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Abstract

We establish vanishing results for spaces of automorphic forms in characteristic 0
and characteristic p. We prove that for Hodge-type Shimura varieties, the weight of
any nonzero automorphic form in characteristic 0 satisfies the Griffiths—Schmid condi-
tions, by purely algebraic, characteristic p methods. We state a conjecture for general
Hodge-type Shimura varieties regarding the vanishing of the space of automorphic
forms in characteristic p in terms of the weight. We verify this conjecture for unitary
PEL Shimura varieties of signature (n — 1,1) at a split prime.

Introduction

In this paper, we establish vanishing results for spaces of automorphic forms in both char-
acteristic 0 and characteristic p. Let (G, X) be a Shimura datum, where G is a connected
reductive Q-group. For a compact open subset K C G(Ay), we have a Shimura variety
Sh(G, X) g defined over a number field E. Let P C Gg be the parabolic subgroup at-
tached to the Shimura datum (see . Choose a Borel subgroup B and a maximal torus
T such that T € B C P. Then, any algebraic P-representation (V, p) naturally gives rise
to a vector bundle V(p) on Sh(G, X)g. Let L C P denote the unique Levi subgroup of P
containing T. Write ® for the T-roots of G, and &, , A respectively for the positive roots
and the simple roots with respect to B. Let I C A be the subset of simple roots contained
in L. For A\ € X*(T), we consider the P-representation V;()\) = Indg()\) and denote by
Vi (\) the associated vector bundle on Sh(G, X)x. We call V() the automorphic vector
bundle attached to the weight A\. The global sections of V;(\) over Sh(G, X)x will be called
automorphic forms of weight A and level K.

We now restrict to the case when (G, X) is of Hodge-type and K is of the form K =
K,K? with K, C G(Q,) hyperspecial and K? C G(A?) is compact open (we say that p
is a prime of good reduction). Let v|p be a place of E and write E, for the completion of
E at v. By results of Kisin (|Kis10]) and Vasiu ([Vas99]), the variety Sh(G, X)x admits a
smooth canonical model .k over Og,. The vector bundle V;(\) over Sh(G, X)x extends
naturally to .x. For any Og, -algebra F' that is a field, we investigate which weights A
admit nonzero automorphic forms with coefficients in F'. In other words, we study the
following set:

Ck(F) :={X € X*(T) | H(Sk Qog, F,Vi(N)) # 0}.

It is a subcone (i.e additive submonoid) of X*(T). It is contained in the set X7 ;(T) of L-
dominant characters, because V;(\) = 0 for non L-dominant A (by L-dominant, we mean
that it satisfies (A\,a¥) > 0 for all @ € I). It suffices to consider the cases F' = C and
F= Fp. Indeed, note that if F* C F’ then by flat base change, we have

HY( Sk ®og, F',ViI(N) = H'(Sk @0y, F,Vi(N) @p F',
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therefore Cx(F) = Ck(F"). By [MS11], there exists a smooth, toroidal compactification
SE of Sk, where ¥ is a sufficiently fine cone decomposition. The vector bundle V;(\)
over Sh(G,X)g extends naturally to the toroidal compactification .. By results of
Lan-Stroh in [LS18|, the Koecher principle holds, i.e there is an identification H°(.Yx ®g
R,Vi(\) = HY(Z @g R, Vi()\)) for all Og,-algebra R and all A € X*(T), except when
dim(Sh(G,X)g) = 1 and 7% \ Sk # 0. We assume henceforth that dim(Sh(G, X)) > 1
or that .k is proper, so that the Koecher principle holds.

In general, the set Cx(F') highly depends on the choice of the level K (even in the case
of the modular curve). For a subcone C' C X*(T), define its saturated cone (C) as the set
of A € X*(T) such that some positive multiple of A lies in C'. The saturated cone (Ck (F'))
is then independent of the level K ([Kosl9, Corollary 1.5.3]). Hence, it should be possible
to give an expression for the saturated cone in terms of the root data of G. Indeed, it
is known (at least for F' = C) that the cohomology of the Shimura variety .“x Qo F
can be expressed in terms of automorphic representations, and the theory of automorphic
representations is to a large extent controlled by the root datum of the reductive group G.

We first consider the case F' = C. Griffiths—Schmid considered in [GS69] the following
set of characters:

vy >
CGS:{)\GX*(T) ‘ (A, av)y >0 forael, }

(A a¥) <0 fora e @\ P4

Here ®y, + denotes the positive T-roots in L. We call this cone the Griffiths-Schmid cone.
The following seems to be known to experts, but as far as we know there is no reference
where this result is explicitly stated.

Theorem 1. Let (G, X) be any Hodge-type Shimura datum. Let X € X*(T) be a character
and assume that X\ ¢ Cas. Then we have H°(Sh(G, X) g, Vi()\)) = 0.

In other words, this theorem amounts to the inclusion C'x(C) C Cgs. We note that the
equality (Cx(C)) = Cgg is expected in general. It seems possible to show the above theorem
using the theory of Lie algebra cohomology. In this paper, we give a proof based on purely
characteristic p methods, which is a novel aspect of our approach. For an automorphic
form f in characteristic zero, we may consider the reduction of f modulo v for all except
finitely many places v of E. Then, our approach is to use the geometric structure (namely
the Ekedahl-Oort stratification) of the special fiber at v to extract information about the
weight of f.

In our proof of Theorem 1, only weak information at each prime is sufficient to obtain
the result because we are able to reduce f at infinitely many places. On the other hand, a
more difficult question is to fix a prime p (of good reduction) and study the cone Cy(F,).
Similarly to the characteristic zero case, the saturated cone (Ck(F,)) is independent of K
and we expect that it can be expressed in terms of root data. However, it also depends in
general on the prime p. We have conjectured the following ([GKI8, Conjecture C]):

Conjecture 1. We have (Ck(F,)) = (Cyip).

Here, the cone Cy, is an entirely group-theoretical object defined using the stack
of G-zips defined by Moonen-Wedhorn ([MW04]) and Pink-Wedhorn—Ziegler ([PWZ11],
PWZ15]). Specifically, write Sk := Sk ®og, Fp. Since K, is hyperspecial, G admits a
Zy-reductive model G. Set G := G ®z, Fp, and write similarly 7', L for the reduction of T, L
respectively. By results of Zhang (|Zhal§|) there exists a smooth map (: Sk — G-Zip"
where G-Zip" is the stack of G-zips of type p (here p is a cocharacter of GE, whose cen-
tralizer is L). The map ( is also surjective by [SYZ19, Corollary 3.5.3(1)]. The automor-
phic vector bundles V;(\) also exist on the stack G-Zip* (see [IK21a, §2.4]), compatibly
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with the map (. We defined Cy, ([Kosl9, (1.2.3)]) as the set of A € X*(T) such that
H°(G-zip",Vi(\)) # 0. The space H°(G-Zip”,Vi()\)) can be interpreted in terms of rep-
resentation theory of reductive groups ([Kosl9, Theorem 3.7.2|, [[K21a, Theorem 1]).

Conjecture 1 was proved in |[GKI8, Theorem D] for Hilbert-Blumenthal Shimura va-
rieties, Siegel threefolds and Picard surfaces (at split primes). The Hilbert—Blumenthal
case was also treated independently by Diamond—Kassaei in [DK17, Corollary 1.3] using
different methods and a different formulation. In the preprint [GK22], it is proved in the
cases G = GSp(6), GU(r,s) for r + s < 4 (except when r = s = 2 and p is inert).
The set O, is much more tractable than (Ck(F,)), but is still difficult to determine in
general. We can use Conjecture 1 in order to gain intuition about the cone (Ck(F,)). Con-
versely, facts pertaining to automorphic forms and their weights should have an equivalent
group-theoretical statement on the level of the stack G-Zip". For example, using reduction
modulo p, one shows easily that C(C) C Ck(F,) (see [Kos19, Proposition 1.8.3]), hence
also (Ck(C)) C (Ck(F,)). Since it is expected that (Cx(C)) = Cgs in general, one should
expect an inclusion Cgg C (Cyyp). This fact is highly nontrivial, and was indeed proved
in general in the recent preprint [[K22, Theorem Theorem 6.4.2|, as a sanity check for
Conjecture 1 to hold.

In this paper, our second goal is to seek an upper bound approximation of (C(F,)).
To gain intuition, we first consider the cone C,, and determine an upper bound for it.
We define in section the unipotent-invariance cone Cynp, C X*(T) and show that
Crip C Cunip- When G is split over I, or F)2 and P is defined over [F,,, we can give concrete
equations for an upper bound of Cy,. Let W, = W(L,T) be the Weyl group of L. Note
that W, x Gal(F,2/F,) acts naturally on the set &\ ®; . Let O C &, \ ®,  be an orbit
under the action of W, x Gal(F,2/F,) and let S C O be any subset. Set

Fosp(A) = Z A\ aY)y + l2:</\,av>

acO\S p acs

Define Cp as the set of A € X*(T) such that I'p s(A) < 0 for all subsets S C O. Then we
have
CipC [ Co.

orbits
OC2\Pp 4

Only certain choices of (O,.S) will contribute non-trivially to the above intersection, but
for a general group it is unclear to us how to determine the important pairs (O, S). By
Conjecture 1, we can expect the following:

Conjecture 2. Let Sk be the special fiber of a Hodge-type Shimura variety at a prime p of
good reduction which splits in E. Furthermore, assume that the attached reductive Fp-group
G is split over Fp2. Then if f € H°(Sk,Vi(N)) is a nonzero automorphic form of weight
A € X*(T), we have ' gp(A) < 0 for all Wi, x Gal(F2/FF,)-orbit O C &, \ &1 4 and all
subsets S C O.

We now consider the case of Shimura varieties attached to a unitary similitude group
G such that Gg ~ GU(n — 1,1). We choose a split prime p of good reduction. In this case
G ~ GL,_1, XGy,r,. We parametrize weights by n-tuples (ki,...,k,) € Z. We prove
Conjecture 2 in this case. More precisely, we have the following:

Theorem 2. Let Sk be the good reduction special fiber of a unitary Shimura variety of sig-
nature (n—1,1) at a split prime p. Let f € H°(Sk,Vi(\)) be a nonzero mod p automorphic



form and write A = (ky,...,k,) € Z". Then we have:

7 n—1

1
Z(ki—kn)+— (ki —k,) <0 forallj=1,...,n—1.

The inequalities appearing in the statement of the theorem are of the form I'p g(A) < 0,
as in Conjecture 2. In this case, the set &, \ @ ; consists of a single orbit under the group
Wp,. Furthermore, we only need consider the sets S C ® \ &, which satisfy the property
that if w € S, then any w’ > w is also in S, because one sees easily that the other sets do
not contribute. This gives the n inequalities in Theorem 2. It is compatible with Theorem
1 in the following sense. In our convention of positivity, we have

CGS:{)‘:(klw-wkn)GZn | anklZ"'an—l}'

Note that Cgs is the set of L-dominant characters A € X7 [(T) satisfying the condition
ki < k,. If we let p go to infinity in the inequality corresponding to 7 = 1 in Theorem
2, we deduce that the weight A = (k1,..., k,) of any characteristic zero automorphic form
satisfies k1 < k,,, hence lies in Cgg.

We briefly explain the proof of Theorem 2. First, we consider the flag space of Sk,
which is a P/B-fibration m: Flag(Sk) — Sk. It carries a family of line bundles Vyuz(A)
for A € X*(T) such that 7x.(Vaag(A)) = Vi(A). Furthermore, it carries a stratification
(Flag(Sk)w)wew defined as the fibers of a natural map v : Flag(Skx) — [B\G/B]. For
each w € W, we define a cone Ck,, C X*(T) as the set of A such that the line bundle
Viag(A) admits nonzero sections on the Zariski closure Flag(Sk),. There is a natural
subcone Chassew C Ck o given by the weights of sections which arise by pullback from the
stack [B\G/B] via k. We say that the stratum Flag(Sk)., is Hasse-regular if (Chasse.w) =
(Ck ). Let wy and wy 1, be the longest elements in W and W, respectively. Set z = wy wy.
The projection 7k restricts to a map g : Flag(Sk), — Sk which is finite etale on the open
subset Flag(Sk),. The proof of Theorem 2 uses the following result as a starting point:

Theorem 3. Let Sk be the good reduction special fiber of a unitary Shimura variety of
signature (n — 1,1) at a split prime. For any w € W such that w < z, the stratum
Flag(Sk)w s Hasse-regular.

We conjecture that the above also generalizes for all Hodge-type Shimura varieties when
G is split over F,. Concretely, this theorem implies the following: Let f be any nonzero
section of Viae(A) on Flag(Sk), for A = (ky,...,k,) € Z". Then X satisfies k; — k,, <0 for
allt=1,...,n— 1. In particular, let f be any nonzero automorphic form in characteristic
p, of weight \. We may view f as a global section of the line bundle Vyae(A) on Flag(Sk),
using the relation 7g . (Vaag(A)) = Vi(A). If X ¢ Cgs, then the restriction of f to the
stratum Flag(Sk), is zero. We expect this result to generalize to all Hodge-type cases at
split primes of good reduction.

We prove Theorem 2 as a consequence of Theorem 3, by using a suitable sequence
of elements wy,...,wy in W starting at w; = wy and ending at wy = 2. For each
1 <i< N —1, wyy is a lower neighbour of w; with respect to the Bruhat order on W.
Furthermore, the flag stratum corresponding to w;.; is cut out inside the Zariski closure of
Flag(Sk)w, by a certain partial Hasse invariant Ha,. It then follows easily that the weight
of any nonzero global section of V() is the sum of the weights of Ha,; and of an element
of Cgg, which proves the result.
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1 Weights of automorphic forms

1.1 Automorphic forms on Shimura varieties
1.1.1 Shimura varieties

Let (G, X) be a Shimura datum of Hodge-type [Del79, 2.1.1]. In particular, G is a con-

nected, reductive group over Q. Furthermore, X gives rise to a well-defined G(Q)-conjugacy
class of cocharacters {u} of Gg. Let E = E(G,X) be the reflex field of (G,X) (i.e. the
field of definition of {u}) and Og its ring of integers. If K C G(Ay) is an open compact
subgroup, write Sh(G, X) for Deligne’s canonical model at level K over E (see [Del79]).
When K is small enough, Sh(G, X)x is a smooth, quasi-projective scheme over E. Fix a
finite set of "bad" primes S and a compact open subgroup K C G(Ay) of the form

K=Kgx K?®

where Ks C G(Qs) and K% = G(Z5), where Qs = [],.sQ, and Z% = [],,5Z,. For
all p ¢ S, the Shimura variety Sh(G, X)x has good reduction at all primes above p. In
particular, for each p ¢ S, the group G, is unramified, so there exists a reductive Z,-model
G, such that G := G ®z, F, is connected. For any place v above p in E, Kisin ([Kis10])
and Vasiu ([Vas99]) constructed a smooth canonical model .7 of Sh(G,X)x over Og,.
By glueing, we obtain a smooth Og [%]—model, that we will abusively continue to denote
by Yk, where N > 1 is an integer divisible by all the primes in S. We denote its mod p
reduction by Sk, := Sk Qo E, (we simply write Sk when the choice of p is fixed). We
will have to extend the ring of definition so that all objects we consider are defined over
that ring. Therefore, we let R be a ring of the form Og/ [%] for a number field E C E’ and
an integer N’ divisible by N. We will freely change R to a suitable extention by modifying
E' and N'.

1.1.2 Automorphic vector bundles

A cocharacter p1 € {u} induces a decomposition of g := Lie(Gc) as g = €,y 9n, Where
g, is the subspace where G, ¢ acts on g by x — 2™ via p. It gives rise to an opposite pair
of parabolic subgroups P (u) such that Lie(P, (u)) (resp. Lie(P_(u)) is the direct sum of
g, for n > 0 (resp. n < 0). Weset P =P _(u). Let (B,T) be a Borel pair of G¢ such
that B C P and such that p: G, c — Gg factors through T. As usual, X*(T) denotes
the group of characters of T. Let BT be the opposite Borel subgroup (i.e the unique Borel
subgroup such that Bt N B = T). Let ® C X*(T) be the set of T-roots of G and &, C
the system of positive roots with respect to B* (i.e. @ € ®, whenever the a-root group U,
is contained in B*). We use this convention to match those of the previous publications
[GK19al [Kos19]. Let A C @, be the set of simple roots. Let I C A denote the set of simple
roots of the unique Levi subgroup L C P containing T (note that L is the centralizer of
).

We may assume that there exists a reductive, smooth group scheme G over Z[%] such
that G ®z1/v1Q ~ G and that p extends to a cocharacter of G ®zj;/n R. In particular, we



obtain a parabolic subgroup P C G ®z1/n R that extends P. The R-scheme .} carries
a universal P-torsor afforded by the Hodge filtration. This torsor yields a natural functor

V: Repp(P) — VB(Hk) (1.1.1)

where Repp(P) denotes the category of algebraic R-representations of P, and UB (L) is
the category of vector bundles on .. Furthermore, the functor V commutes in an obvious
sense with change of level. The vector bundles of the form V(p) for p € Repy(P) are called
automorphic vector bundles in [Mil90) ITI. Remark 2.3|.

Let A € X*(T) be an L-dominant character, by which we mean that (\,«") > 0 for
all @ € I. Set Vi(A\) = H°(P/B,L,), where L) is the line bundle on P/B attached
to A. It is the unique irreducible representation of P over Q of highest weight \. After
possibly extending R, we may assume that V;(\) admits a natural model over R, namely
Vi(A\)r = H°(P/B, L)), where B is a Z[1/N']-Borel subgroup of G extending B. We
denote by V;(A) the vector bundle on . attached to the P-representation V;(\)g.

1.1.3 The stack of G-zips

Let p be a prime number and g a p-power. Fix an algebraic closure k of IF,. For a k-scheme
X, we denote by X@ its ¢-th power Frobenius twist and by ¢: X — X@ its relative
Frobenius. Let o € Gal(k/F,) be the automorphism = — x9. If G is a connected, reductive
group over F, and pu: G, — Gy is a cocharacter, we call the pair (G, u) a cocharacter
datum over [F,. In the context of Shimura varieties, we always take ¢ = p, and G will be the
reduction modulo p of G at a prime of good reduction. To the pair (G, i), we can attach
(functorially) a finite smooth stack G-Zip" called the stack of G-zips of type u. It was
introduced by Moonen—Wedhorn and Pink-Wedhorn—Ziegler in [MW04, PWZ11l [PWZ15].
As in section , i gives rise to two opposite parabolic subgroups Py(p) C Gy. We set
P := P_(u) and Q := P()9. Let L := Cent(u) be the centralizer of p, it is a Levi
subgroup of P. Put M := L9, which is a Levi subgroup of Q. We have a Frobenius map
¢: L — M. The tuple Z := (G, P,Q, L, M, p) is called the zip datum attached to (G, u).

Let #¥: P — L be the projection onto the Levi subgroup L modulo the unipotent
radical R,(P). Define 6%,: Q — M similarly. The zip group of Z is defined by

B = {(z,y) € P x Q| p(6(x)) = 03, (1)}.

Let E act on G by the rule (z,y) - g := xgy~!. The stack of G-zips G-Zip" can be defined
as the quotient stack
G-Zip" := [E\Gy] .

To any E-representation (V, p), one attaches a vector bundle V(p) on G-Zip*, as explained
in [TK21al, §2.4.2] using the associated sheaf construction ([Jan03, 1.5.8]). In particular, a P-
representation (V) p) gives rise to an E-representation via the first projection pr,: £ — P,
thus to a vector bundle V(p). Choose a Borel pair (B,T) of Gy such that B C P and
such that p factors through 7. For A € X*(T), define V;(\) as the P-representation
Ind5(\) = H(P/B, L,) similarly to section |1.1.2, The vector bundle on G-Zip" attached
to V() is denoted again by V().

We now explain the connection with Shimura varieties. We return to the setting of
section . Fix a prime p ¢ S of good reduction and let G := G ®Z[%1 F,. Write again p
for the cocharacter of GE, obtained by reduction mod p. We obtain a cocharacter datum
(G, ) over F,, and hence a zip datum (G, P, L,Q, M, ) and a stack of G-zips G-Zip".
Write Sk, = . ®@p F,. Zhang ([Zhal8, 4.1]) constructed a smooth morphism

CZ SK,p — G—le” .
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This map is also surjective by [SYZ19, Corollary 3.5.3(1)]. Furthermore, the automorphic
vector bundle V;(\) defined on Sk, using the functor (1.1.1)) coincides with the pullback
via ( of the vector bundle V;(\) defined on G-Zip”.

1.1.4 Toroidal compactification

By [MSI11, Theorem 1], there is a sufficiently fine cone decomposition ¥ and a toroidal
compactification 7% of S over Og,,. Again, by glueing we may assume that there exists a
toroidal compactification of .k over the ring R, that we denote again by .#%. Furthermore,
the family (V;(\))xex+(T) admits a canonical extension (Vi (\))xex+(T) to -#Z. For a prime
p, set S]Z(’p = 7% @r F,. By [GK19a, Theorem 6.2.1], the map ¢: Sk, — G-Zip" extends
naturally to a map

¢*: Sk, — G-zip".

Furthermore, by [And21, Theorem 1.2|, the map ¢* is smooth. Since ( is surjective, ¢*
is also surjective. Moreover, [WZl, Proposition 6.20] shows that any connected component
S° C S[E(,p intersects the unique zero-dimensional stratum. Since the map ¢*: S° — G-Zip*
is smooth, its image is open, hence surjective. Therefore, the restriction of ¢*: S}E(’p —
GG-Zip" to any connected component is also surjective.

By construction, the pullback of V;(\) via ¢ coincides with the canonical extension
VE(M). We have the following Koecher principle:

Theorem 1.1.1 (JLSI8, Theorem 2.5.11|). Let F' be a field which is an R-algebra. The
natural map
H.SE @r F,VF(\) = H) (S, @r F, V(M)

is a bijection, except when dim(Sx) =1 and SF \ Sk # 0.

We will only consider Shimura varieties satisfying the condition dim(%) > 1 or .7 \

Tk # 0.

1.2 Weight cones of automorphic forms
1.2.1 Griffiths—Schmid conditions

The motivation of this paper is to study the possible weights of automorphic forms over
various fields. Specifically, for any field F' which is an R-algebra, define

Cx(F):={\e X*(T) | H'(Sx @r F,V;(\)) # 0}.

By the Koecher principle (Theorem [I.1.1)), we may replace the pair (“x ®@g F,V;(A)) with
the pair (.Y ®r F,V¥(\)) in the definition of C(F).

As explained in the introduction, there are two main cases to consider, namely F = C
and F = F, for a prime number p of good reduction. We first consider the case F' = C.
The space H°(Shx (G, X),V;())) is the space of classical, characteristic zero automorphic
forms of weight A and level K. Therefore, the set Cx(C) is the set of possible weights of
nonzero automorphic forms in characteristic 0. It is a subcone of X*(T) (by "cone", we

mean an additive monoid containing zero). Write @y, ; for the set of positive T-roots of L.
The Grifiths—Schmid cone Cgg is defined as follows.

vy >
CGs:{)\GX*(T) ‘ A\, av)y >0 forael, }

(A a¥) <0 forae @\ P4



The conditions defining the cone Cgg were first introduced by Griffiths—Schmid in [GS69].
It is expected that C'x(C) C Cggs for general Shimura varieties, although we are not aware
of any reference where this statement is proved. We show this containment in the case
of general Hodge-type Shimura varieties. More generally, we may consider any projective
R-scheme X endowed with the following structure:

Assumption 1.2.1.

(1) There is a connected, reductive Z[1/N]-group G and a cocharacter p: G, g — Ggr
satisfying the following condition: For p sufficiently large, there exists a smooth map
Gt Xp = Gp-Zip”, where X, := X @r F, and G, := G @z N Fp. Furthermore, ¢, is
surjective on each connected component of X,,.

(2) There is a family of vector bundles (Vi(X))aex+) on X such that the restriction of
Vi(A) to X, coincides with the pullback via ¢ of the vector bundle Vi(X) on G,-Zip".

As we explained in section [1.1.4] the scheme .7 satisfies Assumption |1.2.1} For such a
scheme X, define similarly Cx (F) as the set of A € X*(T) such that H*(X®rF, V;()\)) # 0.
In Theorem below, we prove the following:

Theorem 1.2.2. We have Cx(C) C Cgs.

In particular, we may take X to be .#f, which implies that Cx(C) C Cgs. As the
setting suggests, our proof relies entirely on characteristic p methods rather than studying
the space H°(Shy (G, X),Vr(\)) directly via the theory of automorphic representations or
Lie algebra cohomology.

1.2.2 The zip cone
We now consider the case F' = Fp. In our approach, the proof of Theorem relies on

the study of Cx(F,) for various prime numbers p. In [GK18| [GK22], the authors started
a vast project to investigate the set C'x(F,) using the stack of G-zips. For a cocharacter

datum (G, p) over F,, we defined the zip cone of (G, p) in [Kos19) §1.2] and [IK22] §3| as

Chip = {\ € X*(T) | H*(G-Zip", V;()\)) # 0}.

This cone can be seen as a group-theoretical version of the set C (F,) in the case of Shimura
varieties. To emphasize the analogy between Sy and G-Zip*, we call H(G-Zip", Vi()\))
the space of automorphic forms of weight A\ on G-Zip*. Since Vi(A\) = 0 when X is not
L-dominant, Cyy, is a subset of the set of L-dominant characters X% ;(T'). One can see
that Cyp, is a subcone of X*(T) ([Kosl19, Lemma 1.4.1]). For a cone C' C X*(7T'), define the
saturated cone (C') as:

(C)y={ e X (T)|3IN >1,NXxe C}.

We say that C' is saturated in X*(T) if (C) = C. We explain the main conjecture that
motivates the series of papers [GK18| TK22, [GK22|. Consider the special fiber Sk of good
reduction of a Hodge-type Shimura variety (such that dim(Sk) > 1 or S = S%), and its
associated map (: Sg — G-Zip". Since ( is surjective, we have a natural inclusion

HO(G—Zip“, V]()\)) C HO(SK, VI()\))
In particular, we deduce Cy;, C Ci(F,).
Conjecture 1.2.3. One has (Ck(F,)) = (Cyp).
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It was noted in [Kos19, Corollary 1.5.3] that the set (Ck(F,)) is independent of the
level (because the change of level maps are finite etale). Therefore, the above conjecture is
indeed reasonable. However, note that the set Cg (Fp) highly depends on the choice of the
level K.

More generally, we expect Conjecture to hold for any scheme X endowed with a
map (: X — G-Zip" satisfying the conditions of [GK18, Conjecture 2.1.6]. In particular,
it should hold when X is proper and irreducible and ¢ is smooth, surjective (it may also
be possible to remove the assumption that ¢ is smooth). As explained in the introduction,
we have C(C) C Ck(F,). Furthermore, it is expected that (Cx(C)) = Cgs. Hence,
Conjecture [1.2.3| predicts the containment Cgg C (Clip) (which is a purely group-theoretical
statement). In [IK22, Theorem 6.4.2|, we prove Cgs C (Cyp) for any arbitrary pair (G, p),
which gives evidence for Conjecture [1.2.3]

2 Automorphic forms in characteristic p

We first work a fixed prime p in sections 2.3} 2.5 In section [2.6] we consider objects
in families and let p go to infinity.

2.1 Notation

For now, fix a cocharacter datum (G, p) over F,, i.e G is a connected, reductive group
over F, and p: G, — Gy is a cocharacter, where k is an algebraic closure of [F,. Let
(G,P,Q, L, M, ) be the attached zip datum. For simplicity, assume that there is an F,-
Borel pair (B,T) such that p factors through 7" and B C P (this can always be achieved
after possibly changing ;1 to a conjugate cocharacter). Then, the group Gal(k/F,) acts
naturally on X*(T'). Let W = W(Gg,T) be the Weyl group of Gj. Similarly, Gal(k/F,)
acts on W and the actions of Gal(k/F,) and W on X*(T') and X,(T") are compatible in
a natural sense. For a € ®, let s, € W be the corresponding reflection. The system
(W, {sq | @« € A}) is a Coxeter system. We write £: W — N for the length function, and
< for the Bruhat order on W. Let wy denote the longest element of . For a subset
K C A, let Wi denote the subgroup of W generated by {s, | @ € K}. Write wy i for
the longest element in Wy. Let KW (resp. W) denote the subset of elements w € W
which have minimal length in the coset Wxw (resp. wWpg). Then KW (resp. WE) is a
set of representatives of Wi \W (resp. W/Wp). The map g — ¢~' induces a bijection
KW — WX, The longest element in the set KW (resp. W) is wq gwo (resp. wowo ).
For any parabolic P’ C G}, containing B, write Ip» C A for the type of P’, i.e. the subset
of simple roots of the unique Levi subgroup of P’ containing 7T". For an arbitrary parabolic
P’ C Gy, let Ip be the type of the unique conjugate of P’ containing B. Put I := Ip and
J = 1Ig. We set
z = o(wo )wy = Wowp_ ;.

The triple (B, T, z) is a W-frame, in the terminology of [GK19b, Definition 2.3.1] (we will

simply call such a triple a frame). In sections [2.2] we let X be a projective scheme
over k = I, endowed with a map (: X — G-Zip" satisfying:

Assumption 2.1.1.
(1) ¢ is smooth.
(2) The restriction of ¢ to any connected component of X is surjective.

For A € X*(T'), we write again V;(\) for the pullback via ¢ of V;(\). Write Cx for the
set of A € X*(T') such that H°(X,V;(\)) # 0.
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2.2 The flag space

The rank of the vector bundle V;(\) equals the dimension of the representation V7(\), which
can be very large. For this reason, it convenient to consider line bundles on the flag space
of X and of G-Zip" instead. We recall the definitions below.

2.2.1 The stack of zip flags
The stack of zip flags (J[GK19al, Definition 2.1.1]) is defined as
G-ZipFlag! = [E\(Gy x P/B)]

where the group E acts on the variety Gy, x (P/B) by the rule (a,b)-(g, hB) := (agb™!, ahB)
for all (a,b) € F and all (¢g,hB) € Gy x P/B. The first projection Gy x P/B — Gy is
FE-equivariant, and yields a natural morphism of stacks

m: G-ZipFlagh — G-Zip”

whose fibers are isomorphic to P/B. Set E' := E N (B x Gj). The injective map Gy —
Gy X P/B; g — (g,B) induces an isomorphism of stacks [E'\G}y] ~ G-ZipFlag" (see
[GK19a, (2.1.5))).

2.2.2 Line bundles V()

To any character A € X*(7T'), we can naturally attach a line bundle Vy,,(\) on G-ZipFlagh.
Indeed, we may view A as a character of E’ via the first projection E' — B and use
the associated sheaf construction for the quotient stack [E'\Gjy]. We have by [IK21b|
Proposition 3.2.1]:

e (Vaag(A)) = Vi(A).

In particular, we have an identification
H(G-2ip", Vi(\)) = H°(G-ZipFlag", Vaas(\)). (2.2.1)
The line bundles Vgae (M) satisfy the following identity:
Ving(A+ N) = Viag(\) ® Vang(V), YA, N € X*(T).

In particular, this identity combined with the identification (2.2.1)) shows that Cy, is stable
by sum, hence is indeed a subcone of X*(T).

2.2.3 Flag stratification

Another important feature of G-ZipFlag! is that it carries a locally closed stratification
(Fuw)wew- First, define the Schubert stack as the quotient stack

Sbt := [B\G}/B.

The underlying topological space of Sbt is homeomorphic to W, endowed with the topology
induced by the Bruhat order on W. This follows easily from the Bruhat decomposition of
G. There is a smooth, surjective map of stacks

¢: G-ZipFlag! — Sbt. (2.2.2)
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It is defined as follows: Since the group E’ is contained in B x *B, we have a natu-
ral projection map [E'\Gy] — [B\G/?B]. Composing this map with the isomorphism
[B\G}\/?*B] — [B\G}/B] induced by Gj — Gy; g — gz, we obtain the map v in (2.2.2)).
For w € W, put Sbt,, := [B\BwB/B], it is a locally closed substack of Sbt. The flag strata
of G-ZipFlag! are defined as the fibers of 1. Specifically, for w € W put:

F, = B(wz')*B = BwBz".

Then F, is locally closed in Gy of dimension dim(F,) = ¢(w) + dim(B). Via the iso-
morphism G-ZipFlagh ~ [E'\Gy], the flag strata of G-ZipFlag! are the locally closed
substacks

Foi=[E\F,], weW

The set Fy,, C Gy, is open in Gy, and similarly the stratum F,,, is open in G-ZipFlag". The
Zariski closure [y, is normal by [RR85, Theorem 3] and coincides with (<, Fur-

2.2.4 The flag space of X
Define the flag space Y := Flag(X) of X as the fiber product

Cﬂag

Flag(X) — G-ZipFlag"

ﬂxl lw

X f) G_lel/«

For w € W, put Y, := C{i:g(]:w>- We obtain on Y a similar stratification by locally closed,
smooth subschemes. For A € X*(T), we denote again by Vqae(A) the pullback of the line
bundle Vhag(A) via (gag. Similarly to G-Zip", we have the formula mx . (Vaag(A)) = Vi(A).
In particular, we have an identification

H(X,Vi(N) = H(Y, Vaag(N)). (2.2.3)

2.3 Hasse cones of flag strata

To a pair of characters (\,v) € X*(T) x X*(T), we can attach a line bundle Vs, (A, v) on
the stack Sbt, as in [GK19al 1.2.2] (where it was denoted by Lgp(A, v)). For each w € W,
the space H(Sbt,, Vsui(A, 7)) has dimension < 1 and is nonzero if and only if v = —w ™!\
(loc. cit., Theorem 2.2.1). For each w € W and A € X*(T), denote by f, , a nonzero
element of the one-dimensional space H(Sbt,,, Vpi (A, —w™'\)). Put

E, ={aed, | ws, <w and {(ws,) = l(w) — 1}. (2.3.1)

Elements w’ € W such that w’ < w and {(w’) = ¢(w)—1 will be called lower neighbours of w.
They correspond bijectively to the set £, by the map a +— ws,. Define X7 (T) € X*(T)
as the subset of y € X*(T') such that (x,a") > 0 for all « € E,. Let x € X*(T). By loc.
cit., Theorem 2.2.1, the multiplicity of div(fy —wy) along Sbt,s, is precisely (x,a") for all
a € E,,. Hence fy, ., extends to the Zariski closure Sbt,, if and only if y € X—T—,w(T)' For
any A\,v € X*(T), one has the formula

" (Vsne (A, ) = Viaag(A + quJwa*l(y))
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by [GKI9a, Lemma 3.1.1 (b)] (note that loc. cit. contains a typo; it should be o~ *
instead of ¢). In particular, the pullback *(Vspi (A, —w™*\)) coincides with V(A —
quo jwoo(w™'A)). Define a map

he: X*(T) = X*(T), x = —wx + quosweo ' (X).
Hence ¢* (Vi (—wA, X)) = Viag(hw(A)). Note that for any w € W, the map h,,: X*(T') —
X*(T') induces an automorphism of X*(7T")q (because h,, ® F,, is clearly an automorphism
of X*(T') ®z F,). For each x € X*(T'), define

Hay = 0" (fu,—wy)-
By the above discussion, Ha,, , is a section over the stratum F,, of the line bundle Vy,q (A (X))
and Ha,, , extends to F,, if and only if x € X7  (7T'). The multiplicity of div(Ha,, ) along
Fus, is precisely (x,a") for all a € E,,. Define the Hasse cone Ciassew by

C'Hasse,w = hw (X-T-,w (T))

goncretely, CHasse,w 15 the set of & possible weights A € X*(T') of nonzero sections over
F which arise by pullback from Sbt,,,.

2.4 Regularity of strata

In general, there exist many sections on F,, that do not arise by pullback from Sbt,,. For
w € W, define the cones Chag, and Cy,, as follows:

Chagaw = {A € X(T) | H°(Fu, Vaag(N)) # 0}
Cyw ={XA€ X (T) | H(Yu, Vaag(N) #0} .
In particular, via the identification (2.2.3)), the cone Cy,, is the set of A € X*(T) such that
Vi(A) admits nonzero sections over X, hence we have an equality Cy,,,, = Cx and similarly
Chagwy = Crip- For any w € W, we clearly have
CHasse,w C Cﬂag,w C CY,w-
Definition 2.4.1. Let w € W.
(a) We say that Y, is Hasse-regular if (Cy,) = (ChHassew) -
(b) We say that Yy, is flag-regular if (Cy,p) = (Chagw) -
A Hasse-regular stratum is obviously flag-regular. Assumptions [2.1.1] are made so that
the following easy lemma holds:
Lemma 2.4.2 (|GK18| Proposition 3.2.1|). If {(w) = 1, then Y,, is Hasse-regular.

Since Cy,,, = Cx and Cy,, = Cup, Conjecture asserts that the maximal flag
stratum Y, is always flag-regular. It is not Hasse-regular in general (but it is conjecturally
Hasse-regular for Hasse-type zip data, see [IK22]). In the case of Hilbert—Blumenthal
Shimura varieties attached to a totally real extension F/Q, a sufficent condition for the
Hasse-regularity of strata is given in |[GKI8, Theorem 4.2.3]. When p is split in F, all
strata are Hasse-regular. For a general prime p, the criterion involves the parity of "jumps"
in the orbit under the Galois action. A more elegant proof, using the notion of "intersection
cone" (introduced in [GK22|) can be found in the unpublished note [Kos22].

Let w € W with ¢(w) = 1, and write w = sg with § € A. One checks readily:

<0Hasse,w> - {>‘ S X*(T> | <h;1(>‘>7ﬁv> > 0}'
We deduce:

Proposition 2.4.3. Let f € H(Y, Viag(N)) such that the restriction of f to the stratum
Y, is not identically zero, where w = sz (B € A). Then we have (hg}(), B¥) > 0.
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2.5 Upper bounds for strata cones
2.5.1 Intersection cones

We recall the notion of intersection cone introduced in [GK22|, which will be used in
section 4. We give a simplified version of the one appearing in loc. cit. which suffices for
our purpose.

Definition 2.5.1. For each w € W, let E,, C E, be a subset (possibly empty) and let
{Xa}acr, be a family of characters satisfying the conditions:

() (X 0¥) > 0,

(b) (e B) = 0 for all B € B, \ {a}.

We call E = (Ey)wew @ separating system.

We fix such a system E and define the intersection cones (C}F),c of E as follows.
First, set

C(II-EIausse,w = hw(Fw)

Note that x, € X—T—,w(T ), therefore I'y, C Cagse.w, but I'y, can be much smaller (for example,
if we choose E,, to be a singleton, I';, is a half-line in X*(7T").

Definition 2.5.2. For {(w) = 1, set CF® := Chassonn- For £(w) > 2, define inductively

C:}-,IE — (OE + ﬂ O+HE

Hasse,w WSe *
aGIEw

In the case B, =0, we define by convention CHE = X*(T).

a€lE,, WS

The intersection cones provide upper bounds for the strata cones Cy,,. Specifically, by
[GK22, Theorem 2.3.9]|, we have:

Theorem 2.5.3. Let E be a separating system. For each w € W, we have

Cy,w C <CJ’]E>

2.5.2 Upper bound by degree

In general, we do not know a way to construct nontrivial separating systems E for arbitrary
reductive groups. For a given w € W and a € E,,,, there may not always exist a character x,
satisfying the conditions explained in section[2.5.1] Here, we explain a more straightforward
method to produce an upper bound for Cy,,. The advantage of this method is that it applies
in general. However, it only gives a rather coarse upper bound (but it will be sufficient for
our purpose).

Since hy: X*(T)g — X*(T)g is an automorphism, there exists N > 1 such that
NX*(T) C ho(X*(T)). We fix such an integer. For A € X*(T), let xua = h'(N))
and write Ha), := Ha, , , for the associated Hasse section on F, and Y,, with weight
NA. Since the map (gag: Y — G-ZipFlag” is smooth and surjective, the multiplicities of
sections do not change under pullback. Hence, the divisor of Ha{) over Y, is given by:

div(Ha),) = Z (Xwr ) [Y s, ]

OéEEw
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Define .
deg(w, \) := Ndeg(div(Hag)) = Z (h,r(N), aY).

ackEy,

We write deg,(w,A) when we want to emphasize that the degree depends on the prime
power ¢ (since the map h,, itself depends on ¢). Since Ha,, +n = Hay, ) - Ha,, », we have

deg(w, A + \') = deg(w, \) + deg(w, \).

Lemma 2.5.4. Let w € W of length > 1. Suppose that the space H°(Y u, Vaag(\)) is
nonzero. Then we have deg(w, ) > 0.

Proof. Let f be a nonzero section on Y, of weight A\. Then fV/ Haﬁj is a rational section

of Oy over Y,. Since Y, is projective and normal, we have deg(div(f"/Ha))) = 0,
hence deg(div(f)) = + deg(div(Ha),)) = deg(w, ). Since div(f) is effective, the result
follows. O]

Define €9 := {\ € X*(T) | deg(w, \) > 0}. As a consequence, we deduce:
Corollary 2.5.5. We have (Cy,,) C Cd.

In other words, if deg(w, \) < 0, then the space H(Y ,,, Vaag(\)) is zero. We will apply
this result when p = ¢ tends to infinity. Therefore, we need to know the behaviour of the
function deg,(w, A) as ¢ varies. By [GKI9al Lemma 3.1.3|, h;;'()) is an expression of the

1 m—1 ;
qgm—1 1=0 q

for i = m — 1, the element u,, 6™ (\) equals o(wowo \). We deduce:

form — u;o'(\) for certain elements u; € W independent of ¢q. Furthermore,

Proposition 2.5.6. There exists an integer m > 1 such that

1
deg,(w,\) = <qm_1 Z (o(wo ywoN), @) + lower terms)

qm o 1 OéEEw

2.6 Vanishing in families

In this section we take X to be a scheme over R satisfying Assumption (for example
X = ). By flat base change along the map Spec(C) — Spec(R), we have H*(X ®p
C,V:(\) = H°(X,V;(\)) ®r C. Hence, for A € Cx(C) the space H°(X,V;()\)) is also
nonzero. Therefore, we can apply the proof of [Kos19, Proposition 1.8.3] to show that the
space H*(X ®r F,, V;()\)) is also nonzero for all p. In particular, we deduce:

Cx(C) c Cx(F,) (2.6.1)

for all primes where X, is defined. The main goal of this section is to show Cx(C) C Cgs.
We may interpret this as a vanishing result (the space H°(X®g, V;()\)) vanishes for A
outside of Cgg). We will see later some stronger forms of vanishing results at fixed prime
.

Let f be a nonzero section of V() over X. We will show that the weight A is in Cgg
by exploiting the fact that f gives rise to a family (f,),, where f, is the reduction of f
to the subscheme X, = X ®p Fp. For sufficently large p, we have by assumption a map
Gp: Xp — Gp-Zip". Denote by Y, the flag space of X, as in[2.2.4]

Theorem 2.6.1. For sufficiently large p, the section f, restricts to a nonzero section on
each flag stratum Y, ,, (forw e W).
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Proof. Clearly, it suffices to show that f, restricts to a nonzero section on the zero-
dimensional stratum for sufficiently large p. For this, we will prove by decreasing induction
that for each 0 < i < l(wy), there exists an element w; of of length ¢ in W such that
fp is not identically zero on S, for sufficiently large p. The result is clear for ¢ = £(wy).
Suppose that f, is nonzero on S, for large p. For a contradiction, assume that f, is zero
on each stratum in the closure of S, for infinitely many primes p. Choose any character
X € X*(T) such that (x,a") >0 for all « € E,, and (x, «y) > 0 for at least one oy € E,,,.
The multiplicities of the divisor of Ha,, , are the numbers (x,a") (for a € E,,). Hence,
by assumption we can find an integer m (independent of p) such that for infinitely many
primes p, the section f" is divisible by Ha,, . Thus, we deduce that for infinitely many
primes p,

degp(w’hm)‘ - hwi,p(X)) - mdegp(wi7 )\) - Z <X7 a\/> 2 0

aely,
When p tends to infinity, the expression deg, (w;, A) tends to zero by Proposition|2.5.6/ Since
(x,ay) > 0 for at least one oy € F,,, we have a contradiction. The result follows. O

Remark 2.6.2. In this remark, we consider the case X = .. Theorem [2.6.1]is related to
Deuring’s theorem regarding the superspecial reduction of abelian varieties. Indeed, assume
the following result: any CM abelian variety over Q has superspecial reduction for infinitely
many primes p. Then a slightly weaker variant of Theorem [2.6.1] would follow immediately
(at least for the Siegel-type Shimura variety A,) as follows: Since CM points are dense, we
may choose a CM point # € .%(Q) such that f(x) # 0. Then, for all p sufficently large,
we must have f,(z,) # 0 where z, denotes the specialization of = (which is well-defined
for large p). Since x, lies in the zero-dimensional stratum for infinitely many primes, f, is
nonzero on the zero-dimensional stratum (hence on all strata) for inifitely many primes p.
This is slightly weaker than the content of Theorem [2.6.1, which states the same result for

sufficiently large p.

Proposition 2.6.3. Let f € H°(X,V;(\)). Suppose that for infinitely many primes p, the
section f, (viewed as a section of Vyag(A\) on the flag space Y),) restricts to a nonzero section
on each flag stratum of Y, of length one. Then \ € Cgs.

Proof. By Proposition [2.4.3, we have <h;ﬁ{p(A), BY) > 0 for all § € A and infinitely many

primes p. Looking at the leading term, we obtain (o (wq jwoA), 8¥) > 0 for all § € A. Since
o(A) = A, we deduce that wg jwoA is a dominant character. In other words, A € Cgs. O

We deduce immediately from Theorem and Proposition [2.6.3| our main result of
this section:

Theorem 2.6.4. We have Cx(C) C Cgs.

In particular for X = %, we obtain Ck(C) C Cgs. We now explain a slighty more
precise result.

Definition 2.6.5. We say that a family of cones (C,), (defined for sufficiently large primes
p) is asymptotic to Cgs if

() C» = Cas

p>N

for any N > 1. We say that (Cy), is asymptotically contained in Cas if (V,»y Cp C Cas
forall N > 1.

The proof of Theorem actually shows the following:
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Corollary 2.6.6. The family of cones (Cx,), is asymptotically contained in Cgs.

Proof. Let A € (5 Cx,p- For sufficiently large p, there exists a nonzero form f, over Y,
of weight A\. Then, we may apply the proof of Theorem to the family (f,), (even if
this family does not arise by reduction from a characteristic zero section). It shows that
A € Cgs. The result follows. O

However, we were not able to show in general that the family of saturated cones ((C,,)),
is asymptotically contained in Cgg. Corollary is slightly more precise than Theorem
, since it implies C'x (C) C ﬂp Cx,p C Cgs using . The proof of Theorem
explained above crucially uses the fact that we have a family of schemes (X,,), for almost all
prime numbers p. However, the proof gives no information about the set Cx (F,) for a fixed
prime number p. Eventually, we are interested in vanishing results for automorphic forms
in both characteristics. Therefore, a more desirable method of proof of Theorem is
the following: Assume that for each p, we can show that any weight A € Cy,, := Ci(F,)

satisfies certain inequalities
Yi(p,A) <0, i=1,...N. (2.6.2)

where 7;(p, \) is an algebraic expression involving p and which is linear in A. Denote by
C,p the cone of A € X7 /(T) satisfying the inequalities (2.6.2). By assumption, we have
Ck,p C C,, (note that since C., , is defined by inequalities, it is obviously saturated, hence
we also have (Ck,) C C,,). We deduce:

Cx(C)C () CkpC () Cop

p>>0 p>>0

Therefore, if we can choose (7;)1<i<ny such that ﬂp>>0 C,p = Cgas, we obtain the desired
containment Ck(C) C Cgs. We call such a family (v;);—1,.~ a GS-approximation of the
family (Ck,),- This method of proof gives much more control and information on the
weights of automorphic forms in all characteristics. We will implement such a strategy in
the next section. In general, it is a difficult problem to give an upper bound for the cone
Ckp at a fixed prime p, let alone construct a GS-approximation for the family (Ck ,),. We
will do this for unitary Shimura varieties of signature (n — 1, 1).

3 Vanishing results for G-Zip"

We investigate the strategy explained in section [2.6, Recall that we work at a fixed
prime number p and want to show that there exists certain suitable algebraic expressions
(7i)i=1,...~ satisfying Ck, C C,,. However, we also keep in mind that when p varies, we
want the condition ﬂp>>0 C, p = Cgs to be satisfied.

Write Cyp, for the zip cone of (G, p,). Since Cgs C (Cuipp) C (Ckp), the family
(7i)i=1,...~ would also be a GS-approximation of the family (Cyp ,),. For this reason, we
first seek a GS-approximation of the family (Cyyp,), to gain intuition, which is a more
tractable, group-theoretical object. We will give a natural and explicit GS-approximation
of (Cyipp)p In certain cases (including all cases when G is split over IF,,). In the unitary split
case of signature (n—1, 1), we show in section that this also provides a GS-approximation

of the Shimura cone family (Ck ),
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3.1 Group-theoretical preliminaries

Let (G, ) be a cocharacter datum over F, (as usual, we take ¢ = p for Shimura vari-
eties). Let Z = (G, P,Q, L, M, ) be the attached zip datum (see section [I.1.3). Choose
a frame (B, T, z), with (B, T) defined over F, as in section [2.1| and z = o(wp )wy. Define
By = BN M. We first explain that we can naturally inject the space of global sections
H°(G-zip", V() into a space of regular maps By, — A! which are eigenfunctions for a cer-
tain action of T on Bj;. We recall some results from [IK22]. Recall that H°(G-Zip*, V;()\))
identifies with H°(G-ZipFlag”, Vi.g()\)) by (2:2.1). Furthermore, using the isomorphism
G-ZipFlagh ~ [E'\G)] (see section 2.2)), an element of the space H(G-ZipFlag", Viag()))
can be viewed as a function f: Gy — A} satisfying

flagb™) = Xa)f(g), V(a,b) € E', Vg € G,. (3.1.1)

Recall that G-ZipFlag! admits a unique open stratum Upax = Fup. Write also Upax =
Fy, = BwoBz! (the B x *B-orbit of woz~! = o(wp)™).

Lemma 3.1.1 ([IK22, Lemma 4.2.1]). The map By — Upax, b — o(wo )b~ induces an
isomorphism [Byy /T) =~ Unax, where T acts on By on the right by the action By XT — By
given by (b, t) — @(t) oo (wo r)to(we ) .

For A € X*(T'), let S(\) denote the space of functions h: By — Al satisfying
h(p(t) tbo(wo )to(wer) ™) = At) " h(b), Yt €T, Vb€ By.
Corollary 3.1.2. The isomorphism from Lemma[3.1.1] induces an isomorphism
02 H (Unas, Vaag (X)) = S(A).

We describe explicitly this isomorphism. Let f € H°(Umax, Viag())), viewed as a func-
tion f: Upax — A' satisfying (3.1.1). The corresponding element 9(f) € S(A) is the
function By — Al b f(o(wer)b~t). Conversely, if h: By — Al is an element of S()),
the function f = 9~!(h) is given by

(oo (wo, )by ") = Ab)h((07 (01)) 105 (b2)),  (b1,bs) € B x B,

where the functions 67 and 61\% were defined in section . By the property of h, the
function f is well-defined.

Given a section of Vi, (A) over G-ZipFlag!, we can restrict it to the open substack Upax,
and then apply 9 to obtain an element of S()\). Hence, we may view H°(G-Zip", Vi()\)) as
a subspace of S(\). In general, it is difficult to determine the image of this map. On the
other hand, by the previous discussion, a section f € H°(G-Zip*,V;(A\)) can be viewed as
a regular function f: G — A! satisfying condition (3.1.1). In particular, f is equivariant
under the action of the unipotent subgroup U x V' C E’. Denote by Sunip the space of such
functions:

unlp {f G_>A1 ’ f Ug'U f(g), u € U, IS V}

Hence, we may also view H°(G-Zip",V;(\)) as a subspace of Sy The reason for intro-
ducing this space is the following: We will see in the next section that elements of Sy,
can be conveniently decomposed with respect to the action of 7' x T" on G.

Finally, for f € Synip, we define f By — Al by f( ) = f(woub™'). We write again 9

for the map Sunip = k[Bum|, f +— f (this map is not injective in general). By construction,
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the following diagram is clearly commutative.

H(G-Zip", Vi(\)) <= S())

| |

Sunip —79> k [B M]
In particular, we deduce that if we view a nonzero element f € H°(G-Zip*,V()\)) as an
element of Sy, and then apply 0: Sunip — k[Ba], the result is nonzero. This will imply
that when we decompose f in Synip as a sum of 7' x T-eigenvectors, at least one of the
components of f will map via ¢ to a nonzero element of k[B)].

Next, we choose coordinates for the Borel subgroup Bj; of M. This can be accomplished
using the following result. For @ € @, let U, be the corresponding a-root group. Recall
that by our convention, a € ®, when U, is contained in the opposite Borel BT to B.

Proposition 3.1.3 (JABD™66, XXII, Proposition 5.5.1]). Let G be a reductive group over
k and let (B,T) be a Borel pair. Choose a total order on ®_. The k-morphism

v:Tx [[ Ua=G (3.1.2)

acd_

defined by taking the product with respect to the chosen order is a closed immersion with
image B.

We apply Proposition to (M, Bys). Choose an order on ®,, _ and consider the
corresponding map v as in (3.1.2), with image Bj;. For a function h: By, — Al put
Py, == ho~. For all @ € ®, choose an isomorphism u,: G, — U, so that (uy)aeco is a
realization in the sense of [Spr98|, 8.1.4]. In particular, we have

tug ()t = ug(a(t)z), VzeG,, VteT.

Via the isomorphism u,: G, — U,, we can view P, as a polynomial P, € k[T][(Ta)aca,, ],
where the x, are indeterminates indexed by ®,; . For m = (m,), € N®7- and ¢ € X*(T),
denote by F,, ¢ the monomial

Pm,ﬁz)‘<t) H Ty € k[T][(xa)aGCPM,—]-

aECIJM,_

We can write any element P of k[T][(2q)aca,, ] as a sum of monomials

N
P=> c¢Pyg (3.1.3)
=1

where for all 1 <4 < N, we have m; € N®¥- ¢ € X*(T) and ¢; € k. Furthermore, we
may assume that the (m;,§;) are pairwise distinct. Under this assumption, the expression
(3.1.3) is uniquely determined up to permutation of the indices. For P € k[T'][(Z4)ac®,,_],
define hp: By, — A! as the function P oy~ For m = (mg)e € N®2- and ¢ € X*(T),
define Ay, ¢ :=hp,_ .

Decompose k[By] with respect to the action of T x T on Byy:

k[Bu| = @ k[BM]m,m

(x1,x2)
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where k[Bu]y, .y, is the set of functions h: By, — Al satisfying h(t1bt; ") = x1(t1)x2(t2)h(b)
for characters x1, x2 € X*(T). Put A(x1, x2) = ¢o*x1 + o(wo 1)x2. Then we have:

S(A) = @ k[BM]Xth-
Alxa,x2)=A
It is clear that functions of the form h,, ¢ are T'x T-eigenfunctions. Lemma determines
exactly its weight (x1, x2). The proof of the lemma is similar to that of [[K22 Lemma 4.3.3].

Lemma 3.1.4. Let (m,§) € N*¥= x X*(T). Then hy, ¢ lies in k[Barly, x» for

x1=¢& and xo2=—-E+ Z MmaQ.

aECI)]VL_

For (m, &) € N®M— x X*(T), define the weight w(m, &) by

w(m, &) = qo (&) — womé + Z me(woma) € X*(T).

OLE(I’]\/IY,

It follows immediately from Lemma that the function h,, ¢: By — Al lies in S(w(m, §)).

3.2 Unipotent-invariance cone
3.2.1 Regular maps invariant under a unipotent subgroup

To give an upper bound on the cone Cy,, we will view sections over G-Zip" as regular
functions f: G — A! and use their invariance under the action of the unitary group U x V.
We will show that this invariance condition forces the weight of f to be constrained to a
certain region of X*(7"). We will therefore call this the "unipotent-invariance cone".

Let (G, 1) be a cocharacter datum over IF,. Let Z, = (G, P, Q, L, M, ) be the attached
zip datum. To simplify, we restrict ourselves to the case when P is defined over [F,. Recall
that U = R,(P) and V = R,(Q). The key fact is the following easy lemma:

Lemma 3.2.1. Let f: G — A be a reqular function satisfying f(gu) = f(g) for allg € G

and all w in the unipotent radical U’ of a standard parabolic P' C G. Let I' C A be the

type of P'. Then:

(1) We may decompose f uniquely as f = fy, where x € X*(T), such that f, is also
U'-equivariant and satisfies furthermore f,(gt) = x(t)"*fy(g9) for allg € G, t € T.

(2) For all x such that f, # 0, we have (x,a") <0 forallav € &\ O p.

Proof. Consider the space W of all U’-equivariant functions h: G — A'. Since U’ is normal
in P’, it is clear that any right-translate of A by an element of P’ is again U’-equivariant.
Hence the space W is a P'-representation. In particular, it decomposes with respect to the
action of T'. This shows (1). For the second assertion, by (1) we may assume f = f,. Let
¢o: SLs — G denote the map attached to «, as in [Spr98, 9.2.2]. It satisfies

(6 ) =i ()t

For a fixed element gy € G and a € ¢ \ ¢, 7, consider the map
fal SL2 — AI, A f (909%(14)) .

Let V(m) = Ind%%f (Xm) where By is the lower Borel subgroup of SLy and ., is the charac-
ter diag(z,z™') — ™. It is immediate that f,, lies in the SLy-representation V (—{x,a")).
We can clearly choose g such that f, is nonzero. In particular V(—(x,a")) # 0 hence
(x,a") <0. O
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Corollary 3.2.2. Let f: G — Al be a regular map satisfying f(ugv) = f(g) for allg € G
and all (u,v) € U x V. Then:
(1) We may decompose f as

f: Z fX17X2

(x1,x2)
where x1,x2 € X*(T) and fxl,X2 Sati‘sﬁes fx1,X2 (tlgt2> - X1<t1)X2(t2)_1fx1,X2(g) fOT‘ all
g€ G, t,ty €T, as well as fy, 1,(ugv) = fy,x.(9) for all g € G and (u,v) € U x V.
(2) For all (x1,x2) such that fy, y, # 0, we have (x1,a") > 0 for all a € &, \ @, 1 and
(x2,0") <0 foralla € .\ Py

Proof. The first assertion is proved as in Lemma [3.2.1] noting that the space of U x V-
invariant regular functions is stable by the action of P x ). For the second assertion, apply
the lemma to the functions g — f(g) (resp. g — f(wog twy)) to obtain the inequality
satisfied by x2 (resp. x1). O

Corollary 3.2.3. The space Sunip decomposes as follows:

Sunip: @ Sunip(Xl;X2)

(Xl:XQ)

where Sunip(X1, X2) 15 the subspace of functions f € Sunip satisfying f(tigty ) = x1(t1)x2(t2) f(9).
Furthermore, any (x1,x2) such that Sunip(X1, X2) # 0 satisfies (x1,a") > 0 for all a €
O\ Py and (x2,aY) <0 for allav € Oy \ Dy .

We note that the map ¥: Sunip — k[Ba] is not T x T-equivariant. It maps Sunip(X1, X2)
to the weight space k[B)]

X2,Wo,M X1 "

3.2.2 Unipotent-invariance cone

We now start with a nonzero section f € H(G-zip",Vi())) for some A € X} ;(T). Our
goal is to show that ) satisfies certain constraints. First, view f as an element of Syi,. By
Corollary [3.2.3], we may decompose f as

f - Z fX17X2

X1,X2

where fy, v, € Sunip(X1,X2). Furthermore, we have (xi,a") > 0 for all @ € &, \ &, 1,
and (x2,a") < 0 for all & € &, \ @, )y whenever (xi,x2) appears. Next, we apply
¥ Sunip — k[Ba]. By the discussion in section there exists (x1, x2) such that J(f, v,)
is a nonzero element h € k[By]. Recall also that the weight of h with respect to the
T x T-action on k[By] is (X2, wonx1). We can decompose h as a sum of monomials of
the form h,, ¢ for (m,€) € N*m- x X*(T) as in section . Since J(f) € S(A), we have
simultaneously:

A = Axe, womx1) = g0 xe + xa
X1 = —wom§ + Z Mo (Wo p )

aEdy
x2 =¢.

Note that in the above sum wg aro lies in @7 4. Therefore, putting everything together, we

deduce that X satisfies the following condition: There exists a character xo € X*(T') such

that
{ A — qo ' (x2) + wo a2 is a sum of positive roots of M

(X2, ") < min <0, %<O’()\), 04V>> for all « € &, \ O, py.
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Definition 3.2.4. Let Cynp, C X*(T) be the set of A € X*(T) such that there exists a
character xo € X*(T') satisfying the condition above. We call Cypip the unipotent-invariance
cone.

It is clear that Clup is a saturated subcone of X*(7"). We have shown that if f €
HY(G-Zip*, Vr())) is nonzero, then the weight of f lies in Cypp. Hence:

Theorem 3.2.5. We have (Cyip) C Cunip-

The saturated cone (Cynip) has a similar description as Cpip, except that we allow a
linear combination of positive roots of M with non-negative rational coefficients.

3.3 The split case

We simplify the situation by making the following assumptions:

(1) P is defined over F,. In particular, we have L = M.

(2) The group G is split over F .

In particular, both conditions are satisfied if G is split over F,. For characters y2, A €
X*(T), write v = A — qo~*(x2) + wo L x2. We wish to express y» in terms of A and ~y. Using
the above assumptions, we find:

1
¢ —1

X2 = — (wo,1(y = A) +qo(y = A)).

For characters Ay, Ay, write A <j, g if for all roots v € &\ @y, -, we have (A — g, ) < 0.
Under the assumptions (1)-(2), we deduce that any weight A € C\yp satisfies : There exists
a character v € X*(T') which is a sum of positive roots of L such that

wo A + qo(N) <p wo vy + qo(v)
wo,r A + %U()\) <p wo,ry +qo(y)

In particular, assume that aq,...,a, € @, \ @, and that of + -+ + ), = d is a
cocharacter in X, (L). Since w1y + qo(7) is again a sum of roots of L, it is orthogonal to
5. Let {1,...,m} =51 US, be any partition of {1,...,m}. We obtain

1

D (wosd+qo(N), @) + Y (wosd+ =a(N),a)) <0,
€5 i€Sy q
1
hence (X,8)+q Y (o(\),a)) + = (o(N),a)) <0
1€51 1€Ss
If we assume that {a,...,q,} is stable by o, then we can replace o(\) by A in the above

formula (using the partition o(S7) U o(S3)). In this case, we obtain

(q+1)) (Aaf)+ <1 + 1) > (Aef) <0

q

€S 1€8S2
1
Z<)\’az\/> + _Z<)‘7az\‘/> <0
1€S1 €S2

where we divided the equation by ¢ + 1. Consider the action of W, x Gal(F,/F,) on
®. Note that this action preserves positivity of roots outside of L. In particular, the set
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P4\ Oy 4 is stable under Wy x Gal(F2 /F,). It is not always the case that .\ ® | consists
of a single orbit. Let O C &, \ ®, ; be an orbit. Define d» as the sum of all coroots in O:

o = Zav.

acO

For any root 8 € Ay, the reflection sg satisfies s3(dp) = do, hence (38, dp) = 0. It follows
that do € X.(L). Moreover, it is clear that ¢(dp) = dp. The above discussion applies to
0o and shows that C\, satisfies all the inequalities of the type

Cos() = 3 (ha¥) + 32()\,0)’) <0 (3.3.1)

acO\S ags

for any subset S C O. Denote by Co C X*(T') the cone of A satisfying the inequalities
for all subset S C O. Note that we could have defined dp similarly when O is
a union of Wy x Gal(F,/F,)-orbits. In particular, we may speak of the cone Cy \a, -
However, note that if O = O; LU Oy and S C O is any subset, we have

Los(A) =To,,500.(A) + To,sno, ().

Hence we deduce that Cp, N Co, C Cp and thus we can reduce to considering the cones
Co when O is an Wy, x Gal(F,2/F,)-orbit in ¢, \ ®; . We define the orbit cone Coy, as
follows:

C'orb = m C(’)

orbits
OCP \PL 4

where the intersection is taken over all W, x Gal(F,2/F,)-orbits O C &, \ &, . By the
above discussion, we have inclusions

Czip - Cunip C C'orb - C<I>+\<I>L7+- (332)

All inclusions above are in general strict. We illustrate the difference between Clip,, Corp
and Clyp in section in the case G = Sp(6)r,. We were not able to determine Cly, in
general (or even under assumptions (1)-(2)), but it will be sufficient for our purposes to
work with the cone C,, since it already provides a sharp approximation. In certain cases,
the inclusion Cy, C Cg,\e, . Will be enough for our purpose, as in the proof of Theorem
in section . However, in the case G = Spy,, 5, the set @, \ @, | contains two orbits,
and the cone Cg,\¢, , is strictly coarser than Cp, where O is the orbit of the unique simple
root outside of L. When we want to emphasize the dependance of C» on the prime power
q, it will be convenient to write Cp 4. Similarly, we write I'p g, for the function I'p .

The number of inequalities defining the cone Cp is the cardinality of the powerset of
O, which can be quite large. However, we are eventually interested in the cone Cl,, which
is contained in the L-dominant cone X7 ;(T'). Therefore, it is sufficient to consider the
intersection Co N X7 ;(T). Looking at concrete examples, we see that this intersection is
cut out in X7 ;(T) by inequalities I'o s(\) < 0 for a rather small number of subsets S C O
(the other subsets do not contribute to this intersection). The following notion seems to
be relevant:

Definition 3.3.1. A subset S C &, \ @1 4 is L-minimal if it satisfies the following condi-
tion: For any o € S and any B € Ay such that o« — € &, we have o — € S. Denote
by Min(®, \ &, 1) the set of all L-minimal subsets of .\ P ;.
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For w € W, define a subset
Min(w) :={a € &, \ O+ | l(ws,) < l(w)}.

Then one can show that Min(w) is a L-minimal subset, and the map w — Min(w) induces
a bijection W/ — Min(®, \ &7, ). For an orbit O C &, \ &, ,, define Min(O) as the set
of L-minimal subsets contained in O, i.e:

Min(O) = Min(®, \ ¢, ) NP(O).
Then, we expect the following to hold:
ConNXi (T)={ e X [(T) | Tos(A) <0 forall Se€Min(O)}.

In particular, only a small number of subsets S contribute nontrivially. The above can be
easily checked this in the cases G = GL,r, and G = Sp(2n)1pq considered in sections
and [ but we have not proved it in general. It will be convenient to define the following
set, which we call the L-minimal cone:

Cr-min ={A€ X*(T) | Tos(A) <0 for all orbits O and all S € Min(O)}.  (3.3.3)

Hence, at least in the cases considered in sections and , we have Con, N X7 /(T) =
CL—Min N X—T—,I(T>

3.4 Asymptotic zip cone

We apply the results of the previous section to study the asymptotic behaviour of the
cone Clip, in families. We may work in a more general setting, independently of the
theory of Shimura varieties. We let G be a reductive Q-group endowed with a cocharacter
ft: G — Gg. There exists an integer N > 1 such that G admits a reductive Z[+]-model
G. Furthermore, there is a number field F such that u extends to a cocharacter of Gr where
R = (’)E[%] From this, we obtain a zip datum (G, i1,) for all primes p not dividing N.
We choose a Borel pair (B, T) of G and we may assume that it has a model (B,7) in G.
We obtain compatible Borel pairs (B, T,) for all G, and we may identify their character
groups and their root data. Write Cyy,, for the zip cone of the zip datum attached to
(Gp, 11p). We may view all the cones Cyp, inside the same character group X*(T). We
have the following:

Theorem 3.4.1. The family ((Cyipp))p is asymptotic to Cgs.

Proof. Since p is defined over the number field E, the cocharacter j, will be defined over
[F, for any p which is split in E. Similarly, choose a number field F such that Gy is split.
Then for any prime p split in F, the group G, is split over F,. In particular, there are
infinitely many such primes. It suffices to show for all N > 1:

() (Cupp) = Cas.

Gy split
p2N

For such primes, we may apply the results of the previous section. Define the cone Cp \s, . p
as in section (where we take ¢ = p). By the inclusions ({3.3.2)), it suffices to show that
the intersection of all the cones Cp \a, , (for p such that G, is split) coincides with
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Cas. Let A be a character in all the C¢+\¢,L,+,p. For g € ®, \ @, 4, consider the subset
S =0, \ (P, 4+ U{F}). By assumption, A satisfies

Lo e, s50(0) = (A, BY) + 1 Z (N aY) <O0.
OLG‘P+\<I>L’+
aB
Passing to the limit on p, we obtain (A, 8¥) < 0 for any 5 € &, \®, ;. Since Cy;, C X5 (T)
and Cgs C (Cyip,p) for all p, we deduce that the intersection of the cones (Cyp ) coincides
with Cc;s. =

The proof shows that the family (Co,\e, ,, N X5 ;(T)), is a GS-approximation of the
family (Ciipp)p (this is a slight abuse of terminology, since we have not defined Cp \o, .
for general p). Theorem combined with Conjecture indicates that we should
expect a similar result for the Shimura cone family ((Ck,)), (recall that Ck, := C(F,)).
In particular, we expect that C'x ), is contained in Cy,\¢, . , for all p where G, is split.

3.5 GS-approximations for GL, and Sp(2n)

We give explicit equations for Cp and C,,;, in the case of general linear groups and sym-
plectic groups.

3.5.1 General linear groups

Set G = GL,p, (as usual, we take ¢ = p in the context of Shimura varieties). Consider
the cocharacter p: Gn — Gy by p(r) = diag(zl,, ;) with r + s = n. Write 2, =
(G,P,L,Q, M, ) for the attached zip datum. If (uq,...,u,) denotes the canonical basis
of k™, then P is the stabilizer of Vp := Span,(u,41,...,u,) and @ is the stabilizer of
Vo = Spany(uy,...,u,). Let B denote the lower-triangular Borel and 7' the diagonal
torus. The Levi subgroup L = PNQ is isomorphic to GL,r, x GL,,. Identify X*(T) = Z"
such that (ay,...,a,) € Z" corresponds to the character diag(zy,...,x,) — [[_, #i*. The
simple roots with respect to B are {«; }1<i<n—1 where

Q; = €, — €41

and (e;)1<i<n denotes the canonical basis of Z". For general (r,s), we do not know a
description of Cy, or even (Cyp). The cones X7 ;(T') and Cgs are given by

XiJ(T) I{((Il,...7an> eZn ‘ aq Z e Zar and Ari1 Z e Zan}
CGS = {<a1a s 7an) € X_T_J(T) | ap < (ln}.

In this case, the group Wy, acts transitively on & \ @y ..

First, we explicit the set Min(®* \ ®;). This set is in bijection with the set of finite
decreasing sequences © = (;)1<j<s such that r > xy > 9 > --- > 3 > 0. To each such
sequence, we can attach the L-minimal subset

Sy={ei—e; | r+l1—x;<i<r, r+1<j<n}
Write simply I';(A) for the function P<I>+\<I>j,Sz(/\)' If we write A = (aq, . ..,a,), we have:
n rT—%j—r T

L) => | Y (C%'—aj)Jré > (- a)

j=r+1 i=1 t=r—zj_,r+1
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Hence, the L-minimal cone ((3.3.3))) is given as follows:
Cr-min ={A € X*(T) | T',(\) <0, for all decreasing sequences x}.

On this example, the expected equality Cp_yin N X5 [(T) = Com, N X5 ((T) (see end of
section is a straightforward computation. When (r,s) = (n — 1,1), we obtain that
Cr_wmin 18 given by the following equations

k n—1

Z(ai—@n)—i—l Z (a; —a,) <0 forall 0 <k<n-—1. (3.5.1)
i=1 15
Furthermore, one can check that the intersection Cp_yi, N X_*H(T ) coincides with the
A= (a1,...,a,) € X7 [(T) satisfying the inequalities for k = 1,...,n — 1 (the
inequality for £ = 0 can be omitted).

Consider the case (r,s) = (2,2). The L-dominant cone X7 ;(T') is the set of A =
(a1, as,a3,a4) € Z* such that a; > ay and a3 > a4. The set /W has cardinality 2”,‘—5, = 6.
When intersecting with X7 ;(7), three of the corresponding 6 equations become redundant.
Specifically, Cor, N X7 [(T') is the set of A = (a1, az,a3,a4) € X7 /(1) satisfying

2qa; +2as — (¢ + 1)az — (¢ + 1)ags <0
(¢+ 1)ay +2as —2a3 — (¢ + 1)ay <0
(¢g+ 1Day + (¢ + 1)ay — 2a3 — 2qas <0

In the case of a unitary group of signature (2, 2) at a split prime of good reduction, Conjec-
ture holds by |[GK22, Theorem 4.2.8|. Furthermore, this case is of Hasse-type ([IK22,
Definition 5.1.6]), hence we have (Cip) = (CHasse) by loc. cit., Theorem 5.3.1. Therefore,
if X denotes any ﬁq—scheme satisfying Assumption (for example, the corresponding
unitary Shimura variety), we have:

(Cx) = (Cuip) = (CHasse) = {(a1, a1, a3,04) € X5 ((T) [ g(a1 — aq) + (a2 — a3) < 0},

We see on this example that the actual cones (C'x) and (Cyp) have a much simpler expres-
sion than the approximation C,,. However, for general groups we do not have an expression
for either (C'x) or (Cyp). Even worse, we could not prove that they are polyhedral cones.
3.5.2 Sympectic groups

We first give some notations for an arbitrary symplectic group. Let (Vp,) be a non-
degenerate symplectic space over I, of dimension 2n, for some integer n > 1. After choosing
an appropriate basis B for 1}, we assume that v is given by the matrix

—J o 1
(J ) where J := (1 )
Define G as follows:

G(R) = {f € GLg,(Vo @r R) | Yr(f(2), [(y)) = ¥r(2,y), Yo,y € Vo ®r, R}

for all F,-algebras R. Identify V = IF?]” via B and view G as a subgroup of GLy,r,. Fix
the IF,-split maximal torus 7" given by diagonal matrices in G, i.e.
T(R) := {diag,,, (z1,...,2n, 2, ..., 27" | 21,..., 2, € R*}.

n
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Define B as the Borel subgroup of GG consisting of the lower-triangular matrices in GG. For a
tuple (a1,...,a,) € Z", define a character of T by mapping diag,,, (71, ..., z,, ;% ..., 27"
to 7' - - 2% . From this, we obtain an identification X*(7") = Z". Denoting by (ey, ..., €,)
the standard basis of Z", the T-roots of G and the B-positive roots are respectively

= {deite; | 1<ij<npU{t2e|1<i<n},
O i={eite;|1<i<j<npU{2;|1<i<n}

and the B-simple roots are A := {ay,...,q, 1,5} where

o i=e —eq fori=1,...n—1,

b= 2e,.

The Weyl group W := W (G, T) can be identified with the group of permutations o € &g,
satisfying o (i) +o(2n+1—i) = 2n+1forall 1 < i < 2n. Define a cocharacter pi: Gy p, — G
by z — diag(z1,, 27 I,). Write Z := (G, P, L,Q, M, ) for the associated zip datum (since
p is defined over F,, we have M = L). Concretely, if we denote by (u;)?"; the canonical
basis of k2", then P is the stabilizer of Vi p = Span,(uni1, ..., u2,) and @Q is the stabilizer
of Voo = Spany,(uq, ..., u,). The intersection L := P N is a common Levi subgroup and
there is an isomorphism GL, r, — L, A — 6(A), where:

6(4) = (A JtA—1J> '

Under the identification X*(7') = Z", we have:

X7 (1) ={(ay,...,an) €Z" | a1 > -+ > an}
Cos = {(an-..a,) € X1 /(1) | a1 <0)

We do not know the general form of the cone Cy;, outside the case n = 2 (see [Kos19]).
For n = 3, we determined (Cl,) in loc. cit.. For n > 4, neither Cy,, nor its saturation
(Cyip) are known. Some approximations by subcones (Hasse cone, highest weight cone)
were constructed in loc. cit.. These notions were generalized to arbitrary groups in [IK22].

Next, we explicit the results of the previous section and give an upper bound on Cl,.
There are two Wy-orbits in ¢, \ ¢, 4, given by

ng{ei—kej | 1§Z<]§TL}

It turns out that the cone Cp, is coarser that Cp,, so we will only consider Cp,. One can
prove that the cone Co, N X7 ;(T) is the set of A = (a1,...,a,) € X7 ;(T) satisfying

k n
1
E a; + — g a; <0 foralll<k<n-1.

=1 i=k+1

Therefore, the cone Com, N X7 ;(T) is also given by the above inequalities. Note the sim-
ilarities between the cases G = Sp(2n) and G = GL, 4 of signature (n,1). Namely, if we
set an+1 = 0 in the latter, we recover the equations for Sp(2n). As explained in [GK22,
§4.2.2], there is a correspondence between automorphic forms on the corresponding stacks
of G-zips for these two groups. Even though the number of Wi -orbits are different for these
groups, this correspondence persists for the approximation cones Cyy,.
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In the graph below, we consider the case G = Sp(6). We illustrate the approximations
Corbs Cunip Of the cone (Cyp). Note that X*(T) = Z? is 3-dimensional, so to simplify we
represent a slice of the cones. Hence, each dot on the picture represents a half-line from
the origin. For a cone C' C X*(T), write C*' for its intersection with X% ;(7). We have:

1 1
CH_’I = CITLIMin = {(&1,&2,@3) € X-T-J(T) | aq + 5((12 + ag) S 0, aq + (05} + 6&3 S O}

orb

. 1
ot {(a1,as,a3) € X 4(T) | a1+ a(a2 +a3) <0, qa; + ¢*as +az < 0}

unip

Coip = {(a1,a2,a3) € X3 [(T) | ¢°ar + as +qaz <0, qar + ¢°ar + a3 < 0}

. : I I -
As one sees on the figure below, the inclusions C;, C C::{ip C C3 are strict.

ay=ag :

(071‘,—(]) (1707 _Q)

X (1)

: ag = ag

Corb
Cas

(1_(]71_(],1_(])

(_%1,0) Y (1,—q., 0)

(_Qa Oa 1) (07 —q, 1)

Figure 1: The case Sp(6)r,

4 Vanishing at a fixed prime for unitary Shimura vari-
eties

In this section, we take G' = GL, r, and consider the setting of section In particular,
p: G — Gy is the cocharacter x — diag(zI,, I;) for r+s =nand 2, = (G, P, L,Q, M, ¢)
is the attached zip datum. In section [1.4] we will specialize to the case (r,s) = (n — 1,1).
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4.1 Partial Hasse invariants

We let S, = W be the group of permutations of {1,...,n}. We start by recalling the
following criterion for determining the set E,, for w € S,, (see (2.3.1))). For 1 <i # j < n,
we denote by (i j) € S, the transposition exchanging ¢ and j.

Proposition 4.1.1. Let 1 <i < j <n. Then w X (i j) is a lower neighbour of w if and
only if the folllowing conditions hold

(1) o(z) > o(j),

(2) There is noi < k < j such that 0(j) < o(k) < ().

We may represent this criterion visually as follows: Consider the submatrix of w whose
corners are (i,0(i)) and (j,o(j)). Condition (i) says that (i,0(7)) is the lower left corner
of this matrix, and (j,o(j)) is the upper right corner. Condition (ii) says that all the
coefficients of this submatrix are zero except for these two corners.

————————

Definition 4.1.2. We say that w € W admits a system of partial Hasse invariants if the
elements a for a € E,, are linearly independent in X.(T')q.

If w admits a system of partial Hasse invariants, then for each a € F,,, we can find y €
X*(T) satisfying Conditions (a) and (b) of Definition This will be used to construct
a separating system in section Let us introduce some non-standard terminology: Let
w € S, be a permutation. A triplet (4,7, k) satisfying ¢ < 7 < k and w(i) < w(j) and
w(k) < w(j) will be called a V-shape. Furthermore, if w(i) < w(k), we call it a  /~shape.

Lemma 4.1.3. Assume that w has no \/—shape. Then w admits a system of partial Hasse

muariants.

Proof. For a transposition t = (i j), put ¢t_ := min{i, j} and ¢, := max{i, j}. Since w has
no ,/-shape, it is clear that the map E, — {1,...,n}, t — t, is injective. This implies
that the elements («").cp, are linearly independent. O

4.2 Auxilliary sequence

For 1 < d < n, define the matrix

1

where the upper right block has size d x d and the lower left block has size (n —d) x (n—d).
For example, A; = wy is the longest element of W = S,, and A,, = I, is the identity element.

For two elements w, w’ such that w > w’, we define a path from w to w’ to be a sequence
wy, ..., wy satisfying the following conditions:
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(a) w; = w and wy = w'.

(b) wy > -+ >wy and {(w;y1) = l(w;) — 1 for each i =1,..., N — 1.

For 1 < d < n, we construct a path from Ay to Az, as follows: We multiply A, successively
on the right by the transpositions (n —d n —i+ 1) for i = 1,...,d. In other words, we

define wgd) =Agand for 2 <i<d+1,

wgd) =ANn—d n)in—d n—-1)...(n—d n—1i+2).
Then (w%d), . ,wgﬁl) is a path from Ay to Ay1. At each step, the coefficient on the n—d-th
column of the matrix moves up by one. Moreover, the last d coefficients are in increasing
order at each step of the sequence.

Lemma 4.2.1. Fach element in the sequence (w%d), . ,wc(;?l) admits a system of partial

Hasse invariants.

Proof. Every element in the sequence has no V-shape (in particular no \/-shape), hence
the result follows from Lemma [£.1.3 n

The number of lower neighbours of wgd) is exactly n — 1 for all 1 < d < n — 1. Further-
more, for 1 <d <n —1, the set £ ) can be partitioned into three subsets, namely:

Ew(d):AUBUC

A={(Gj+1) | 1<j<n—-d-1}
Bi={n—d—1n+1-j) | 1<j<i-1}
Ci={(n—dn—-d+j) | 1<j<d—i+1}.

For d = n — 1, the number of lower neighbours of w§” is n — i, and we have

Ew(_d):{(lj) | 2§j§n—i+1}.

Next, we compute the weight of a Hasse invariant which cuts out the stratum 7w(d) in
i+1

+
the stratum Y @ for1 <i<dand1<d < n—1. By construction, we have ng‘?l = wgd)s (@
’U/'i o

for the root agd) = €y_q — ent1—i- Recall that for any w € W, the Hasse section Ha,, , is

a section of Vhag(hy(x)) whose divisor has multiplicity (x, o) along F,s, for each a € E,,
(see section [2.3). We call hy,(x) the weight of Ha,,,. Consider the character

(@ .

Xi T —Cd—it1-

It satisfies
(ng), a¥) =1 fora= ozgd)
(ng), a’) =0 fora€kE )\ {agd)}.
(d)

Therefore, the partial Hasse invariant Ha,’ on .T:w@ cuts out with multiplicity one the

the stratum ]_-"w(d) . Similarly, the pullback to Y is a section over ?w(d) which cuts out the
i+1 b
stratum ?w(d) . We denote the weight of Hagd) by hal(d) = h (ng)). We obtain:
i+1 i
ha,(d) = €d—i+1 — qwo,l(ez’).
Proposition 4.2.2. Define A\, € Z" by A\op = e, — qep, where 1 < a,b < n. Then
Aap € Cr—min of and only if b <.
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Proof. Assume a < r. Let = (x)1<;<s be a finite sequence such that r > x; > x5 >
-+ > 1wy > 0. We need to show that I';(A,p) < 0. Write Aoy = (y1, ..., ¥yn). We have:

n T=Zj—r r

L) = Y Z@i—yj)ﬁ S (-

j=r+1 i=1 i=r—x;_r+1

Since b < r, the sum S0 (3 — ;) + ¢ 2izap (Yi —y;) is <0 for any 1 < d <. This
shows that A\, € CL_min. We leave the converse implication to the reader, as we will not
use it. ]

d)

Corollary 4.2.3. For any d < min(r,n — 1) and any 1 <i < d, one has hal( € CL_Min-

Proof. We have hagd) = eq_iy1 — qwos(e;). Since i < d < r, we have wgs(e;) < r. The
result follows from Proposition [4.2.2] O

Hence, when (r,s) = (n — 1,1), we obtain a path from A; = wy to A,,_; such that each
element of the sequence admits a system of partial Hasse invariants, and furthermore the
weights ha!®” (for all 1 <i <d <n —1) all lic in Cp,_yn.

4.3 Hasse-regularity

In the case (r,s) = (n — 1,1), we have A,,_; = z. Recall that for a general cocharacter
datum (G, p) over F,, the element z is defined by z := o(wo)wy (see section 2.1). The
last ingredient of our proof will be to show that the stratum Y, is Hasse-regular (Definition
[2.4.1)). Before we show this, we collect in this section some expectations in the general case.

Let (G, i) be a general cocharacter datum (G, i) over F, and (X, () satisfying Assump-
tion [2.1.1] In the terminology of [GK19al, Definition 2.4.2|, z := o(wo s)wy is the cominimal
element of maximal length. We recall some results from loc. cit. about the stratum F,.
First, by [Kos18, Proposition 2.2.1| the projection map 7: G-ZipFlag! — G-Zip" restricts
to a finite etale map F, — U, where U,, is the open stratum of G-Zip”. On the Zariski
closure, the map 7: F, — G-Zip" is not finite in general. Similar results hold for the
stratum Y, C Y and the projection map 7my: Y, — X. We conjecture the following in
general:

Conjecture 4.3.1. The flag stratum Y, is Hasse-reqular.

For example, take G = Resg, ... /r, (GLa,n) endowed with the parabolic P = B. This
corresponds to the case of Hilbert—Blumenthal Shimura varieties. In this case, the flag
space Y = Flag(X) coincides with X. Hence Y, is simply the unique open stratum of X,
and we have Y, = X. In particular, Conjecture says in this case that (Cx) = Chasse,
which was indeed proved in |[GK1§|. In the case when G is [F-split, the Hasse cone of z
has a simple form:

CHasse.. = {AN € X*(T) | (\,a") <Oforal aed®"\d,.}.
Furthermore, in this case we expect the following stronger version:

Conjecture 4.3.2. Assume that G is Fy-split. For any w € W such that w < z, the flag
stratum Y,, is Hasse-reqular.

Conjecture holds for Hilbert-Blumenthal Shimura varieties at a split prime p by
IGK18]. Furthermore, it also holds for the groups G' = Sp(4)r, and G' = GL3, (in signature
(2,1)) by loc. cit. (8§5.2, Figure 1 and Figure 2). For G = GL,, with a parabolic of type
(3,1), it follows from [GK22l §5.2]. We will generalize the result to the case G = GL,f,
with a parabolic of type (n — 1,1) in the next section.
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4.4 The unitary case of signature (n — 1,1) at split primes

We now return to the case G = GLj, r, and we consider the case (r,s) = (n —1,1). In this
case, the element z coincides with A,_;. We say that a permutation w € S,, is z-small if
w < z. Similarly, a stratum Y, paramatrized by such an element will be called z-small.

4.4.1 Hasse cones of z-small strata

For an integer m > 1, we consider the m x m-matrix

1
1
1
which we simply denote by [m] (when no confusion arises from this notation). Similarly,
for a tuple of positive integers (my, ..., my), we define
[ma]
[ma,...,mg] ==

(]

By Proposition [4.1.1] the z-small elements of S,, are precisely the permutations of the form
[m1, ..., mg] for positive integers my, ..., my such that m; + -+ - + my = n. Note that any
lower neighbour of a z-small element is again z-small. It is clear that a z-small element
admits a system of partial Hasse invariants, because each block [m;] admits such a system.

We compute the Hasse cone Chasse,w for each z-small element w. For w = [ma, ..., mygl,
we put M;(w) :== > 4 ,m; for 1 < d <k and My(w) := 0. If the choice of w is clear, we
simply write M; instead of M;(w). The set E,, is given by

k
E,=||ED, B :={(M_+1 My +j)| 1<j<m}.
=1

We say that w’ is an i-lower neighbour if it corresponds to an element of Ez(ui), Leif w' = ws,
for o € E. In other words, an i-lower neighbour of w amounts to a partition m; = a + b
with a,b > 1. For w € S,, z-small, put v, := w™ 2. If w = [my, ..., my], we have:

Yo =1 Mp_14+1 M o+1 ... M;+1).

In particular, v, is a k-cycle, so it has order k in S,,. The cone (Chassew) is defined by a
number of |E,| inequalities. The inequality corresponding to a € E,, is

k-1
YA A ) 2 0
d=0

where A € Z". For a € E,, write Cf, .., for the cone in Z" defined by this condition.
Therefore, (Chasse,w) = (Nacr, Cliassew 10 simplify, we always write 27"\ = (z1,...,2,) €
Z™. Let f be a linear polynomial in the variables z1,...,Z;, ...z, (where Z; means that we
omit the variable z;). We write f(z1,...,%Z;,...2,) <; 0 for the homogeneous inequality
flrr—xiy. o op—ax;) < 0. Hw=[mq,...,mg]and a = (M;_1+1 M;_1+j) for 1 < j <m;,
the corresponding inequality defining Cy is given by

asse,w

—_

k—1

k—d k—i d—i
¢ a1+ T+ E a1 a4+ 0.
1 d=i

11—

.
Il
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4.4.2 Intersection cones
The goal of this section is to show the following result:

Proposition 4.4.1. Let w € S, be a z-small permutation of length ((w) > 2 and let
a € Ey,. There exist two lower neighbours wy,ws of w (depending on «) such that

«
C(Hasse,w1 N C1Hausse,wg - CH

asse,w*

We write w = [mq,...,mg] and o« = (M; +1 M;+j)for 0 <i<kand 1 <j<m;.
There are several cases to consider.

The case ;7 > 3. In this case, we show that we may take w; and ws to be i-lower
neighbours of w. Put:

w1 = [ml, e, MMy, l,mi — 1,mi+1, R ,mk]

Wy ‘= [mla'“)mi—hj - 17mi _j+ 17mi+1a"'7mk]

In other words, wy, ws are given respectively by partitioning m; into [1,m; — 1] and [j —
1,m; — j + 1]. Note that by assumption j — 1 > 2. Consider the roots:

oy = (Mg +2 My + j)
Qo = (Mi,1 +1 Mifl + 2)

e3} a2 « 3 3 aq
It suffices to show Cijiee w, M Chassews © CHassew Lhe equations satisfied by Cyje ,, and
a2 H .
Classew, ar€ Tespectively:
i—1 k—1
) k k—d k—i d—i
(E1): ¢"xpy 42 + E q° Ty_u+1 T Q0 T E q Tpry <m; 145 0
d=1 d=i
i—2 k-1
) k—d k—i+1 d—i+1
(Es) : E ¢ TM;_y 4+1 T4 Ty + E q TMy4+1 T Ty 145 <m;_,+2 0.
d=0 d=i

Equation (E;) is very similar to the one defining Cfj, . ,,, except for the presence of the
leading term ¢*zy;, 2. We can remove this term by using a linear combination with the
second inequality (recall that the variable xj;,_, 1o appears in (Ey) by definition of the
k k(,__
E?q:o i Zk(fljl).
form the inequality (E;) + d(Es). Dividing throughout by 1 + dg, we obtain precisely the
inequality for Cfy

symbol <j;. ,12). Specifically, put § := Since ¢§ is positive, we may

asse,w*

The case 7 = 2 and m; > 2. In this case too, we may take w; and wy to be i-lower
neighbours of w. Put:

wy = (M, M1, 2, — 2, Mg, T

Wy = [mh coymy, Lmg — 1myga, . 7mk]

In other words, wy, wy are given respectively by partitioning m; into [2, m;—2] and [1, m;—1].
Consider the roots:

] == (Mi—l +1 Mi—l + 2)
ag = (M;—y +2 M;_4 +3).
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It suffices to show Cf} NCY? C Cq The equations satisfied by Cjt and

Hasse, w1 Hasse, w2 asse,w "’ Hasse,w1
a9 37 .
Classew, ar€ Tespectively:
i—2 k-1
. k—d k—i+1 d—i
(Ey) : @ TM_g41 TG T+ E QT+ T 43 <m;_1+2 0
d=0 d=i
i—1 k—1
) k k—d k—i d—i
(E2) : q"wn,_ 4o+ § ¢ TM_g+1t @ T E 4 Thy41 <m;_,+3 0.
d=1 d=i

Equation (E)) is very similar to the one defining Cf,..,, (multiplied by ¢), except for the

presence of the last term zj;, 13 in (F;). We can remove this term by using a linear
combination with the second equation. Specifically, put 6 := ,?10 i qi‘ff_)l. Since 9 is
=

positive, we have the inequality (F;) + 6(E;). Dividing throughout by 1 + d¢, we obtain
precisely the inequality for C

asse,w"*

The case 7 =2 and m; = 2. In this case, w admits only one i-lower neighbour, namely
Wo = [mh sy M1, 17 17 M1,y - - Jmk]

(which corresponds to the partition 2 = 1 4 1). Therefore, we need to choose w; in a
different block. Since we assume ¢(w) > 2, at least one other m; is > 2. We take

wy = [my,...,mj_y, Lmg — 1mg, .o my]
(the j-lower neighbour corresponding to the partition of m; into [1,m; — 1]). Set:

o =0 = (Mi—l + 1 Mi—l + 2)
Qg 1= (Mjfl +1 Mjfl + 2)

a1 o2 o . .
It suffices to show Ciien, M CHassowy © Cltasserw- Assume first that we can choose j > i.
3 3 a1 [P 1 .
The equations satisfied by Cy . ., and Cyi. ,, are respectively:
i k-1
: Z k—d k—i+1 Z d—i+1 j—i
(E1> . q LTM;_g_1+1 +4q ' 1+ q ' TMa+1 + q] Z‘,EJ\/IJ'—H-?
d=0 d=j

j—1
di
+§ q Zde+1 SMFH-Q 0.
d=1i

j—i—1 1—1
. k—d k—j+i k—j+d k—j
(E2> . q de+i+1+q I Z‘7’1]\/11'—14-2_" E q J de-i-l_’_q Jxl
d=0 d=1
k—1
d=j < 0
+ q :CMd+1 _Mj,1+2 .
d=j

Equation (E) is similar to the one defining Cf,..,,- Specifically, the last terms 2,11
for © < d < j — 1 are the same in both equations. The terms x,,4; for all other d
and for x; are multiplied by an extra power of ¢ in equation (Fj). Finally, the term
qj*"a:M]._lJrg in (£;) does not appear in the equation of Cf, ..., Using a similar strategy
as before, we remove this term by using a linear combination with the second equation

(Ey). Put § := Z‘f:_iq - = q;;i(lq__ll ) Since § is positive, we have the inequality (E;) +
d=0
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d(E2). In this equation, the variable x;_; + 2 has disappeared. We write the terms in
decreasing order of the power of ¢ as they appear in the equation of Cf,,, namely
TM, 415 TM; gt 15+ U1 TMy_ys - -+ TM4+1, DMy 415 - - - Tap1- One sees immediately that
the coefficents which appear in front of these terms in (E;)+ d(F2) are divided by ¢ at each
step between the terms wyy, 1 and xp7, 11, and between xpr, 1 and 4. It remains
to show that the same happens between the terms xy, 11 and zpy,_, y1. The coefficient of
Tar41 18 ¢+ 6, and the coefficient of @y, 11 18 ¢/ 77! 4 6¢". Since § = ngl(f:ll), one
has indeed ¢/~ 4+ § = q(¢? "' + d¢"). This shows that the equation (E;) + 6(Es) is a
positive multiple of the equation for Cf, e .-

It remains to treat the case when there is no j > ¢ such that m; > 2. We choose j < i

with m; > 2, and define wy, ws, a1, ay as before. The equations satisfied by Cfl... w, and
a9 3 .
Classew, ar€ Tespectively:
i—1 j—1
. k—itd+1 k—itj 2 : k—i+d k—i
(El) . q TMy+1 + q ijjfl'f‘Q + q TMy+1 + q X
d=j d=1
k—1
d—i
+ E T4 <my,4+2 0.
d=i
Jj—1 k—1
) k—j+d+1 k—j+1 d—j+1 i—j
(E2) : q’ Tmge1 ¢+ E /R VI S/ A VA
d=1 d=i

i—1

I
"‘Zq JIM,i-s-l SMJ-_1+2 0.
d=j

As before, we remove the term x,_ 4o in () using (E;). Put § := Xq:%;;qjd = qk;,ifl(f;l)

and consider (E) + 0(F2). Again, the coefficients of @ns, |11, Tas,_oi1y ooy 1, Tagy ys - -+
TM 15 TM_ 1415 -+ > TM;+1 (in this order) are divided by ¢ at each step, except perhaps
for the coefficients of 2,11 and @p;,_,41. The former is ¢" ™ + § and the latter is
¢ =71 4+ g6, Again, we have ¢* T 4+ § = q(¢" L + ¢¥6) by definition of 6. This
shows the result.

4.4.3 Main result

Our first main result is the strong version of the Hasse-regularity conjecture (see Conjecture
4.3.2)) for unitary Shimura varieties of good reduction at a split prime. More generally, we
take (X, () to be an arbitrary pair satisfying Assumption m

Theorem 4.4.2. Assume G = GL, g, and (r,s) = (n — 1,1). For any z-small element
w € S,, the flag stratum Y,, is Hasse-reqular.

Proof. Since all z-small strata admit a system of Hasse invariants (Definition , we
may construct a separating system E = (E,,),ew as follows. For z-small elements w € W,
we set E,, = E,, and we let {x}acp, be any system of characters satisfying Conditions (a)
and (b) of Definition [2.5.1] For w not z-small, we set E, = (). We show by induction on
{(w) that for all z-small element w, the intersection cone C;/* satisfies C;® C (Chasse.w)-
For {(w) = 1 the result holds by Lemma [2.4.2] Suppose the result holds for all z-small
strata of length < d and let w be a z-small element of length ¢(w) = d+ 1. By Proposition
[1.4.1 we obtain
ﬂ quj_élg C ﬂ <0Hasse,wsa> C <CHasse,w>

OéEEw aEEw
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Since we clearly have C’Easse,w C CHassew, We deduce Cif B (CHasse,w), Which proves the
result. By Theorem [2.5.3) we deduce that for any z-small element, (Cy,) = (C}F) =
(CHassew)- This terminates the proof. O

In particular, for the element w = z, we deduce the following:
Corollary 4.4.3. We have (Cy.) = {(k1,...,kn) € Z" | ki—k, <0 forall i=1,...,n}.
We also deduce from Theorem the following approximation of the cone (Ck (F,)):

Theorem 4.4.4. We have CK(FP) C Cp_min- In other words, the weight (ky,...,k,) of
any nonzero mod p automorphic form satisfies:

J n—1

1
§ (ki_kn)+—§ (ki —ky) <0  forallj=1,....,n—1.
i=1 pi:j.H

Proof. We consider the sequence (wgd))z’,d for 1 <i¢<d+1and1<d < n—1 which defines
a path (in the terminology of section from Ay = wy to A,,_1 = z. By Corollary ,
we have Uy, C Cr_min. Furthermore, by Corollary , the weight of the partial Hasse
invariant Ha'?

. which cuts out the stratum Yw(d) (for 1 < i < d) in the closure of Yw(d) lies
i+1 1
in CL_min. We deduce that Cy,, C CL_min for each w in the chain. In particular, the result

holds for wy, which terminates the proof. O

Theorem [£.4.4] illustrates again the connection between group theory and geometry of
Shimura varieties: The cone Cp_y;, originates from a unipotent-invariance condition for
automorphic forms on G-Zip*. Theorem and its proof show that this condition also
appears geometrically as a relationship between the flag strata of a Shimura variety.

Finally, we note that Theorem [4.4.4] provides a second, more precise proof of the con-
tainment Cx(C) C Cgs. Indeed, let ., be an integral Shimura variety of Hodge-type of
unitary type and signature (n — 1,1). At each split prime p of good reduction, we have
CK(ED) C Cr—Minp, where Cr_npin,p denotes the L-minimal cone of the induced zip datum
at p. We obtain

Cx(C)C () Ck(Fp) C () Civiny = Cas.

split p split p
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