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Abstract

We give a simpler and more general proof that the weight of a mod p Hilbert
modular form is spanned by the weights of partial Hasse invariants. We also cover the
case of Ekedahl–Oort strata of smaller dimension. For the global stratum, this result
was also proved by Diamond–Kassaei by other methods in [DK23].

1 Introduction
The main purpose of this short paper is to provide a more straight-forward proof of the
cone conjecture for Hilbert–Blumenthal Shimura varieties. This conjecture, which can be
formulated for arbitrary Hodge-type Shimura varieties, asserts in this case that the weight
of any nonzero Hilbert modular form in characteristic p is spanned (overQ≥0) by the weights
of partial Hasse invariants. This result was initially proved in [DK17] (extended in [DK23])
by Diamond–Kassaei and around the same time in [GK18] using a completely different
approach. We discuss below the differences between these papers in terms of results and
methods.

The main results of this paper concern the special fiber of Hilbert–Blumenthal Shimura
varieties at a prime p of good reduction. Fix a totally real extension F/Q of degree n := [F :
Q] > 1. Recall that Hilbert–Blumenthal Shimura varieties are moduli spaces of polarized
abelian varieties endowed with an action of OF . From the point of view of Deligne ([Del79],
they are attached to the connected, reductive Q-group G defined by

G(R) = {g ∈ GL2(F ⊗Q R) | det(g) ∈ R×}

for any Q-algebra R. Fix a prime number p which is unramified in F . Write Σ for the set
of embeddings F → Qp and choose an ordering Σ = {τ1, . . . , τn}. The base change of G
to F then identifies with the subgroup of tuples (g1, . . . , gn) ∈ GL2× · · · × GL2 satisfying
the condition det(g1) = · · · = det(gn). Since p is unramified, the group Gal(Qur

p /Qp) =

Gal(Fp/Fp) acts on Σ, and hence on {1, . . . , n}. We denote the action of the Frobenius
homomorphism x 7→ xp by i 7→ σ(i) for i ∈ {1, . . . , n}.

Fix an open compact subgroup Kp ⊂ G(Ap
f ). Since p is assumed unramified, the lattice

OF ⊗Z Zp ⊂ F ⊗Q Qp yields a reductive Zp-model G of GQp . Set Kp := G(Zp). By works of
Deligne–Pappas, the Shimura variety at level K = KpKp admits a smooth integral model
over Zp. We are interested in its special fiber over Fp, that we simply denote by X. It is a
smooth Fp-scheme of dimension n. For each subset S ⊂ {1, . . . , n}, there is a corresponding
Ekedahl–Oort stratum XS ⊂ X, which is a locally closed subscheme of X of dimension
|S|. For example, the maximal Ekedahl–Oort stratum corresponds to S = {1, . . . , n} and
coincides with the locus where the underlying abelian variety is ordinary. A stratum XS is
contained in the Zariski closure of XT if and only if S ⊂ T .
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The scheme X comes equipped with line bundles ω1, . . . , ωn whose tensor product ω :=⊗n
i=1 ωi is the usual Hodge line bundle. For each λ = (k1 . . . , kn) ∈ Zn, define a line bundle

ω(λ) :=
n⊗
i=1

ωkii . (1.0.1)

For each subset S ⊂ {1, . . . , n}, there exists a system of generalized partial Hasse invariants
on the Zariski closure XS. By this we mean that there exist sections HaS,i (for each i ∈ S)
such that HaS,i vanishes exactly on the set XS\{i}. Furthermore, for i 6∈ S, there are
natural sections HaS,i that are entirely non-vanishing on XS (see section 4.1 for details).
Specifically, the section HaS,i lies in H0(XS, ω(haS,i)) where

haS,i :=

{
ei − qeσ(i) if i ∈ S,
ei + qeσ(i) if i /∈ S

where (e1, . . . , en) is the standard basis of Zn. When S = {1, . . . , n}, the sections HaS,i are
the usual partial Hasse invariants constructed by Andreatta–Goren in [AG05]. We denote
them simply by Hai for i = 1, . . . , n and we write hai := ei − qeσ(i) for their weights.

Define a cone CpHa,S ⊂ Zn as the cone spanned over Z≥0 by the weights haS,i for
i ∈ {1, . . . , n}. On the other hand, we define a second cone CX,S ⊂ Zn as the set of
λ ∈ Zn such that the space H0(XS, ω(λ)) is nonzero. Obviously, one has an inclusion
CpHa,S ⊂ CX,S. For a cone C ⊂ Zn, define the saturation C of C as the set of λ ∈ Zn
such that some positive multiple of λ lies in C. We always denote the saturation with the
calligraphic letter C. For example, CpHa,S and CX,S denote the saturations of CpHa,S and
CX,S respectively. For each subset S, we have an inclusion CpHa,S ⊂ CX,S.

In Definition 4.3.1, we define the notion of admissible subsets of {1, . . . , n} by an explicit
condition on S. When p splits in F , any subset is admissible. The whole set S = {1, . . . , n}
is always admissible. If p is inert and S is a set of the form S = {i1, . . . , is} with i1 < · · · < is
and ij+1− ij odd (for j = 1, . . . , s− 1) and i1 +n− is odd, then S is admissible. The main
result of [GK18] is

Theorem 1. If S is an admissible subset of {1, . . . , n}, then CpHa,S = CX,S.

This result gives a vanishing result for the space of Hilbert modular forms defined on
the stratum XS. Namely, for admissible S one has H0(XS, ω(λ)) = 0 whenever λ lies in the
complement of CpHa,S. In particular, we deduce for S = {1, . . . , n} the following corollary:

Corollary 2. Let f ∈ H0(X,ω(λ)) be a nonzero Hilbert modular form of weight λ. Then
λ is spanned over Q≥0 by the weights of partial Hasse invariants ha1, . . . , han.

In our original paper [GK18], we proved this result by an extremely tedious computation.
In this short paper, we propose to use the notion of intersection-sum cones introduced in
[GK22] to give a more elementary and systematic proof. The advantage of this method
is that it can adapt to any reductive group G and any Shimura variety of Hodge-type, as
demonstrated in loc. cit.. Moreover, we believe that the proof presented in this paper is
more enlightening than the original proof.

Finally, we briefly discuss the results of Diamond–Kassaei in [DK23] and the differences
with our paper. The results of loc. cit. show Corollary 2 as a consequence of a result on
divisibility of Hilbert modular forms by partial Hasse invariants ([DK23, Theorem 7.1]).
They only consider global sections over X and do not treat the case of a general stratum
XS for S ⊂ {1, . . . , n}, as opposed to our Theorem 1. However, the results of loc. cit. also

2



cover the case when p is ramified in F , whereas we assume p to be unramified. On the
other hand, we work in the general setting of an arbitrary scheme endowed with a smooth,
surjective morphism X → G-Zipµ, where G-Zipµ is the stack of G-zips of Pink–Wedhorn–
Ziegler ([PWZ15]). Therefore our results reach beyond the case of Hilbert–Blumenthal
Shimura varieties.

We now give an overview of each section. In section 2, we review the basic definitions
pertaining to the stack of G-zips in the general setting. In section 3, we recall the Cone
Conjecture for schemes endowed with a smooth, surjective mapX → G-Zipµ (which include
Shimura varieties). We also explain the strategy to prove it using the notion of intersection-
sum cones of strata. Finally, section 4 is dedicated to the proof of Theorem 1 using the
approach of intersection-sum cones in the case when G is the reductive group defined above
in this introduction.

2 Review of G-zips

2.1 Stack of G-zips

Fix an algebraic closure k of Fq (in applications to Shimura varieties, we always take q = p).
Let G be a connected reductive Fq-group. Denote by ϕ : G → G the Frobenius homomor-
phism. Fix a cocharacter µ : Gm,k → Gk. We call (G, µ) a cocharacter datum. From µ, we
obtain a zip datum Zµ as explained in [IK21a, §2.2.2]. We recall the construction. First,
µ defines a pair of opposite parabolics P±(µ), where P+(µ)(k) (resp. P−(µ)(k)) consists of
the elements g ∈ G(k) such that the map

Gm,k → Gk; t 7→ µ(t)gµ(t)−1 (resp. t 7→ µ(t)−1gµ(t))

extends to a regular map A1
k → Gk. The centralizer of µ is a Levi subgroup L(µ) =

P+(µ) ∩ P−(µ). Then, define P := P−(µ), Q := (P+(µ))(q), L := L(µ) and M := L(q). Let
ϕ : L → M be the Frobenius homomorphism. The tuple Zµ = (G,P, L,Q,M,ϕ) is called
the zip datum attached to (G, µ). Then, define the zip group E by:

E := {(x, y) ∈ P ×Q | ϕ(θPL (x)) = θQM(y)}. (2.1.1)

Here, θPL : P → L denotes the map that sends x ∈ P to its Levi component x ∈ L (and
similarly for θQM). Pink–Wedhorn–Ziegler define the stack of G-zips of type µ, denoted by
G-Zipµ in [PWZ15, Definition 1.4]. It can be defined as the quotient stack

G-Zipµ = [E\Gk] .

where E acts on G by (x, y) · g := xgy−1 for all (x, y) ∈ E and all g ∈ G. It also has an
interpretation as a moduli stack of certain torsors.

2.2 The flag space

For convenience, we assume that there exists a Borel pair (B, T ) defined over Fq such that
B ⊂ P and such that µ factors through T . Let Φ+ ⊂ X∗(T ) (resp. Φ+

L) be the set of
positive T -roots in G (resp. L), where positivity is defined with respect to the opposite
Borel of B. Write ∆ (resp. I := ∆L) for the subsets of simple roots of G (resp. L), and let
W (resp. WI) be the Weyl group of Φ (resp. ΦL). For α ∈ Φ, let sα be the corresponding
root reflection. Then (W, {sα|α ∈ ∆}) is a Coxeter system; denote by ` : W → N its
length function and by ≤ the Bruhat-Chevalley order. Write w0 (resp. w0,I) for the longest
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element of W (resp. WI). Let IW ⊂ W be the subset of elements w ∈ W which are
of minimal length in their right coset WIw. We write X∗+(T ) for the set of dominant
characters. Similarly, the I-dominant characters of T are denoted by X∗+,I(T ). We set

z := σ(w0,I)w0.

The stack of zip flags G-ZipFlagµ was defined in [GK19a, §2.1]. It can be defined as the
quotient stack [E ′\G] where E ′ = E ∩ (B × G) (it also has a modular interpretation in
terms of torsors). There is a natural projection map π : G-ZipFlagµ → G-Zipµ whose
fibers are isomorphic to P/B. Let X be a k-scheme endowed with a morphism of stacks
ζ : X → G-Zipµ. Form the fiber product

Flag(X)
ζflag
//

π

��

G-ZipFlagµ

π

��

X
ζ

// G-Zipµ

We call Flag(X) the flag space of X ([GK19a, §9.1]). By [GK19b, §4.1], there is a natural
smooth, surjective morphism of stacks

Ψ: G-ZipFlagµ → Sbt := [B\G/B]. (2.2.1)

The stack Sbt is called the Schubert stack, it is finite and its points are parametrized by the
Weyl group W . It admits a natural stratification (Sbtw)w∈W by locally closed substacks,
corresponding to the Bruhat stratification of G, i.e.

Sbtw := [B\BwB/B] . (2.2.2)

By pullback, the fibers of Ψ define a stratification of G-ZipFlagµ by locally closed substacks
(Fw)w, with the same closure relations. Pulling back via ζflag, we obtain a locally closed
stratification (Flag(X)w)w∈W on Flag(X).

2.3 The zip cone

As in [IK21a, §2.4], we can attach to any P -representation (V, ρ) a vector bundle V(ρ) on
G-Zipµ, similarly to the usual associated sheaf construction of [Jan03, §5.8]. For λ ∈ X∗(T ),
denote by VI(λ) the P -representation IndPB(λ) and by ρI,λ) the corresponding map P →
GLk(VI(λ)). Note that ρI,λ is trivial on the unipotent radical Ru(P ), so we may view it as
an L-representation (with highest weight λ). Denote by VI(λ) the vector bundle on G-Zipµ

attached to VI(λ), and call it the automorphic vector bundle attached to λ. Similarly,
we can define a line bundle Vflag(λ) on G-ZipFlagµ such that π∗(Vflag(λ)) = VI(λ), as in
[IK21b, §3.2]. In particular, we can identify the space of global sections H0(G-Zipµ,VI(λ))
with the space H0(G-ZipFlagµ,Vflag(λ)). Similarly, if X is a k-scheme endowed with a
smooth map ζ : X → G-Zipµ, the map π : Flag(X) → X satifies π∗(Vflag(λ)) = VI(λ),
hence

H0(X,VI(λ)) = H0(Flag(X),Vflag(λ)). (2.3.1)

We define the zip cone of (G, µ) as in [Kos19, §1.2] and [IK22, §3] by

Czip := {λ ∈ X∗(T ) | H0(G-Zipµ,VI(λ)) 6= 0}.

This can be seen as a group-theoretical version of the set of possible weights of nonzero
automorphic forms in characteristic p. Since VI(λ) = 0 when λ is not I-dominant, we clearly
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have Czip ⊂ X∗+,I(T ). One can see that Czip is a cone in X∗(T ) (i.e an additive submonoid
containing 0 ([Kos19, Lemma 1.4.1]). For a cone C ⊂ X∗(T ), define its saturation as:

C := {λ ∈ X∗(T ) | ∃N ≥ 1, Nλ ∈ C}.

We always use the letter C to denote the saturation. For example, we write Czip for the
saturation of Czip. One can define various subcones of Czip, which are more tractable (see
[IK22, §3.7]). Here, we only recall the definition of the cone CpHa, called the cone of partial
Hasse invariants.

Definition 2.3.1 ([Kos19, Definition 1.7.1]). Define CpHa as the image of X∗+(T ) by the
map

h : X∗(T )→ X∗(T ), λ 7→ λ− qw0,I(σ
−1λ).

Similarly, write CpHa for the saturation of CpHa. The cone CpHa is a subcone of Czip.
It can be interpreted as the set of weights of automorphic forms on G-Zipµ which arise
by pullback from the stack Sbt via the map Ψ defined in (2.2.1). The vanishing locus of
sections arising in this way is a union of codimension one strata Fw. In [IK21b], we termed
such sections (flag) partial Hasse invariants.

3 The cone conjecture

3.1 Statement

Let X be a k-scheme endowed with a morphism ζ : X → G-Zipµ. We make the following
assumption:

Assumption 3.1.1.
(a) ζ is smooth.
(b) The restriction of ζ to every connected component of X is surjective.
(c) For all w ∈ W such that `(w) = 1, Flag(X)w is proper.

We define
CX := {λ ∈ X∗(T ) | H0(X,VI(λ)) 6= 0}.

Elements of H0(X,VI(λ)) may be called automorphic forms of weight λ on X, by analogy
with the terminology of Shimura varieties. We always have inclusions

CpHa ⊂ Czip ⊂ CX ⊂ X∗+,I(T ). (3.1.1)

Conjecture 3.1.2. Under Assumption 3.1.1, we have CX = Czip.

It was determined in [IK22, Theorem 4.3.1] when the equality Czip = CpHa holds:

Theorem 3.1.3. The following are equivalent:
(i) One has CpHa = Czip.
(ii) L is defined over Fq and σ acts on ∆L by −w0,L.

If the equivalent condition of Theorem 3.1.3 are satisfied, we say that (G, µ) is of Hasse-
type. In this note, we are interested in the case of Hilbert–Blumenthal Shimura varieties,
in which case we have I = ∅ (also, for Shimura varieties the group G is always defined over
Fp, so we take q = p). In particular, the condition of Theorem 3.1.3 is obviously satisfied,
therefore one has CpHa = Czip. Combining Theorem 3.1.3 with Conjecture 3.1.2, we obtain
the following:
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Conjecture 3.1.4. Suppose that (G, µ) is of Hasse-type and let (X, ζ) be a pair satisfying
Assumption 3.1.1. Then we have CX = Czip = CpHa.

In this note, we explain a new proof of the following theorem.

Theorem 3.1.5. Assume that G is an Fq-form of the group SLn2,k and that µ : Gm,k → Gk

is non-trivial on each factor of Gk. Then Conjecture 3.1.2 holds.

One can also change SL2,k to a group with the same adjoint groups. In particular,
Theorem 3.1.5 applies to Hilbert–Blumenthal Shimura varieties. Actually, we will show
a much stronger result, which also gives information regarding sections on other strata.
Roughly speaking, we will prove that a version of the result CX = CpHa also holds for
various strata of X, those which are called admissible (see Theorem 4.3.2 below).

3.2 Intersection-sum cones

We first explain the general strategy to prove Conjecture 3.1.2 for a general group G. We
implement this strategy in §4 in the specific setting of Theorem 3.1.5. For each w ∈ W ,
we define the cone of partial Hasse invariants CpHa,w of w as follows. First, define a map
hw : X∗(T )→ X∗(T ) by

hw : χ 7→ −wχ+ qw0,Iw0σ
−1(χ).

Then, for w ∈ W , define Ew as the set of positive roots α such that wsα < w (with respect
to the Bruhat order) and `(wsα) = `(w) − 1. Define X∗+,w(T ) ⊂ X∗(T ) as the subset of
χ ∈ X∗(T ) such that 〈χ, α∨〉 ≥ 0 for all α ∈ Ew. We set

CpHa,w := hw(X∗+,w(T )).

This cone is the analogue of CpHa for smaller strata. Its interpretation is the following:
CpHa,w is the set of weights λ ∈ Zn such that Vflag(λ) admits a nonzero section on Fw arising
by pullback from a section over the stratum Sbtw in the Schubert stack (see (2.2.2)). In the
case w = w0, the cone CpHa,w0 coincides with the cone CpHa of Definition 2.3.1. To simplify,
we will make the following assumption:

Assumption 3.2.1. For all w ∈ W and all α ∈ Ew, there exists χα ∈ X∗(T ) such that
(a) 〈χα, α∨〉 > 0
(b) 〈χα, β∨〉 = 0 for all β ∈ Ew \ {α}.

This assumption is not always satisfied. It is satisfied for the groups considered in
Theorem 3.1.5 (for more general groups, one can still carry out the strategy using a subset
of strata which satisfy this assumption). Under Assumption 3.2.1, each stratum Fw carries
a section Haw,α (for each α ∈ Ew) defined over Fw, whose vanishing locus is exactly Fwsα .
We now define the intersection-sum cones C+

w of w as follows.

Definition 3.2.2. For `(w) = 1, set C+
w := CpHa,w. For `(w) ≥ 2, define inductively

C+
w := CpHa,w +

⋂
α∈Ew

C+
wsα .

Again, we write C+
w for the saturation of C+

w . We now explain the connection with
Conjecture 3.1.2. Let (X, ζ) be a pair satisfying Assumption 3.1.1. Define the cone of X
at w ∈ W as follows:

CX,w := {λ ∈ X∗(T ) | H0(Flag(X)w,Vflag(λ)) 6= 0}. (3.2.1)
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Here Flag(X)w denotes the Zariski closure of Flag(X)w endowed with the reduced closed
subscheme structure. For w = w0, we have CX,w0 = CX , because H0(Flag(X),Vflag(λ))
identifies with H0(X,VI(λ)) (see (2.3.1)). Write CX,w for the saturation of CX,w. Under
Assumption 3.2.1, we have:

Theorem 3.2.3 ([GK22, Theorem 2.3.8]). For each w ∈ W , we have CX,w ⊂ C+
w.

We deduce from (3.1.1) the following corollary.

Corollary 3.2.4.
(1) Assume that C+

w0
⊂ Czip. Then we have Czip = CX = C+

w0
.

(2) Assume that C+
w0
⊂ CpHa. Then we have CpHa = Czip = CX = C+

w0
.

In particular Conjecture 3.1.2 holds in those cases.

This result reduces the proof of Conjecture 3.1.2 to showing the inclusion C+
w0
⊂ Czip

or C+
w0
⊂ CpHa, which is a purely group-theoretical statement, and is independent of the

scheme X. An other advantage of this method is that it behaves well under Fq-products.
Assume that G = G1 × G2 where G1, G2 are Fq-groups. Let (Bi, Ti) denote a Borel pair
in Gi for i = 1, 2, and let µi : Gm,k → Ti,k be a cocharacter. Then it is clear from the
definition that all cones Czip, CpHa,w, CX,w, C+

w decompose as C1×C2 where Ci ⊂ X∗(Ti) is
the corresponding cone of (Gi, µi). Hence, if the assumption of (1) or (2) is satified for G1

and G2, then it is also satisfied for G. In particular if we prove Conjecture 3.1.2 using the
strategy of intersection-sum cones, then we automatically obtain the results for products
(over Fq) of such groups. However, it is unclear whether Conjecture 3.1.2 itself is stable by
Fq-products of groups.

4 Groups of type A1

In this section, we prove Theorem 3.1.5 by showing that C+
w0
⊂ CpHa is satisfied in that case.

We let G be an Fq-form of SLn2,k. Then, G is isomorphic over Fq to a product of groups
of the form ResFmq /Fq(SL2,Fqm ). By the previous discussion regarding Fq-products, we are
reduced to the case of a Weil restriction. Note also that in this case, we have P = B, hence
G-ZipFlagµ = G-Zipµ and Flag(X) = X. As previously mentioned, the arguments are
not sensitive to changing the group to a group with the same adjoint group. Therefore,
the following applies also to the group G appearing in the context of Hilbert–Blumenthal
Shimura varieties.

4.1 Group theory

Let n ≥ 1 be an integer and let G be an Fq-form of SLn2,k. We can write G as a product
G1 × · · · ×Gr where

Gi := ResFqmi /Fq(SL2,Fqmi )

for positive integers m1, . . . ,mr satisfying
∑r

i=1mi = n. We fix an isomorphism ι : Gk →
SLn2,k, which yields a partition

{1, . . . , n} = Σ1 t · · · t Σr

corresponding to the orbits of the Galois group on the factors. We write i 7→ σ(i) for the
action of the Frobenius element σ ∈ Gal(k/Fq) on {1, . . . , n}. For example, in the case
r = 1, we can choose ι so that the Frobenius element acts as a cycle

σ(x1, . . . , xn) := (σ(x2), . . . , σ(xn), σ(x1)). (4.1.1)
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on G(k), and hence σ(i) = i + 1 (modulo n). Let T0 ⊂ SL2,k be the diagonal torus.
We identify X∗(T0) = Z by sending m ∈ Z to the character diag(x, x−1) 7→ xm. Define
T := T n0 ⊂ Gk and identify similarly X∗(T ) = Zn. Let B0 ⊂ SL2,k be the Borel subgroup
of lower-triangular matrices, and define B := Bn

0 ⊂ G. Similarly, write B− for the opposite
Borel. The Weyl group W := W (G, T ) is W = {±1}n. An element ε = (ε1, . . . , εn) ∈ W
acts on X∗(T ) = Zn by ελ̇ = (ε1a1, . . . , εnan) for all λ = (a1, . . . , an) ∈ Zn. Identify
elements of W with subsets S ⊂ {1, . . . , n} by the map

W → P({1, . . . , n}), ε = (ε1, . . . , εn) 7→ {i ∈ {1, . . . , n} | εi = −1}. (4.1.2)

Let µ0 : Gm,Fq → SL2,Fq be the cocharacter t 7→ diag(t, t−1), and define µ : Gm,Fq → G by
t 7→ (µ0(t), . . . , µ0(t)). Write G-Zipµ for the corresponding stack of G-zips. Note that since
I = ∅, it is the same as the stack G-ZipFlagµ defined in §2.2. Recall that G-Zipµ = [E\G]
where E ⊂ B ×B− is the zip group defined in (2.1.1).

4.2 Partial Hasse invariant cones

Define a Zariski open subset U ⊂ SL2,k as the non-vanishing locus of the function

h : SL2,k → A1
k, h :

(
a b
c d

)
7→ a.

Denote by Z ⊂ SL2,k the zero locus of h (note that Z is a reduced subscheme). For a subset
S ⊂ {1, . . . , n}, define the set GS by:

GS :=
n∏
i=1

GS,i where GS,i :=

{
U if i ∈ S
Z if i /∈ S.

For each subset S, the corresponding stratum FS ⊂ G-Zipµ is the locally closed substack

FS := [E\GS].

Write CpHa,S instead of CpHa,w where w is the element corresponding to S via the identifica-
tion (4.1.2). Denote by e1, . . . , en ∈ Zn the natural basis of Zn. For a subset S ⊂ {1, . . . , n}
and 1 ≤ i ≤ n, define:

haS,i :=

{
ei − qeσ(i) if i ∈ S,
ei + qeσ(i) if i /∈ S.

(4.2.1)

Then one shows easily that CpHa,S is given by

CpHa,S =

{
n∑
i=1

aihaS,i

∣∣∣∣∣ ai ∈ Z≥0 for i ∈ S, ai ∈ Z for i /∈ S

}
.

4.3 Results

Let (X, ζ) be a pair satisfying Assumption 3.1.1. Recall that Flag(X) = X in our case.
For a subset S ⊂ {1, . . . , n}, denote by XS ⊂ X the corresponding locally closed subset,
endowed with the reduced structure. Concretely, XS is the preimage by ζ of the locally
closed substack FS ⊂ G-Zipµ. Let XS be the Zariski closure of XS. Denote also by CX,S
the cone of X at the stratum S, as defined in (3.2.1). We have an action of Gal(k/Fq) on
the set {1, . . . , n}. Hence, Gal(k/Fq) also acts on the set of all subsets of {1, . . . , n}. It also
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acts on the set of pairs (S, j) where S ⊂ {1, . . . , n} is a subset and j ∈ S. First, consider
the case when S ⊂ Σi for some 1 ≤ i ≤ r, and j ∈ S is an element. In this case, we have a
bijection

βj : {1, . . . ,mi} → Σi, d 7→ σd(j).

We say that the pair (S, j) is admissible if β−1
j (S) = {u1, . . . , us} with u1 < · · · < us and

all the integers ui+1 − ui for i = 1, . . . , s− 1 are odd. For any pair (S, j) such that j ∈ S,
we say that (S, j) is admissible if the pair (S ∩ Σi, j) is admissible, where i ∈ {1, . . . , r} is
the unique element such that j ∈ Σi. Finally, we define:

Definition 4.3.1. Let S ⊂ {1, . . . , n} be a subset. We say that S is admissible if (S, j) is
an admissible pair for each j ∈ S.

For example, {1, . . . , n} is always admissible. When r = 1, we fix the Galois action
given in (4.1.1). In this case, a subset S = {u1, . . . , us} (with u1 < · · · < us) is admissible if
and only if ij+1− ij (for j = 1, . . . , s− 1) and i1 +n− is are all odd numbers. When r = n,
all subsets are admissible. The bulk of the proof is to show the following result, which is
[GK18, Theorem 4.2.3] :

Theorem 4.3.2. Let S ⊂ {1, . . . , n} be an admissible subset. Then CX,S = CpHa,S.

By taking S = {1, . . . , n}, we obtain Theorem 3.1.5. We also have the following result,
which shows that the space of Hilbert modular forms defined on a specifica stratum vanishes
in some cases:

Corollary 4.3.3. Let S ⊂ {1, . . . , n} be an admissible subset. For any λ ∈ Zn such that
λ 6∈ CpHa,S, we have

H0(XS, ω(λ)) = 0.

Here, ω(λ) is the line bundle defined in (1.0.1) in the introduction, which was denoted
by Vflag(λ) for a general group in section 2.2. In the remainder of this paper, we illustratate
how the techniques of intersection-sum cones (Theorem 3.2.3 and Corollary 3.2.4) give a
straightforward proof of Theorem 4.3.2.

4.4 Inclusions between cones

As we previously explained, we can reduce to the case of a Weil restriction (i.e. to the case
when r = 1). Therefore, for the remainder of the paper, we will assume that r = 1 and
we consider the Galois action given by (4.1.1), which corresponds to σ(i) = i + 1 (taken
modulo n). Hence, the weights haS,i are given by

haS,i :=

{
ei − qei+1 if i ∈ S,
ei + qei+1 if i /∈ S.

The tuple BS = (haS,1, . . . , haS,n) is a Q-basis of Qn. As in (4.2.1), the cone CpHa,S is the
set of integral linear combinations of the haS,i with nonnegative coefficents for i ∈ S. For a
subset S ⊂ {1, . . . , n} and j ∈ S, define the partial Hasse invariant cone of S with respect
to j ∈ S as follows:

C
(j)
pHa,S :=

{
n∑
i=1

aihaS,i

∣∣∣∣∣ ai ∈ Z for i 6= j, aj ∈ Z≥0

}
.
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Then, for each j ∈ S, the cone C(j)
pHa,S is a half-space of Zn and CpHa,S can be written

as CpHa,S =
⋂
j∈S C

(j)
pHa,S. For convenience, we will consider rational coefficients and study

the Q≥0-subcones of Qn generated by CpHa,S and C(j)
pHa,S respectively. We write CpHa,S and

C(j)
pHa,S respectively for these subsets of Qn. We give an explicit equation for the cone

C(j)
pHa,S in the canonical basis (ei)1≤i≤n of Qn. For 1 ≤ a, b ≤ n, define S(a, b) as the set
{a ≤ i ≤ b | i ∈ S}, and put

γ(S, a, b) := (−1)|S(a,b)|.

In particular, for a > b we have S(a, b) = ∅ and γ(S, a, b) = 1. We put s := |S|. For j ∈ S
and each 1 ≤ i ≤ n, define

Ci(S, j) :=

{
(−1)n+1+s+i+j · γ(S, i, j) · q1−i for 1 ≤ i ≤ j

(−1)1+i+j · γ(S, j + 1, i− 1) · qn+1−i for j + 1 ≤ i ≤ n.

Furthermore, for λ = (x1, . . . , xn) ∈ Zn, define E(j)
S (λ) =

∑n
i=1 Ci(S, j)xi.

Lemma 4.4.1. We have C(j)
pHa,S =

{
λ ∈ Qn

∣∣∣ E(j)
S (λ) ≤ 0

}
.

Proof. It is easy to check that E(j)
S (haS,i) = 0 for all i 6= j. Finally, E(j)

S (haS,j) has the same
sign as −Cj+1(S, j) = −qn−j < 0. The result follows.

For each 1 ≤ r ≤ n and 1 ≤ i ≤ r, define Tr := {1, . . . , r} and T (i)
r := {1, . . . , i − 1} ∪

{i + 1, . . . , r}. In other words, T (i)
r is the set obtained by removing i from Tr. Note that

T
(r)
r = Tr−1.

Lemma 4.4.2. Let 1 ≤ r ≤ n. We have C(1)

pHa,T
(r)
r

∩ C(r)

pHa,T
(1)
r

⊂ C(1)
pHa,Tr

.

Proof. By Lemma 4.4.1, the cone C(1)
pHa,Tr

is the set of λ = (x1, . . . , xn) ∈ Zn such that
ETr,1(λ) ≤ 0, where

E
(1)
Tr

(λ) := (−1)n+rx1 +
r+1∑
i=2

qn+1−ixi +
n∑

i=r+2

(−1)i+r+1qn+1−ixi.

Similarly, the cones C(1)

pHa,T
(r)
r

and C(r)

pHa,T
(1)
r

are respectively given by the inequalities

(−1)n+r+1x1 +
r∑
i=2

qn+1−ixi +
n∑

i=r+1

(−1)i+rqn+1−ixi ≤ 0, (4.4.1)

(−1)n+rx1 +
r∑
i=2

(−1)n+r−1q1−ixi +
n∑

i=r+1

(−1)i+r+1qn+1−ixi ≤ 0. (4.4.2)

Define a, b ∈ Q by a := 1+(−1)n+rq−n

1+(−1)n+r+1q−n
and b := 2

1+(−1)n+r+1q−n
. It is clear that a, b are

positive numbers. If we multiply (4.4.1) by a, (4.4.2) by b, and add up these inequalities,
we find E(1)

Tr
(λ) ≤ 0. The result follows.

Lemma 4.4.2 can be generalized a follows. For a subset S ⊂ {1, . . . , n} and u ∈ S,
define S(u) := S \ {u}. Suppose S = {u1, . . . , ur} with u1 < · · · < ur and r ≥ 2. The proof
of the following Lemma is completely similar to Lemma 4.4.2, modulo a change of variable.
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Lemma 4.4.3. We have an inclusion C(u1)

pHa,S(ur) ∩ C(ur)

pHa,S(u1) ⊂ C(u1)
pHa,S.

We now explain a similar result regarding the various cones of partial Hasse invariants.

Lemma 4.4.4. Let 2 ≤ r ≤ n. Assume that r and n are of same parity. Then(
r−1⋂
i=1

C(i+1)

pHa,T
(i)
r

)
∩ C(1)

pHa,T
(r)
r

⊂ C(1)
pHa,Tr

.

Proof. For 1 ≤ i ≤ r − 1, the cone C(i+1)

pHa,T
(i)
r

is given by the set of λ = (x1, . . . , xn) ∈ Zn

satisfying the inequality E(i+1)

T
(i)
r

(λ) ≤ 0, where

E
(i+1)

T
(i)
r

(λ) :=
i∑

d=1

q1−dxd − q−1xi+1 +
r∑

d=i+2

qn+1−dxd +
n∑

d=r+1

(−1)d+r+1qn+1−dxd.

In the above equation, we used that r and n have the same parity, hence (−1)r+n = 1.
Similarly, C(1)

pHa,T
(r)
r

is defined by E(1)

T
(r)
r

(λ) ≤ 0, where

E
(1)

T
(r)
r

(λ) = −x1 +
r∑

d=2

qn+1−dxd +
n∑

d=r+1

(−1)d+rqn+1−dxd.

Finally, C(1)
pHa,Tr

is defined by E(1)
Tr

(λ) ≤ 0, where

E
(1)
Tr

(λ) = −x1 +
r+1∑
d=2

qn+1−dxd +
n∑

d=r+2

(−1)d+r+1qn+1−dxd.

One can check easily that
r−1∑
i=1

2r−iqn(qn + 1)i−1E
(i+1)

T
(i)
r

(λ) + (qn + 1)r−1E
(1)

T
(r)
r

(λ) = Pr(q
n)E

(1)
Tr

(λ) (4.4.3)

where Pr(x) is the polynomial Pr(x) = x
∑r−1

i=1 2r−i(x+1)i−1− (x+1)r−1. The coefficient of
xd in Pr(x) is positive for all d > 0, and it is −1 for d = 0. In particular, we have Pr(qn) > 0.
Hence (4.4.3) shows that if E(i+1)

T
(i)
r

(λ) ≤ 0 for each 1 ≤ i ≤ r − 1 and E
(1)

T
(r)
r

(λ) ≤ 0, then

also E(1)
Tr

(λ) ≤ 0. This proves the result.

4.5 Generalization to admissible subsets

We can generalize Lemma 4.4.4 as follows. For any subset S ⊂ {1, . . . , n} and any i ∈ S,
define i+ as the "next element" in S. More precisely, if S = {u1, . . . , ur} with u1 < · · · < ur,
define u+

j := uj+1 for 1 ≤ j < r and u+
r := u1. For any subset S such that |S| > 1, we

define
ĈpHa,S :=

⋂
u∈S

C
(u+)

pHa,S(u)

Similarly, we define ĈpHa,S as the Q≥0-subcone generated in Qn by ĈpHa,S.

Lemma 4.5.1. Suppose that r := |S| > 1 and that (S, j) is an admissible pair. Assume
furthermore that r and n are of same parity. Then

ĈpHa,S ⊂ C(j)
pHa,S

11



Proof. The proof is completely similar to Lemma 4.4.4. Write S = {u1, . . . , ur} with
u1 < · · · < ur. Using the Galois action, we may assume that j = u1. Then we find again
the relation

r−1∑
i=1

2r−iqn(qn + 1)i−1E
(ui+1)

S(ui)
(λ) + (qn + 1)r−1E

(u1)

S(ur)(λ) = Pr(q
n)E

(u1)
S (λ)

where Pr(x) is the polynomial Pr(x) = x
∑r−1

i=1 2r−i(x+1)i−1−(x+1)r−1. The result follows
as in Lemma 4.4.4.

Finally, we state a useful lemma used in the next section. Assume that S = {u1, . . . , ur}
with u1 < · · · < ur and r ≥ 2. Furthermore, assume that (S, u1) is an admissible pair.
Then we have

Lemma 4.5.2.
(1) The pair (S(ur), u1) is admissible.
(2) Assume that the parity of r and n are different. Then (S(u1), ur) is admissible.

Proof. The first assertion is immediate. To show (2), it suffices to show that n− ur + u2 is
odd. Since (S, u1) is admissible, ur − u2 has the same parity as r. The result follows.

4.6 Intersection-sum cones

Denote by C+
S the intersection-sum cone corresponding to the stratum S. We recall its

definition. For S such that |S| = 1, we set C+
S := CpHa,S. For |S| > 1, we define inductively

C+
S := CpHa,S +

⋂
u∈S

C+
S(u) .

Proposition 4.6.1. If (S, j) is an admissible pair, then C+
S ⊂ C

(j)
pHa,S.

Proof. It suffices to show C+
S ⊂ C(j)

pHa,S. Since CpHa,S is obviously contained in C(j)
pHa,S, it

is enough to show
⋂
u∈S C

+
S(u) ⊂ C(j)

pHa,S. We prove the result by induction on |S|. Write
r := |S|. We may assume that S = {u1, . . . , ur} with u1 < · · · < ur and j = u1. First,
assume that r and n have different parity. In this case, the pairs (S(ur), u1) and (S(u1), ur)

are admissible by Lemma 4.5.2. By induction, we have C+
S(ur) ⊂ C(u1)

pHa,S(ur) and C+
S(u1) ⊂

C(ur)

pHa,S(u1) . We deduce by Lemma 4.4.3 that⋂
u∈S

C+
S(u) ⊂ C+

S(u1) ∩ C+
S(ur) ⊂ CpHa,u1 .

We now assume that r and n have the same parity. In this case, we consider the pairs
(S(u), u+) for each u ∈ S. It is clear that they are all admissible. Hence, we have by
induction C+

S(u) ⊂ C(u+)

pHa,S(u) . By Lemma 4.5.1, we deduce⋂
u∈S

C+
S(u) ⊂

⋂
u∈S

C(u+)

pHa,S(u) = ĈpHa,S ⊂ C(u1)
pHa,S.

This terminates the proof.

Corollary 4.6.2. If S is an admissible subset, then C+
S ⊂ CpHa,S.

Proof. By definition, (S, j) is admissible for all j ∈ S. We deduce from Proposition 4.6.1
that C+

S ⊂
⋂
j∈S C

(j)
pHa,S = CpHa,S. The result follows.

Finally, we complete the proof of Theorem 4.3.2. Since we always have CpHa,S ⊂ CX,S ⊂
C+
S by Theorem 3.2.3, we deduce from Corollary 4.6.2 that these three cones must coincide.
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