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1 Introduction
The theory of F-zips was first introduced by Moonen-Wedhorn in [2]. Roughly speaking,
this theory aims at classifying geometric objects in positive characteristic. For example, let
E be an elliptic curve over an algebraically closed field k of characteristic p and consider
the p-torsion part E(k)[p] of the group E(k). There are two cases:

• If E(k)[p] ≃ Z/pZ, we say that E is ordinary.

• If E(k)[p] = {0}, we say that E is supersingular.

Hence, the group E(k)[p] is a discrete invariant for elliptic curves over k, in the sense that
the number of possible cases is finite. The theory of F-zips is a similar attempt to attach
invariants to geometric objects.

If we consider a family of elliptic curves E → S over a base scheme S of characteristic
p, then the fibers Es for s ∈ S are usual elliptic curves over fields. Hence S is naturally the
(set-theoretic) disjoint union

S = Sord ⊔ Sss

where Sord (resp. Sss) is the set of s ∈ S such that Es is ordinary (resp. supersingular). It
turns out that the ordinary locus Sord is always open. This is related to the fact that an
ordinary elliptic curve has a good deformation theory.

A concrete way of seeing that Sord is open, is to express it as the non-vanishing locus of
a section of a line bundle over S. Denote by ω the line bundle over S obtained by pulling
back the sheaf Ω1

E /S along the unit section S → E of the S-group scheme E . There exists
a section Ha ∈ H0(S, ωp−1) called the Hasse invariant such that

Sord = {s ∈ S | Ha(s) ̸= 0}.

The theory of F-zips provides a geometric object (an algebraic stack), which carries nat-
urally the line bundle ω and the Hasse invariant Ha. Concretely, let B denote the group
of upper-triangular matrices in GL2, let B− be the lower-triangular ones, and let T be the
diagonal torus. Consider the set of pairs (x, y) ∈ B−×B such that the diagonal coefficients
of y are the p-th powers of the diagonal coefficients of x. In other words, x, y have the form

x =

(
a 0
c d

)
, y =

(
ap b
0 dp

)
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for some a, d ∈ k× and b, c ∈ k. The set of such pairs forms a group E ⊂ B− × B. Let E
act on GL2 by the rule (x, y) · g = xgy−1. Then one sees that there are exactly two orbits
for this action, an open orbit and a closed one. The open orbit is

GLord
2 :=

{(
a b
c d

)
∈ GL2 | a ̸= 0

}
.

The closed one is GLss
2 , defined by the condition a = 0.

The stack of F-zips in this context is the quotient stack X = [E\GL2], its underlying
topological space consists of two points. We will see in this survey that the datum of an
elliptic curve E over S induces a map S → X . The ordinary and supersingular loci are the
fibers of this map. This geometrization is very useful. The stack X has a rich structure,
and S inherits it by way of pulling back. For example, the section Ha previously mentioned
is actually pulled back from a section Ha ∈ H0(X , ωp−1) for a certain line bundle ω on X .

In the papers [3] and [4], Pink-Wedhorn-Ziegler define the notion of G-zips. The for-
malism of G-zips makes it possible to work with arbitrary reductive groups G, in place of
GL2 in the previous example. We will see that the Hasse invariant Ha possesses a vast
generalization as well.

2 The category of F-zips
We start be recalling the definition of F-zips, as introduced by Moonen-Wedhorn in [2].
Basically, an F-zip over a scheme S of characteristic p is a locally free module endowed with
two filtrations and Frobenius-linear isomorphisms between the graded pieces. Specifically,
let S be a scheme and let M be a locally free OS-module. By a descending filtration on
M, we mean a sequence of locally free OS-submodules (Ci)i∈Z such that

(i) For all i ∈ Z, Ci+1 ⊂ Ci is Zariski locally a direct factor of Ci.

(ii) One has Ci = 0 for i≫ 0 and Ci = M for i≪ 0.

We define gri(C•) := Ci/Ci+1, by assumption (i) it is a locally free OS-module. We say that
(Di)i∈Z is an ascending filtration if (D−i)i∈Z is a descending filtration. In this case, we write
gri(D•) := Di/Di−1. For an OS-module F , we denote by F (p) the pullback of F under the
absolute Frobenius map FrS : S → S.

Definition 2.1. An F-zip over S is a tuple M = (M, C•,D•, ι•), where

(1) M is a locally free OS-module of finite rank.

(2) C• = (Ci)i∈Z is a descending filtration on M.

(3) D• = (Di)i∈Z is an ascending filtration on M.

(4) For each i ∈ Z, ιi is an isomorphism gri(C•)(p) → gri(D•) of OS-modules.

Next we describe homomorphisms of F-zips. If M and N are F-zips, a homomorphism
f : M → N is a morphism of OS-modules f : M → N such that f(CiM) ⊂ CiN and
f(DiM) ⊂ DiN for all i ∈ Z, and such that the following diagram commutes

gri(C•M)(p)

gri(C•f)(p)

��

ιi // gri(D•M)

gri(D•f)

��

gri(C•N )(p)
ιi // gri(D•N ).
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The category of F-zips is denoted by F-Zip(S), it is Fp-linear (but not OS-linear, due to
the presence of the Frobenius isogeny). We will see now that it is a tensor category. First,
if M,N are locally free OS-modules endowed with descending filtrations C•M and C•N
respectively, then M⊗N has a descending filtration defined by:

Ci(M⊗N ) :=
∑
j∈Z

CjM⊗Ci−jN .

There is of course a similar statement with ascending filtrations. Hence if M and N are
F-zips over S, the locally free OS-module M⊗N is endowed with a descending filtration
C•(M⊗N ) and an ascending filtration D•(M⊗N ). Furthermore, it is easy to see that
the isomorphisms ι• for M and N induces similar isomorphisms between the graded pieces
of these filtrations. We obtain an F-zip structure on M ⊗ N , which we call the tensor
product of M and N and denote it by M⊗N . This shows that F-Zip(S) is an Fp-linear
tensor category.

There is a notion of type for an F-zip M = (M, C•,D•, ι•) over a base scheme S. Let
η : Z → Z≥0 be a function with finite support (i.e η(i) ̸= 0 for finitely many i ∈ Z), then we
say that M has type η if the locally free sheaf gri(C•) has rank η(i) for all i ∈ Z. Denote
by F-Zipη(S) the full subcategory of F-zips of type η over S.

For an F-zip M, it is possible to shift the indexation of the filtrations by an index r ∈ Z.
The F-zip M[r] is defined by C•(M[r]) := C•+r(M) and D•(M[r]) := D•+r(M). Denote
by OS[r] the unique F-zip whose underlying sheaf is OS and whose type has support {r}.
Then M[r] is simply M⊗OS[r]. Hence if we denote by η[r] the function i 7→ η(r+ i), then
the categories F-Zipη(S) and F-Zipη[r](S) are equivalent.

3 F-zips and Dieudonne spaces
We say that a commutative group scheme G over k is n-torsion (for an integer n ∈ Z≥1) if
multiplication by n is the zero map of G(R) for any k-algebra R. Recall the classification
of finite, commutative, p-torsion group schemes over k by Dieudonne theory.

Theorem 3.1 ([14, page 69]). There is a contravariant functor D : G 7→ D(G) between
the category of finite, commutative, p-torsion group schemes over k and the category of
triples (M,F, V ) where M is a finite-dimensional k-vector space, F :M →M is a σ-linear
map, V : M → M is a σ−1-linear map, satisfying the conditions FV = 0 and V F = 0.
Furthermore, this functor is an equivalence of categories.

Furthermore, if a triple (M,F, V ) satisfies the extra conditions im(F ) = Ker(V ) and
im(V ) = Ker(F ), then we call it a Dieudonne space over k. For example, if A is an abelian
variety over k, the p-torsion A[p] is a finite, commutative, p-torsion group scheme over k
and its associated object D(A[p]) is a Dieudonne space over k ([15, §3.3.8]). A Dieudonne
space (M,F, V ) over k gives rise to an F-zip over k as follows.

(i) The filtration C• of M is defined by C0 =M , C1 = Ker(F ), C2 = 0.

(ii) The filtration D• of M is defined by D−1 = 0, D0 = Ker(V ), D1 =M .

(iii) The isomorphism ι0 : (C1)(p) → M/D0 is the inverse of the map induced by V . The
isomorphism ι1 : (M/C1)(p) → D0 is the one induced by F .

Proposition 3.2. This construction gives an equivalence of categories between the category
of Dieudonne spaces over k to the full subcategory of F-Zip(k) of F-zips whose type η : Z →
Z≥0 has support in {0, 1}.
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In particular, if A is an abelian scheme over k, we can attach an F-zip to A by applying
Proposition 3.2 to the Dieudonne space D(A[p]).

4 F-zips arising in geometry
It is not obvious at first glance why Definition 2.1 is relevant. We will see that F-zips arise
naturally in geometry via de Rham cohomology. To define it, first recall the construction
of hypercohomology. Let A and B be abelian categories, and suppose that A has enough
injective objects (i.e., any object has a monomorphism to an injective object). Let T : A →
B be a left exact functor. Let K• be a bounded below complex of objects in A. Choose
a quasi-isomorphism K• → I• to a complex of injective objects (this is always possible).
Then one defines the hypercohomology of K• as

RiT (K•) := H i(T (I•)).

This gives a well-defined object in B, that we call the hypercohomology of K•. It is
possible to construct several spectral sequences that converge to the hypercohomology, by
considering different filtrations on a complex K•. In this survey, the two spectral sequences
of importance are the following two:

′Ea,b
1 = RbT (Ka) =⇒ Ra+bT (K•).

′′Ea,b
2 = RaT (Hb(K•)) =⇒ Ra+bT (K•).

For example, let X be a scheme of finite-type over an arbitrary field k. The sheaves
Ωi

X/k are coherent OX-modules. However, since differentials are not OX-linear, the de Rham
complex Ω•

X/k is a complex in the category of sheaves of k-vector spaces on X. Denote this
abelian category by A. Let B be the category of k-vector spaces, and let T : A → B
be the functor F 7→ Γ(X,F). The formalism of hypercohomology yields a k-vector space
H i

dR(X/k) := RiT (Ω•
X/k) and spectral sequences converging to H∗

dR(X/k):

HEa,b
1 := Hb(X,Ωa

X/k) =⇒ Ha+b
dR (X/k).

conjEa,b
2 := Ha(X,H b(Ω•

X/k)) =⇒ Ha+b
dR (X/k).

We call them respectively the Hodge and the conjugate spectral sequences. When k has
characteristic zero, things are particularly simple as both sequences degenerate immediately.
Furthermore, if k = C, a standard fact in Hodge theory states that the conjugate filtration
is obtained from the Hodge filtration by applying complex conjugation.

When k has positive characteristic p, the degeneracy is no longer true, not even when
X is proper smooth over k. Hence, we make the following assumption:

Assumption 4.1. The Hodge spectral sequence of X degenerates at E1.

Let FX : X → X(p) be the relative p-power Frobenius map and consider the complex
FX,∗(Ω

•
X/k). This is a complex of OX(p)-modules whose maps are OX(p)-linear (easy compu-

tation). Hence the cohomology sheaves H a(FX,∗(Ω
•
X/k)) are OX(p)-modules. The Cartier

isomorphisms are natural isomorphisms

Ωa
X(p)

∼−→ H a(FX,∗(Ω
•
X/k)).

for all a ≥ 0 (see [16, Theorem 7.2]). Taking the b-th cohomology group over X(p) on each
side, we obtain σ-linear isomorphisms for all a, b ≥ 0:

HEa,b
1 ≃ conjEb,a

2
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It also follows from this that the conjugate spectral sequence automatically degenerates at
the second page. We now give the construction of the F-zip M := (M,C•, D•, ι•) over k
attached to X.

(i) Take M = Hn
dR(X/k).

(ii) Denote by C• = (Ci)i∈Z the filtration obtained by the Hodge spectral sequence,
indexed such that C• is descending and gri(C•) = Hn−i(X,Ωi

X/k).

(iii) Denote by D• = (Di)i∈Z the filtration obtained by the conjugate spectral sequence,
indexed such that D• is ascending and gri(D•) = Hn−i(X,H i(Ω•

X/k)).

(iv) Let ιi : gri(C•)(p) → gri(D•) be the linearized Cartier isomorphism.

We have just seen that if X is a proper smooth scheme over k satisfying Assumption
4.1, then Hn

dR(X/k) is naturally endowed with an F-zip structure. There are many such
schemes, for example abelian varieties, K3 surfaces, complete intersections in projective
bundles... Also a theorem of Deligne-Illusie states that a proper smooth scheme X over k
which lifts to W2(k) and of dimension dim(X) < p satisfies Assumption 4.1.

We now give the generalization of this construction to an arbitrary base scheme. Let
f : X → S be a proper, smooth morphism of Fp-schemes. Following the terminology of [2],
we say that f : X → S satisfies condition (D) if the following properties hold.

(1) The OS-modules Rbf∗(Ω
a
X/S) are locally free of finite rank for all a, b ≥ 0.

(2) The Hodge spectral sequence degenerates at E1.

Assume that f satisfies condition (D), then just as in the previous case, for any integer n
such that 0 ≤ n ≤ 2 dim(X/S) the locally free OS-module Hn

dR(X/S) is naturally endowed
with an F-zip structure over S. We write Hn

dR(X/S) for this F-zip. This construction can
be promoted to a contravariant functor

Hn
dR :

(
Proper smooth X → S
satisfying condition (D)

)
−→ F-Zip(S).

An important example is the case of abelian schemes A → S. If g denotes the relative
dimension of A/S, the F-zip H1

dR(A/S) has type η : Z → Z≥0 where η is defined by

η(i) =

{
g i = 0, 1

0 otherwise

In the case S = Spec(k), recall that we attached an F-zip to a Dieudonne space over
k (Proposition 3.2). One can check that the F-zip H1

dR(A/k) coincides with the F-zip
attached to D(A[p]).

5 Additional structure
From now on, k will denote an algebraic closure of Fp. It is natural to consider F-zips en-
dowed with additional structure. For example, let (A, λ) be a principally polarized abelian
variety over k of dimension g. Let H1

dR(A/k) = (M,C•, D•, ι•) be the attached F-zip. In
particular, we have σ-linear isomorphisms ι0 : M/C1 → D0 and ι1 : C1 → M/D0. The
polarization λ induces on M a perfect pairing ⟨−,−⟩ : M ×M → k which satisfies the
following conditions.
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(i) C1 and D0 are totally isotropic.

(ii) One has ⟨ι0x, ι1y⟩ = σ⟨x, y⟩ for all x ∈ M and all y ∈ C1 (note that the expression
⟨ι0x, ι1y⟩ is well-defined because D0 is totally isotropic).

More generally, we can define F-zips with G-structure for an arbitrary algebraic group
G over Fp. Denote by Rep(G) the category of algebraic representations of G over Fp. Since
we saw that the category of F-zips over a scheme S is a tensor category, we may define the
following notion.

Definition 5.1. A G-zip functor over an Fp-scheme S is an exact Fp-linear tensor functor
Rep(G) → F-Zip(S).

We denote by G-ZipFun(S) the category of G-zip functors over S. Our goal in this
section is to explain a more down-to-earth definition of F-zips with G-structure over S. For
this, we need to understand how to generalize the notion of type.

First of all, if G = GLn, the category G-ZipFun(S) is equivalent to the category
F-Zipn(S) of F-zips M = (M, C•,D•, ι•) where M is a locally free OS-module of rank
n. If such an F-zip M has type η, then it must satisfy∑

i∈Z

η(i) = n.

Giving such a function is the same as giving a conjugacy class of cocharacters of GLn. The
bijection is given as follows. If η is a function as above, the corresponding conjugacy class
of cocharacters is given by considering a decomposition

Fn
p =

⊕
i∈Z

Vi

where Vi has dimension η(i) and letting z ∈ Gm act on Vi by zi. Hence, it seems natural
that the generalization of the notion of type for G-zip functors is a conjugacy class of
cocharacters of G.

Definition 5.2. Let µ : Gm,k → Gk be a cocharacter. We say that a G-zip functor z :
Rep(G) → F-Zip(S) has type µ if for all representations (V, ρ) ∈ Rep(G), the F-zip z(V, ρ)
has type ρ ◦ µ. Denote by G-ZipFunµ(S) the full subcategory of G-zip functors of type µ.

Now, we explain an equivalent definition of G-zips. Fix a cocharacter µ : Gm,k → Gk.
One obtains naturally a pair of opposite parabolic subgroups (P−, P+) in Gk and a common
Levi subgroup L := P− ∩ P+ = Cent(µ). The group P+(k) consists of those elements
g ∈ G(k) such that the limit

lim
t→0

µ(t)gµ(t)−1

exists, i.e. such that the map Gm,k → Gk, t 7→ µ(t)gµ(t)−1 extends to a morphism of
varieties A1

k → Gk. The Lie algebra of the parabolic P+ (resp. P−) is given by

Lie(P+) =
⊕
n≥0

Lie(G)n (resp. Lie(P−) =
⊕
n≤0

Lie(G)n)

where Lie(G)n is the subspace where z ∈ Gm acts by zn via the cocharacter µ. We set
P := P−, Q := (P+)

(p) and M := L(p), so that M is a Levi subgroup of Q. We denote by
U and V the unipotent radicals of P and Q, respectively. For a k-scheme S, one defines:
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Definition 5.3. A G-zip of type µ over S is a tuple I = (I, IP , IQ, ι) where

(i) I is a G-torsor over S,

(ii) IP ⊂ I is a P -torsor over S,

(iii) IQ ⊂ I is a Q-torsor over S,

(iv) ι : (IP/U)
(p) → IQ/V is an isomorphism of M-torsors.

In the case G = GLn, one recovers the usual notion of F-zip. Denote by G-Zipµ(S) the
category of G-zips of type µ. By a result of Pink-Wedhorn-Ziegler ([4, §1.4]), there is an
equivalence of categories

G-ZipFunµ(S) ≃ G-Zipµ(S).

6 The stack of G-zips
It is convenient to use the language of stacks to study F-zips and G-zips. Roughly speaking,
a stack is an object that generalizes the notion of scheme by allowing automorphisms of
points. First, recall that a groupoid is a category in which every map is an isomorphism.
A category fibred in groupoids over the category of k-schemes is a family of groupoids
X (S) for each k-scheme S, such that if φ : S → T is a map of k-schemes, there is a
functor φ∗ : X (T ) → X (S). This is called a base change functor and is denoted by (−)S.
Furthermore, if φ : S → T and ψ : T → U are maps of k-schemes, there is an isomorphism
of functors (ψ ◦ φ)∗ ≃ φ∗ ◦ ψ∗ (and these isomorphisms satisfy a cocycle relation). A stack
over k is a particular kind of category fibred in groupoids over the category of k-schemes.

Specifically, one requires two conditions to hold:

(1) For all k-schemes S and all x, y ∈ X (S), the functor from S-schemes to sets which
takes T to HomX (T )(xT , yT ) is a sheaf for the etale topology.

(2) All descent data are effective.

Roughly speaking, the second condition means that if (Ti → S)i∈I is an etale covering, we
may glue objects xi ∈ X (Ti) to obtain an object x ∈ X (S). Specifically, write Vij := Vi×SVj.
Then if fij : (xi)Vij

→ (xj)Vij
are isomorphisms satisfying the usual cocycle relation, then

there exists an object x ∈ X (S) such that xi = xVi
.

For example, a k-scheme X may be viewed as a stack over k. The groupoid X(S) is
simply the set Homk(S,X), viewed as a category where the only maps are the identities of
objects.

For each k-scheme S, consider the category F-Zip(S) whose objects are F-zips over S
and whose morphisms are isomorphisms of F-zips. Clearly, this is a groupoid. If f : T → S
is a map of k-schemes, then there is a base change functor f ∗ : F-Zip(S) → F-Zip(T ).
Indeed, let M = (M, C•,D•, ι•) be an F-zip over S. Then f ∗M = (f ∗M, f ∗C•, f ∗D•, f

∗ι•)
is its pull-back to T .

Definition 6.1. The above construction gives rise to a stack over k. We denote it by F-Zip
and call it the stack of F-zips. Similarly, if η : Z → Z≥0 is a function with finite support,
then the categories F-Zipη(S) give rise to a stack over k, that we denote by F-Zipη. More
generally, if G is a connected Fp-reductive group and µ : Gm,k → Gk is a cocharacter, the
categories G-Zipµ(S) give rise to a stack G-Zipµ over k.
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This turns out to be an algebraic stack. In our case, this means that there is a smooth
surjective morphism from a scheme to this stack. For an algebraic stack X , it is possible
to define an underlying topological space by taking the equivalence classes of pairs (K, x)
where k ⊂ K is a field extension and x ∈ X (K). Two pairs (K, x) and (K ′, x′) are equivalent
if there exists a common field extension L of K and K ′ such that xL ≃ x′L. The set of
equivalence classes is denoted by |X |. This set is endowed with a topology, as follows.
Say that a map of stacks Y → X is an open immersion if the map Y ×X X → X is an
open immersion of schemes for any scheme X mapping to X . In this case, |Y| is naturally
a subset of |X |. Subsets of this kind form a topology, called the Zariski topology of |X |.
Similarly, one can define a closed substack Y → X as a map of stacks that becomes a closed
immersion (of schemes) after base change to a scheme X → X .

For a function η : Z → Z≥0 with finite support, the substack F-Zipη ⊂ F-Zip is both
open and closed. The stack F-Zip decomposes as a disjoint union

F-Zip =
⊔
η

F-Zipη

and the substacks F-Zipη are the connected components of F-Zip. In particular, this implies
that an F-zip over a connected scheme S has a type, because the corresponding map
S → F-Zip must factor through a certain component F-Zipη.

7 Representation as a quotient stack
A nice property of stacks is the existence of quotients. If H is a smooth k-algebraic group
acting on the left on a k-scheme X, then the quotient stack X := [H\X] is defined as
follows. For any k-scheme S, the groupoid X (S) is the category of pairs (T, α) where T is
an H-torsor on S and α : T → X ×k S is an H ×k S-equivariant map. It is clear that X (S)
is a groupoid, and one can check that X is a stack over k. For example, when X = Spec(k)
is endowed with the trivial action of H, the quotient stack B(H) = [H\ Spec(k)] is the
classifying stack of H. For a k-scheme S, a morphism of stacks S → B(H) is essentially
the same as an H-torsor over S.

Fix a connected reductive Fp-group G and a cocharacter µ : Gm,k → Gk. We will see
that the k-stack G-Zipµ can be written as a quotient stack. Let P,Q, L,M,U, V be the
attached groups, as defined in §5. The Frobenius restricts to a map φ : L → M . The
isomorphisms L ≃ P/U and M ≃ Q/V yield natural maps P → L and Q → M which we
both denote by x 7→ x. Define the zip group E as:

E := {(a, b) ∈ P ×Q | φ(a) = b}.

The group E acts on G by the rule (a, b) · g := agb−1.

Theorem 7.1 ([4, Th. 1.5] ). There is an isomorphism G-Zipµ ≃ [E\G].

In particular, the underlying topological space |G-Zipµ | coincides with the set of E-
orbits in G. Each such orbit is locally closed for the Zariski topology of G. We now give a
parametrization of these E-orbits. Fix a Borel pair (B, T ) satisfying B ⊂ P and suppose
for simplicity that (B, T ) are defined over Fp. After possibly changing µ to a conjugate
cocharacter, it is always possible to find such a Borel pair. Denote by Φ the set of T -roots
and ∆ the set of simple roots. Recall that there is a bijection between subsets of ∆ and
conjugacy classes of parabolic subgroups of Gk. We normalize this bijection such that Borel
subgroups correspond to the empty set. Let I, J ⊂ ∆ be the types of P,Q respectively.
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Since B ⊂ P , the set I consists of the simple roots of L. Write W = N(T )/T for the Weyl
group of T , it is a Coxeter group. There is a length function ℓ : W → Z≥0. Write w0 for
the longest element in W . For a subset K ⊂ ∆, let w0,K be the longest element of the
subgroup WK ⊂ W generated by {sα | α ∈ K}. Also define WK as the set of elements
w ∈ W which are of minimal length in the coset wWK .

For w ∈ W , choose a representative ẇ ∈ NG(T ), such that (w1w2)
· = ẇ1ẇ2 whenever

ℓ(w1w2) = ℓ(w1) + ℓ(w2) (this is possible by choosing a Chevalley system, see [13], Exp.
XXIII, §6). Define z := w0w0,J .

For w ∈ W , define Gw as the E-orbit of ẇż−1. The E-orbits in G form a stratification
of G by locally closed subsets.

Theorem 7.2 ([3, Th. 11.3]). The map w 7→ Gw induces a bijection from W J onto the set
of E-orbits in G. Furthermore, for w ∈ W J , one has

dim(Gw) = ℓ(w) + dim(P ).

Endow Gw with the reduced subscheme structure. Then the quotient stack Xw =
[E\Gw] is a locally closed substack of X = G-Zipµ. We call Xw a zip stratum. This gives
a stratification of X . Note that the underlying topological space of Xw is a single point.

8 Vector bundles on G-Zipµ

It is possible to define a notion of vector bundles for algebraic stacks. If X is an algebraic
stack, one could define a vector bundle over X as a family of vector bundles V = (VS)S for
each scheme S and each morphism of stacks S → X . Furthermore, this family should be
compatible in an obvious sense. The space of global sections of V over X is then defined
as an inverse limit of the spaces H0(S,VS).

Let G be a smooth algebraic group over k acting on a k-variety X. Let X be the
quotient stack [G\X]. Then there is a natural way to attach a vector bundle on X to an
algebraic representation ρ : G → GL(V ). Specifically, if S → X is a map from a scheme
S, then by definition of the quotient stack, we have a natural G-torsor on S. Applying the
representation ρ, we obtain a GL(V )-torsor on S, hence a vector bundle of rank dim(V ).
This construction is functorial in S, so we obtain a vector bundle V (ρ) on the stack X .
Explicitly, the space of global sections H0(X ,V (ρ)) is identified with

H0(X ,V (ρ)) = {f : X → V, f(g · x) = ρ(g)f(x), ∀g ∈ G, ∀x ∈ X} .

Recall that the stack of G-zips of type µ is isomorphic to a quotient stack [E\G], as
explained earlier. Hence, the previous construction attaches to each algebraic representation
ρ : E → GL(V ) a vector bundle V (ρ) on G-Zipµ. Furthermore, V (ρ) is a line bundle if
and only if ρ is a character of E.

For the time being, we consider only line bundles. There are natural identifications
between characters of E, P and L via the first projection E → P and the Levi projection
P → L. Indeed, all these groups coincide up to a unipotent group, which has no nontrivial
characters. Hence, we parametrize line bundles onG-Zipµ by characters of L : If λ ∈ X∗(L),
we denote by V (λ) the line bundle attached to the character E → Gm, (a, b) 7→ λ(a).

9 Hasse invariants
One interesting feature of the stack of G-zips is the existence (in many cases, but not
always) of Hasse invariants for zip strata. Let us start with a definition of what we mean
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by a Hasse invariant. Let X be an algebraic stack. We may thus consider its underlying
topological space |X |. Let Y ⊂ X be a locally closed subset, and denote by Y its Zariski
closure. Endow both Y and Y with the reduced substack structure. Finally, let L be a
line bundle over X .

Definition 9.1. A Hasse invariant for Y with respect to L is a section h ∈ H0(Y ,L n)
(some n ≥ 1) such that the non-vanishing locus of h is exactly Y.

Recall that any character λ ∈ X∗(L) gives rise to a line bundle V (λ) on the stack
X = G-Zipµ. Taking Y to be a single zip stratum Xw ⊂ X (for some w ∈ W J) in
Definition 9.1, we have the notion of Hasse invariants for Xw with respect to L (λ). It is
possible to give a combinatorial criterion for the existence of such Hasse invariants. For
an element w ∈ W , we write Ew for the set of positive roots α satisfying wsα < w and
ℓ(wsα) = ℓ(w) − 1. Write σ for the action of Frobenius on W and X∗(T ). For w ∈ W
and an integer n ≥ 1, let w(n) be the product σn(w)σn−1(w) . . . σ(w) and set by convention
w(0) = 1. It is easy to see that there exists r ≥ 1 such that w(r) = 1. Furthermore, the set
of integers r ≥ 1 such that w(r) = 1 is stable under addition. Hence we can find r ≥ 1 such
that w(r) = 1 for all w ∈ W . We fix such an integer r ≥ 1. We also fix an integer m ≥ 1
such that T is split over Fpm .

Proposition 9.2 ([6, Prop. 3.2.1]). Let w ∈ W J and λ ∈ X∗(L). The following assertions
are equivalent:

(i) There is a Hasse invariant for Xw with respect to L (λ).

(ii) For all α ∈ Ew, one has:

rm−1∑
i=0

⟨(zw−1)(i)σi(λ), wα∨⟩pi > 0. (9.0.1)

First, we want to mention negative results. The above proposition can provide a counter-
example for the principal purity of the stratification (Xw)w. Principal purity means that
every stratum admits a Hasse invariant (for some λ ∈ X∗(L)). The easiest counter-example
that we could find is in the case of G = Sp(6) for a cocharacter µ that corresponds to the
middle point of the Dynkin diagram. For the prime number p = 2, there exists a stratum
Xw which does not admit Hasse invariants (for any λ ∈ X∗(L)).

To obtain a positive results for the existence of Hasse invariants, it is of course very
cumbersome to check that condition (ii) is satisfied in general. Hence we want to mention
a result which has a much easier statement.

Theorem 9.3. Assume that λ ∈ X∗(L) satisfies the following conditions:

(i) One has ⟨λ, α∨⟩ < 0 for all α ∈ ∆ \ I.

(ii) For all α ∈ Φ such that ⟨λ, α∨⟩ ≠ 0, for all w ∈ W and all j ∈ Z we have∣∣∣∣⟨λ,wσj(α)∨⟩
⟨λ, α∨⟩

∣∣∣∣ ≤ p− 1.

Then L (λ) admits Hasse invariants on all zip strata.
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Theorem 9.3 is an elementary consequence of Proposition 9.2. One checks that the
expression (9.0.1) is positive as follows: View this expression as a polynomial in p. The
leading coefficient is

⟨(zw−1)(rm−1)σrm−1(λ), wα∨⟩ = ⟨wz−1σ−1(λ), wα∨⟩ = ⟨λ, σ(zα)∨⟩.

We claim that this leading coefficient is positive. First, since w ∈ W J and α ∈ Ew, we
have α /∈ J . Since z = w0w0,J , we deduce easily that zα is a negative root not contained
in M . It follows that σ(zα) is a negative root, not contained in L. Hence one can write
−σ(zα)∨ =

∑
j α

∨
j for αj ∈ ∆, with at least one αj in ∆ \ I. It follows from Condition (i)

that ⟨λ, σ(zα)∨⟩ > 0, hence the claim.
Divide the expression (9.0.1) by this leading coefficient. Then Condition (ii) implies

that the coefficients of this monic polynomial are ≤ p− 1. The result then follows from the
inequality

(p− 1)
r−2∑
i=0

pi = pr−1 − 1 < pr−1.

10 Ekedahl-Oort strata
Consider an abelian variety A of dimension g ≥ 1 over k. The p-torsion A[p] is a finite
commutative p-torsion group scheme over k. Not all finite commutative p-torsion group
scheme over k appear in this way. Those which do are exactly those whose Dieudonne
module D(A[p]) satisfies im(F ) = Ker(V ) and im(V ) = Ker(F ) (we say that A[p] is a
BT1).

If A → S is an abelian scheme over a base scheme of characteristic p, then S is naturally
decomposed as a (set-theoretic) disjoint union

S =
⊔
γ

Sγ

where γ varies in the set of isomorphism classes of BT1’s. The subset Sγ is the set of points
s ∈ S such that As[p] is in γ. By a theorem of Oort, this decomposition is locally closed.
However, in general it may not be a stratification of S in the sense that the closure of Sγ

may not be a union of Sγ′ for certain γ′.
As we explained, we may attach to A → S an F-zip M = (M, C•,D•, ι•) over S whose

type η has support in {0, 1} and satisfies η(0) = η(1) = g. This gives rise to a morphism
of stacks

ζ : S −→ F-Zipη .

The strata Sγ of S coincide with the fibers of this morphism. The stack F-Zipη coincides
with the stack G-Zipµ for the group G = GL2g and the cocharacter

µ : z 7→
(
zIdg

Idg

)
.

In particular, the Levi subgroup L ⊂ G attached to µ is the set of matrices of the form(
A 0
0 D

)
, where A,D ∈ GLg. (10.0.1)

Thus X∗(L) is a free Z-module of rank 2. Consider the character λω ∈ X∗(L) given by
mapping the matrix (10.0.1) to det(A)−1. We have an associated line bundle V (λω) over
X = F-Zipη.
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The Hodge vector bundle Ω of the abelian scheme A → S is defined as the pullback
along the unit section S → A of the sheaf of relative differentials Ω1

A /S. It is a rank g
vector bundle on S. Denote by ω = ∧gΩ its determinant. Then one has the following
equation.

ζ∗V (λω) = ω.

It is easy to check that the character λω satisfies the conditions (i) and (ii) of Theorem 9.3
(for any value of the prime p). The first one is immediate, and for the second one, note
that λω is minuscule, hence for all α ∈ Φ such that ⟨λω, α∨⟩ ≠ 0, the quotient∣∣∣∣⟨λω, wα∨⟩

⟨λω, α∨⟩

∣∣∣∣
only takes the value 0 or 1 for any w ∈ W , hence is always ≤ p− 1, even for p = 2. Thus
we may apply the theorem to the line bundle V (λω). By pulling back to S, we deduce:

Proposition 10.1. For each isomorphism class γ of BT1’s over k, there exists n ≥ 1 and
a section Haγ ∈ H0(Sγ, ω

n) over the Zariski closure Sγ which satisfies

{s ∈ Sγ | Haγ(s) ̸= 0} = Sγ.

11 Sketch of proof
We sketch the proof of Proposition 9.2. It relies heavily on the stack of G-zip flags. It is
a stack Y with a natural projection map π : Y → X . It carries a stratification (Yw)w∈W
indexed by the whole Weyl group. Specifically, we give the following definition.

Definition 11.1. A G-zip flag of type µ over a k-scheme S is a pair Î = (I, J) where
I = (I, IP , IQ, ι) is a G-zip of type µ over S, and J ⊂ IP is a B-torsor.

We denote by G-ZipFlagµ(S) the category of G-zip flags over S. By similar arguments
as for G-zips, we obtain a stack Y := G-ZipFlagµ over k, which we call the stack of G-zip
flags of type µ. There is a natural projection π : Y → X given by forgetting the B-torsor.
To stratify Y , we need the following result. Define a subgroup E ′ ⊂ E by E ′ := E∩(B×G).
By adapting the proof of Theorem 7.1, one can prove the following.

Theorem 11.2. There is a commutative diagram, where the vertical maps are isomor-
phisms and the lower horizontal map is the natural projection:

Y π //

≃
��

X
≃
��

[E ′\G] π // [E\G] .

We explain now how Y admits a natural stratification. It is based on the observation
that the group E ′ is contained in the product B × zB, where zB := zBz−1 (this is an easy
verification). In particular, there is a natural projection map

ψ : Y → [B\G/zB] ≃ [B\G/B]

By the Bruhat decomposition ofG, the latter stack has a stratification (Bw)w∈W parametrized
by the Weyl group W . The strata (Yw)w∈W of Y are defined as the fibers of the map ψ.
Now we give the main steps of the proof of Proposition 9.2.
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(1) First, one shows that for any λ ∈ X∗(L), there exists n ≥ 1 such that V (λ)n admits a
nonzero section hλ,w on the strata Xw of X for all w ∈ W J . Furthermore, these sections
are unique up to nonzero scalar. To prove Proposition 9.2, we need to understand for
which λ the section hλ,w extends to a Hasse invariant of Xw.

(2) In general, for w ∈ W , the image of Yw by π is a union of several strata Xw′ . However,
when w ∈ W J , one has π(Yw) = Xw. Furthermore, the map π : Yw → Xw is finite
etale.

(3) One shows that hλ,w extends to a Hasse invariant if and only if π∗hλ,w extends to a
Hasse invariant for Yw. One implication is clear. The other is the following lemma:

Lemma 11.3. Let f : X → Y a proper surjective morphism of integral schemes of
finite-type over k. Let L be a line bundle on Y . Let U ⊂ Y be a normal open subset
and h ∈ L (U) a non-vanishing section over U . Assume that the section f ∗(h) ∈
H0(f−1(U), f ∗L ) extends to X with non-vanishing locus f−1(U). Then there exists
d ≥ 1 such that hd extends to Y , with non-vanishing locus U .

(4) One shows that the pull-back π∗hλ,w coincides with ψ∗fλ,w for a certain function fλ,w
on the stratum Bw of [B\G/B] parametrized by w. Similarly, ψ∗fλ,w = π∗hλ,w extends
to a Hasse invariant for Yw if and only if fλ,w extends to a Hasse invariant for Bw.

(5) Finally, the last part is just a computation. It is based on Chevalley’s formula, which
makes it possible to compute the divisor of the section fλ,w. The result is that it extends
to a Hasse invariant if and only if Condition (ii) of Proposition 9.2 is satisfied, because
the expressions that appear (for α varying in Ew) are the multiplicities of the divisor
of fλ,w. This terminates the proof.

12 Global sections of vector bundles
Recall that any algebraic representation ρ : E → GL(V ) gives rise to a vector bundle
V (ρ) over X = G-Zipµ. If ρ : L → GL(V ) is a representation of L, we may view it as a
representation of E via the map E → L defined as the composition of the first projection
E → P and the Levi projection P → L.

So far, we have only considered characters of L, which is the rank 1 case, and constructed
Hasse invariants for those vector bundles. In what follows, we want to study higher rank
vector bundles. Of particular interest are the vector bundles attached to L-dominant char-
acters by induction. For a character λ ∈ X∗(T ), view λ as a character B → Gm and
consider the induced representation

V (λ) = IndP
B(λ).

It is a representation of P where the unipotent radical of P acts trivially, so we may view it
as a representation of L. Note that if λ is not an L-dominant character, we have V (λ) = 0.
We denote by V (λ) the vector bundle over X attached to V (λ). This provides an interesting
family of vector bundles (V (λ))λ on X indexed by the L-dominant characters λ ∈ X∗(T ).

We end this survey with a result that determines the space of global sections of V (λ)
over X . To simplify, we assume that µ is defined over Fp. We choose again a Borel
pair (B, T ) defined over Fp and we assume also that T is split over Fp. For a character
λ ∈ X∗(T ), our goal is to determine the space H0(X ,V (λ)).
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Denote by U ⊂ X the unique open zip stratum. The first step is to determine the
space H0(U ,V (λ)). This is elementary, and can be done for an arbitrary representation
ρ : L→ GL(V ). Specifically, one has the following result.

Lemma 12.1. For any representation ρ : L→ GL(V ), there is an isomorphism

H0(U ,V (ρ)) ≃ V L(Fp).

This is almost a tautology, given that the stack U can be seen to be isomorphic to
[1/L(Fp)]. In particular, this shows that H0(X ,V (ρ)) is a subspace of the L(Fp)-invariants
of V . To determine exactly which subspace demands some work.

First, we introduce some notation. For any representation ρ : L → GL(V ), we may
decompose V with respect to T -eigenspaces.

V =
⊕

χ∈X∗(T )

Vχ.

Define a subspace V≤0 ⊂ V as follows. It is the direct sum of the T -eigenspaces Vχ for the
characters χ ∈ X∗(T ) which satisfy the condition

⟨χ, α∨⟩ ≤ 0 for all α ∈ ∆ \ I.

Note that V≤0 is stable under the action of T , but it is not a sub-L-representation of
V . From now on we consider the L-representation V (λ) defined previously, attached to a
character λ ∈ X∗(T ). One has the following.

Theorem 12.2. There is a commutative diagram where the vertical maps are the natural
inclusions, and the horizontal maps are isomorphisms:

H0(U ,V (λ)) ≃ // V (λ)L(Fp)

H0(X ,V (λ)) ≃ //

?�

OO

V (λ)≤0 ∩ V (λ)L(Fp)

?�

OO

In a recent paper [17], we show that the above theorem also holds for an arbitrary
L-representation (V, ρ) (not necessarily of the form V (λ)). Furthermore, we also determine
in loc. cit. the space H0(X ,V (ρ)) for an arbitrary P -representation (V, ρ), and without
assuming that L is defined over Fp. It is a difficult problem in representation theory to
determine for which λ ∈ X∗(T ), the intersection V (λ)≤0 ∩ V (λ)L(Fp) is non-zero. The set

Czip :=
{
λ ∈ X∗(T ) | V (λ)≤0 ∩ V (λ)L(Fp) ̸= 0

}
is an additive submonoid (i.e. a cone) of X∗(T ). The paper [9] contains some partial results
on this set, but it remains quite mysterious.

Let us mention an even more difficult problem. Instead of considering one λ at a time,
it is interesting to put them all together by forming the direct sum

Rzip :=
⊕

λ∈X∗(T )

H0(X ,V (λ)).

This group inherits a natural structure of graded k-algebra, and one can ask what the
isomorphism class of Rzip is. The set Czip is then simply the grading monoid of this graded
algebra, so the question of determining Rzip is a refinement of the determination of Czip. It
is not even clear whether Rzip is a finite-type k-algebra. Here are some partial results:
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Proposition 12.3. One has the following:

(i) The algebra Rzip is isomorphic to a subalgebra of k[G]. In particular, it is integral.

(ii) The field of fractions of Rzip is isomorphic to the function field of Ru(B ∩ L). In
particular, the scheme Spec(Rzip) is birational to an affine space.

(iii) If Pic(G) = 0, then Rzip is a UFD.
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