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Introduction
The stack of G-zips is an object in the realm of group-theory, which was introduced by
Moonen–Wedhorn ([15]) and more thoroughly studied by Pink–Wedhorn–Ziegler in [16, 17].
One of the main applications of this stack is to study stratifications in moduli spaces in
positive characteristic. Let k be an algebraic closure of Fp. Let G be a connected reductive
group over Fp and µ : Gk → Gk a cocharacter. Pink–Wedhorn–Ziegler attach to (G, µ)
an algebraic stack G-Zipµ over k. Its underlying topological space is finite and admits an
explicit parametrization in terms of the Weyl group of G (see Theorem 2.1). This stack
appears in the theory of Shimura varieties. If SK is the special fiber of a Hodge-type
Shimura variety with good reduction, then Zhang showed ([19]) that there is a smooth
(surjective) map ζ : SK → G-Zipµ, where (G, µ) denotes the reductive group over Fp and
the cocharacter µ : Gm,k → Gk deduced from the Shimura datum. The fibers of the map ζ
are the Ekedahl–Oort strata of SK .

The stack G-Zipµ itself is an interesting algebraic object, endowed with a natural strati-
fication, as well as a family of vector bundles. Denote by P the parabolic subgroup deduced
from the cocharacter µ (see §2 for the precise definition) and let L ⊂ P be the Levi subgroup
given by the centralizer of µ. Any algebraic P -representation (V, ρ) gives rise to a vector
bundle V(ρ) on G-Zipµ. In the paper [13], we studied line bundles on the stack G-Zipµ and
showed the existence of generalized µ-ordinary Hasse invariants. This result was general-
ized to all strata in [7]. In the paper [12], we studied vector bundles of the form VI(λ) for
λ ∈ X∗(T ). The vector bundle VI(λ) is the vector bundle attached to the P -representations
VI(λ) := IndP

B(λ) where B is a Borel subgroup contained in P . These vector bundles arise
naturally in the context of automorphic forms. Indeed, the global sections of VI(λ) over
SK are automorphic forms modulo p of level K and weight λ. By pullback via the map
ζ : SK → G-Zipµ, global sections of VI(λ) over G-Zipµ can also be viewed as such auto-
morphic forms. Therefore, it is relevant to study the space H0(G-Zipµ,VI(λ)). When P is
defined over Fp, we determined this space in terms of the representation VI(λ) in [12, Theo-
rem 3.7.2]. In the general case, we give an explicit formula for the space H0(G-Zipµ,V(ρ))
for an arbitrary P -representation (V, ρ) in [9, Theorem 3.4.1]. Returning to vector bundles
of the form VI(λ), we are interested in the set

Czip := {λ ∈ X∗(T ) | H0(G-Zipµ,VI(λ)) ̸= 0}.

This set is a cone in X∗(T ) (i.e. an additive submonoid). For a cone C ⊂ X∗(T ), write ⟨C⟩
for the saturated cone of C, i.e. the set of λ ∈ X∗(T ) such that some positive multiple of
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λ lies in C. It is conjectured that the cone ⟨Czip⟩ controls the possible weights of modulo
p automorphic forms (see Conjecture 6.1).

The goal of this proceedings paper is to present some new results regarding the set Czip

that constitute part of the work in progress [6] in collaboration with Imai and Goldring. It is
inspired by results of Diamond–Kassaei in [3, 4] for Hilbert–Blumenthal Shimura varieties,
which show (among other results) that the weight of any nonzero Hilbert modular form
in characteristic p is spanned over Q>0 by the weights of certain partial Hasse invariants
constructed by Andreatta–Goren in [1]. We introduce a general notion of partial Hasse
invariants, for arbitrary reductive groups G. To explain it, recall the stack of G-zip flags
G-ZipFlagµ defined in [7]. It admits a natural projection map

π : G-ZipFlagµ → G-Zipµ .

For any character λ ∈ X∗(T ), there is a line bundle Vflag(λ) such that π∗(Vflag(λ)) = VI(λ).
Furthermore, the stack G-ZipFlagµ admits a natural stratification (Cw)w∈W . Write ∆ for
the set of simple roots of G. The codimension one strata are of the form (Cw0sα)α∈∆, where
w0 is the longest element of W and sα is the reflection along α. For each α ∈ ∆, there
exists a section Hα ∈ H0(G-ZipFlagµ,Vflag(λα)) for a certain character λα ∈ X∗(T ), whose
vanishing locus is precisely the Zariski closure of the codimension one stratum Cw0sα . Note
that Hα, λα are not completely uniquely determined by α, but the small ambiguity in the
choice is irrelevant. Since π∗(Vflag(λα)) = VI(λα), the partial Hasse invariant Hα can also
be interpreted as a global section of VI(λα) over G-Zipµ.

Inspired by the result of Diamond–Kassaei mentioned above, we introduce the cone
CHasse ⊂ X∗(T ) generated by the weights (λα)α∈∆ of the partial Hasse invariants. From the
definition of Czip, one has CHasse ⊂ Czip. The natural group-theoretical generalization of
Diamond–Kassaei’s result would be the equality ⟨Czip⟩ = ⟨CHasse⟩. However, this equality
is false in general (see §7 for a counter-example). In the work in progress [6], we determine
exactly for which pairs (G, µ) this equality holds by giving an explicit characterization
(Theorem 8.1). If this condition holds, we say that (G, µ) is of Hasse-type. Therefore,
one can hope to generalize the results of [3, 4] to Shimura varieties such that (G, µ) is of
Hasse-type.
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1 The F -zip attached to an abelian variety
Let p be a prime number and denote by k an algebraic closure of Fp. Let σ : k → k,
x 7→ xp be the p-power Frobenius homomorphism. If A is an abelian variey over k, then
the p-torsion H = A[p] is a finite, commutative k-group scheme killed by p. By Dieudonne
theory, there is an equivalence of categories H 7→ D(H) between such objects and triples
(M,F, V ), where

(i) M is a finite-dimensional k-vector space,
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(ii) F :M →M is a σ-linear endomorphism,

(iii) V :M →M is a σ−1-linear endomorphism,

subject to the conditions FV = 0 and V F = 0. If the triple (M,F, V ) satisfies furthermore
Ker(F ) = im(V ) and Ker(V ) = im(F ), then we call it a Dieudonne space. For group
schemes of the form A[p], the associated triple (M,F, V ) is a Dieudonne space. If g =
dim(A), then dimk(M) = 2g and F, V have rank g. It is easy to see that there are only
finitely many isomorphism classes of Dieudonne spaces of dimension 2g, let {H1, . . . , HN}
be a set of representatives.

Similarly, let S be a scheme of characteristic p and A → S an abelian scheme over
S of relative dimension g. For each point s ∈ S, we can consider the abelian variety
As := A⊗S κ(s) where κ(s) is the field of definition of s and κ(s) is an algebraic closure.
We can then study how the isomorphism class of As[p] varies for s ∈ S. We obtain a finite
decomposition

S =
N⊔
i=1

Si

where Si is the set of s ∈ S such that As[p] ≃ Hi. For example, the ordinary locus of S is
the set of s ∈ S for which

As[p] ≃ µg
p × (Z/pZ)g. (1.0.1)

We now explain a useful way to think about this decomposition. Consider the relative
algebraic de Rham cohomology M := H1

dR(A/S). It is a locally free OS-module of rank
2g, equipped with the following structure:

(i) A Hodge filtration 0 ⊂ Ω ⊂ M, where Ω is a locally free OS-submodule of rank g,

(ii) an OS-linear map F : M(p) → M,

(iii) an OS-linear map V : M → M(p).

Furthermore, (M, F, V ) satisfies Ker(F ) = im(V ) = Ω(p) and Ker(V ) = im(F ). When
S = Spec(k), this is simply the Dieudonne space attached to an abelian variety, as we
explained above.

We note that there is a natural equivalence between such triples and quadruples (M, C,D, ι•),
where

(i) M is a locally free OS-module of rank 2g,

(ii) C ⊂ M and D ⊂ M are locally free OS-submodules of rank g,

(iii) ι0 : C(p) → M/D and ι1 : (M/C)(p) → D are isomorphisms of OS-modules.

This equivalence is given by sending (M, F, V ) to (M,Ω, im(F ), ι•) where ι0, ι1 are the
isomorphisms naturally deduced from F and V . We call such a quadruple (M, C,D, ι•) an
F -zip of rank g over S. Consider the stack F-Zipg over Fp which classifies F -zips of rank
g. In other words, for any Fp-scheme T , morphisms T → F-Zipg correspond bijectively to
F -zips over T .

Recall that we started with an abelian scheme A → S and attached an F -zip of rank
g on S. In particular, we obtain a natural morphism of stacks ζ : S → F-Zipg. By
definition, the underlying topological space of F-Zipg is the set of equivalence classes of
maps Spec(K) → F-Zipg where K is an algebraically closed field. Hence, they correspond
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to isomorphism classes of F -zips over algebraically closed fields of characteristic p. Over
such a field, an F -zip is simply a Dieudonne space, so we deduce that the underlying
topological space of F-Zipg is in bijection with the set {H1, . . . , HN}. Furthermore, the
locus Si ⊂ S defined earlier coincides with the fiber of the map ζ : S → F-Zipg above the
point of F-Zipg corresponding to Hi.

2 More general reductive groups
One often considers abelian varieties endowed with some extra structure. For example, let S
be an Fp-scheme and (A, ξ) a principally polarized abelian variety over S. Let (M,Ω, F, V )
be the F -zip attached to A. The principal polarization ξ induces a perfect pairing ⟨−,−⟩ :
M × M → OS. Furthermore, it is compatible with F, V in the sense that ⟨Fx, y⟩ =
⟨x, V y⟩(p), where ⟨−,−⟩(p) denotes the induced pairing on M(p). The stack that classifies
tuples (M,Ω, F, V, ⟨−,−⟩) is called the stack of symplectic F -zips of rank g.

More generally, in order to study F -zips with additional structure, it is convenient to
consider the stack of G-zips, for any connected reductive Fp-group G. Fix a cocharacter
µ : Gm,k → Gk. This cocharacter gives rise to a pair of opposite parabolics P±, where P+

(resp. P−) is the parabolic subgroup of Gk whose Lie algebra is
⊕

n≥0 gn (resp.
⊕

n≤0 gn),
where gn ⊂ Lie(Gk) is the subspace where x ∈ Gm,k acts by multiplication with xn via µ.
The intersection L = P+ ∩ P− is a common Levi subgroup, equal to the centralizer of µ.
Set P := P−, Q = (P+)

(p), and M = L(p). The stack of G-zips of type µ is the stack G-Zipµ

such that for any k-scheme S, G-Zipµ(S) parametrizes tuples (I, IP , IQ, ι), where

(i) I is a G-torsor over S,

(ii) IP ⊂ I is a P -torsor over S,

(iii) IQ ⊂ I is a Q-torsor over S,

(iv) ι : (IP/U)(p) → IQ/V is an isomorphism of M -torsors.

We recall an important result of Pink–Wedhorn–Ziegler. If H is an algebraic group,
denote by Ru(H) the unipotent radical of H. For x ∈ P , we can write uniquely x = xu
with x ∈ L and u ∈ Ru(P ). This defines a projection map θPL : P → L; x 7→ x. Similarly,
we have a projection θQM : Q → M . Denote by φ : G → G the Frobenius homomorphism.
Since M = L(p), it induces a map φ : L → M . The zip group is the subgroup of P × Q
defined by

E := {(x, y) ∈ P ×Q | φ(θPL (x)) = θQM(y)}.

Let E act on the left on Gk by the rule (x, y) · g := xgy−1 for all (x, y) ∈ E and all g ∈ Gk.
Then, by [17, Th. 1.5], there is an isomorphism of k-stacks

G-Zipµ ≃ [E\Gk] . (2.0.1)

In particular, the underlying topological space of G-Zipµ coincides with the set of E-
orbits in Gk. We explain a parametrization of these orbits from [16]. Fix a Borel pair
(B, T ) satisfying B ⊂ P and T ⊂ L, and suppose for simplicity that (B, T ) is defined over
Fp. After possibly changing µ to a conjugate cocharacter, such a Borel pair always exists.
Write Φ for the set of T -roots. Let Φ+ ⊂ Φ denote the positive roots (where positivity
is defined with respect to the Borel subgroup opposite to B). Finally, let ∆ be the set of
simple roots. Recall that there is a bijection between subsets of ∆ and conjugacy classes of
parabolic subgroups of Gk (Borel subgroups corresponding to the empty set). Let I, J ⊂ ∆
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denote the types of P,Q respectively. We put ∆P := ∆ \ I. Note that since B ⊂ P ,
the set I coincides with the set ∆L of simple roots of L. Let W be the Weyl group of
T and ℓ : W → Z≥0 the length function. Write w0 for the longest element in W . For a
subset K ⊂ ∆, let WK ⊂ W be the subgroup generated by {sα | α ∈ K}, and let w0,K

be the longest element of WK . Define WK as the set of elements w ∈ W which are of
minimal length in the coset wWK . For w ∈ W , choose a representative ẇ ∈ NG(T ), such
that (w1w2)

· = ẇ1ẇ2 whenever ℓ(w1w2) = ℓ(w1) + ℓ(w2) (this is possible by choosing a
Chevalley system, see [2], Exp. XXIII, §6). Define z := w0w0,J . For w ∈ W , define Gw as
the E-orbit of ẇż−1. The E-orbits in G form a stratification of G by locally closed subsets.

Theorem 2.1 ([16, Th. 11.3]). The map w 7→ Gw induces a bijection from W J onto the
set of E-orbits in G. Furthermore, for w ∈ W J , one has

dim(Gw) = ℓ(w) + dim(P ).

We explain the connection with F -zips, symplectic F -zips and G-zips. For this, let
Sp(2g) be the symplectic group over Fp attached to the matrix

Ψ :=

(
−J

J

)
where J :=

 1

. .
.

1

 .

Let B ⊂ Sp(2g) be the Borel subgroup of lower-triangular matrices in Sp(2g) and T ⊂ B
the maximal torus given by diagonal matrices in Sp(2g). Consider the cocharacter µg :

Gm → Sp(2g), z 7→
(
zIg 0
0 z−1Ig

)
. We may also view µg as a cocharacter of GL2g,Fp . Then,

through the correspondence between vector bundles and torsors for the general linear group,
F -zips of rank g identify naturally with GL2g-zips of type µg. Similarly, symplectic F -zips
of rank g identifiy with Sp(2g)-zips of type µg.

3 Vector bundles on G-Zipµ

For an algebraic group H over k, write Rep(H) for the category of algebraic representations
of H, i.e. morphisms ρ : H → GL(V ) where V is a finite-dimensional k-vector space.

Let G be a reductive group over Fp and µ : Gm,k → Gk a cocharacter. Write again
P,Q, L,M for the algebraic groups defined in §2. Let ρ : P → GL(V ) be an algebraic
representation. By definition, the stack G-Zipµ carries a universal P -torsor IP , thus by
applying ρ to this P -torsor, we obtain a vector bundle V(ρ) on G-Zipµ. This construction
gives rise to a functor

Rep(P ) → VB(G-Zipµ)

where the notation VB(X ) (for a stack X ) denotes the category of vector bundles on X .
The natural projection θPL : P → L induces a fully faithful functor (θPL )

∗ : Rep(L) →
Rep(P ). Hence, we view Rep(L) as the full subcategory of Rep(P ) of P -representations
which are trivial on the unipotent radical Ru(P ). In particular, we are interested in the
following kind of representations.

Since we assumed T ⊂ L, the group BL := B ∩ L is a Borel subgroup of L. For a
character λ ∈ X∗(T ), define an L-representation VI(λ) by

VI(λ) = IndL
BL

(λ).
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Denote by VI(λ) the vector bundle on G-Zipµ attached to VI(λ). We call VI(λ) the au-
tomorphic vector bundle associated to the weight λ on G-Zipµ. This terminology comes
from the theory of Shimura varieties. Indeed, let SK be the special fiber of the Kisin–Vasiu
integral model of a Hodge-type Shimura variety with good reduction at p, and let G be the
reductive group over Fp deduced from the Shimura datum. Then Zhang showed in [19] that
there is a smooth map ζ : SK → G-Zipµ. Then, the pullback ζ∗VI(λ) is an automorphic
bundle, and its global sections over SK are automorphic forms modulo p of level K and
weight λ. Note that if λ ∈ X∗(T ) is not L-dominant, then VI(λ) = 0 and hence VI(λ) = 0.

In the example of G = Sp(2g), µ = µg, we can make this question much more explicit.
Recall that in this case, the stack G-Zipµ parametrizes tuples (M,Ω, F, V, ⟨−,−⟩) (see §1).
Identify X∗(T ) = Zg and for λ = (k1, . . . , kg), write VI(k1, . . . , kg) for VI(λ). The family
of vector bundles VI(k1, . . . , kg) is obtained by applying Schur functors to Ω. Another way
to think about it is via the stack of zip flags. For a general Fp-reductive group G and
cocharacter µ : Gm,k → Gk, it is defined as follows. It is the stack that parametrizes pairs
(I, J) where I = (I, IP , IQ, ι) is a G-zip and J ⊂ IP is a B-torsor. We denote this stack by
G-ZipFlagµ. There is a natural projection map

π : G-ZipFlagµ → G-Zipµ

given by (I, J) 7→ I. For any representation (V, ρ) ∈ Rep(B), by applying the universal
B-torsor on G-ZipFlagµ, we obtain a vector bundle Vflag(ρ). We have the identification

π∗(Vflag(ρ)) = V(IndP
B(ρ)).

In particular, we can think of the vector bundle VI(λ) on G-Zipµ as the push-forward of the
line bundle Vflag(λ). Let us return to the example of the symplectic group. In this case, the
stack of zip flags parametrizes tuples (M,Ω,F•, F, V, ⟨−,−⟩), where (M,Ω, F, V, ⟨−,−⟩)
is a symplectic F -zip, and F• is a full flag of Ω. Specifically, it is a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fg−1 ⊂ Fg = Ω

where Fi is a locally free OS-module of rank i, locally direct factor of Ω. In this descrip-
tion, we used the fact that for the group Sp(2g), a B-torsor contained in IP corresponds
to a symplectic flag refining the Hodge filtration, and by using the pairing ⟨−,−⟩, it is
equivalent to give a full flag of Ω (with no condition). Define the line bundle Li := Fi/Fi−1

on G-ZipFlagµ for 1 ≤ i ≤ g. For λ = (k1, . . . , kg) ∈ Zg, the line bundle Vflag(λ) on
G-ZipFlagµ is then concretely given by

L(k1, . . . , kg) :=
g⊗

i=1

L−ki
i .

Similarly, the vector bundle VI(k1, . . . , kg) is the push-forward of L(k1, . . . , kg) via π.

4 Global sections of vector bundles
In the paper [9], we determine the space of global sectionsH0(G-Zipµ,V(ρ)) for an arbitrary
representation (V, ρ) ∈ Rep(P ). This space can be expressed in terms of the part of the
Brylinski–Kostant filtration of V which is invariant under a certain finite group scheme (see
[9, Theorem 3.4.1]). To simplify, we will assume here that P is defined over Fp and we will
only consider representations in Rep(L). For (V, ρ) ∈ Rep(L), write V =

⊕
χ∈X∗(T ) Vχ for

the T -weight decomposition of V . Recall that ∆P := ∆ \ I. Define a subspace V ∆P

≥0 ⊂ V
as the sum of weight spaces Vχ such that ⟨χ, α∨⟩ ≤ 0 for all α ∈ ∆P .
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Theorem 4.1. Let (V, ρ) ∈ Rep(L). There is an identification

H0(G-Zipµ,V(ρ)) = V L(Fp) ∩ V ∆P

≥0 .

In particular, this formula applies to the L-representations VI(λ), which are of particular
interest for us. In the papers [8, 12], we studied global sections of the vector bundle VI(λ).
In particular, we investigated for which λ ∈ X∗(T ), this vector bundle admits nonzero
global sections on G-Zipµ. From the point of view of representation theory, it seems very
difficult to determine when the intersection VI(λ)L(Fp) ∩ VI(λ)∆

P

≥0 is nonzero. We will study
this question in the next section.

Again, let us consider the case G = Sp(2g), µ = µg. As we explained, we have
π∗L(k1, . . . , kg) = VI(k1, . . . , kg), hence the space H0(G-Zipµ,VI(k1, . . . , kg)) identifies with
global sections of L(k1, . . . , kg) on G-ZipFlagµ. Recall also that G-ZipFlagµ parametrizes
tuples (M,Ω,F•, F, V, ⟨−,−⟩). Let us give examples of sections of the line bundles L(k1, . . . , kg).
Fix an integer 1 ≤ i ≤ g. By restricting the Verschiebung map V : Ω → Ω(p) to Fi and
composing with the projection Ω(p) → (Ω/Fg−i)

(p), we obtain a map Vi : Fi → (Ω/Fg−i)
(p)

of vector bundles of rank i. Taking the determinant, we obtain a map

Hi := det(Vi) : L1 ⊗ · · · ⊗ Li → (Lg−i+1 ⊗ · · · ⊗ Lg)
p (4.0.1)

In other words, Hi is a section of the line bundle L(λi) where

λi = (1, . . . , 1, 0 . . . , 0)− (0, . . . , 0, p . . . , p)

(both 1 and p appear i times). In particular, for i = g, the section Hg is the classical
Hasse invariant. Write ω =

∧g Ω, hence we have VI(λg) = ωp−1. Let Ag be the moduli
stack of principally polarized abelian varieties over Fp. As we explained, there is a natural
map ζ : Ag → G-Zipµ. Then, the pullback of Hg by ζ is the classical Hasse invariant of
Ag, whose non-vanishing locus is the ordinary locus of Ag. More generally, the sections Hi

(1 ≤ i ≤ g) are called partial Hasse invariants. We explain this terminology in the next
section. We give the vanishing loci of the other sections Hi in §7.

5 Flag strata and partial Hasse invariants
Let G be a reductive group over Fp and µ : Gm,k → Gk a cocharacter. There is a natural
stratification (Cw)w∈W of G-ZipFlagµ which corresponds to the Bruhat stratification of
G. Specifically, if we write G-Zipµ = [E\Gk] as in (2.0.1), then the stack G-ZipFlagµ is
isomorphic to [E ′\Gk], where E ′ := E ∩ (B ×Q) acts on Gk by restricting the action of E.
Furthermore, it is easy to see that E ′ ⊂ B × zB (recall that z = w0w0,J). Composing with
the map g 7→ gz, we finally obtain a morphism

ψ : G-ZipFlagµ → [B\G/B].

The Bruhat stratification (BwB)w∈W gives a natural stratification of the stack [B\G/B].
By pulling back via ψ, we obtain a locally closed stratification (Cw)w∈W of G-ZipFlagµ.
The codimension of Cw coincides with the colength of the element w ∈ W (defined as
ℓ(w0)− ℓ(w)). In particular, there are exacty |∆| strata of codimension one, corresponding
to the elements w0sα for α ∈ ∆.

Let us come back to the case (G, µ) = (Sp(2g), µg). Recall the definition of the flag space
Fg of Ag. Similarly to G-ZipFlagµ, it parametrizes tuples (A, ξ,F•) where (A, ξ) ∈ Ag
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and F• ⊂ ΩA is a full flag. This space was first introduced by Ekedahl–Van der Geer in [5].
The space Fg can also be viewed as the fiber product

Fg = Ag ×G-Zipµ G-ZipFlagµ .

By pullback from G-ZipFlagµ, we obtain a stratification (Sw)w∈W of Fg. For a more
concrete description of the stratum Sw in this case, see [5, §4]. The sections Hi (1 ≤ i ≤ g)
constructed in (4.0.1) have the following property. Identifying X∗(T ) = Zg as usual, write
αi = ei − ei+1 for i = 1, . . . , g − 1 and αg = 2eg. Then, the vanishing locus of the section
Hi ∈ H0(G-ZipFlagµ,L(λi)) coincides with the Zariski closure of Cw0sαi

. For this reason,
we call these sections partial Hasse invariants on G-ZipFlagµ. The cone in Zg generated
by the weights λi (1 ≤ i ≤ g) is called the Hasse cone, and is denoted by CHasse ⊂ Zg.

Similarly, for an arbitrary pair (G, µ), there exist characters λα ∈ X∗(T ) and sections
hα ∈ H0(G-ZipFlagµ,Vflag(λα)) such that the vanishing locus of hα is Cw0sα . See [10]
for a general study of partial Hasse invariants and their properties. Again, we denote by
CHasse ⊂ X∗(T ) the cone generated by the characters λα. Concretely, the cone CHasse can
also be defined as the image of the set of dominant characters X∗(T )+ by the linear map

h : X∗(T ) → X∗(T ), λ 7→ λ− pσ(zw0λ)

where σ indicates the action of Frobenius on X∗(T ).

6 The zip cone
Again, let (G, µ) be an arbitrary cocharacter datum, with attached groups P,L,Q,M . Fix
also a Borel pair (B, T ) defined over Fp as in §2. The zip cone is defined as the set of
λ ∈ X∗(T ) such that VI(λ) admits nonzero sections over G-Zipµ, in other words:

Czip := {λ ∈ X∗(T ) | H0(G-Zipµ,VI(λ)) ̸= 0}.

By Theorem 4.1, the set Czip is also the locus where the L-representaton VI(λ) satis-
fies that VI(λ)L(Fp) ∩ VI(λ)

∆P

≥0 ̸= 0. Using the identification of H0(G-Zipµ,VI(λ)) with
H0(G-ZipFlagµ,Vflag(λ)), it follows from the formula Vflag(λ+ λ′) = Vflag(λ)⊗Vflag(λ

′) for
all λ, λ′ ∈ X∗(T ) that Czip is stable under addition. One has also obviously 0 ∈ Czip. For
a cone C ⊂ X∗(T ), denote by ⟨C⟩ the saturated cone of C, i.e. the set of λ ∈ X∗(T ) such
that some positive multiple of λ lies in C. We have the inclusions

CHasse ⊂ Czip ⊂ X∗
+,I(T )

where X∗
+,I(T ) denotes the set of L-dominant characters, i.e. characters λ satisfying

⟨λ, α∨⟩ ≥ 0 for all α ∈ I. The first inclusion follows from the definition, and the sec-
ond one from the fact that VI(λ) = 0 if λ /∈ X∗

+,I(T ).
Even though Czip is completely defined in group-theoretical terms, it is useful to return

to the theory of Shimura varieties to understand Czip intuitively. Recall that a Shimura
variety comes as a tower of algebraic varieties Sh = (ShK)K defined over some number
field F , where K varies in the set of compact open subgroups of G(Af ) (here G is the
corresponding connected reductive group over Q). Assume that Sh is of Hodge-type, and
that GQp is unramified. Furthermore, fix a hyperspecial subgroup Kp ⊂ G(Qp). Then,
Kisin ([11]) and Vasiu ([18]) constructed a canonical model S = (SKp)Kp of the tower
ShKp = (ShKpKp)Kp over OFp , for any place p|p in F . For K of the form KpK

p (where
Kp ⊂ G(Ap

f )), let SK be the special fiber of SK . It is defined over the residual field κ of
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p. As we explained, there is a smooth surjective map ζK : SK → G-Zipµ (where G denotes
the special fiber of a Zp-reductive model of GQp). Furthermore, the maps ζK commute with
change of level. It is natural to define a set CK(k) as follows

CK(k) := {λ ∈ X∗(T ) | H0(SK ⊗κ k,VI(λ)) ̸= 0}.

Here, we denoted again by VI(λ) its pullback via ζK . The set CK(k) indicates the possible
weights of nonzero automorphic forms over k, which is an important question. The set
CK(k) highly depends on the level K. However, since the change of level maps are finite
etale, one can show that the saturated cone ⟨CK(k)⟩ is independent of K. For this reason,
we conjectured the following:

Conjecture 6.1 ([8, Conjecture 2.1.6]). One has

⟨CK(k)⟩ = ⟨Czip⟩.

Note that the inclusion Czip ⊂ CK(k) is obvious. We proved this conjecture in several
cases in loc. cit.. Since the vector bundles VI(λ) admit natural models over OFp , one can
also define a set CK(C) in a similar way. By the same argument, ⟨CK(C)⟩ is independent
of K. Let CGS denote the set of characters λ ∈ X∗(T ) satisfying the conditions

⟨λ, α∨⟩ ≥ 0 for α ∈ I,

⟨λ, α∨⟩ ≤ 0 for α ∈ Φ+ \ ΦL,+.

For example, in the case of Sp(2g), the set CGS is given by the tuples (k1, . . . , kg) such that
0 ≥ k1 ≥ · · · ≥ kg. By work of Griffiths–Schmid, one has

⟨CK(C)⟩ = CGS.

Furthermore, by reducing sections modulo p, one can see that one has always an inclusion
⟨CK(C)⟩ ⊂ ⟨CK(k)⟩ (see [12, Proposition 1.8.3]). Hence, if Conjecture 6.1 is correct, we
should have an inclusion CGS ⊂ ⟨Czip⟩, which is now a purely group-theoretical statement.
We indeed verify this prediction for an arbitrary pair (G, µ) in the work in progress [6]
(generalizing [12, Corollary 3.5.6]):

Theorem 6.2. For arbitrary (G, µ), one has CGS ⊂ ⟨Czip⟩.

Hence, Theorem 6.2 substantiates Conjecture 6.1, since the inclusion CGS ⊂ ⟨Czip⟩ is
predicted by Conjecture 6.1 (at least for groups attached to Shimura varieties of Hodge-
type). We now explain in more detail the proof of Theorem 6.2. For λ ∈ X∗

+,I(T ), let
fλ ∈ VI(λ) be a nonzero element of the highest weight line in the L-representation VI(λ).
We define the norm Norm(fλ) of fλ. For simplicity, we explain its construction in the case
when P is defined over Fp. It is defined by taking the product of the s · fλ over s ∈ L(Fp),
and corresponds to an element

Norm(fλ) ∈ V (dλ)L(Fp)

where d = |L(Fp)|. Hence, by Theorem 4.1, if Norm(fλ) lies in the subspace VI(λ)∆
P

≥0 , then
this element defines a global section over G-Zipµ of weight dλ. We explain the result in the
general case (here we do not assume that P is defined over Fp). Let L0 ⊂ L be the largest
Levi subgroup containing T and defined over Fp.
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Theorem 6.3 ([6]). The element Norm(fλ) defines a (nonzero) global section over G-Zipµ

if and only if for all α ∈ ∆P , the following holds:∑
w∈WL0

(Fp)

rα−1∑
i=0

pi+ℓ(w) ⟨wλ, σi(α∨)⟩ ≤ 0.

When P is defined over Fp, Theorem 6.3 is enough to show the inclusion CGS ⊂ ⟨Czip⟩.
Indeed, in this case and for λ ∈ CGS, all summands of the above sum are ≤ 0, hence the
sum is ≤ 0. Therefore, Norm(fλ) defines a nonzero section of weight dλ, which shows
that λ ∈ ⟨Czip⟩. In other words, denote by Chw the set of λ ∈ X∗

+,I(T ) such that the
inequalities of Theorem 6.3 are satisfied (here, "hw" stands for "highest weight"). Then
we have CGS ⊂ Chw ⊂ ⟨Czip⟩. However, when P is not defined over Fp, the inclusion
CGS ⊂ Chw may not hold (on the other hand, the inclusion Chw ⊂ ⟨Czip⟩ always holds).
To show CGS ⊂ ⟨Czip⟩ in the general case, we study in detail the case when G is a Weil
restriction. Then, we embed diagonally G in ResFpm/Fp(GFpm

) for an appropriate m ≥ 1
and deduce the result for G. To sum up, we have the following inclusions

⟨CHasse⟩� r

$$

X∗
−(L)

� � //
� r

%%

Chw
� � // ⟨Czip⟩ �

�
// X∗

+,I(T )

CGS

, �

::

Here X∗(L)− denotes the set X∗(L) ∩X∗(T )−, where X∗(T )− is the set of anti-dominant
characters. We recall results of [13] about µ-ordinary Hasse invariants. In loc. cit., we
considered the set

X∗(L)−,reg = {λ ∈ X∗(L) | ⟨λ, α∨⟩ < 0, ∀α ∈ ∆P}. (6.0.1)

We showed ([13, Theorem 1]) that if λ ∈ X∗(L)−,reg, then there exists a section Hµ ∈
H0(G-Zipµ,V(Nλ)) (some integer N ≥ 1), such that the non-vanishing locus of Hµ is the
unique open stratum of G-Zipµ. In particular, it implies X∗(L)−,reg ⊂ ⟨Czip⟩. Hence, the
present discussion is a vast generalization of the results of [13].

7 Example: The case Sp(6)

Let us focus on the case (Sp(2g), µg) for g = 3. We retain the notations introduced in §3.
We constructed partial Hasse invariants, which are sections over G-ZipFlagµ of weights
λ1 = (1, 0,−p), λ2 = (1, 1− p,−p) and λ3 = (1− p, 1− p, 1− p) respectively. It is possible
to construct more complicated sections. Consider the map V : Ω → Ω(p). By twisting, we
also have a map V (p) : Ω(p) → Ω(p2). By composition, we have V (p) ◦ V : Ω → Ω(p2). Now,
take the tensor product of the maps V (p) ◦ V |L1 : L1 → Ω(p2) and V (p)|Lp

1
: Lp

1 → Ω(p2). We
obtain a map

f : L1 ⊗ Lp
1 → Ω(p2) ⊗ Ω(p2).

Compose this map with the natural map ∧ : Ω(p2) ⊗ Ω(p2) →
∧2Ω(p2) and the projection∧2Ω(p2) →

∧2(Ω/F1)
(p2). Since

∧2(Ω/F1) = L2 ⊗ L3, we obtain finally a map

f1 : L1 ⊗ Lp
1 → (L2 ⊗ L3)

p2 ,
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hence a section of L(p+ 1,−p2,−p2). This section f1 is an example of section of the form
Norm(fλ) (see Theorem 6.3). It seems very difficult to grasp the definition of f1, however
its vanishing locus has a simple interpretation. View this section on the flag space Fg by
pullback, and let x = (A, ξ,F•) be a point of Fg(k). Write M = D(A[p]) for the Dieudonne
space of A. The Hodge filtration corresponds to 0 ⊂ VM ⊂ M . Furthermore, VM is
endowed with a filtration

0 = F0 ⊂ F1 ⊂ F2 ⊂ F3 = VM

given by F•. Then we have an equivalence

f1(x) ̸= 0 ⇐⇒ F1 ⊕ V (F1)⊕ V 2(F1) = VM.

In other words, the non-vanishing locus corresponds to the points where the three k-lines
F1, V (F1) and V 2(F1) are linearly independent. There is also a section f2 of weight
(1, 1,−(p2+ p)) whose non-vanishing locus is given by a similar condition for the dual M∨.
The construction of f2 is similar to f1, we refer the interested reader to [12, §6.4]. For
arbitrary g ≥ 1, we can also give the vanishing locus for the partial Hasse invariants Hi

(1 ≤ i ≤ g). One has:
Hi(x) ̸= 0 ⇐⇒ Fg−i ⊕ V (Fi) = VM.

In particular for i = g, the section Hg is the classical Hasse invariant. Its non-vanishing
locus coincides with the ordinary locus by the following easy lemma.

Lemma 7.1. The following conditions are equivalent.

(i) A is ordinary.

(ii) One has VM ⊕ FM =M .

(iii) One has V (VM) = VM .

Proof. By (1.0.1), A is ordinary if and only if M ≃ µg
p × (Z/pZ)g. Via the Dieudonne

equivalence explained in §1, this amounts to M = VM⊕FM , which shows the equivalence
between (i) and (ii). Moreover, this implies immediately V (VM) = VM . Conversely, if
V (VM) = VM then V is injective on VM by dimension reasons, hence VM ∩ FM = 0
and thus M = VM ⊕ FM . This terminates the proof.

For Sp(6), the cones are given by the following equations

CHasse = N(1, 0− p) + N(1, 1− p,−p) + N(1− p, 1− p, 1− p).

CGS = {(k1, k2, k3), 0 ≥ k1 ≥ k2 ≥ k3}
Chw = {(k1, k2, k3), p2k1 + pk2 + k3 ≤ 0}.

Let us represent graphically these cones. In R3, we choose a generic affine hyperplane
that cuts all the cones, and represent the intersections with this hyperplane. Hence, a point
represents a half-line from the origin. As explained, all cones are contained in the set of
L-dominant characters, i.e. the set of (k1, k2, k3) ∈ Z3 with k1 ≥ k2 ≥ k3. We represent the
weights of the two sections f1, f2 defined above, as well as the weights of the three partial
Hasse invariants.
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To avoid cluttering the picture, we did not represent the Hasse cone, which is generated
by (1, 0− p), (1, 1− p,−p) and (1− p, 1− p, 1− p). Note that it intersects both CGS and
Chw and there is no inclusion relation between these three cones.

8 G-zips of Hasse-type
In the case Sp(6), the above diagram shows explicitly the cone ⟨Czip⟩. However, for g ≥ 4
and for most reductive groups G, this cone is still undetermined. We give in this section
a family of cases where we can determine ⟨Czip⟩. Via Conjecture 6.1, this potentially will
apply to the study of automorphic forms in characteristic p.

This work is inspired from the papers [3, 4] of Diamond–Kassaei. They show as a corol-
lary of [4, Theorem 8.1], that for Hilbert–Blumenthal Shimura varieties (also in ramified
cases), one has an equality

⟨CK(k)⟩ = ⟨CHasse⟩. (8.0.1)

We also proved this result using different techniques in [8]. We showed moreover that
a similar equality holds for Siegel threefolds (G = Sp(4)Fp), and Picard surfaces at split
primes (G = GL3,Fp). Since we have in general CHasse ⊂ Czip ⊂ CK(k), the cones of (8.0.1)
also coincide with ⟨Czip⟩. However, we saw that for Sp(6), the inclusion ⟨CHasse⟩ ⊂ ⟨Czip⟩
was strict, so we cannot expect such a result to hold for general groups G.

To explain the second result of [6], we must first recall the topological properties of
the various cones. For a cone C ⊂ X∗(T ), write CR≥0

for the cone generated over R≥0 by
C inside X∗(T ) ⊗Z R. In what follows, endow the subset X∗

+,I(T )R≥0
with the subspace

topology inherited from X∗(T ) ⊗Z R. Also, recall the definition of X∗(L)−,reg given in
(6.0.1). We explained the inclusion X∗(L)−,reg ⊂ ⟨Czip⟩. We note that:

Fact. The set Czip,R≥0
is a neighborhood of X∗(L)−,reg inside X∗

+,I(T )R≥0
.

For example, in the case Sp(6), the set X∗(L)−,reg is the half-line R≥0(−1,−1,−1),
which contains the weight of the classical Hasse invariant λ3 = (1 − p, 1 − p, 1 − p). The

12



above fact can be proven separately, but can also be deduced immediately from the (much
more difficult) inclusion CGS ⊂ Czip. Indeed, it is clear that CGS,R≥0

is a neighborhood
of X∗(L)−,reg inside X∗

+,I(T )R≥0
, thus so is Czip,R≥0

. One can ask whether the Hasse cone
CHasse,R≥0

is also a neighborhood of X∗(L)−,reg. First of all, it can happen that X∗(L)−,reg

is not contained in CHasse,R≥0
. Secondly, even when the inclusion X∗(L)−,reg ⊂ CHasse,R≥0

holds, it can happen that this cone is not a neighborhood of X∗(L)−,reg. This can be
observed in the case Sp(6) explained in §7.

Theorem 8.1 ([6]). Let (G, µ) be an arbitrary cocharacter datum, with attached groups
P,L,Q,M . The following properties are equivalent:

(i) CHasse,R≥0
is a neighborhood of X∗(L)−,reg inside X∗

+,I(T )R≥0
.

(ii) The inclusion CGS ⊂ CHasse holds.

(iii) One has the equality ⟨Czip⟩ = ⟨CHasse⟩.

(iv) The parabolic P is defined over Fp, and the Frobenius σ acts on I by −w0,I .

In Property (iv), note that since P is defined over Fp, the subset I ⊂ ∆ is stable by
the action of σ. Note also that the element −w0,I preserves I as well. We say that (G, µ)
is of Hasse-type if any of the above conditions is satisfied. For example, in the case of
Hilbert–Blumenthal Shimura varieties considered by Diamond–Kassaei, we have I = ∅, so
it is obviously of Hasse-type. The case (Sp(2g), µg) is of Hasse-type if and only if g ≤ 2.
The case (GL3, µ) where µ : z 7→ diag(z, z, 1) is also of Hasse-type.

Returning to Shimura varieties, we may ask when the equality (8.0.1) of Diamond–
Kassaei generalizes. If this equality holds, then a fortiori ⟨Czip⟩ = ⟨CHasse⟩, hence (G, µ)
must be of Hasse-type. Conversely, we conjecture that for Hodge-type Shimura varieties
such that (G, µ) is of Hasse-type, the equality (8.0.1) holds. Beside the cases already
mentioned treated in [8], the Hodge-type Shimura varieties attached to spinor groups
GSpin(2n+ 1, 2) are also of Hasse-type. Therefore, Diamond–Kassaei’s results potentially
generalize to these Shimura varieties.
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