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Abstract

We prove vanishing results for the 0th cohomology of automorphic line bundles on
the Ekedahl–Oort strata of the special fiber of Hilbert–Blumenthal Shimura varieties.
This work vastly extends to all Ekedahl–Oort strata previous results of Diamond–
Kassaei and Goldring–Koskivirta. Furthermore, our results also cover the case of
unitary Shimura varieties of rank ≤ 2 attached to an arbitrary CM extension. We also
prove a conjecture of Goldring–Koskivirta on the set of possible weights of automorphic
forms.

1 Introduction
In this paper, we prove a sharp vanishing result for automorphic line bundles on certain
stratifications of Shimura varieties. The family of Shimura varieties considered in this
paper will be called "of A1-type". These include Hilbert–Blumenthal Shimura varieties and
unitary Shimura varieties attached to a hermitian space of dimension 2 over a CM extension
E/F. We only consider the cohomology in degree 0. We start be reviewing the vanishing
results of Diamond–Kassaei ([DK23]) and Goldring–Koskivirta ([GK18]), of which this
paper is a generalization. Fix a totally real extension F/Q. Hilbert–Blumenthal Shimura
varieties are attached to a certain reductive Q-group G ⊂ ResF/Q(GL2,F) (see section 2.5 for
details). They parametrizes abelian varieties of rank n = [F : Q] endowed with a principal
polarization, a compatible action of OF and a level structure. Let X = XFp

denote the
special fiber (over Fp) of a Hilbert–Blumenthal Shimura variety attached to F at a prime
number p of good reduction. It is a quasi-projective variety of dimension n defined over Fp.
Denote by Σ the set of embeddings τ : F → Qp. Since by assumption F is unramified at p,
there is a natural action of the Frobenius homomorphism σ ∈ Gal(Qur

p /Qp) = Gal(Fp/Fp)
on Σ that we denote by τ 7→ στ . Denote by Ω the Hodge vector bundle of X, namely the
vector bundle e∗(Ω1

A /X) where A /X is the universal abelian variety and e : X → A is the
unit section. The action of OF on A decomposes Ω as a direct sum Ω =

⊕
τ∈Σ ωτ . For a

tuple k = (kτ )τ∈Σ ∈ ZΣ, we define a line bundle

ωk :=
⊗
τ∈Σ

ω−kτ
τ . (1.0.1)

Note the minus sign in the exponent of ωτ ; this sign convention differs from [DK23]. We use
it for consistency with the results of [GK18], which are formulated for more general groups.
The global sections H0(X,ωk) are called Hilbert modular forms of weight k. The Ekedahl–
Oort (EO) stratification of X is defined as follows: Two points x, y ∈ X are in the same
stratum if the abelian varieties Ax, Ay corresponding to x, y satisfy that Ax[p] ≃ Ay[p],
where we require this isomorphism to be compatible with the polarizations and the action
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of OF. There is a unique open stratum called the ordinary locus, where Ax is an ordinary
abelian variety. The EO strata are parametrized by subsets S ⊂ Σ, and the dimension of
the stratum XS corresponding to the subset S is |S|. For each τ ∈ Σ, Andreatta–Goren
([AG05]) constructed a partial Hasse invariant Haτ whose vanishing locus is precisely the
codimension one stratum corresponding to the subset S \ {τ}. The weight of Haτ is given
by haτ := eτ −peσ−1τ . It was proved by Goldring and the author ([GK18, Theorem D (a)]),
as well as Diamond–Kassaei ([DK23, Corollary 8.2]) that for any k ∈ ZΣ which is outside
of the cone spanned (over Q≥0) by the weights haτ that H0(X,ωk) = 0. Furthermore,
[GK18] shows a more general result for other Ekedahl–Oort strata, termed admissible. The
admissibility is an explicit combinatorial condition on the subset S (see loc. cit. Definition
4.2.1). For any S and any τ ∈ Σ, one can define a generalized partial Hasse invariant HaS,τ
over XS (the Zariski closure of XS endowed with the reduced structure). For τ ∈ S, the
section HaS,τ is simply the restriction of Haτ to XS. For τ /∈ S, the section HaS,τ is a
non-vanishing section of weight haS,τ := −eτ − peσ−1τ . Denote by CpHa,S the elements of
ZΣ which can be spanned (over Q≥0) by the weights haS,τ . Then, Goldring and the author
proved:

Theorem 1 ([GK18, Theorem 4.2.3]). Let S be an admissible subset. Then for any weight
k /∈ CpHa,S, the space H0(XS, ω

k) is zero.

The maximal stratum and the one-dimensional strata are always admissible. When p
splits completely in F, all EO strata are admissible. On the other hand, when p is inert
in F, very few strata are admissible. In this article, we give a vanishing result that applies
to all Ekedahl–Oort strata and generalizes the above theorem. Moreover, we include other
Shimura varieties attached to similar reductive groups.

We say that a reductive group G over a field k is of A1-type and rank n if Gad
k

is
isomorphic to a product of n copies of PGL2,k, where k is an algebraic closure of k. We let
X = XFp

be the good reduction special fiber of a Hodge-type Shimura variety attached to
a group of A1-type. Aside the case of Hilbert–Blumenthal varieties previously mentioned,
we may also consider certain unitary Shimura varieties. Specifically, let E/F be a CM-
extension where n = [F : Q] and (V, ψ) a hermitian space where V is a 2-dimensional
E-vector space. Then, the group of unitary similitudes G := GU(V, ψ) (restricted to Q)
is a group of A1-type of rank n. Contrary to the Hilbert–Blumenthal case, the Hodge
parabolic P (the stabilizer of the Hodge filtration) may be larger than a Borel subgroup
in the unitary case. Let Σ denote the set of embeddings τ : F → R and let Σ0 ⊂ Σ be
the subset of embeddings where V ⊗F,τ R has signature (2, 0) or (0, 2). Then, the Hodge
parabolic P (viewed in Gad) will contain all the factors corresponding to elements of Σ0.
Fix an isomorphism C ≃ Qp and view Σ as a subset of HomQ(F,Qp). Denote again by σ
the action of Frobenius on Σ. Then, Σ decomposes as a disjoint union of orbits under the
action of σ. All of our results can be reduced to the case of a single orbit. The reason is that
we use as a main tool the stack of G-zips of Pink–Wedhorn–Ziegler ([PWZ11, PWZ15]),
where G is the Fp group obtained by reducing G modulo p, and this stack decomposes as a
direct product with respect to the σ-orbits in Σ. Therefore, for the rest of this introduction,
we will assume that p is an inert prime in F.

We order the elements of Σ as τ1, . . . , τn such that τi+1 = στi, where the index i is taken
modulo n. We identify in this way Σ with En = {1, . . . , n}. Furthermore, we write R ⊂ En

for the subset corresponding to Σ0 and call it the parabolic type of X. For example, when
X is a Hilbert–Blumenthal Shimura variety, we have R = ∅. We let Flag(X) denote the
flag space of X, as defined by Goldring and the author in [GK19a], based on previous
work by Ekedahl–van der Geer ([EvdG09]). It parametrizes pairs (x,F•) where x is a
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point of X and F• is a full flag in H1
dR(Ax) refining the Hodge filtration. The natural

projection π : Flag(X) → X is proper with fibers isomorphic to a product of |R| copies
of P1. When R = ∅, we simply have Flag(X) = X. The flag space is endowed with
a natural stratification (Flag(X)S)S parametrized by subsets S ⊂ En. Furthermore, for
any k = (k1, . . . , kn) ∈ Z, it carries a line bundle L(k) (for R = ∅, one has L(k) = ωk).
The push-forward π∗(L(k)) is the automorphic vector bundle V(k) attached to the induced
representation V (k) := IndP

B(k). Denote by Flag(X)S the Zariski closure of Flag(X)S,
endowed with the reduced structure. We are interested in the following problem:

Question 1. For which k ∈ Zn is the space H0(Flag(X)S,L(k)) nonzero?

In the Hilbert–Blumenthal case, Flag(X)S is simply the Ekedahl–Oort stratum XS, and
Question 1 is thus very natural in and of itself. When R ̸= ∅, we are mostly interested
in the case of the maximal stratum, corresponding to S = En. Since π∗(L(k)) = V(k),
Question 1 boils down to understanding for which k ∈ Z the space H0(X,V(k)) is nonzero.
In the case R ̸= ∅, even though we are interested in the case S = En, we need to solve
Question 1 for each stratum S in order to get to the maximal stratum, by an inductive
procedure.

We now explain the results of this paper in details. We fix a subset R ⊂ En and a
Shimura variety X = XR of A1-type and parabolic type R. We say that a subset C ⊂ Zn

is a p-cone if it is defined by finitely many inequalities of the form

n−1∑
i=0

piεi+d xi+d ≤ 0, (x1, . . . , xn) ∈ Zn (1)

where ε1, . . . , εn ∈ {±1} and the index i + d is taken modulo n. We call the expression
appearing in (1) a p-expression with starting index d. Such an expression is uniquely
determined by its starting index d and the set T ⊂ En of indices i with εi = −1. Let
S ⊂ En be a subset. We say that a p-cone C is S-adapted if it is defined by exactly |S|
inequalities of the type (1), with starting index each of the element of S. An S-adapted
p-cone C is thus uniquely determined by a function

ρC : S → P(En)

(where P(En) is the powerset of En), which attaches to each element s ∈ S the set of indices
i ∈ En such that εi = −1 in the p-expression with starting index s defining C. We say that
an S-adapted p-cone is homogeneous if ρC is a constant function. For each subset S ⊂ En,
there are n − |S| non-vanishing sections Ha

(i)
R,S on the stratum Flag(X)S parametrized by

the elements i ∈ En \ S (see section 4.5 for details). We write ha
(i)
R,S for the weight of

Ha
(i)
R,S. For any k in the subgroup spanned (over Z) by these weights, the line bundle L(k)

is trivial on Flag(X)S. We say that an S-adapted p-cone is admissible if the p-expressions
that define C all vanish on this subgroup (the term "admissible" is unrelated to the one
used in Theorem 1).

Finally, we say that C is positive if the leading coefficients of the p-expressions defining
C with starting index s ∈ S is 1 if and only if s ∈ R. Intuitively, this condition is imposed
by the geometry of Shimura varieties: when p tends to infinity, C should contain the line
bundles L(k) that are ample in characteristic zero. We then have the following:

Theorem A. For any subset S ⊂ En, there exists a unique positive admissible homogeneous
S-adapted p-cone.

3



The inequalities defining the cone CS can be very explicitly determined using the notion
of chain diagrams introduced in section 4.4. We explain the link with Question 1. Write
CS for the unique positive admissible homogeneous S-adapted p-cone afforded by Theorem
A. The following is the main result of this paper:

Theorem B. Let S ⊂ En be a subset and k ∈ Zn. If k /∈ CS, then one has

H0(Flag(X)S,L(k)) = 0.

When R = ∅, this result extends to all strata Theorem 1 of [GK18] explained earlier
and gives a vanishing result for the cohomology of automorphic line bundles for any EO
stratum of Hilbert–Blumenthal Shimura varieties. Note that in general, the natural cone
that controls the vanishing of cohomology is not CpHa,S but rather CS. This explains why
Theorem 1 could only cover certain strata, precisely the ones for which CpHa,S and CS

coincide. We explain how to determine the cone CS explicitly. For simplicity, we restrict
here to the case of Hilbert–Blumenthal Shimura varieties (i.e. R = ∅). For any subset
S ⊂ En, we define a subset Φ(S) ⊂ En as follows: For each element s ∈ S, we consider the
sequence s− 1, s− 2, . . . where these elements are taken modulo n. We denote by γ(s) the
smallest positive integer such that s− γ(s) ∈ S. Then, we define Φ(S) as the set

Φ(S) = {s− i | s ∈ S, i odd, 1 ≤ i < γ(s)}.

The cone CS is the S-adapted homogeneous p-cone that corresponds to the constant function
ρ : S → P(En) with value Φ(S). For example, if n = 7 and S = {1, 3}, then Φ(S) = {5, 7}.
It follows that the cone CS is defined by the two inequalities{

x1 + px2 + p2x3 + p3x4 − p4x5 + p5x6 − p6x7 ≤ 0

p5x1 + p6x2 + x3 + px4 − p2x5 + p3x6 − p4x7 ≤ 0.

We briefly explain our approach to prove Theorem B. It is based on the notion of intersection-
sum cone, first introduced by Goldring and the author in the recent preprints [GK22a,
GK22b]. It is a natural construction that attaches recursively to each stratum S a cone
C
∩,+
S ⊂ Zn. When |S| = 1, it is simply the cone CpHa,S of partial Hasse invariants on
S. For other strata S, it is defined as the convex hull of CpHa,S and the intersection of
the cones C

∩,+
S\{s} when s varies in S. The main property of these cones is that the space

H0(Flag(X)S,L(k)) is always zero when k /∈ C
∩,+
S . Theorem B is then a consequence of

the following:

Theorem C. For any subset S ⊂ En, the cone C
∩,+
S coincides with the cone CS afforded

by Theorem A.

This result illustrates that the formation of the intersection-sum cones is natural and
contains meaningful information. Finally, we describe our last result, which is related to a
conjecture of Goldring and the author, formulated initially in [GK18]. Define the set

CX := {k ∈ Zn | H0(X,V(k)) ̸= 0}.

Since π∗(L(k)) = V(k), this set coincides with the set of k ∈ Zn such that L(k) admits
nonzero sections on Flag(X). Define also CX as the saturation of CX , i.e. the set of k ∈ Zn

that are spanned (over Q≥0) by the elements of CX . The Cone Conjecture asserts that the
set CX is encoded by the stack of G-zips. Zhang constructed in [Zha18] a natural smooth
morphism of stacks ζ : X → G-Zipµ which is surjective. For any k ∈ Zn, the vector bundle
V(k) can also be defined on G-Zipµ. We define similarly a set Czip ⊂ Zn as the set of
k ∈ Zn such that H0(G-Zipµ,V(k)) ̸= 0 and define Czip as the saturation of Czip. Then by
pullback via ζ, we clearly have an inclusion Czip ⊂ CX . We conjectured:
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Conjecture 1 ([GK18, Conjecture 2.1.6]). One has CX = Czip.

For Hilbert–Blumenthal Shimura varieties, Conjecture 1 was verified by Goldring and
the author in [GK18] and proved independently by Diamond–Kassaei ([DK23, Corollary
8.2]). In this case, an even stronger result is true: Both cones coincide with the subcone
CpHa ⊂ Czip of partial Hasse invariants (the cone spanned by the weights haτ defined in
the beginning of the introduction). Imai and the author characterized precisely in [IK] the
cases when the equality CpHa = Czip holds: those for which the parabolic P is defined over
Fp and the action of the Frobenius on the roots of L are given by −w0,L, where w0,L is the
longest element of the Weyl group WL of L. In particular, this condition does not hold for
any group of A1-type outside of the Hilbert–Blumenthal case. Imai and the author defined
in loc. cit. another subcone Clw ⊂ Czip, called the lowest weight cone, related to the lowest
weight vector of the induced representation V (k). In this article, we show:

Theorem D. Conjecture 1 holds for all Shimura varieties of A1-type. More precisely, one
has

Clw = Czip = CX = CEn ∩X∗
+,L(T ).

To conclude this introduction, we give an overview of each section. In section 2, we
review the theory of Shimura varieties, the Ekedahl–Oort stratification, the stack of G-
zips. Section 3 is dedicated to the various cones that will play a role in this paper, namely
the intersection-sum cone C

∩,+
S , the cone of partial Hasse invariants CpHa,S, the zip cone

Czip, etc. In section 4, we introduce the notion of p-cones and study their properties (we
define the terms S-adapted, homogeneous, admissible, positive). Finally, section 5 contains
the computations necessary to prove Theorem C, which is the main technical result of the
paper. Theorem B and D are derived as consequences of Theorem C.

Acknowledgements
We would like to thank Wushi Goldring for useful discussions on several topics related to
this article. The key idea of intersection-sum cone stems from joint work of Goldring and
the author.

2 Shimura varieties

2.1 Prelimenaries

Let (G,X) be a Shimura datum of Hodge-type ([Del79]). In particular, G is a connected,
reductive group over Q. For each neat compact open subgroup K ⊂ G(Af ), the Shimura
variety ShK(G,X) is a quasi-projective scheme defined over a number field E (the reflex
field of (G,X)). Let p be a prime number and v|p a place of E. We say that p is a prime
of good reduction for ShK(G,X) if K can be written as K = KpK

p where Kp ⊂ G(Qp) is
hyperspecial and Kp ⊂ G(Ap

f ) is compact open. The condition on Kp means that the group
GQp is unramified and that Kp = G(Zp) for some reductive model G of GQp over Zp. In this
case, Kisin ([Kis10]) and Vasiu ([Vas99]) have shown that for each place v|p in E there exists
a smooth integral model SK defined over OEv that is canonical (in the sense of Milne). The
main object that we study in this paper is the special fiber SK := SK ⊗OEv

Fp, which is a
smooth, quasi-projective variety over Fp. Madapusi-Pera has constructed smooth toroidal
compactifications Stor

K of SK in [MP19], for a choice of a sufficiently fine cone decomposition
that we omit in the notation.
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2.2 Ekedahl–Oort strata and stack of G-zips

Fix an algebraic closure k of Fp. Let G denote the connected reductive Fp-group G⊗Zp Fp.
Denote by φ : G → G the Frobenius homomorphism. The Shimura datum (G,X) induces
a conjugacy class of cocharacters of Gk. We fix a represententive µ : Gm,k → Gk. From µ,
we obtain a pair of opposite parabolics P±(µ), where P+(µ)(k) (resp. P−(µ)(k)) consists of
the elements g ∈ G(k) such that the map

Gm,k → Gk; t 7→ µ(t)gµ(t)−1 (resp. t 7→ µ(t)−1gµ(t))

extends to a regular map A1
k → Gk. The centralizer of µ is a Levi subgroup L(µ) =

P+(µ) ∩ P−(µ). Define P := P−(µ), Q := (P+(µ))
(q), L := L(µ) and M := L(p). Let

φ : L→M be the Frobenius homomorphism. Define the zip group E by:

E := {(x, y) ∈ P ×Q | φ(θPL (x)) = θQM(y)}

where θPL : P → L denotes the map sending x ∈ P to its Levi component x ∈ L (and
similarly for θQM). Pink–Wedhorn–Ziegler introduced the stack of G-zips of type µ, denoted
by G-Zipµ in [PWZ15, Definition 1.4]. It can be defined as the quotient stack

G-Zipµ = [E\Gk] .

where E acts on Gk by (x, y) · g := xgy−1 for all (x, y) ∈ E and all g ∈ G. One can also
interpret it as a moduli stack of certain torsors. It is a smooth stack over k whose underlying
topological space is finite. Zhang has shown that there exists a smooth morphism

ζ : SK → G-Zipµ . (2.2.1)

This map is also surjective on each connected component of SK , as explained in [GK22b,
§1.1.4]. Goldring and the author showed that this map extends to a morphism ζtor : Stor

K →
G-Zipµ. Furthermore, Andreatta proved in [And23] that the extension ζtor is smooth.

The fibers of the map (2.2.1) are called the Ekedahl–Oort strata (EO strata for short)
of SK . They are smooth, locally closed subsets of SK . In the case of Shimura varieties
of PEL-type, SK parametrizes abelian varieties endowed with a polarization, an action by
a semisimple algebra and a level structure. In this case, two points x, y ∈ SK lie in the
same EO stratum if and only if the abelian varieties Ax, Ay corresponding to x, y satisfy
Ax[p] ≃ Ay[p], where we require that the isomorphism is compatible with polarizations and
the actions of the semisimple algebra.

2.3 Parametrization of Ekedahl–Oort strata

Next, we give a parametrization of the points of G-Zipµ. For convenience, we assume that
there exists a Borel pair (B, T ) defined over Fp such that B ⊂ P and such that µ factors
through T (this can always be achieved after replacing µ by a conjugate cocharacter). Write
B+ for the opposite Borel of B, i.e. the unique Borel subgroup such that B ∩ B+ = T .
Let Φ+ ⊂ X∗(T ) (resp. Φ+

L) be the set of positive T -roots in G (resp. L), where we say
that a T -root α is positive if the α-root group Uα is contained in B+. Write ∆ (resp.
I := ∆L) for the set of simple roots of G (resp. L), and denote by W (resp. WL) be the
Weyl group of G (resp. L). For α ∈ Φ, let sα be the corresponding root reflection. Write
ℓ(w) for the length of an element w ∈ W and let ≤ denote the Bruhat-Chevalley order on
W . Write w0 (resp. w0,I) for the longest element of W (resp. WL). Let IW ⊂ W be the
subset of elements w ∈ W which are of minimal length in the right coset WIw. It is a set
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of representatatives of the quotient WI\W . The maximal element of IW is w0,Iw0. For
w ∈ W , fix a representative ẇ ∈ NG(T ) (where NG(T ) is the normalization of T ), such that
(w1w2)

· = ẇ1ẇ2 whenever ℓ(w1w2) = ℓ(w1)+ℓ(w2) (this is possible by choosing a Chevalley
system, [ABD+66, XXIII, §6]). If no confusion occurs, we simply write w instead of ẇ.

We write X∗
+(T ) for the set of dominant characters. We say that a character λ ∈ X∗(T )

is L-dominant if ⟨λ, α∨⟩ ≥ 0 for all α ∈ I. We denoted by X∗
+,I(T ) the set of L-dominant

characters. Since (B, T ) is defined over Fp, all objects defined above are endowed with an
action of the Galois group Gal(k/Fp). We write σ ∈ Gal(k/Fp) for the p-power Frobenius
element. We set

z := σ(w0,I)w0.

SinceG-Zipµ = [E\Gk], the points of the underlying topological space ofG-Zipµ correspond
bijectively to the E-orbits in Gk. Each such orbit is locally closed and smooth. For w ∈ IW
set Gw := E · (z−1w) (the E-orbit of z−1w). Then, one has the following:

Theorem 2.3.1 ([PWZ11, Theorem 7.5]).
(1) The map w 7→ Gw is a bijection from IW onto the set of E-orbits in Gk.
(2) For w ∈ IW , one has dim(Gw) = ℓ(w) + dim(P ).
(3) The Zariski closure of Gw is

Gw =
⊔

w′∈IW, w′≼w

Gw′ (2.3.1)

where ≼ is a certain partial order defined in [PWZ11, §3,5] that is finer than the Bruhat–
Chevalley order.

In particular, there is a unique open E-orbit Uµ ⊂ G corresponding to the longest
element w0,Iw0 ∈ IW . For each w ∈ IW , we put Xw := [E\Gw]. It is a locally closed
smooth substack of G-Zipµ = [E\Gk]. We obtain a stratification G-Zipµ =

⊔
w∈IW Xw

and the closure relations between strata are given by (2.3.1). We also write Uµ := [E\Uµ]
for the unique open stratum and call it the µ-ordinary locus of G-Zipµ, by analogy with
Shimura varieties.

2.4 The flag space

Goldring and the author defined the stack of zip flags G-ZipFlagµ in [GK19a, §2.1] based
on previous work of Ekedahl–van der Geer ([EvdG09]) in the case of Siegel-type Shimura
varieties. It can be defined as a quotient stack

G-ZipFlagµ := [E ′\G]

where E ′ = E∩(B×G). Since E ′ ⊂ E, there is a natural projection map π : G-ZipFlagµ →
G-Zipµ whose fibers are isomorphic to E/E ′ ≃ P/B. Let X be a k-scheme endowed with
a morphism of stacks ζ : X → G-Zipµ. Consider the fiber product

Flag(X)
ζflag
//

π

��

G-ZipFlagµ

π

��

X
ζ

// G-Zipµ

We call Flag(X) the flag space of X ([GK19a, §9.1]). In the case when X is the special
of a Hodge-type Shimura variety and ζ is Zhang’s morphism (2.2.1), the space Flag(X)
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parametrizes pairs (x,F•) where x ∈ X and F• is a full flag of H1
dR(x) which refines the

Hodge filtration. The map π is simply the forgetful map (x,F•) 7→ x. Next, we define the
flag stratification on the flag space. Set Sbt := [B\G/B] and call it the Schubert stack. By
the Bruhat decomposition, the points of Sbt are parametrized by the elements w ∈ W and
are of the form

Sbtw := [B\BwB/B] .

By [GK19b, §4.1], there is a natural smooth, surjective morphism of stacks

Ψ: G-ZipFlagµ → Sbt := [B\G/B].

For all w ∈ W , we define Fw to be the preimage Ψ−1(Sbtw) and call it the flag stratum of
w. It is locally closed and smooth. Explicitly, it is the quotient stack

Flagw = [E ′\BwBz−1].

Furthermore, the Zariski closure of Fw is normal (since the Zariski closure of the Bruhat
stratum BwB is normal). Given a pair (X, ζ) as above, we obtain by pullback via ζflag a
locally closed stratification (Flag(X)w)w∈W on Flag(X), where

Flag(X)w := ζ−1(Fw).

In particular, this discussion applies to the pair (SK , ζ) where ζ : SK → G-Zipµ is Zhang’s
morphism 2.2.1. We obtain a flag space Flag(SK) attached to SK . When SK is a Siegel-
type Shimura variety, the flag space was first introduced and studied by Ekedahl–van der
Geer in [EvdG09].

2.5 Shimura varieties of A1-type

We say that a reductive group G over a field k is of A1-type and rank n if the adjoint group
Gad

k
is a product of n copies of PGL2,k. We say that a Shimura variety is of A1-type if it is

attached to a reductive Q-group G of A1-type. We will usually denote the special fiber of
such a variety by the letter X, as the letter S will have other use. There are mainly two
examples of such Shimura varieties, that we describe below.

Hilbert–Blumenthal Shimura varieties These varieties are sometimes also called
Hilbert modular varieties. In this case, the group G is defined as follows: Let F/Q be
a totally real extension of degree n := [F : Q]. For any Q-algebra R, define

G(R) := {g ∈ GL2(F⊗Q R), det(g) ∈ R×}.

This defines a connected, reductive Q-group. It is the preimage of Gm,Q under the natural
determinant map det : ResF/Q(GL2,F) → ResF/Q(Gm,F). If we write Σ := HomQ(F,R) for
the set embeddings τ : F → R, then GQ is naturally a subgroup of

∏
τ∈ΣGL2,Q, namely the

group of tuples of matrices (Mτ )τ∈Σ satisfying that det(Mτ ) = det(Mτ ′) for any τ, τ ′ ∈ Σ.
For a given compact open subgroup K ⊂ G(Af ), the Hilbert–Blumenthal Shimura variety
ShK(G,X) is an n-dimensional quasi-projective variety that parametrizes principally po-
larized abelian varieties of rank n with a compatible action of OF and a K-level structure.
Let p be a prime number that is unramified in F. Then p is prime of good reduction for
ShK(G,X) if K = KpK

p with Kp ⊂ G(Qp) hyperspecial. Write X for the special fiber of
ShK(G,X) at p. The Fp-group G depends on the ramification of p in F. Assume that pOF

decomposes as p1 . . . pr for (distinct) prime ideals pi in OF (recall that p is unramified in
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F). Writing κi = OF/pi for the residual field of pi and fi = [κi : Fp] for the residual degree
of pi, we have n =

∑n
i=1 fi and G is naturally a subgroup of the product

r∏
i=1

Resκi/Fp GL2,κi
. (2.5.1)

We make the following observation: Let G1, G2 be reductive groups over Fp endowed with
cocharacters µi : Gm,k → Gi,k (for i = 1, 2), and assume G = G1 ×G2. Define µ = (µ1, µ2).
Then the stack G-Zipµ decomposes naturally as a direct product

G-Zipµ = G1-Zipµ1 ×G2-Zipµ2 . (2.5.2)

Thus, even though the Shimura variety X does not decompose in this way as a direct
product, all objects defined from the stack of G-zips will naturally decompose according
to the Fp-factors of G. This makes it possible to reduce all group-theoretical arguments to
the case r = 1.

Unitary Shimura varieties In this case, we consider a CM-extension E/F and set
n := [F : Q]. We let V be an E-vector space of dimension 2, endowed with a hermitian form
ψ : V×V → E. Let G be the group of unitary similitudes of (V, ψ) (viewed as a reductive
group over Q) with similitude factor in Gm. Fix a CM-type {τ1, . . . , τn} ⊂ Hom(E,C). For
each embedding 1 ≤ i ≤ n, the signature of V ⊗F,τi R is (ri, 2− ri) ∈ {(0, 2), (1, 1), (2, 0)}.
The Shimura variety attached to G parametrizes principally polarized abelian varieties of
dimension 2n, endowed with a compatible action of OF and a K-level structure (where
K ⊂ G(Af ) is a compact open subgroup). One imposes the compatibility condition that
the characteristic polynomial of α ∈ OF acting on the Lie algebra of the abelian variety is
given by

n∏
i=1

(X − τi(α))
ri(X − τi(α))

2−ri

where z 7→ z denotes complex conjugation.
When p is a prime number that is unramified in F and K = KpK

p with Kp ⊂ G(Qp)
hyperspecial, the Shimura variety ShK(G,X) has good reduction at p. The reductive
Zp-model G of GQp is given by the choice of a OE ⊗Z Zp-lattice in V ⊗Q Qp which is
self-dual for the form ψ. If we ignore the similitude factor for simplicity and look at the
subgroup G′ := U(V, ψ) of unitary transformations, then the reduction modulo p of G′

(denoted by G′) is isomorphic over Fp to a group of the form (2.5.1) appearing in the case
of Hilbert–Blumenthal varieties. Again, the decomposition over Fp of G′ is determined by
the ramification of p in F. However, the case of unitary Shimura varieties differs from that
of Hilbert–Blumenthal varieties in that the Hodge parabolic P can be larger than the Borel
subgroup B. Over k we can canonically identify

G′
k =

n∏
i=1

GL2,k .

Then, P (intersected with G′
k) decomposes as a product P =

∏n
i=1 Pi where Pi = GL2,k

for ri ∈ {0, 2} and Pi is the Borel subgroup of lower-triangular matrices in GL2,k when
ri = 1. The set of i ∈ {1, . . . , n} such that ri ∈ {0, 2} will be called the parabolic type and
will always be denoted by R. We will denote by X or XR the special fiber of such unitary
Shimura varieties. The dimension of XR is given by

dim(XR) = n− |R|. (2.5.3)
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To uniformize our results, we will always work with the reductive Fp-group (2.5.1) even
though it is not exactly the group G that appears in the setting of Hilbert–Blumenthal and
unitary Shimura varieties. This change does not affect the stack of G-zips and is harmless
in the formulation of our results.

3 Cones of mod p automorphic forms
In this section, we recall the theory established in [IK] and [GK22b] regarding the various
cones of weights that are naturally attached to a Shimura variety of Hodge-type.

3.1 Automorphic vector bundles

We keep the notation introduced in section 2.3. For any character λ ∈ X∗(T ), consider the
induced representation

VI(λ) := IndP
B(λ).

Note that VI(λ) = 0 when λ is not in the set X∗
+,I(T ) of L-dominant characters. Attached

to VI(λ), there is an automorphic vector bundle VI(λ) defined on the Shimura variety
SK (actually, this vector bundle can even be defined on the integral model SK). In our
applications to A1-type Shimura varieties, we will lighten the notation and write simply
V(k) for this vector bundle, where k ∈ Zn. The rank of VI(λ) coincides with the dimension
of VI(λ). Elements of the space of global sections

H0(SK ,VI(λ))

will be called mod p automorphic forms of weight λ and level K. It is natural to ask when
this space vanishes. This is the question that has motivated Goldring and the author in a
series of papers starting from [GK18]. To study this space, it is useful to consider the flag
space Flag(SK) defined in section 2.4. For each λ ∈ X∗(T ), there is a line bundle Vflag(λ)
naturally attached to λ on Flag(SK) (in sections 4 and 5, this line bundle will be denoted
by L(k) for k ∈ Zn to simplify the notation). If we denote by π : Flag(SK) → SK the
natural projection, we have

π∗(Vflag(λ)) = VI(λ). (3.1.1)

In particular, the space of mod p automorphic forms of level K and weight λ identifies with
the space of global sections of Vflag(λ) over Flag(SK). Since the flag space admits a flag
stratification (Flag(SK)w)w∈W , it is natural to introduce the following set:

CK,w := {λ ∈ X∗(T ) | H0(Flag(SK)w,Vflag(λ)) ̸= 0} (3.1.2)

where Flag(SK)w is the Zariski closure of Flag(SK)w endowed with the reduced structure.
We define CK,w as the saturation of CK,w, i.e. the set of λ ∈ X∗(T ) that can be spanned
over Q≥0 by elements of CK,w. We will always use the calligraphic letter C to denote the
saturation of a cone C ⊂ X∗(T ).

One of the motivations to introduce the various sets CK,w is that one can hope to
determine them inductively starting at the elements w ∈ W of length one and ending at
the maximal element w0 ∈ W . For the maximal element, note that Flag(SK)w0 is open
dense in Flag(SK). Hence, since global sections of Vflag(λ) and VI(λ) coincide by (3.1.1),
the set CK,w0 coincides with the following set

CK := {λ ∈ X∗(T ) | H0(SK ,VI(λ)) ̸= 0}. (3.1.3)
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Again, we write CK for the saturation of CK . Since VI(λ) = 0 when λ is not L-dominant,
we have CK ⊂ X∗

+,I(T ). However, the cones CK,w for w ̸= w0 are in general not contained
in X∗

+,I(T ).

3.2 Partial Hasse invariant cones for strata

In this section, we explain that to each stratum Flag(SK)w, one can naturally attach a
subset CpHa,w ⊂ CK,w called the cone of partial Hasse invariants of w (by "cone" we mean
an additive monoid with zero). Recall that there is a morphism of stacks Ψ: G-ZipFlagµ →
Sbt whose fibers define the flag stratification (Fw)w∈W . Intuitively, the set CpHa,w is the
set of characters λ ∈ X∗(T ) such that Vflag(λ) admits a nonzero section over Fw which
arises by pullback from a nonzero section over Sbtw. A much more explicit definition is the
following: For each w ∈ W , write Ew for the set of positive roots α ∈ Φ+ such that

wsα < w and ℓ(wsα) = ℓ(w)− 1.

Intuitively, the elements wsα are the lower neighbors of w in the Weyl group W with respect
to the Bruha–Chevalley order. Write X∗

+,w(T ) for the set of characters λ ∈ X∗(T ) such
that ⟨λ, α∨⟩ ≥ 0 for all α ∈ Ew.

Definition 3.2.1 ([GK22b, §2.3]). We define the cone CpHa,w of w as the direct image of
the set X∗

+,w(T ) under the map

hw : X
∗(T ) → X∗(T ), λ 7→ −wλ+ pw0,Iw0σ

−1(λ).

Moreover, we write CpHa,w for the saturation of CpHa,w and call it the cone of partial Hasse
invariants of w.

The intuitive interpretation of CpHa,w explained in the beginning of this paragraph im-
plies immediately that CpHa,w is contained in CK,w. When w = w0, we simply write CpHa

for the cone CpHa,w0 .

Remark 3.2.2. If χ ∈ X∗(T ) satisfies ⟨χ, α∨⟩ = 0 for all α ∈ Ew, then if we write λ = hw(χ),
the line bundle Vflag(λ) admits a nowhere-vanishing section (see [GK22b, §2.3]), and thus
is trivial on Flag(SK)w.

3.3 Intersection-sum cones

Next, we attach to each element w ∈ W another natural cone, called the intersection-sum
cone, denoted by C∩,+

w . It was first introduced by Goldring and the author in [GK22a,
GK22b]. The set C∩,+

w is defined inductively on the length of w as follows: When ℓ(w) = 1,
we simply set C∩,+

w = CpHa,w. Then, for any w ∈ W of length ≥ 2, define

C∩,+
w = CpHa,w +sat

⋂
α∈Ew

C∩,+
wsα

Here, for two cones C1,C2 ⊂ X∗(T ), we denote by C1 +sat C2 the saturation of the sum
C1 + C2. The definition of C∩,+

w combines information about w and of its lower neighbors.
To explain the relevance of this definition, we make the following assumption for simplicity:

Assumption 3.3.1. For all w ∈ W , the elements α∨ are linearly independent over Q in
X∗(T )⊗Z Q.

11



This assumption is rarely satisfied. However, for general groups, one can slightly alter
the definition of C∩,+

w to remove the need of Assumption 3.3.1 (this is work in progress with
Goldring [GK]). However, note the above assumption is satisfied in the case when G is an
A1-type reductive group. The main property of intersection-sum cones is the following:

Theorem 3.3.2 ([GK22a, Theorem 2.3.8]). Under Assumption 3.3.1, one has for all w ∈
W an inclusion

CK,w ⊂ C∩,+
w .

In other words, this theorem says that the space H0(Flag(SK)w,Vflag(λ)) is zero when-
ever λ lies in the complement of C∩,+

w . Let us consider the case w = w0. By Theorem 3.3.2,
we have an inclusion CK,w0 ⊂ C∩,+

w0
. Also, recall that CK,w0 coincides with CK defined in sec-

tion 3.1. Furthermore, we know that CK is contained in the set of L-dominant characters.
Thus, we deduce the more precise inclusion:

CK ⊂ C∩,+
w0

∩X∗
+,I(T ). (3.3.1)

3.4 The zip cone

So far we have attached several cones to each flag stratum Flag(SK)w for w ∈ W , satisfying
certain inclusions. Although we will not use it in full, we mention here one more natural
construction that one could consider in this setting. In the definition of the cones CK,w and
CK (see (3.1.2), (3.1.3)), one could replace the flag stratum Flag(SK)w and the scheme SK

by their "group-theoretical counterparts", namely the stratum Fw and the stack G-Zipµ

respectively. By modifying in this way the cone CK,w, we obtain another cone, that we
denote by Cflag,w. Similarly, the modified version of CK is denoted by Czip and is called the
zip cone. Explicitly, Cflag,w and Czip are respectively the saturations of the following two
sets:

Cflag,w := {λ ∈ X∗(T ) | H0(Fw,Vflag(λ)) ̸= 0}
Czip := {λ ∈ X∗(T ) | H0(G-Zipµ,VI(λ)) ̸= 0}.

If we denote by ρλ : P → GLk(VI(λ)) the homomorphism given by the representation VI(λ),
the space H0(G-Zipµ,VI(λ)) is the k-vector space of regular maps f : Gk → VI(λ) satisfying
the condition

f(axb−1) = ρλ(a)f(x) (3.4.1)

for all (a, b) ∈ E and all x ∈ Gk. Under Assumption 3.3.1, we have inclusions

CpHa,w ⊂ Cflag,w ⊂ CK,w ⊂ C∩,+
w . (3.4.2)

Similarly to (3.1.1), the equation π∗(Vflag(λ)) = VI(λ) holds also for the natural projection
map π : G-ZipFlagµ → G-Zipµ. Therefore, similarly to the equality CK,w0 = CK , we have
Cflag,w0 = Czip. Hence, for w = w0, we have inclusions

CpHa ⊂ Czip ⊂ CK ⊂ C∩,+
w0

∩X∗
+,I(T ). (3.4.3)

Goldring and the author proposed in [GK18][Conjecture 2.1.6] the following conjecture,
that we refer to simply as the Cone Conjecture:

Conjecture 3.4.1. For any Hodge-type Shimura variety, one has CK = Czip.
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In other words, this conjecture states that the vanishing of the degree zero cohomology
of automorphic vector bundles is encoded by the stack of G-zips. It was checked in [Kos19]
that the cone CK is independent of the level K (however the cone CK does depend on K).
Thus it is not unreasonable to expect that such an equality holds. The above conjecture
was proved for several Shimura varieties in [GK18, GK22a]: Hilbert–Blumenthal varieties,
Siegel modular varieties of rank 2 and 3, unitary Shimura varieties of rank ≤ 4 (with the
exception of the case of signature (2, 2) at an inert prime). The case of Hilbert–Blumenthal
varieties was also proved by Diamond–Kassaei ([DK23, Corollary 8.2]).

One of the results of this paper is the following:

Theorem 3.4.2. Conjecture 3.4.1 holds for all Hodge-type Shimura varieties of A1-type.

We give the proof of this theorem in section 5.12. It requires the use of a family of mod
p automorphic forms attached to the lowest weight vectors of the representations VI(λ) (see
section 3.5). We explain below a strategy to prove Conjecture 3.4.1 using the intersection-
sum cones (under Assumption 3.3.1). In view of the inclusions (3.4.3), it clearly suffices
to show that Czip coincides with C∩,+

w0
∩ X∗

+,I(T ). We will show that this is true when G
is a group of A1-type. One advantage of this method is that it behaves well under Fp-
products. Specifically, assume that G = G1×G2 where G1, G2 are reductive Fp-groups and
that µ = (µ1, µ2) for two cocharacters µi : Gm,k → Gi,k (for i = 1, 2). As we explained in
(2.5.2), the stack G-Zipµ splits into a direct product of G1-Zipµ1 and G2-Zipµ2 . If we write
T = T1 × T2 where Ti is a maximal torus in Gi (for i = 1, 2), then all the cones CpHa,w,
C∩,+
w , Cflag,w, Czip decompose as C1 × C2 where Ci ⊂ X∗(Ti) is the corresponding subcone.

Note that since SK does not split in this way, we can a priori say nothing about the cone
CK . We deduce that if the equality Czip = C∩,+

w0
∩X∗

+,I(T ) holds for all the Fp-factors of G,
then it also holds for G, and thus Conjecture 3.4.1 holds.

Finally, we end this section with a word on the cone CpHa of partial Hasse invariants
(for the maximal stratum). For Hilbert–Blumenthal varieties, Siegel threefolds and Picard
surfaces, Goldring and the author proved in [GK18] a more precise statement than Conjec-
ture 3.4.1, namely that CpHa = Czip = CK . However, the inclusion CpHa ⊂ Czip is in general
strict. In [IK], Imai and the author characterized exactly when this inclusion is an equality:

Theorem 3.4.3. The following are equivalent:
(i) One has CpHa = Czip.
(ii) The parabolic P is defined over Fp and σ acts on I by −w0,I .

For groups of A1-type studied in this paper, the parabolic P will in general not be
defined over Fp. In those cases, the above theorem shows that CK is not spanned by partial
Hasse invariants.

3.5 Lowest weight cone

As mentioned above, partial Hasse invariants do not suffice to describe the cone CK of
weights of mod p automorphic forms in general. We introduce another family of natural
mod p automorphic forms that will be necessary. We explain their construction on the stack
of G-zips. First, recall that the unique open stratum in G-Zipµ is Uµ := [E\Uµ] (see section
2.3). The Zariski open subset Uµ ⊂ G coincides with the E-orbit of 1 ∈ G. Moreover, the
stabilizer of 1 in E is a finite (in general non-smooth) group scheme Lφ, which embeds
naturally into the Levi subgroup L ⊂ P via the first projection pr1 : E → P . Denote
by P0 the largest algebraic subgroup contained in P and defined over Fp, in other words
P0 =

⋂
i∈Z σ

i(P ). Since B is defined over Fp, P0 contains B and is a parabolic subgroup.
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Write L0 for the unique Levi subgroup of P0 containing T and I0 ⊂ I for the simple roots
of L0. The underlying reduced group scheme of Lφ is the etale group scheme L0(Fp). Since
Uµ ≃ E/Lφ, we obtain Uµ = [E\E/Lφ] ≃ [1/Lφ]. It follows that we have an identification

H0(Uµ,VI(λ)) ≃ VI(λ)
Lφ . (3.5.1)

Our approach is to first construct a section on the open substack Uµ an then determine
explicit conditions when this section extends to G-Zipµ. For any f ∈ VI(λ), we can define
the Lφ-norm NormLφ(f) of f by taking the product of the translates of f by the elements
of Lφ (see [IK, §3.5]). The Lφ-norm of f lies in VI(Nλ) where N is the order of Lφ. Thus,
via the identification (3.5.1), the norm NormLφ(f) identifies with a section over Uµ, and
hence by pullback via ζ to a "rational" automorphic form of weight Nλ defined over the
µ-ordinary locus of SK .

In the case when f = fλ,high is the highest weight vector of VI(λ), we can determine
exactly when NormLφ(fλ,high) extends to a global section. For each root α ∈ Φ, let rα ≥ 1
be an integer such that σrα(α) = α.

Proposition 3.5.1 ([IK, Proposition 3.5.1]). The section NormLφ(fhigh,λ) extends to a
global section if and only if for all α ∈ ∆P , the following holds:∑

w∈WL0
(Fq)

rα−1∑
i=0

pi+ℓ(w) ⟨wλ, σi(α∨)⟩ ≤ 0. (3.5.2)

For the lowest weight vector flow,λ of VI(λ), this problem is surprisingly much more
difficult. We need to make a technical assumption on the group G (Condition 5.1.1 of
[IK]). We do not recall this condition here, but we simply note that it is satisfied for groups
of the form G = ResFpn/Fp(G0,Fpn

) where G0 is a split reductive over Fp. In particular, it
holds for groups of A1-type considered in this paper.

Theorem 3.5.2. Define λ0 := w0,I0w0,Iλ. Suppose that for all α ∈ ∆P0, one has

∑
w∈WL0

(Fp)

rα−1∑
i=0

pi+ℓ(w) ⟨wλ0, σi(α∨)⟩ ≤ 0. (3.5.3)

Then NormLφ(flow,λ) extends to a global section.

Define Chw (resp. Clw) as the set of λ ∈ X∗
+,I(T ) satisfying the inequalities (3.5.2) (resp.

(3.5.3)). By the above results, both Chw and Clw are contained in Czip. In general, there
is no inclusion relation between these cones and the cone CpHa defined earlier. When P
is defined over Fp, one sees easily that NormLφ(flow,λ) = NormLφ(fhigh,λ) and Clw = Chw.
However, in general the cone Clw seems to be the more relevant of the two.

3.6 Torsion line bundles

Let λ ∈ X∗(L) be a character of L, i.e. an algebraic group homomorphism λ : L → Gm,k.
In this case the representation VI(λ) is one-dimensional, and coincides with λ itself. Thus,
for λ ∈ X∗(L) the vector bundle VI(λ) is a line bundle on G-Zipµ and SK . Note that for
any λ, λ′ ∈ X∗(L) we have VI(λ + λ′) = VI(λ) ⊗ VI(λ

′). By (3.4.1), a global section of
VI(λ) (for λ ∈ X∗(L)) is simply a map f : Gk → A1 satisfying

f(axb−1) = λ(a)f(x)

for all (a, b) ∈ E and all x ∈ Gk. Let us examine the special case when λ ∈ X∗(G).
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Lemma 3.6.1. For all λ ∈ X∗(G), the line bundle VI(λ) is torsion, in the sense that
VI(λ)

⊗m = VI(mλ) = OSK
for some integer m ≥ 1.

Proof. Take f to be the character λ : Gk → Gm ⊂ A1. For any x ∈ Gk, we have λ(axb−1) =
λ(a)λ(b)−1λ(x). By definition of the group E, for (a, b) ∈ E the Levi component of b is
the Frobenius homomorphism applied to the Levi component of a. Thus, we have λ(b) =
λ(φ(a)) = (σ−1λ)(a)p. This implies that f is a section of the line bundle VI(λ− pσ−1(λ)).
Since f is non-vanishing, this implies that VI(λ − pσ−1(λ)) is trivial. The map X∗(G) →
X∗(G), λ 7→ λ − pσ−1(λ) is injective (because its mod p reduction is an isomorphism),
hence there is an integer m ≥ 1 such that mX∗(G) is contained in the image of this map.
This shows that for any λ ∈ X∗(G), the line bundle VI(λ)

⊗m is trivial.

Furthermore, one can see easily see that X∗(G) is contained in all the (saturations of
the) cones defined in this section. It will be convenient to ignore these torsion line bundles
and quotient out all objects by X∗(G). Hence, we will view all the cones as subsets of
X∗(T )/X∗(G).

3.7 Asymptotic behaviour

This section discusses heuristically the behaviour of the various cones when the prime
number p goes to infinity. Let λ ∈ X∗(T ) be a character and assume that Vflag(λ) is ample
on the flag space Flag(SK). Then by ampleness, Vflag(λ) has nonzero sections on any closed
subscheme of Flag(SK). In particular, λ lies in the cones CK,w for all w ∈ W and in CK . It
is difficult to determine which line bundles Vflag(λ) are ample (see [Ale, BGKS] for partial
results). However, it is known to experts that in characteristic zero, the line bundle Vflag(λ)
is ample if and only if λ lies in the following set

C◦
GS =

{
λ ∈ X∗(T )

∣∣∣∣ ⟨λ, α∨⟩ > 0 for α ∈ I,
⟨λ, α∨⟩ < 0 for α ∈ Φ+ \ Φ+

L

}
.

If a line bundle is ample in characteristic zero, then it is also ample modulo p for large p,
because ampleness is an open condition on the basis. Thus for λ ∈ C◦

GS, the line bundle
Vflag(λ) is ample for large p on Flag(SK). Thus, when p goes to infinity we expect C◦

GS to
be contained "at the limit" in the cones CK,w for all w ∈ W .

For the maximal element w0, we can say something stronger. For λ ∈ C◦
GS, choose any

nonzero section f of VI(λ). By a reduction mod p argument ([Kos19, Proposition 1.8.3]),
one can show that there exists a nonzero global section of VI(λ) in characteristic p as well.
This implies that the set C◦

GS is contained in CK for all p (not only for large p). Since
Conjecture 3.4.1 predicts that CK = Czip, this set should also be contained in Czip. In
[IK], Imai and the author showed a more precise result: Denote by CGS the closure of C◦

GS

(i.e. replace the strict inequalities in C◦
GS by inclusive inequalities). Then we proved the

following for a general connected reductive group G over Fp:

Theorem 3.7.1 ([IK, Theorem 6.4.3]). One has CGS ⊂ Czip.

4 p-cones
In this section, we introduce the theory of p-cones. This theory is for the most part
independent of group-theoretical considerations, but it is tailored to the case of a Weyl
restriction ResFn

p/Fn(GL2,Fpn
) for a fixed integer n ≥ 1. As we explained in section 2.5 and

3.4, we can reduce the proofs of our results to this fundamental case.
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4.1 Preliminaries

Let n ≥ 1 be an integer and let G be the group

G := ResFn
p/Fn(GL2,Fpn

).

Over the algebraic closure k, the group Gk decomposes as a direct product of n copies of
GL2,k. We order the factors so that the action of the Frobenius σ ∈ Gal(k/Fp) is given on
G(k) by

σ(x1, . . . , xn) := (σ(x2), . . . , σ(xn), σ(x1))

where σ(x) is the usual Frobenius action on x ∈ GL2(k). Let T (resp. B) denote the
maximal torus (resp. Borel subgroup) consisting of n-tuples of diagonal (resp. lower-
triangular) matrices. It is clear that the Borel pair (B, T ) is defined over Fp. The characters
of T form a Z-module of rank 2n. For a tuple k = (k1, . . . , kn), identify k with the character

χk : T → Gm,

((
x1

y1

)
, . . . ,

(
xn

yn

))
7→

n∏
i=1

xkii .

Set Λ for the Z-submodule of X∗(T ) consisting of characters of this form. Then we have a
decomposition

X∗(T ) = X∗(G)⊕ Λ.

As explained in section 3.6, we ignore the torsion line bundles corresponding to characters
in X∗(G). Note that if C ⊂ X∗(T ) is a subcone containing X∗(G), then we can write
C = X∗(G)⊕ (C ∩Λ). Thus, for simplicity we may intersect all subcones of X∗(T ) defined
in the previous section with the submodule Λ. We identify Λ with Zn via the map k 7→ χk.
For these reasons, we will define in the next section the notion of p-cone as a certain subcone
of Zn.

We identify the Weyl group W := W (G, T ) with W = {±1}n. The maximal element
w0 ∈ W corresponds to (−1, . . . ,−1). An element ε = (ε1, . . . , εn) ∈ W acts on Λ = Zn by

ε · k = (ε1k1, . . . , εnkn)

for all k = (k1, . . . , kn) ∈ Zn. The Frobenius element σ ∈ Gal(k/Fp) acts on Λ = Zn by the
rule

σ · k = (kn, k1, . . . , kn−1).

Write e1, . . . , en for the standard basis of Zn. The above formula shows that σei = ei+1

(where en+1 = e1). We put
En := {1, . . . , n}.

For any subset S ⊂ En and any i ∈ En, set

δ
(i)
S :=

{
−1 if i ∈ S

1 if i /∈ S.

Define an element δS ∈ {±1}n by δS = (δ
(1)
S , . . . , δ

(n)
S ). Write P(En) for the powerset of En.

The map S 7→ δS is a bijection
δ : P(En) → W. (4.1.1)

The inverse of δ is the map that takes ε ∈ {±1}n to the subset {i ∈ En | εi = −1}.
We fix a subset R ⊂ En and call it a parabolic type. The choice of R gives rise to a

parabolic subgroup P = PR of Gk defined as P = P1 × · · · × Pn where Pi is the lower-
triangular Borel of GL2,k if i /∈ R and Pi = GL2,k for i ∈ R. In particular, P∅ = B and
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PEn = G. It is the parabolic subgroup attached to the cocharacter µR : Gm,k → Gk which
is trivial on the factors i ∈ R and is given by

z 7→
(
z

1

)
on the factors i /∈ R. The pair (G, µ) gives rise to a stack of G-zips as explained in section
2.2. The element w0,I ∈ WI corresponds to δR ∈ {±1}n.

Independently of the theory of Shimura varieties, all the group-theoretical objects CpHa,w,
Cflag,w, Czip, C∩,+

w are defined as in the previous section and they are subcones of X∗(T )
containing X∗(G). For applications to Shimura varieties, we need only remember that the
group G was slightly modified. In this section, we will replace all indices w by the subset
S ⊂ En that w corresponds to via the bijection (4.1.1). Therefore, we write CpHa,S, Cflag,S,
C
∩,+
S for the corresponding cones. To reiterate, we implicitly consider these subcones of
X∗(T ) as subsets of Zn by intersecting them with Λ and identifying Λ = Zn. By abuse of
language, a subset S ⊂ En will sometimes be referred to as a stratum.

Even though this section is completely group-theoretical, we will sometimes mention
the connection to Shimura varieties. Since the letter S will always denote a subset of En,
we will denote by X the special fiber of a Hodge-type Shimura variety of A1-type and
rank n. To make the choice of the parabolic type explicit, we sometimes write X = XR.
The flag strata are denoted by Flag(XR)S for S ⊂ En. The cone CK,w and CK will be
denoted by CX,S and CX respectively. Furthermore, to lighten the notation, we write V(k)
for the automorphic vector bundle VI(λ) where λ = χk. Similarly, we write L(k) instead
of Vflag(λ).

4.2 Definition

For a tuple (x1, . . . , xn) and any integer m ∈ Z, we define xm as the element xr where r is
the unique integer satisfying r ≡ m (mod n) and 1 ≤ r ≤ n (we say simply that the index
m is taken modulo n). Let d ∈ En be an integer and ε = (ε1, . . . , εn) ∈ {±1}n. For all
x = (x1, . . . , xn) ∈ Zn, we set:

F (d)
ε (x) :=

n−1∑
i=0

piεi+dxd+i

where the index of d+ i is taken modulo n. We call F (d)
ε (x) the p-expression with starting

index d and signs ε1, . . . , εn. Similarly, if T ⊂ En is a subset and ε = δT is the element of
W corresponding to T , we write F (d)

T (x) instead of F (d)
ε (x).

Definition 4.2.1. We say that a cone C ⊂ Zn is a p-cone if it can be defined by finitely
many inequalities of the type

F (d)
ε (x) ≤ 0, x ∈ Zn

for d ∈ En and ε ∈ {±1}n.

To motivate this definition, we consider the cone of partial Hasse invariants CpHa,S

(Definition 3.2.1) and show that it is a p-cone. We start with some notation. Let (x1, . . . , xn)
be a sequence of elements in a ring. For any i, j ∈ Z, we define an element Ji,j(x) as follows:
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If i ≡ j+1 (mod n), then we set Ji,j(x) = 1. Otherwise, let j′ denote the smallest element
≥ i such that j′ ≡ j (mod n). Put:

Ji,j(x) :=

j′∏
k=i

xk.

We then have the following lemma, which is an immediate computation left to the reader:

Lemma 4.2.2. For tuples a = (a1, . . . , an) and b = (b1, . . . , bn) of elements of a ring, let
M be the following matrix

M(a, b) :=


a1 −b1

. . .
. . .
. . . −bn−1

−bn an

 .

Then, for all 1 ≤ i, j ≤ n, the (i, j)-coefficient of the adjoint matrix Adj(M) is given by
Jj+1,i−1(a)Ji,j−1(b). Furthermore, the determinant of M is given by

det(M) =
n∏

i=1

ai −
n∏

i=1

bi.

For w ∈ W , recall that CpHa,w is defined as the saturation of the cone hw(X∗
+,w(T ))

where hw : X∗(T ) → X∗(T ), λ 7→ −wλ + pw0,Iw0σ
−1(λ). In our case, writing S for the

subset corresponding to w, we find that the matrix of the map hw (restricted to Λ = Zn)
in the standard basis of Zn is given by

M :=


−δ(1)S −pδ(1)R

. . .
. . .
. . . −pδ(n−1)

R

−pδ(n)R −δ(n)S

 =M(−δS, δR).

From Lemma 4.2.2 above, we deduce the following proposition:

Proposition 4.2.3. The cone CpHa,S is a p-cone. Specifically, it is given by the following
inequalities:

(−1)|R|

( ∑
1≤j≤i−1

Jj+i,i−1(−δS)Ji,j−1(δR)p
n+j−ixj +

∑
i≤j≤n

Jj+i,i−1(−δS)Ji,j−1(δR)p
j−ixj

)
≤ 0

for all i ∈ S.

4.3 S-adapted p-cones

Definition 4.3.1. Let S ⊂ En be a subset of cardinality |S| = s. We say that a p-cone C

is S-adapted if it is defined by exactly s inequalities whose starting indices are the elements
of S. In other words, we have

C = {x ∈ Zn | F (i)

ε(i)
(x) ≤ 0, i ∈ S}

for certain elements ε(i) ∈ {±1}n (where i ∈ S).
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It is easy to see from Proposition 4.2.3 that CpHa,S is an S-adapted p-cone. For a given
subset S ⊂ En, in order to define an S-adapted p-cone, it suffices to give the elements
ε(i) ∈ {±1}n for each i ∈ S. Write ε(i) = δT (i) for a certain subset T (i) ⊂ En. Thus, an
S-adapted p-cone is uniquely determined by a function

γC : S → P(En), i 7→ T (i).

This shows that there are exactly 2ns such cones.

Definition 4.3.2. We say that an S-adapted p-cone C is homogeneous if γC is a constant
function.

Therefore, for any subset S, the S-adapted homogeneous p-cones are parametrized by
subsets T ⊂ En. Specifically, for any subset T ⊂ En, there is a unique S-adapted homoge-
neous p-cone C such that ρC is the constant function with value T . In general, the partial
Hasse invariant cones CpHa,S are not homogeneous.

4.4 Chain diagrams

In this section, we define certain diagrams as a visual aid in order to represent p-cones.
We define the standard chain diagram Γn (of length n) as a circular diagram of n vertices
numbered from 1 to n, with connecting arcs between vertex i and vertex i+1 (where n+1
is the same vertex as 1). More generally, for given subsets R ⊂ En (the parabolic type)
and S ⊂ En, we define a diagram Γn(R, S) as follows:

• We consider a n vertices numbered from 1 to n.
• We connect i and i+ 1 with a dotted line whenever i+ 1 /∈ S and i /∈ R.
• When i+ 1 /∈ S and i ∈ R, we connect i and i+ 1 with a plain line.

When i+1 ∈ S, the points i and i+1 are never connected. To help visualize the sets S,R,
we draw a circle (resp. a square) around the vertices corresponding to S (resp. R). We call
the diagram Γn(R, S) thus constructed a chain diagram of length n, parabolic type R and
stratum S. This diagram is simply a useful visual way to encode the datum of two subsets
S,R of En. For example, the figure below is the case n = 8, R = {1, 3} and S = {3, 6}.

Figure 1: The chain diagram of parabolic type {1, 3} for the stratum {4, 6}

Eventually, we will show that the vanishing of the 0th cohomology groups on the flag
stratum Flag(XR)S is controlled by the diagram Γn(R, S).
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Definition 4.4.1. Let Γ = Γn(R, S) be the chain diagram of parabolic type R and stratum
S. We define the following:
(a) We say that a subset C ⊂ En is connected in Γ if any two points of C are connected by

a finite sequence of (dotted or plain) lines.
(b) We say that C is a connected component of Γ if it is maximal among the connected

subsets of Γ.
(c) Suppose that Γ is disconnected and let C be a connected component of Γ. We define

the head (resp. the tail) of C as the unique element x ∈ C such that x + 1 /∈ C (resp.
x− 1 /∈ C).

Note that by definition, the tail of a connected component C is the unique element of
S that lies in C. For example, the connected components of the diagram Γ in Figure 1 are
C1 = {4, 5} and C2 = {6, 7, 8, 1, 2, 3}. The heads of C1, C2 are respectively 5 and 3. The
tails of C1, C2 are respectively 4 and 6.

4.5 Admissible p-cones

We continue our classification of p-cones by defining admissible p-cones below. The con-
dition defining this notion is related to the theory of partial Hasse invariants explained in
section 3.2. Again, fix a parabolic type R ⊂ En and a stratum S ⊂ En. We explained in
Remark 3.2.2 that certain line bundles L(k) are trivial on the Zariski closure Flag(XR)S.
To be specific, for i ∈ En define

ha
(i)
R,S =

{
−ei − pδ

(i−1)
R ei−1 if i ∈ S

ei − pδ
(i−1)
R ei−1 if i /∈ S.

(4.5.1)

In short, we may write ha
(i)
R,S = δ

(i)
S ei − pδ

(i−1)
R ei−1 for any i ∈ En. The cone CpHa,S is the

saturation of the cone
CpHa,S =

∑
i∈S

N ha
(i)
R,S +

∑
i/∈S

Z ha
(i)
R,S. (4.5.2)

As we noted in Remark 3.2.2, the line bundle L(k) is trivial for any k in the Z-module
spanned by the weights ha(i)R,S for i ∈ En \S. Write KR,S for the saturation of this Z-module
inside Zn. It is also a submodule of Zn. It coincides with the set of weights k ∈ Zn where
all the inequalities defining CpHa,S (see Proposition 4.2.3) vanish. We call the subgroup
KR,S the kernel of the stratum S. When the choice of R is clear, we simply write KS for
this subgroup. For any k ∈ KR,S, the line bundle L(k) is torsion on the Zariski closure
Flag(XR)S. We may rewrite equation (4.5.2) as follows:

CpHa,S =
∑
i∈S

N ha
(i)
R,S +KR,S.

Since we want to study the various cones of mod p automorphic forms on the various
strata, it is natural to impose the condition that the kernel of S is contained in the cone
that we consider, since elements of KS correspond to torsion line bundles. This leads to
the definition of admissibility of an S-adapted p-cone that we explain below.

Definition 4.5.1. Let Γn(R, S) be the chain diagram of parabolic type R and stratum S,
and let T ⊂ En be a subset.
(a) We say that T is admissible (or Γ-admissible) if it satisfies the following:

• If two vertices are connected by a dotted line, then one of them lies in T and the
other one lies in En \ T .
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• If two vertices are connected by a plain line, then either both vertices lie in T or both
vertices lie in En \ T .

We denote by Adm(Γ) ⊂ P(En) the set of all Γ-admissible subsets.
(b) Let C ⊂ Zn be an S-adapted p-cone, and let γC : S → P(En) be the corresponding

function. We say that C is admissible if γC takes values in the subset Adm(Γ).

For a chain diagram Γ, write π0(Γ) for the set of connected components. Then an
admissible subset T ⊂ En is entirely determined by the knowledge of the intersection
T ∩ S. Indeed, consider the tail x of a connected component C ⊂ Γ. Then, if we know
whether or not x ∈ T , then we can determine inductively which elements of C lie in T
by using Definition 4.5.1(a). We deduce that there are exactly 2|S| admissible subsets in
En. Similarly, an admissible p-cone is determined by a function γC : S → Adm(Γ), so there
are exactly 2|S|×|S| such cones. Finally, the number of homogeneous admissible S-adapted
p-cones is also 2|S|, since γC is constant in that case. We end this section by making the link
between the above discussion regarding the kernel KS and the definition of admissibility:

Lemma 4.5.2. Let C be an S-adapted p-cone. Then C is admissible if and only if it satisfies
the containment KS ⊂ C.

Proof. For d ∈ S, denote simply by F
(d)
C (x) ≤ 0 the p-expression with starting index d

corresponding to the subset γC(d), i.e. the inequality F
(d)
γC(d)

(x) ≤ 0. Then, the condition
that C is admissible simply means that for all d ∈ S and all x ∈ KS, one has F (d)

C (x) = 0.
Hence, when C is admissible it contains KS. Conversely, assume KS ⊂ C and let x ∈ KS.
Since KS is a subgroup, −x also lies in KS, which implies that for any d ∈ S both F (d)

C (x)

and F (d)
C (−x) are non-positive. Hence F (d)

C (x) = 0 and we deduce that C is admissible.

4.6 Positivity

Next, we consider another natural condition on p-cones that stems from the geometry of
Shimura varieties. Recall (section 3.7) that when p goes to infinity, ampleness considera-
tions imply that the open Griffiths–Schmid cone C◦

GS is contained "at the limit" in all the
cones CK,w. This imposes a "positive direction" for characters. In our case, the cone C◦

GS

(intersected with Λ) is given by

C◦
GS =

{
(x1, . . . , xn) ∈ Zn

∣∣∣∣ xi > 0 for i ∈ R,
xi < 0 for i ∈ En \R

}
.

Taking inspiration from this discussion, we introduce the following positivity condition for
S-adapted p-cones. Let Γ be the chain diagram of parabolic type R and stratum S. Let
C ⊂ Zn be an S-adapted p-cone and write γC : S → P(En) for the associated function.

Definition 4.6.1.
(a) Let i ∈ En be an element. We say that a subset T ⊂ En is i-positive if it satisfies

i− 1 ∈ T ⇐⇒ i− 1 ∈ R.

(b) We say that C is positive if for all i ∈ S, the set γC(i) is i-positive.

Let C ⊂ Zn be any p-cone (not necessarily S-adapted), defined by some p-expression
F

(dk)

ε(k)
(x) ≤ 0 (for k = 1, . . . ,m) where dk ∈ En and ε(k) ∈ {±1}n. We define the limit cone

C∞ as the "limit" of the cone C when we let p go to infinity. It is the cone obtained by
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retaining the dominant coefficients of p in each p-expression F (dk)

ε(k)
(x). Specifically, we write

ε(k) = (ε
(k)
1 , . . . , ε

(k)
n ) for each k and we put

C∞ = {x ∈ Zn | ε(k)dk−1xdk−1 ≤ 0, k = 1, . . . ,m}.

Proposition 4.6.2. Let C be an S-adapted p-cone. Then C is positive if and only if it
satisfies the containment C◦

GS ⊂ C∞.

Proof. For each i ∈ S, write Ci for the cone defined by the inequality F
(i)

T (i)(x) ≤ 0 where
T (i) = γC(i). Thus, C is the intersection of the cones Ci for i ∈ S. Similarly, C∞ is the
intersection of the cones Ci,∞ for i ∈ S. Therefore, the inclusion C◦

GS ⊂ C∞ is equivalent
to the condition that for any i ∈ S, the cone C◦

GS is contained in Ci,∞ for all i ∈ S. The
coefficient in front of pn−1 in the p-expression F (i)

T (i)(x) is −1 when i−1 ∈ T (i) and is 1 when
i− 1 /∈ T (i). The result follows easily.

For example, one can check easily that the S-adapted p-cone CpHa,S is positive.

4.7 Partial Hasse invariants and p-cones

As we saw in section 4.5, admissibility characterizes when an S-adapted p-cone C contains
the kernel KS of a stratum S. We explain here a stronger notion of admissibility which
corresponds to the stronger containment CpHa,S ⊂ C where CpHa,S is the cone of partial
Hasse invariants for the stratum S.

We say that a subset T ⊂ En is Hasse-admissible if it is admissible and for all i ∈ S \T ,
the following condition holds:

i− 1 ∈ T ⇐⇒ i− 1 ∈ R.

Using the terminology of Definition 4.6.1, the above condition means that T is i-positive
with respect to all the elements in S \ T . Let C be an S-adapted p-cone. We say that
C is Hasse-admissible if the corresponding function γC : S → P(En) takes values in Hasse-
admissible subsets. Hence, if C is Hasse-admissible and positive, the set ρC(i) is j-positive
for all j ∈ (S \ T ) ∪ {i}.

Proposition 4.7.1. Let C be an S-adapted p-cone. The containment CpHa,S ⊂ C holds if
and only if C is Hasse-admissible and positive.

Proof. Let T ⊂ En be an admissible subset. Let i ∈ S and write C
(i)
T for the cone in Zn

defined by the inequality F (i)
T (x) ≤ 0. We will show the following: the inclusion CpHa,S ⊂ C

(i)
T

holds if and only if T is j-positive for all j ∈ (S \ T ) ∪ {i}.
Write δT = (δ

(1)
T , . . . , δ

(n)
T ) for the characteristic function of T , i.e. δ(j)T = −1 for j ∈ T

and δ
(j)
T = 1 for j /∈ T . Recall that we defined the weights ha

(j)
R,S for all j ∈ En in (4.5.1).

For j ∈ S we have ha
(j)
R,S = ej − δ

(j−1)
R pej−1. Since T is admissible, we already know

that KR,S ⊂ C
(i)
T . It follows that the inclusion CpHa,S ⊂ C

(i)
T is satisfied if and only if

F
(i)
T (ha

(j)
R,S) ≤ 0 for all j ∈ S. For j ̸= i, this inequality amounts to

δ
(j−1)
R δ

(j−1)
T + δ

(j)
T ≤ 0,

which is equivalent to the condition: If j /∈ T , then j − 1 ∈ R ⇐⇒ j − 1 ∈ T . On the
other hand, when j = i, the inequality F (i)

T (ha
(i)
R,S) ≤ 0 amounts to

−pnδ(i−1)
R δ

(i−1)
T + δ

(i)
T ≤ 0,
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which is equivalent to δ(i−1)
R δ

(i−1)
T = 1, thus to i− 1 ∈ R ⇐⇒ i− 1 ∈ T . We have proved

that CpHa,S ⊂ C
(i)
T holds if and only if T is j-positive for all j ∈ (S \ T ) ∪ {i}. The result

follows immediately.

We know that CpHa,S is a positive admissible S-adapted p-cone. In particular, it is given
by a certain function

ρpHa,S : S → P(En). (4.7.1)

Concretely, this function is given as follows: Write Sc for the complement of S in En. For
any i ∈ S, the set ρpHa,S(i) is the set of elements j ∈ En satisfying: the number of elements
in the sets R ∩ [j, i − 1[ and Sc∩]j, i[ have different parity. This is simply a reformulation
of Proposition 4.2.3.

5 Cohomology vanishing
The key observation of this paper is that intersection-sum cones of Shimura varieties of
A1-type follow a very clear pattern. For general Hodge-type Shimura varieties, these cones
are combinatorially difficult to describe. However, the results of this paper seem to indicate
that they have a deeper significance and admit a more conceptual definition.

5.1 The function Φ

We fix a parabolic type R ⊂ En. We start with the following proposition:

Proposition 5.1.1. Let S ⊂ En be a subset. There exists a unique positive admissible
homogeneous S-adapted p-cone.

Proof. Recall that a homogeneous S-adapted p-cone C can be parametrized by a subset
T ⊂ En such that γC is the constant function with value T . The positivity condition
implies that for all elements i ∈ S, the subset T is i-positive, which means that

i− 1 ∈ T ⇐⇒ i− 1 ∈ R.

The heads of the connected components are exactly the elements i−1 for i ∈ S. Therefore,
the above equivalence determines completely which heads lie in T . But then, the admis-
sibility condition implies that we know T completely on each connected component. The
result follows.

Note that the proof of Proposition 5.1.1 gives a way to construct the subset T : We
first determine which heads of connected component are in T , and then we extend T by
admissibility.
Example 5.1.2. Let us give an example for illustration. Let n = 8, R = {1, 3}, S = {4, 6}
as in Figure 1. The associated chain diagram has two connected components, whose heads
are respectively 3 and 5. Of these two elements, only 3 lies in R. Hence 3 ∈ T and 5 /∈ T .
Using the admissibility, we deduce the rest of elements of T . We find in the end:

T = {3, 4, 6, 8}.

Therefore, the unique positive admissible homogeneous S-adapted p-cone is defined by the
inequalities:

p5x1 + p6x2 − p7x3 − x4 + px5 − p2x6 + p3x7 − p4x8 ≤ 0

p3x1 + p4x2 − p5x3 − p6x4 + p7x5 − x6 + px7 − p2x8 ≤ 0.
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Recall that the starting indices are imposed by the indices in S, and the minus signs are
assigned by the indices in T .

For any subset S ⊂ En, we write ΦR(S) for the subset T ⊂ En corresponding to the
unique positive admissible homogeneous S-adapted p-cone (for simplicity, we omit n from
the notation). For instance, in Example 5.1.2 above, one has ΦR({4, 6}) = {3, 4, 6, 8} for
n = 8 and R = {1, 3}. This defines a function

ΦR : P(En) → P(En).

We write CR,S for the unique positive, admissible S-adapted homogeneous p-cone. In other
words, it is the S-adapted p-cone that corresponds to the constant function ρ : S → P(En)
with value ΦR(S). When the choice of R is clear, we simply write Φ(S) for the set ΦR(S)
and CS for the cone CR,S.

5.2 Main result

Fix a parabolic type R ⊂ En. Our main technical result is the following theorem.

Theorem 5.2.1. Let S ⊂ En be a subset. The intersection-sum cone C
∩,+
S is a positive,

admissible S-adapted homogeneous p-cone. Hence, it coincides with the unique such cone
CR,S afforded by Proposition 5.1.1.

Note that in general a convex hull of p-cones is not a p-cone, thus it is not a priori obvious
that C

∩,+
S is defined by p-expressions, let alone that it is S-adapted and homogeneous.

However, once we know that it is an S-adapted p-cone, it is clear that it must be positive
and admissible because it contains CpHa,S by definition. Theorem 5.2.1 shows that the
intersection-sum cone is a natural and meaningful construction. It is possible to define
these cones for any Shimura varieties (and even independently of Shimura varieties), thus
one can hope for a generalization of Theorem 5.2.1 to arbitrary reductive groups. Howeveer
it is unclear to us what form this generalization would take.

As a consequence of the above theorem, we obtain the following vanishing result. Let
X = XR be a Hodge-type Shimura variety of A1-type and parahoric type R.

Theorem 5.2.2. Let S ⊂ En be a subset. For any k ∈ Zn such that k /∈ CR,S, we have

H0(Flag(XR)S,L(k)) = 0.

Proof. Since C
+,∩
S = CR,S by Theorem 5.2.1, this follows immediately from Theorem 3.3.2.

The proof of Theorem 5.2.1 will occupy a large portion of the remainder of this section.
We make a few preparatory remarks in the next paragraphs below.

5.3 Ordering

We make some natural definitions about the ordering of integers modulo n. Let S ⊂ En be
a subset. For elements x, y ∈ S, say that y follows x in S if y is the first element of S that
appears in the sequence

x+ 1, x+ 2, x+ 3, . . . (5.3.1)

(recall that an integer k is identified with the unique element of En congruent to k modulo
n). For three vertices x, y, z ∈ En, we say that z is between x and y if z appears before
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y (or at the same time as y) in the sequence (5.3.1). Write [x, y] for the set of elements
that are between x and y. Similarly, define ]x, y] := [x, y] \ {x}, [x, y[ := [x, y] \ {y} and
]x, y[ := [x, y] \ {x, y}.

In certain cases we will write S = {s1, . . . , sr} and define cyclically si+mr := si for any
m ∈ Z (for example, sr+1 = s1). By re-numbering the elements, we may assume that for
each 1 ≤ d ≤ r, the element sd+1 follows sd in the set S. Note that we are free to choose
which element of S is s1, and this choice then determines uniquely the numbering of all
elements.

5.4 Galois translation

Recall that the Frobenius σ acts on Zn as follows:

σ · (k1, . . . , kn) = (kn, k1, . . . , kn−1).

In particular σei = ei+1 where (e1, . . . , en) is the standard basis of Zn. Similarly, for i ∈ En

define σ(i) := i + 1 (recall that n + 1 is identified with 1). When we consider a subset
S = {s1, . . . , sr} (ordered as in section 5.3 above), this translation operator σ will be
useful to reduce to the case s1 = 1. This will make notation more convenient in certain
computations. Note that the operator σ acts naturally on all objects that we have defined
so far. For example, one sees easily that for any subset T ⊂ {1, . . . , n} and i ∈ T , one has

F
(i)
T (x) = F

(σi)
σT (σx)

for all x = (x1, . . . , xn) ∈ Zn. Similarly, we have

CσR,σS = σ(CR,S)

where CR,S is the unique positive admissible homogeneous S-adapted p-cone. This follows
from the relation ΦσR(σS) = σ(ΦR(S)) that is clear from the construction of ΦR(S). Simi-
larly, one has CpHa,σS = σ(CpHa,S) and C

∩,+
σS = σ(C∩,+

S ) (caution: here the cones CpHa,σS and
C
∩,+
σS must be taken with respect to the parabolic type σR).

Note that these natural manipulations involving the action of σ would be impossible to
carry out on the Shimura variety XR. Indeed, since PR is not defined over Fp, the various
cones attached to R and σR correspond to different Shimura varieties altogether and hence
are a priori unrelated. This freedom is one of the advantages of our group-theoretical
approach.

5.5 Removable elements

Fix a parabolic type R. We omit R from the notation.

Definition 5.5.1.
(a) For a subset S ⊂ En and an element j ∈ S, we say that j is removable from S if

Φ(S) = Φ(S \ {j}).

(b) We say that S is irreducible if none of the elements of S is removable from S.

One has the obvious but useful lemma below:
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Lemma 5.5.2. Assume that j ∈ S is a removable element of S and write T := Φ(S). Then
the cone CS\{j} satisfies the inequality

F
(i)
T (x) ≤ 0

for any i ∈ S \ {j}.
Proof. Indeed, since Φ(S) = Φ(S \ {j}) and i ̸= j, one of the inequalities defining the cone
CS\{j} is precisely F (i)

T (x) ≤ 0.

5.6 Invertible elements

For a cone C ⊂ Zn, denote by K(C) ⊂ C the set of invertible elements, i.e. the elements
λ ∈ C such that −λ ∈ C. The set K(C) is the largest subgroup contained in C. For example,
K(CpHa,S) = KS.

Definition 5.6.1. Let C ⊂ Zn be a cone, and C′ ⊂ C a subcone. We say that C′ is saturated
in C if for all n ≥ 1 and all x ∈ C, one has nx ∈ C′ =⇒ x ∈ C′.

In particular when C = Zn, we have the notion of a saturated subcone of Zn. If C is
saturated in Zn and C′ is saturated in C, then C′ is also saturated in Zn. A subcone C ⊂ Zn

defined by linear inequalities is always saturated in Zn (thus all p-cones are saturated in
Zn). It is clear that K(C) is always saturated in C. It satisfies even a stronger property: if
x, y ∈ C and x+ y ∈ K(C), then both x, y are in K(C).

Lemma 5.6.2. Let C ⊂ Zn be a cone defined by r linearly independent inequalities

fi(x) ≤ 0, x ∈ Zn, i = 1, . . . , r.

By this, we mean that the linear forms fi : Qn → Q are linearly independent over Q. Then
K(C) is a free module of rank n−r, and coincides with the set of x ∈ Zn such that fi(x) = 0
for all i = 1, . . . , r.

Proof. It is clear that K(C) coincides with the set of x ∈ Zn such that fi(x) = 0 for all
i = 1, . . . , r. Since the fi are linearly independent, they vanish on a codimension r subspace
of Qn. Hence, the rank of K(C) is n− r.

Lemma 5.6.3. Let S ⊂ En be a subset and C an S-adapted p-cone. Then, the |S| inequal-
ities defining CS are linearly independent.

Proof. C is defined by inequalities of the form F
(i)

T (i)(x) ≤ 0 for i ∈ S and certain subsets
T (i) ⊂ En. It is clear that the forms F (i)

T (i) : Zn → Z are linearly independent when we
reduce them modulo p (because the starting indices are pairwise distinct). Hence, they are
also linearly independent over Q.

Corollary 5.6.4. Let S ⊂ En be a subset and C an S-adapted p-cone. Then K(C) is a free
module of rank n− |S| which is saturated in Zn.

We deduce that if C′ ⊂ C ⊂ Zn are two saturated subcones of Zn, then one has K(C′) ⊂
K(C) and the quotient K(C)/K(C′) is free of finite rank.

Proposition 5.6.5. Let C ⊂ Zn be an S-adapted admissible p-cone. Then one has

K(C) = KS.

Proof. Since C is admissible, it contains KS = K(CpHa,S) by Lemma 4.5.2. Hence we have
K(CpHa,S) ⊂ K(C). Since both CpHa,S and C are S-adapted, we know by Corollary 5.6.4
that K(CpHa,S) and K(C) are free modules of rank n− |S|. Furthermore, since the quotient
K(C)/K(CpHa,S) is free, we deduce that K(C) = K(CpHa,S).
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5.7 System of generators

Definition 5.7.1. Let C ⊂ Zn be a subcone of Zn and λ1, . . . , λr ∈ C.
(a) We say that λ1, . . . , λr is a system of Q≥0-generators of C if any element of C can be

written as a linear combination of the λi with non-negative rational coefficients.
(b) We say that λ1, . . . , λr is a system of Q≥0-generators of C modulo kernel if any element

of C can be written as x+ y where x is a linear combination of the λi with nonnegative
rational coefficients and y ∈ K(C).

Fix a parabolic type R ⊂ En. Let S ⊂ En be a subset and let CpHa,S be the cone of
partial Hasse invariants for S. Recall that CpHa,S is the saturation of the cone

CpHa,S =
∑
i∈S

N ha
(i)
R,S +

∑
i/∈S

Z ha
(i)
R,S

where ha
(i)
R,S = −δ(i)S ei − pδ

(i−1)
R ei−1. The kernel K(CpHa,S) = KS is generated as a group by

the elements ha
(i)
R,S for i /∈ S. Thus, the elements ha

(i)
R,S = ei − pδ

(i−1)
R ei−1 for i ∈ S form a

system of Q≥0-generators of CpHa,S modulo kernel.
Let CR,S be the unique positive admissible homogeneous S-adapted p-cone. We seek

a system of Q≥0-generators modulo kernel for CR,S. Write T := ΦR(S) and define for all
i ∈ S the vector:

gen
(i)
R,S = δ

(i)
T ei − pδ

(i−1)
R ei−1.

Note that when i ∈ S \ T we have δ(i)T = 1 and hence gen
(i)
R,S = ha

(i)
R,S. Also, since the cone

CR,S is positive, we have δ(i−1)
T = δ

(i−1)
R , so we can also write gen

(i)
R,S = δ

(i)
T ei − pδ

(i−1)
T ei−1.

Proposition 5.7.2. The vectors gen(i)R,S (for i ∈ S) form a system of Q≥0-generators modulo
kernel of CR,S.

Proof. The cone CR,S is defined by the |S| inequalities F (i)
T (x) ≤ 0 where i ∈ S and

T = ΦR(S). Hence, it suffices to show that F (i)
T (gen

(j)
R,S) is zero for distinct elements i, j ∈ S

and is negative for i = j. Assume first that i ̸= j. Looking at the expression of F (i)
T (x)

and the fact that i ̸= j, one sees easily that F (i)
T (x) vanishes when x = δ

(j)
T ej − pδ

(j−1)
T ej−1,

hence F (i)
T (gen

(j)
R,S) = 0. Finally, in the case i = j we find that F (i)

T (gen
(i)
R,S) = −(pn − 1),

which terminates the proof.

We deduce that CR,S is the saturation in Zn of the following cone:∑
i∈S

N gen
(i)
R,S +KR,S.

5.8 Proof of Theorem 5.2.1

This section contains the technical computations necessary to prove Theorem 5.2.1. We fix
an integer n ≥ 1 and a parabolic type R ⊂ En throughout and omit them from all notation.
In particular, we write Φ(S) instead of ΦR(S). We will show by induction that for all strata
S ⊂ En, the intersection-sum cone C

∩,+
S coincides with CS (the unique positive, admissible

S-adapted homogeneous p-cone).
For a stratum such that |S| = 1, the intersection-sum C

∩,+
S is defined to be CpHa,S. We

already know that this is an admissible, positive S-adapted p-cone. Furthermore, since

27



|S| = 1 it is obviously homogeneous. Therefore, we may assume |S| ≥ 2 and prove the
result by induction. Recall that CS is defined by the |S| inequalities

F
(i)
T (x) ≤ 0, x ∈ Zn

where T = Φ(S) and i varies in S. We need to show that C
∩,+
S = CS. Write

S = {s1, . . . , sr}

where r := |S| and the elements are ordered as in section 5.3. Consider all lower neighbors
of S, namely the subsets of the form Sk := S \ {sk} for 1 ≤ k ≤ r. By the induction
hypothesis, we know that the intersection-sum cone of Sk coincides with CSk

, the unique
positive admissible homogeneous Sk-adapted p-cone (where all these notions are taken with
respect to the subset Sk). We thus have:

C
∩,+
S = CpHa,S +sat

⋂
k∈S

CSk
.

We need to prove the two inclusions C
∩,+
S ⊂ CS and CS ⊂ C

∩,+
S .

5.8.1 Proof of the inclusion C
∩,+
S ⊂ CS

This is the more interesting of the two inclusions, as it gives an upper bound for the cone
C
∩,+
S , hence also one for the cone CK,S by Theorem 3.3.2. Since CS is positive and admissible,

we already know that CpHa,S ⊂ CS. Thus, it suffices to show that
⋂

1≤k≤r CSk
⊂ CS. We

write
C∩ :=

⋂
1≤k≤r

CSk
.

We must prove that for each i ∈ S, the cone C∩ satisfies the inequality F
(i)
T (x) ≤ 0 for

T = Φ(S). Suppose that we have shown: For any R and any S such that 1 ∈ S, the cone
C∩ satisfies F (1)

T (x) ≤ 0. Then, let S,R be arbitrary and take i ∈ S. Using the translation
operator σ and applying the assumption to the sets σ−(i−1)S, σ−(i−1)R, we deduce that C∩

satisfies F (i)
T (x) ≤ 0. Therefore, we may assume that s1 = 1 and show that C∩ satisfies

F
(1)
T (x) ≤ 0. In this case, we can write the elements of S as 1 = s1 < s2 < · · · < sr ≤ n for
r = |S|.

The easiest situation is when some element sk (k ̸= 1) is removable from S. As we
explained in Lemma 5.5.2, in this case the cone CSk

(where Sk = S \ {sk}) satisfies the
inequality F (s1)

T (x) ≤ 0. In particular, the cone C∩ also satisfies this inequality. Therefore,
we are reduced to the situation when none of the elements s2, . . . , sr is removable from S.
We will assume that this is the case from now on. The proof then continues by considering
two cases: The case when s1 is removable from S and the case when it is not.

Write Φ(S) = T and Φ(Sk) = Tk for k = 1, . . . , r. We will show that there exist positive
integers λ, λ1, . . . , λr satisfying

λF
(s1)
T (x) =

r∑
k=1

λkF
(sk)
Tk+1

(x) (5.8.1)

for all x = (x1, . . . , xn) ∈ Zn. Since C∩ satisfies all inequalities F (sk)
Tk+1

(x) ≤ 0 for k = 1, . . . , r,
this will show that it also satisfies F (s1)

T (x) ≤ 0.

28



The case when s1 is removable In this case, we define λ, λ1, . . . , λr as follows: set
λ := p(pn + 1)r−1 and for 1 ≤ k ≤ r − 1 put

λk := 2k−1(pn − 1)psk(pn + 1)r−k−1.

For k = r, put
λr := 2r−1psr .

It is now a tedious computation to check the equality (5.8.1). Since this computation is
the key to the main theorem 5.2.1, we carry it out in details below. We can write

F
(sk)
Tk+1

(x) =
n−1∑
i=0

piδ
(i+sk)
Tk+1

xi+sk .

Let Π(x) denote the right-hand side of (5.8.1). We find:

Π(x) = (pn − 1)

(
r−1∑
k=1

2k−1psk(pn + 1)r−k−1F
(sk)
Tk+1

(x)

)
+ 2r−1psrF

(sr)
T1

(x)

= (pn − 1)

(
r−1∑
k=1

2k−1psk(pn + 1)r−k−1

n−1∑
i=0

piδ
(i+sk)
Tk+1

xi+sk

)
+ 2r−1psr

n−1∑
i=0

piδ
(i+sr)
T1

xi+sr .

We want to find the coefficient in front of the variable xm (for 1 ≤ m ≤ n) in the above
expression. Note that xm can appear in two different ways in this expression because one
can have i+sk = i′+sk′+n for different values of i, k, i′, k′. Taking this into account, we filter
m with respect to the intervals [sd, sd+1[. Recall that when d = r, we have sr+1 = s1 = 1
and the interval [sr, s1[ consists of the integers from sr to n. For m ∈ [sd, sd+1[ and d ≤ r−1,
the coefficient in front of xm in Π(x) is

cm := (pn−1)pm

(
d∑

k=1

2k−1(pn + 1)r−k−1δmTk+1
+ pn

r−1∑
k=d+1

2k−1(pn + 1)r−k−1δmTk+1

)
+2r−1pm+nδmT1

.

For d = r, the coefficient in front of xm in Π(x) is

cm := (pn − 1)pm

(
r−1∑
k=1

2k−1(pn + 1)r−k−1δmTk+1

)
+ 2r−1pmδmT1

.

By assumption, none of the elements sk (for k ̸= 1) is removable from S. Note that when
we remove sk from S, only the elements of [sk−1, sk[ are affected. Thus, T ∩ [si−1, si[ and
Ti ∩ [si−1, si[ coincide for all i ̸= k and are complementary for i = k. We deduce that
δ
(m)
Tk+1

= δ
(m)
T for k ̸= d and δ

(m)
Td+1

= −δ(m)
T . Using this and the formula for the sum of the

geometric sequence 2k−1(pn + 1)r−k−1 = (pn+1)r−1

2

(
2

pn+1

)k
, we find for 1 ≤ d ≤ r − 1:

cm = (pn − 1)pmδ
(m)
T

(
(pn + 1)r−1 − 2d−1(pn + 1)r−d

pn − 1
− 2d−1(pn + 1)r−d−1

+
2dpn

pn − 1
((pn + 1)r−d−1 − 2r−d−1)

)
+ 2r−1pm+nδmT

= pmδ
(m)
T

(
(pn + 1)r−1 − (pn + 1)r−d−1(2d−1(pn + 1) + 2d−1(pn − 1)− 2dpn)− 2r−1pn + 2r−1pn

)
= pm(pn + 1)r−1δ

(m)
T = λpm−1δ

(m)
T .
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Thus, cm coincides with the coefficient of xm in λF
(s1)
T (x). In the above computation, we

have not used the assumption that s1 is removable. This assumption is only necessary for
the case d = r. In this case, we have δ(m)

T1
= δ

(m)
T . Therefore, a similar computation yields:

cm = (pn − 1)pm

(
r−1∑
k=1

2k−1(pn + 1)r−k−1δmTk+1

)
+ 2r−1pmδmT1

= pmδ
(m)
T

(
(pn − 1)

(pn + 1)r−1 − 2r−1

(pn − 1)
+ 2r−1

)
= pm(pn + 1)r−1δ

(m)
T = λpm−1δ

(m)
T .

From this, we deduce (5.8.1) in the case when s1 is removable.

The case when s1 is not removable In this case, S is irreducible (i.e. none of its
elements is removable), hence the situation is more symmetric. Therefore, we will not need
to distinguish between the cases 1 ≤ d ≤ r − 1 and d = r as above. However, we need to
change the definition of λ, λ1, . . . , λr as follows. For all 1 ≤ k ≤ r (including k = r), we set

λk := 2k−1psk(pn + 1)r−k.

To define λ, we consider the polynomial

Q(X) =
r−1∑
j=1

2r−j−1Xj − 2r−1 =
Xr − 2r

X − 2
− 2r.

It is clear that if t > 2 then Q(t) > 0. We put

λ := Q(pn + 1) =
(pn + 1)r − 2r

pn − 1
− 2r =

(pn + 1)r − 2rpn

pn − 1
.

Again, we check that the identity (5.8.1) holds. Letting again Π(x) denote the right-hand
side of (5.8.1), we have

Π(x) =
r∑

k=1

2k−1psk(pn + 1)r−kF
(sk)
Tk+1

(x)

=
r∑

k=1

2k−1psk(pn + 1)r−k

n−1∑
i=0

piδ
(i+sk)
Tk+1

xi+sk .

For m ∈ [sd, sd+1[ and 1 ≤ d ≤ r, the coefficient in front of xm in Π(x) is

cm = pm

(
d∑

k=1

2k−1(pn + 1)r−kδmTk+1
+ pn

r∑
k=d+1

2k−1(pn + 1)r−kδmTk+1

)

= pmδ
(m)
T

(
(pn + 1)r − 2d−1(pn + 1)r+1−d

pn − 1
− 2d−1(pn + 1)r−d +

2dpn

pn − 1
((pn + 1)r−d − 2r−d)

)

= pmδ
(m)
T

(
(pn + 1)r − 2rpn

pn − 1

)
= λpmδ

(m)
T .

This terminates the proof of (5.8.1) in the case when s1 is not removable.
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5.8.2 Proof of the inclusion CS ⊂ C
∩,+
S :

Proposition 5.8.1. Let t ∈ S be an element.
(1) If t /∈ T , then gen

(t)
R,S ∈ CpHa,S.

(2) If t ∈ T , then gen
(t)
R,S ∈

⋂
j∈S CS\{j}.

Proof. When t /∈ S then gen
(t)
R,S = ha

(t)
R,S ∈ CpHa,S. To prove (2), write again S =

{s1, . . . , sr}, where for all i, si+1 follows si in S (see section 5.3). We write t = sk for
some 1 ≤ k ≤ r and assume that t ∈ T . For each 1 ≤ j ≤ r, we need to prove that the
vector x = gen

(t)
R,S lies in CS\{sj}, i.e. that it satisfies the inequality F

(sd)
Tj

(x) ≤ 0 for all
d ̸= j, where Tj = Φ(S \ {sj}). Since t ∈ T , we have x = −et − δ

(t−1)
R pet−1.

First, assume that sd ̸= t. In this case, the coefficient of xt−1 and xt in the p-expression
F

(sd)
Tj

(x) are δ(t−1)
Tj

pm and δ
(t)
Tj
pm+1 respectively (for a certain integer m). Hence, for all

d ̸= j, 1 ≤ d ≤ r, the sign of F (sd)
Tj

(x) when x = gen
(t)
R,S is the same as the sign of the

expression
−δ(t)Tj

− δ
(t−1)
Tj

δ
(t−1)
R .

Thus, it suffices to show that not both of δ(t)Tj
and δ

(t−1)
Tj

δ
(t−1)
R are equal to −1. Thus we

may assume t /∈ Tj. Since t ∈ T by assumption, we are reduced to the case j = k + 1
(in all other cases one would have t ∈ Tj). But in this case, we have t ∈ S \ {sj} so the
admissibility condition for CS\{sj} implies that δ(t−1)

Tj
δ
(t−1)
R = 1.

Finally, we consider the case when sd = t. In particular we have t ∈ S \ {sj}. In
this case, the coefficients of xt−1 and xt in the p-expression F

(t)
Tj
(x) are δ(t−1)

Tj
pn−1 and δ

(t)
Tj

respectively. Hence, the sign of F (t)
Tj
(x) when x = gen

(t)
R,S is the same as the sign of

−δ(t)Tj
− pnδ

(t−1)
Tj

δ
(t−1)
R .

Again, since t ∈ S \ {sj} in this case we deduce by admissibility that δ(t−1)
Tj

δ
(t−1)
R = 1, and

the result follows.

Finally, we complete the proof of the inclusion CS ⊂ C
∩,+
S . Recall that the kernel K(CS)

coincides with K(CpHa,S). Moreover, CS is Q≥0-generated modulo kernel by the elements
gen

(t)
R,S for t ∈ S. By Proposition 5.8.1, we have gen

(t)
R,S ∈ C

∩,+
S for all t ∈ S. It follows that

for any x ∈ CS, there is an integer N ≥ 1 such Nx ∈ C
∩,+
S . By definition the cone C

∩,+
S is

saturated, so we have x ∈ C
∩,+
S . This terminates the proof of Theorem 5.2.1.

5.9 Hasse-regularity

Let X = XR be a Shimura variety of A1-type and parabolic type R. Recall by (3.4.2) that
for any subset S ⊂ En we have inclusions

CpHa,S ⊂ CX,S ⊂ CS

where we used the equality C
∩,+
S = CS (Theorem 5.2.1) and we omitted the cone Cflag,S that

we will not use in what follows.

Definition 5.9.1. We say that S is Hasse-regular if CpHa,S = CX,S.
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In particular, if CS = CpHa,S then S is obviously Hasse-regular. The notion of Hasse-
regularity can be defined for arbitrary Hodge-type Shimura varieties. In the case of unitary
Shimura varieties of signature (n − 1, 1) at a split prime, Goldring and the author have
shown in [GK22b] that the stratum Flag(X)w is Hasse-regular for all elements w ∈ W
in the closure of the element w0,Iw0 (the longest element of IW ). In the theorem below,
we give a characterization of the strata S which satisfy CS = CpHa,S. When |S| = 1 this
equality holds by definition. Let Γ be the chain diagram of parabolic type R and stratum
S. Write Sc for the complement of S in En. Write # F to denote the number of element
of a finite set F .

Theorem 5.9.2. Assume |S| ≥ 2. Then the following are equivalent:
(i) One has CS = CpHa,S.
(ii) CpHa,S is homogeneous.
(iii) For any connected component C ⊂ Γ, the numbers # C ∩ R and # C have different

parity.

Proof. Since CpHa,S is a positive, admissible, S-adapted p-cone, (i) and (ii) are obviously
equivalent. Using the description of the function ρpHa,S given in (4.7.1), we see that ρpHa,S

is a constant function if and only if for any j ∈ En, the parity of the number

# [j, i− 1[ ∩ R + # ]j, i− 1[ ∩ Sc

is independent of i ∈ S. If we change i to the element i+ that follows i in S, the above
number changes by the quantity # C∩R + # C∩Sc where C is the connected component
of i+. Since i can be chosen arbitrarily in S and |S| ≥ 2, we deduce that condition (ii)
is equivalent to # C ∩ R ≡ # C ∩ Sc (mod 2) for all connected components C in Γ.
Since each connected component C has a unique element in S by definition of Γ, one has
# C ∩ Sc = (# C)− 1. The result follows.

In particular, when the equivalent conditions of Theorem 5.9.2 are satisfied, we have
equalities CpHa,S = CX,S = CS. Therefore, one could say as a slogan that for those
strata, "the weight of any nonzero mod p automorphic form on Flag(X)S is spanned by
the weights of partial Hasse invariants of the stratum".

5.10 The general case

So far we have only considered the case whenG is a Weyl restrictionG = ResFpn/Fp(GL2,Fpn
).

In the context of Shimura varieties of A1-type explained in 2.5, this group corresponds to
the case when p is inert in the totally real field F. If p follows a more general ramification
pattern, we need to consider a group of the form

G = ResFpm1 /Fp(GL2,Fpm1
)× · · · × ResFpmr /Fp(GL2,Fpmr )

where n = m1 + · · · + mr is a partition of n by positive integers. In this case, one can
apply to each Fp-factor Gi = ResFpmi /Fp(GL2,Fpmi

) all of the theory of p-cones carried out
in sections 4 and 5. As we explained before, all group-theoretical objects decompose with
respect to the Fp-factors. For any subset S ⊂ En, we may decompose S = S1 ⊔ · · · ⊔ Sr for
subsets Si corresponding to the Fp-factors and similarly R = R1⊔· · ·⊔Rr for the parabolic
type. Then, define CR,S as the direct product of the CRi,Si

. With this definition, Theorem
5.2.2 on the vanishing of cohomology holds without modification. Similarly, a version of
Theorem 5.9.2 can easily be formulated in this more general setting as well.
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5.11 The maximal stratum

We return to the case G = ResFpn/Fp(GL2,Fpn
). We now restrict ourselves to the case of the

maximal stratum, parametrized by the longest element w0 ∈ W . For groups of A1-type, it
corresponds to the subset S = En. In this case, note that we have

ΦR(En) = R.

By Theorem 5.2.1, we know that the cone CX is contained in the cone CEn , which is defined
by the n inequalities

F
(i)
R (x) ≤ 0, x ∈ Zn, i = 1, . . . , n.

The method used to prove this result does not use the fact that the map ζflag : Flag(X) →
G-ZipFlagµ is a base extension of a map ζ : X → G-Zipµ. Hence it would hold more
generally for any smooth morphism ζ ′ : Y → G-ZipFlagµ satisfying certain conditions
(replacing the stratum Flag(X)w with the preimage ζ ′−1(Flagw)). The fact that ζflag is
a base extension of ζ forces CX to be contained in the L-dominant cone X∗

+,I(T ), as we
mentioned in (3.3.1). Therefore, the cone CX satisfies the additional constraints

xi ≥ 0, i ∈ R.

Here we determine a set of generators for the intersection CEn ∩ X∗
+,I(T ). Denote the

elements of En \R as follows:
En \R = {r1, . . . , rh}

where h = n − |R|. Again, we assume for each i that ri+1 is the element of En \ R that
follows ri (where rh+1 = r1). Let gi denote the gap between ri−1 and ri, i.e. the smallest
positive integer gi such that ri−1 + gi = ri. Let (e1, . . . , en) denote the canonical basis of
Zn and extend the definition of ei to any i ∈ Z by n-periodicity. For each 1 ≤ i ≤ h and
each k = 1, . . . , gi − 1 (when gi ≥ 2), define the following elements

λ
(i)
k := eri + pkeri−k (5.11.1)

Moreover, for k = gi define
λ(i)gi

:= eri − pgieri−1
. (5.11.2)

We thus obtain exactly n =
∑h

i=1 gi weights of the form λ
(i)
k for 1 ≤ i ≤ h and 1 ≤ k ≤ gi.

It is immediate to check that the weights λ(i)k are L-dominant and satisfy the inequalities
F

(i)
R (x) ≤ 0 for i = 1, . . . , n, thus they lie in the intersection CEn ∩X∗

+,I(T ).

Proposition 5.11.1. The cone CEn ∩ X∗
+,I(T ) is Q≥0-generated by the weights λ(i)k for

1 ≤ i ≤ h and 1 ≤ k ≤ gi.

It will be convenient to modify λ(i)k by defining η(i)k := 1
pk
λ
(i)
k . Before giving the proof,

we start with the following easy lemma.

Lemma 5.11.2. The elements λ(i)k (for 1 ≤ i ≤ h, 1 ≤ k ≤ gi) form a basis of Qn.

Proof. When p goes to infinity, η(i)k converges to ±eri−k, which are clearly linearly indepen-
dent vectors. The result follows.
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We now prove Proposition 5.11.1 by showing that any x = (x1, . . . , xn) ∈ CEn ∩X∗
+,I(T )

is a linear combination with non-negative rational coefficients of the η(i)k . For each 1 ≤ j ≤
n, define kj as follows:

kj := max{u ≥ 1 | ej+u /∈ R}.
Consider the matrix M whose jth column is the vector

δ
(j)
R ej + p−kjej+kj .

Note that this vector is of the form η
(i)
k for i such that ei = ej+kj and ej = eri−k. We

have simply changed the ordering of the vectors so that the diagonal coefficients of the
matrix are ±1. Then, one checks easily that for x ∈ Zn, the vector y =M−1x satisfies the
following: If i ∈ R, then the i-th coordinate of y is

yi = xi.

For i /∈ R, the ith coordinate of y is

yi = − 1

pn − 1

n−1∑
u=0

δ
(i+1+u)
R pu−1xi+1+u = − 1

p(pn − 1)
F

(i+1)
R (x).

Since x ∈ CEn ∩X∗
+,I(T ), we obtain yi ≥ 0 for all 1 ≤ i ≤ n. This terminates the proof of

Proposition 5.11.1.

5.12 The Cone Conjecture

Recall that we defined in section 3.5 the lowest weight cone Cw. We also explained that
under a certain condition (satisfied for groups that are Weyl restrictions of split Fp-groups)
the cone Clw is contained in Czip. Let X = XR be a Hodge-type Shimura variety of A1-type
and parabolic type R ⊂ En. By the equality C

∩,+
En

= CEn (Theorem 5.2.1), the inclusions
(3.4.3) and the containment Clw ⊂ Czip, we obtain:

Clw ⊂ Czip ⊂ CX ⊂ CEn ∩X∗
+,I(T ).

Recall that the Cone Conjecture 3.4.1 predicts that we have Czip = CX .

Theorem 5.12.1. When X = XR is a Hodge-type Shimura variety of A1-type, Conjecture
3.4.1 holds true. More precisely, one has

Clw = Czip = CX = CEn ∩X∗
+,I(T ). (5.12.1)

This cone is generated over Q≥0 by the weights λ(i)k defined in (5.11.1) and (5.11.2).

Proof. It suffices to show that Clw = CEn ∩X∗
+,I(T ). Recall that for a general group G, the

cone Clw is the set of λ ∈ X∗
+,I(T ) satisfying the inequality (3.5.3) for each α ∈ ∆P0 . Here,

recall that P0 is the smallest parabolic subgroup containing B defined over Fp. In other
words, P0 =

⋂
i∈Z σ

i(P ). In the trivial case when R = En, one has P = G and one sees
easily that Clw = X∗

+(T ), thus all four cones in (5.12.1) coincide with X∗
+(T ). Note that in

this case X is a zero dimensional variety by (2.5.3), but Flag(X) is a G/B-fibration over
X, which explains why CX = X∗

+(T ).
In all other cases, we have

P0 =
⋂
i∈Z

σi(PR) =
⋂
i∈Z

Pσi(R) = B.
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Hence we have WL0 = {1}, and the lowest weight cone is given by the set of L-dominant
characters x = (x1, . . . , xn) ∈ X∗

+,I(T ) satisfying the inequalities

n−1∑
i=0

piδ
(i+j)
R xi+j ≤ 0, j = 1, . . . , n.

These are exactly the inequalities defining the cone CEn . This terminates the proof.

5.13 The Hilbert–Blumenthal case

This section is dedicated to the special case of Hilbert–Blumenthal varieties (i.e. the case
R = ∅). We make explicit in this case the main theorems proved for a general parabolic
type R ⊂ En. In this case Flag(X) = X and the line bundle L(k) coincides with the line
bundle ωk defined in (1.0.1). For a subset S ⊂ En, the flag stratum Flag(X)S is simply the
Ekedahl–Oort stratum parametrized by S, that we denote by XS. The function

Φ: P(En) → P(En)

can be concretely described as follows: For a subset S ⊂ En, let Γ = Γn(∅, S) be the chain
diagram of type ∅ for the stratum S. For each element s ∈ S, write γ(s) for the number of
elements in the connected component of Γ whose head is s− 1. It is the smallest positive
integer such that s− γ(s) ∈ S. Then, define Φ(S) as the set

Φ(S) = {s− i | s ∈ S, i odd, 1 ≤ i < γ(s)}.

We write CS = C∅,S for the unique positive admissible homogeneous S-adapted p-cone. It
is given by the inequalities F (i)

Φ(S)(x) ≤ 0 for x ∈ Zn where i varies in S. Theorem 5.2.2
then translates as follows:

Theorem 5.13.1. Let S ⊂ En be a subset and k ∈ Zn. If k /∈ CS, then

H0(XS, ω
k) = 0.

Next, we make the link with previous results of Goldring and the author in [GK18]. In
this previous work, we introduced a combinatorial notion of "admissibility" for strata (un-
related to the admissibility of p-cones defined in this paper). This condition says precisely
(using the terminology of the present paper) that all connected components of Γ contain
an odd number of elements. For those strata, the authors proved that one has an equality

CX,S = CpHa,S.

This is simply a special case of Theorem 5.9.2. Indeed, for R = ∅ it translates as follows:

Theorem 5.13.2. Assume |S| ≥ 2. Then the following are equivalent:
(i) One has CS = CpHa,S.
(ii) CpHa,S is homogeneous.
(iii) For any connected component C ⊂ Γ, the number # C is odd.
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5.14 Siegel-type Shimura varieties

We end this article with a brief discussion about possible generalizations to other Shimura
varieties. One of the main examples that we have in mind is the case of Siegel-type Shimura
varieties An, which parametrizes principally polarized abelian varieties of dimension n (with
a level structure). This variety is associated with the group GSp2n, which seems totally
unrelated to the groups of A1-type considered in this paper. However, the two cases bear a
striking resemblance. In [GK18, GK22a], Goldring and the author completely determined
for n = 2, 3 the cone CK defined in (3.1.3) in the case of Siegel-type Shimura varieties (when
n = 3, we only proved the result for p ≥ 5). For n = 3, we showed that CK is given by

CK =

{
(x1, x2, x3) ∈ X∗

+,I(T )

∣∣∣∣ p2x1 + x2 + px3 ≤ 0
px1 + p2x2 + x3 ≤ 0

}
. (5.14.1)

In this case, the condition (x1, x2, x3) ∈ X∗
+,I(T ) simply means that x1 ≥ x2 ≥ x3. In

other words, CK is the intersection of a p-cone with X∗
+,I(T ) just as for the cases considered

in this article (see Theorem 5.12.1). Even better: One can add to the two inequalities in
(5.14.1) a third one, given by x1+px2+p2x3 ≤ 0. This does not change the right-hand side
of (5.14.1) because this inequality is implied by the two other inequalities combined with
the condition (x1, x2, x3) ∈ X∗

+,I(T ). Thus, we see that the cone CK for the group GSp6

can be written as
CK = CE3 ∩X∗

+,I(T ).

In other words, the inequalities defining CK inside X∗
+,I(T ) are the same as for Hilbert–

Blumenthal Shimura varieties. The only difference is the L-dominance condition, which
has a different meaning for the group GSp3.
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