one has the following result.

Lemma 12.1. For any representation $\rho: L \to GL(V)$, there is an isomorphism

 $H^0(\mathcal{U}, \mathscr{V}(\rho)) \simeq V^{L(\mathbb{F}_p)}.$

This is almost a tautology, given that the stack \mathcal{U} can be seen to be isomorphic to $[1/L(\mathbb{F}_p)]$. In particular, this shows that $H^0(\mathcal{X}, \mathscr{V}(\rho))$ is a subspace of the $L(\mathbb{F}_p)$ -invariants of V. To determine exactly which subspace demands some work.

First, we introduce some notation. For any representation $\rho : L \to GL(V)$, we may decompose V with respect to T-eigenspaces.

$$V = \bigoplus_{\chi \in X^*(T)} V_{\chi}.$$

Define a subspace $V_{\leq 0} \subset V$ as follows. It is the direct sum of the *T*-eigenspaces V_{χ} for the characters $\chi \in X^*(T)$ which satisfy the condition

$$\langle \chi, \alpha^{\vee} \rangle \leq 0 \quad \text{for all } \alpha \in \Delta \setminus I.$$

Note that $V_{\leq 0}$ is stable under the action of T, but it is not a sub-*L*-representation of V. From now on we consider the *L*-representation $V(\lambda)$ defined previously, attached to a character $\lambda \in X^*(T)$. One has the following.

Theorem 12.2. There is a commutative diagram where the vertical maps are the natural inclusions, and the horizontal maps are isomorphisms:

$$\begin{array}{ccc} H^{0}(\mathcal{U},\mathscr{V}(\lambda)) & \longrightarrow & V(\lambda)^{L(\mathbb{F}_{p})} \\ & & & & & \\ & & & & & \\ & & & & & \\ H^{0}(\mathcal{X},\mathscr{V}(\lambda)) & \xrightarrow{\simeq} & V(\lambda)_{\leq 0} \cap V(\lambda)^{L(\mathbb{F}_{p})} \end{array}$$

In a recent paper [17], we show that the above theorem also holds for an arbitrary L-representation (V, ρ) (not necessarily of the form $V(\lambda)$). Furthermore, we also determine in *loc. cit.* the space $H^0(\mathcal{X}, \mathcal{V}(\rho))$ for an arbitrary P-representation (V, ρ) , and without assuming that L is defined over \mathbb{F}_p . It is a difficult problem in representation theory to determine for which $\lambda \in X^*(T)$, the intersection $V(\lambda)_{<0} \cap V(\lambda)^{L(\mathbb{F}_p)}$ is non-zero. The set

$$C_{\text{zip}} := \left\{ \lambda \in X^*(T) \mid V(\lambda)_{\leq 0} \cap V(\lambda)^{L(\mathbb{F}_p)} \neq 0 \right\}$$

is an additive submonoid (i.e. a cone) of $X^*(T)$. The paper [9] contains some partial results on this set, but it remains quite mysterious.

Let us mention an even more difficult problem. Instead of considering one λ at a time, it is interesting to put them all together by forming the direct sum

$$R_{\rm zip} := \bigoplus_{\lambda \in X^*(T)} H^0(\mathcal{X}, \mathscr{V}(\lambda)).$$

This group inherits a natural structure of graded k-algebra, and one can ask what the isomorphism class of R_{zip} is. The set C_{zip} is then simply the grading monoid of this graded algebra, so the question of determining R_{zip} is a refinement of the determination of C_{zip} . It is not even clear whether R_{zip} is a finite-type k-algebra. Here are some partial results:

Proposition 12.3. One has the following:

- (i) The algebra R_{zip} is isomorphic to a subalgebra of k[G]. In particular, it is integral.
- (ii) The field of fractions of R_{zip} is isomorphic to the function field of $R_u(B \cap L)$. In particular, the scheme $Spec(R_{zip})$ is birational to an affine space.
- (iii) If Pic(G) = 0, then R_{zip} is a UFD.

References

- Moonen, B., Serre-Tate theory for moduli spaces of PEL-type, Ann. Sci. ENS, 37 (2004), 223–269.
- [2] Moonen, B. and Wedhorn, T., Discrete invariants of varieties in positive characteristic, *IMRN*, 72 (2004), 3855–3903.
- [3] Pink, R. and Wedhorn, T. and Ziegler, P., Algebraic zip data, Doc. Math., 16 (2011), 253–300.
- [4] Pink, R. and Wedhorn, T. and Ziegler, P., F-zips with additional structure, Pacific J. Math., 274 (2015), 183–236.
- [5] Koskivirta, J.-S. and Wedhorn, T., Generalized μ-ordinary Hasse invariants, J. Algebra, 502 (2018), 98–119.
- [6] Goldring, W. and Koskivirta, J.-S., Strata Hasse invariants, Hecke algebras and Galois representations, *Invent. Math.* 217, No. 3 (2019), pp. 887-984.
- [7] Goldring, W. and Koskivirta, J.-S., Automorphic vector bundles with global sections on G-Zip^Z-schemes, Compositio Math., 154 (2018), 2586–2605.
- [8] Koskivirta, J.-S., Normalization of closed Ekedahl-Oort strata, Canad. Math. Bull., 61 (2018), 572–587.
- Koskivirta, J.-S., Automorphic forms on the stack of G-Zips, Results in Mathematics, 74: 91. (2019) https://doi.org/10.1007/s00025-019-1021-z
- [10] Koskivirta, J.-S., Canonical sections of the Hodge bundle over Ekedahl-Oort strata of Shimura varieties of Hodge type. *Journal of Algebra*, **449** (2016), 446-459.
- [11] Goldring, W. and Koskivirta, J.-S., Stratifications of flag spaces and functoriality. International Mathematical Research Notices (2017).
- [12] Nicole, M.-H. and Vasiu, A. and Wedhorn, T., Purity of level *m* stratifications, Ann. Sci. ENS, 23 (2010), 925–955.
- [13] Artin, M. and Bertin, J. E. and Demazure, M. and Gabriel, P. and Grothendieck, A. and Raynaud, M. and Serre, J.-P., SGA3: Schémas en groupes, *Institut des Hautes Études Scientifiques*, (1965/66).
- [14] Demazure, M., Lectures on p-divisible groups, Lecture Notes in Mathematics, 302, (1972).

- [15] Berthelot, P. and Breen, L. and Messing, W., Théorie de Diedonné Cristalline II, Lecture Notes in Mathematics, 930, (1982).
- [16] Katz, N., Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Publ. Math. IHÉS, pp 175–232, 39, (1970).
- [17] Imai, N. and Koskivirta, J.-S., Automorphic vector bundles on the stack of G-zips, preprint, arXiv:2008.02525, (2020).

Jean-Stefan Koskivirta

Department of Mathematics, Faculty of Science, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan jeanstefan.koskivirta@gmail.com