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Abstract

We give a simpler and more general proof that the weight of a mod p Hilbert
modular form is spanned by the weights of partial Hasse invariants. We also cover the
case of Ekedahl-Oort strata of smaller dimension. For the global stratum, this result
was also proved by Diamond-Kassaei by other methods in [DK23].

1 Introduction

The main purpose of this short paper is to provide a more straight-forward proof of the
cone conjecture for Hilbert—Blumenthal Shimura varieties. This conjecture, which can be
formulated for arbitrary Hodge-type Shimura varieties, asserts in this case that the weight
of any nonzero Hilbert modular form in characteristic p is spanned (over Q) by the weights
of partial Hasse invariants. This result was initially proved in [DK17| (extended in [DK23])
by Diamond-Kassaei and around the same time in [GKI8| using a completely different
approach. We discuss below the differences between these papers in terms of results and
methods.

The main results of this paper concern the special fiber of Hilbert—Blumenthal Shimura
varieties at a prime p of good reduction. Fix a totally real extension F'/Q of degree n := [F :
Q] > 1. Recall that Hilbert-Blumenthal Shimura varieties are moduli spaces of polarized
abelian varieties endowed with an action of Op. From the point of view of Deligne (|[Del79],
they are attached to the connected, reductive Q-group G defined by

G(R) ={g € GLy(F ®q¢ R) | det(g) € R*}

for any Q-algebra R. Fix a prime number p which is unramified in F'. Write X for the set
of embeddings F' — Q,, and choose an ordering > = {r,...,7,}. The base change of G
to F' then identifies with the subgroup of tuples (g1,...,9,) € GLg X - -+ x GLy satisfying

the condition det(gy) = --- = det(g,). Since p is unramified, the group Gal(Qy"/Q,) =
Gal(F,/F,) acts on %, and hence on {1,...,n}. We denote the action of the Frobenius
homomorphism x + 2P by i +— o(i) for i € {1,...,n}.

Fix an open compact subgroup K? C G(A?). Since p is assumed unramified, the lattice
Op ®z Z, C F ®q Q, yields a reductive Z,-model G of Ggq,. Set K, := §(Z,). By works of
Deligne-Pappas, the Shimura variety at level K = KPK, admits a smooth integral model
over Z,. We are interested in its special fiber over I, that we simply denote by X. It is a
smooth F,-scheme of dimension n. For each subset S C {1,...,n}, there is a corresponding
Ekedahl-Oort stratum Xg C X, which is a locally closed subscheme of X of dimension
|S|]. For example, the maximal Ekedahl-Oort stratum corresponds to S = {1,...,n} and
coincides with the locus where the underlying abelian variety is ordinary. A stratum Xg is
contained in the Zariski closure of X1 if and only if S C T
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The scheme X comes equipped with line bundles wy, ..., w, whose tensor product w :=
&, w; is the usual Hodge line bundle. For each A = (k; ..., k,) € Z", define a line bundle

w(\) = ®w§”. (1.0.1)

For each subset S C {1,...,n}, there exists a system of generalized partial Hasse invariants
on the Zariski closure Xg. By this we mean that there exist sections Hag; (for each i € )
such that Hag,; vanishes exactly on the set YS\{Z}. Furthermore, for i € S, there are
natural sections Hag; that are entirely non-vanishing on Xg (see section for details).
Specifically, the section Hag; lies in H °(Xs, w(hag,;)) where

e, — qea(i) if i € S,
hag; = op
e +qe,n ifigs

where (ey,...,e,) is the standard basis of Z". When S = {1,...,n}, the sections Hag; are
the usual partial Hasse invariants constructed by Andreatta—Goren in [AG05|. We denote
them simply by Ha; for ¢ = 1,...,n and we write ha; := e; — ge,(;) for their weights.

Define a cone Cppyas C Z" as the cone spanned over Zs, by the weights hag,; for
i € {1,...,n}. On the other hand, we define a second cone Cx g C Z" as the set of
A € Z" such that the space H°(Xg,w())) is nonzero. Obviously, one has an inclusion
CpHa,s C Cxg. For a cone C' C Z", define the saturation C of C as the set of A € Z"
such that some positive multiple of A lies in C. We always denote the saturation with the
calligraphic letter C. For example, Cphas and Cx g denote the saturations of Cph, s and
Cx g respectively. For each subset S, we have an inclusion Cphas C Cx s.

In Definition , we define the notion of admissible subsets of {1,...,n} by an explicit
condition on S. When p splits in F', any subset is admissible. The whole set S = {1,...,n}
is always admissible. If p is inert and S is a set of the form S = {iy,... s} withi; < -+ < i,
and i;41 —4; odd (for j =1,...,s—1) and i1 +n — i, odd, then S is admissible. The main
result of [GK1S] is

Theorem 1. If S is an admissible subset of {1,...,n}, then Conas = Cx.s.

This result gives a vanishing result for the space of Hilbert modular forms defined on
the stratum X g. Namely, for admissible S one has H(X 5,w()\)) = 0 whenever A lies in the
complement of Copas. In particular, we deduce for S = {1,...,n} the following corollary:

Corollary 2. Let f € H°(X,w()\)) be a nonzero Hilbert modular form of weight X\. Then
A 15 spanned over Qsq by the weights of partial Hasse invariants hay, ..., ha,.

In our original paper [GK18]|, we proved this result by an extremely tedious computation.
In this short paper, we propose to use the notion of intersection-sum cones introduced in
[GK22] to give a more elementary and systematic proof. The advantage of this method
is that it can adapt to any reductive group G and any Shimura variety of Hodge-type, as
demonstrated in loc. cit.. Moreover, we believe that the proof presented in this paper is
more enlightening than the original proof.

Finally, we briefly discuss the results of Diamond—Kassaei in [DK23] and the differences
with our paper. The results of loc. cit. show Corollary 2 as a consequence of a result on
divisibility of Hilbert modular forms by partial Hasse invariants ([DK23, Theorem 7.1]).
They only consider global sections over X and do not treat the case of a general stratum
Xg for S C {1,...,n}, as opposed to our Theorem 1. However, the results of loc. cit. also
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cover the case when p is ramified in F', whereas we assume p to be unramified. On the
other hand, we work in the general setting of an arbitrary scheme endowed with a smooth,
surjective morphism X — G-Zip", where G-Zip" is the stack of G-zips of Pink—Wedhorn—
Ziegler ([PWZ15]). Therefore our results reach beyond the case of Hilbert-Blumenthal
Shimura varieties.

We now give an overview of each section. In section 2, we review the basic definitions
pertaining to the stack of G-zips in the general setting. In section 3, we recall the Cone
Conjecture for schemes endowed with a smooth, surjective map X — G-Zip" (which include
Shimura varieties). We also explain the strategy to prove it using the notion of intersection-
sum cones of strata. Finally, section 4 is dedicated to the proof of Theorem 1 using the
approach of intersection-sum cones in the case when G is the reductive group defined above
in this introduction.

2 Review of G-zips

2.1 Stack of G-zips

Fix an algebraic closure k of F; (in applications to Shimura varieties, we always take ¢ = p).
Let G be a connected reductive F,-group. Denote by ¢: G — G the Frobenius homomor-
phism. Fix a cocharacter p: Gy — Gi. We call (G, u) a cocharacter datum. From p, we
obtain a zip datum Z, as explained in [IK21al §2.2.2]. We recall the construction. First,
o defines a pair of opposite parabolics Py(p), where Py (u)(k) (resp. P_(u)(k)) consists of
the elements g € G(k) such that the map

G — Gis t = p(t)gu(t) ™ (vesp. ¢ pu(t) ™ gu(t))

extends to a regular map A} — Gj. The centralizer of p is a Levi subgroup L(u) =
Py (1) N P_(p). Then, define P := P_(p), Q := (Py(p))?, L := L(p) and M := L@, Let
¢: L — M be the Frobenius homomorphism. The tuple Z, = (G, P, L, Q, M, ¢) is called
the zip datum attached to (G, u). Then, define the zip group E by:

Ei={(r,y) € Px Q| o0} (x)) = 0% (1)} (2.1.1)

Here, 0F: P — L denotes the map that sends € P to its Levi component T € L (and
similarly for 0]?4) Pink—-Wedhorn—Ziegler define the stack of G-zips of type u, denoted by
G-Zip" in [PWZ15, Definition 1.4]. It can be defined as the quotient stack

G-zip" = [E\G}).

where E acts on G by (z,y) - g := wgy~! for all (z,y) € E and all g € G. It also has an
interpretation as a moduli stack of certain torsors.

2.2 The flag space

For convenience, we assume that there exists a Borel pair (B,T") defined over F, such that
B C P and such that p factors through T. Let & C X*(T) (resp. ®]) be the set of
positive T-roots in G (resp. L), where positivity is defined with respect to the opposite
Borel of B. Write A (resp. I := Ay) for the subsets of simple roots of G (resp. L), and let
W (resp. W;) be the Weyl group of ® (resp. ®1). For a € @, let s, be the corresponding
root reflection. Then (W, {s,|a € A}) is a Coxeter system; denote by ¢: W — N its
length function and by < the Bruhat-Chevalley order. Write wy (resp. wy ) for the longest
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element of W (resp. W;). Let TW C W be the subset of elements w € W which are
of minimal length in their right coset Wyw. We write X7 (7") for the set of dominant
characters. Similarly, the I-dominant characters of T are denoted by X* ;(T'). We set

z = o (wo,1)wo.

The stack of zip flags G-ZipFlag! was defined in [GK19a, §2.1]. It can be defined as the
quotient stack [E'\G| where E' = E N (B x G) (it also has a modular interpretation in
terms of torsors). There is a natural projection map 7: G-ZipFlag! — G-Zip" whose
fibers are isomorphic to P/B. Let X be a k-scheme endowed with a morphism of stacks
(: X — G-Zip". Form the fiber product

Cﬂag

Flag(X) — G-ZipFlag"

X —————TE—————§ C;-Zj})u

We call Flag(X) the flag space of X (JGK19al §9.1]). By |[GKI19b| §4.1], there is a natural
smooth, surjective morphism of stacks

U: G-ZipFlag! — Sbt := [B\G/B]. (2.2.1)

The stack Sht is called the Schubert stack, it is finite and its points are parametrized by the
Weyl group W. It admits a natural stratification (Sbt,),ew by locally closed substacks,
corresponding to the Bruhat stratification of G, i.e.

Sbt,, := [B\BwB/B].. (2.2.2)

By pullback, the fibers of ¥ define a stratification of G-ZipFlag! by locally closed substacks
(Fu)w, with the same closure relations. Pulling back via (gae, we obtain a locally closed
stratification (Flag(X),)wew on Flag(X).

2.3 The zip cone

As in [IK21al §2.4|, we can attach to any P-representation (V,p) a vector bundle V(p) on
G-Zip", similarly to the usual associated sheaf construction of [Jan03, §5.8]. For A € X*(T"),
denote by V7(\) the P-representation Ind5(\) and by p;.) the corresponding map P —
GL,(V7(N)). Note that pry is trivial on the unipotent radical R,(P), so we may view it as
an L-representation (with highest weight A). Denote by V() the vector bundle on G-Zip”
attached to V7()), and call it the automorphic vector bundle attached to A. Similarly,
we can define a line bundle Vgae(A) on G-ZipFlag" such that m,(Vaag(A)) = Vi(A), as in
[IK21D], §3.2]. In particular, we can identify the space of global sections H°(G-Zip*, V;()))
with the space H°(G-ZipFlag’, Vi.e(\)). Similarly, if X is a k-scheme endowed with a
smooth map (: X — G-Zip", the map w: Flag(X) — X satifies m,(Vaae(A)) = Vi(N),
hence

HY(X,V()\) = H°(Flag(X), Vaag(N)). (2.3.1)
We define the zip cone of (G, i) as in [Kos19, §1.2] and [IK22] §3] by

Cuip = {\ € X*(T) | H*(G-Zip",V1()\)) # 0}.

This can be seen as a group-theoretical version of the set of possible weights of nonzero
automorphic forms in characteristic p. Since V7(A) = 0 when X is not /-dominant, we clearly
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have Cyip C X7 /(T'). One can see that Cyp, is a cone in X*(T') (i.e an additive submonoid
containing 0 (|[Kos19, Lemma 1.4.1]). For a cone C' C X*(T'), define its saturation as:

C={NeX*(T)|3IN>1,NxeC}.

We always use the letter € to denote the saturation. For example, we write C,, for the
saturation of Cy,. One can define various subcones of Cyp,, which are more tractable (see
[IK22, §3.7]). Here, we only recall the definition of the cone Cpna, called the cone of partial
Hasse invariants.

Definition 2.3.1 (|[Kosl9, Definition 1.7.1]). Define Coua as the image of X5 (T) by the
map
h: X*(T) = X*(T), A= X—quor(c™')).

Similarly, write Cpp, for the saturation of Cpna. The cone Cpp, is a subcone of Chp.
It can be interpreted as the set of weights of automorphic forms on G-Zip" which arise
by pullback from the stack Sbt via the map U defined in (2.2.1). The vanishing locus of
sections arising in this way is a union of codimension one strata J,,. In [IK21b], we termed
such sections (flag) partial Hasse invariants.

3 The cone conjecture

3.1 Statement

Let X be a k-scheme endowed with a morphism (: X — G-Zip". We make the following
assumption:

Assumption 3.1.1.
(a) ¢ is smooth.
(b) The restriction of ¢ to every connected component of X is surjective.

(c) For allw € W such that {(w) = 1, Flag(X),, is proper.

We define
Cx :={\ € X*(T) | H*(X,V;(\)) # 0}.

Elements of H°(X,V;()\)) may be called automorphic forms of weight A on X, by analogy
with the terminology of Shimura varieties. We always have inclusions

Cona C Cip C Cx C X7 /(7). (3.1.1)
Conjecture 3.1.2. Under Assumption we have Cx = Cp.
It was determined in [IK22, Theorem 4.3.1] when the equality C,, = Cpna holds:

Theorem 3.1.3. The following are equivalent:
(i) One has Cppa = Cyip.
(ii) L is defined over F, and o acts on Ap by —wo .

If the equivalent condition of Theorem are satisfied, we say that (G, u) is of Hasse-
type. In this note, we are interested in the case of Hilbert-Blumenthal Shimura varieties,
in which case we have I = () (also, for Shimura varieties the group G is always defined over
F,, so we take ¢ = p). In particular, the condition of Theorem is obviously satisfied,
therefore one has Cpna = Cip. Combining Theorem with Conjecture we obtain
the following:



Conjecture 3.1.4. Suppose that (G, ) is of Hasse-type and let (X, () be a pair satisfying
Assumption [3.1.1. Then we have Cx = Cuip = Cpua.

In this note, we explain a new proof of the following theorem.

Theorem 3.1.5. Assume that G is an F-form of the group SLy, and that ji: G — G,
is non-trivial on each factor of Gy. Then Conjecture holds.

One can also change SLsj to a group with the same adjoint groups. In particular,
Theorem [3.1.5] applies to Hilbert-Blumenthal Shimura varieties. Actually, we will show
a much stronger result, which also gives information regarding sections on other strata.
Roughly speaking, we will prove that a version of the result €x = Cyna also holds for
various strata of X, those which are called admissible (see Theorem below).

3.2 Intersection-sum cones

We first explain the general strategy to prove Conjecture for a general group G. We
implement this strategy in §4] in the specific setting of Theorem [3.1.5] For each w € W,
we define the cone of partial Hasse invariants Cppa,, of w as follows. First, define a map
hy: X*(T) — X*(T) by

B X+ —wX + quo rwoo ().

Then, for w € W, define E,, as the set of positive roots a such that ws, < w (with respect
to the Bruhat order) and {(ws,) = {(w) — 1. Define X} (T) C X*(T) as the subset of
X € X*(T') such that (x,a") >0 for all « € E,,. We set

Cotta,w 1= hu (X5, (T).

This cone is the analogue of Cpn, for smaller strata. Its interpretation is the following:
ChoHa,w 15 the set of weights A € Z" such that Vg,,(\) admits a nonzero section on Fo arising
by pullback from a section over the stratum Sbt,, in the Schubert stack (see (2.2.2)). In the
case w = wy, the cone Cpy, u, coincides with the cone Cyuy, of Definition m To simplify,
we will make the following assumption:

Assumption 3.2.1. For allw € W and all « € E,,, there exists xo € X*(T) such that
(a) (Xa,a") >0
(b) (Xa;BY) =0 for all p € E, \ {a}.

This assumption is not always satisfied. It is satisfied for the groups considered in
Theorem m (for more general groups, one can still carry out the strategy using a subset
of strata which satisfy this assumption). Under Assumption , each stratum &, carries
a section Ha, , (for each a € E,)) defined over ?’“w, whose vanishing locus is exactly ?’”wsa.
We now define the intersection-sum cones C of w as follows.

Definition 3.2.2. For {(w) = 1, set C} := Cppaw. For l(w) > 2, define inductively
ij_ = CpHa,w + ﬂ Ci;sa‘
a€ly

Again, we write CJ, for the saturation of C;. We now explain the connection with
Conjecture Let (X, () be a pair satisfying Assumption [3.1.1} Define the cone of X
at w € W as follows:

Cx.w = {N € X*(T) | H*(Flag(X),,, Vaiag(\)) # 0}. (3.2.1)
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Here Flag(X), denotes the Zariski closure of Flag(X), endowed with the reduced closed
subscheme structure. For w = wy, we have Cx,, = Cx, because H’(Flag(X), Vaag()))
identifies with H°(X,V;(\)) (see (2.3.1)). Write Cx,, for the saturation of Cx,. Under
Assumption [3.2.1], we have:

Theorem 3.2.3 ([GK22| Theorem 2.3.8]). For each w € W, we have Cx,, C CI.
We deduce from (3.1.1)) the following corollary.

Corollary 3.2.4.
(1) Assume that CJ C Cup. Then we have Cup = Cx = CF .

(2) Assume that C C Cppa. Then we have Copa = Caip = Cx = Cf .
In particular Conjecture [3.1.3 holds in those cases.

This result reduces the proof of Conjecture m to showing the inclusion Cf C Cyp
or Cf C Cpha, which is a purely group-theoretical statement, and is independent of the
scheme X. An other advantage of this method is that it behaves well under F,-products.
Assume that G = G x Gy where Gy, Gy are F-groups. Let (B;,T;) denote a Borel pair
in G; for ¢ = 1,2, and let p;: Gy — T;x be a cocharacter. Then it is clear from the
definition that all cones Clip, CoHaw, Cxw, Cy decompose as Cy x Cy where C; C X*(T;) is
the corresponding cone of (G, i1;). Hence, if the assumption of or is satified for G
and G, then it is also satisfied for G. In particular if we prove Conjecture |3.1.2| using the
strategy of intersection-sum cones, then we automatically obtain the results for products
(over IF,) of such groups. However, it is unclear whether Conjecture itself is stable by
F,-products of groups.

4 Groups of type A;

In this section, we prove Theorem by showing that € C Cup, is satisfied in that case.
We let G be an Fy-form of SLj,. Then, G is isomorphic over F; to a product of groups
of the form Respmn /F,(SLar, . ). By the previous discussion regarding F,-products, we are
reduced to the case of a Weil restriction. Note also that in this case, we have P = B, hence
(G-ZipFlag! = G-Zip" and Flag(X) = X. As previously mentioned, the arguments are
not sensitive to changing the group to a group with the same adjoint group. Therefore,
the following applies also to the group G appearing in the context of Hilbert—Blumenthal
Shimura varieties.

4.1 Group theory

Let n > 1 be an integer and let G be an F,-form of SLy,. We can write G as a product
G1 X -+ X G, where
G; = ReSqui /F, (SLQ’qui)

for positive integers my, ..., m, satisfying > m; = n. We fix an isomorphism ¢: G, —
SLj ., which yields a partition

1,....nl=U---U%,

corresponding to the orbits of the Galois group on the factors. We write i +— (i) for the

action of the Frobenius element ¢ € Gal(k/F;) on {1,...,n}. For example, in the case
r =1, we can choose ¢ so that the Frobenius element acts as a cycle
(21, ) = (0(x2),...,0(x),0(x1)). (4.1.1)
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on G(k), and hence o(i) = i + 1 (modulo n). Let Ty C SLyj be the diagonal torus.
We identify X*(Ty) = Z by sending m € Z to the character diag(z,z~!) — ™. Define
T =T} C Gy and identify similarly X*(7') = Z™. Let By C SLay be the Borel subgroup
of lower-triangular matrices, and define B := B{' C G. Similarly, write B_ for the opposite
Borel. The Weyl group W := W(G,T) is W = {£1}". An element € = (e1,...,€,) € W
acts on X*(T) = Z" by e\ = (e1aq,...,ena,) for all X\ = (aq,...,a,) € Z". Identify
elements of W with subsets S C {1,...,n} by the map

W —P{1,....n}), e=(e,....,6)—~{ie{l,....n}|e=-1}. (4.1.2)

Let y19: Gmp, — SLar, be the cocharacter ¢ — diag(t, t=1), and define yu: Gumpr, — G by
t— (po(t), ..., po(t)). Write G-Zip" for the corresponding stack of G-zips. Note that since
I =0, it is the same as the stack G-ZipFlag" defined in §2.2] Recall that G-Zip" = [E\G]
where £ C B x B_ is the zip group defined in (2.1.1]).

4.2 Partial Hasse invariant cones

Define a Zariski open subset U C SLy, as the non-vanishing locus of the function

h: SLaj, — AL, h: (‘C‘ Z) - a.

Denote by Z C SLa, the zero locus of h (note that Z is a reduced subscheme). For a subset
S C {1,...,n}, define the set Gg by:

GS = H GS,z' where Ggﬂ' =

i=1

U ifies
Z ifigs.

For each subset S, the corresponding stratum Fg¢ C G-Zip” is the locally closed substack
gjs = [E\Gs]

Write Cpha s instead of Cppa, Where w is the element corresponding to S via the identifica-
tion (4.1.2). Denote by ey, ..., e, € Z" the natural basis of Z". For a subset S C {1,...,n}
and 1 <1 < n, define:

i —qeq) if1 €S,
hag, = ' 4@ NTE (4.2.1)
e +qe,y ifigsS.

Then one shows easily that Cpn, g is given by

n
OpHa,S = { E aihaS,z’

=1

a; € Lo for i € S, aiEZforigéS}.

4.3 Results

Let (X, () be a pair satisfying Assumption [3.1.1] Recall that Flag(X) = X in our case.
For a subset S C {1,...,n}, denote by Xg C X the corresponding locally closed subset,
endowed with the reduced structure. Concretely, Xg is the preimage by ( of the locally
closed substack g C G-Zip”. Let X g be the Zariski closure of Xg. Denote also by Cxs
the cone of X at the stratum S, as defined in (3.2.1)). We have an action of Gal(k/F,) on
the set {1,...,n}. Hence, Gal(k/F,) also acts on the set of all subsets of {1,...,n}. It also
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acts on the set of pairs (S, ) where S C {1,...,n} is a subset and j € S. First, consider
the case when S C ¥; for some 1 <7 <7, and j € S is an element. In this case, we have a
bijection
Bt {l,...omi} = % d— o%(j).

We say that the pair (S, ) is admissible if 5;'(S) = {ug, ..., us} with uy < -+ < u, and
all the integers u;41 — u; for i =1,...,s — 1 are odd. For any pair (S, j) such that j € S,
we say that (S, 7) is admissible if the pair (S N 3;, ) is admissible, where ¢ € {1,...,r} is
the unique element such that j € ;. Finally, we define:

Definition 4.3.1. Let S C {1,...,n} be a subset. We say that S is admissible if (S, j) is
an admissible pair for each j € S.

For example, {1,...,n} is always admissible. When r = 1, we fix the Galois action
given in (4.1.1). In this case, a subset S = {uy,...,us} (with uy < --- < uy) is admissible if
and only if i1 —i4; (for j =1,...,5s—1) and i; +n — i are all odd numbers. When r = n,

all subsets are admissible. The bulk of the proof is to show the following result, which is
[GK18, Theorem 4.2.3] :

Theorem 4.3.2. Let S C {1,...,n} be an admissible subset. Then Cx g = CpHa,s-

By taking S = {1,...,n}, we obtain Theorem [3.1.5] We also have the following result,
which shows that the space of Hilbert modular forms defined on a specifica stratum vanishes
in some cases:

Corollary 4.3.3. Let S C {1,...,n} be an admissible subset. For any \ € Z" such that
A & Cona,s, we have -
H(Xs,w())) = 0.

Here, w(A) is the line bundle defined in (1.0.1)) in the introduction, which was denoted
by Viag(A) for a general group in section In the remainder of this paper, we illustratate
how the techniques of intersection-sum cones (Theorem and Corollary [3.2.4)) give a
straightforward proof of Theorem [4.3.2]

4.4 Inclusions between cones

As we previously explained, we can reduce to the case of a Weil restriction (i.e. to the case
when r = 1). Therefore, for the remainder of the paper, we will assume that r = 1 and
we consider the Galois action given by (4.1.1)), which corresponds to o(i) = i + 1 (taken
modulo n). Hence, the weights hag; are given by

€, —(ge;11 if 1 € S,
hag; = o
e +qei1 ifigsS.
The tuple Bg = (hagy,...,hag,) is a Q-basis of Q". As in (4.2.1), the cone Cpna s is the
set of integral linear combinations of the hag; with nonnegative coefficents for i € S. For a

subset S C {1,...,n} and j € S, define the partial Hasse invariant cone of S with respect
to j € S as follows:

C;()ﬁa,s = {Z a;hag;

=1

CL,’EZfOI"’i#j, CleZ>0}.



Then, for each j € S, the cone oW ¢ is a half-space of Z" and Cyhas can be written

pHa,
as Cpha,s = jes CPHB’ g- For convenience, we will consider rational coefficients and study
the Q>¢-subcones of Q" generated by Cpna g and C(Ha s respectively. We write Cpp, ¢ and
(C'(faa ¢ respectively for these subsets of Q. We give an explicit equation for the cone

Céjl-)laS in the canonical basis (e;)1<i<n, of Q". For 1 < a,b < n, define S(a,b) as the set
{a <i<b|ie S}, and put
v(S, a,b) = (=1)I@bl,

In particular, for a > b we have S(a,b) = () and v(S,a,b) = 1. We put s :=|S|. For j € S
and each 1 <1 < n, define

c (S ) o (_1)n+1+s+i+j . ’Y(S,Z,]) X qlfz' for 1 S i S ]
i\w,J) = (_1)1+i+j (S, j+1,i—1)- ¢t for j+1<i<n.

Furthermore, for A = (x1,...,2,) € Z", define Eg)()\) =>" Ci(S, 7).

Lemma 4.4.1. We have Cgﬁaﬁ = {)\ eqQr

EY() < o}.
Proof. Tt is easy to check that Eéj)(hasﬂ-) =0 for all i # j. Finally, Eéj)(hagj) has the same

sign as —C;11(S,7) = —¢"7 < 0. The result follows. O

For each 1 <r <mand 1 <4i <r,define T, :={1,...,r} and T = {1,...,i—1}U
{i+1,...,r}. In other words, Tr(l) is the set obtained by removing i from 7,. Note that
Tr(r) =T, 1.

Lemma 4.4.2. Let 1 <r < n. We have C" N c® o C ch ..
pHa, T pHa, T pHa,tr

Proof. By Lemma 4.4.1|, the cone CSI—L,TT is the set of A = (xy,...,x,) € Z" such that
Er 1(A\) <0, where

r+1

E%)(/\) :: n—l—rl, +an+1 zx2+ Z z+'r+1 n+1 Z.TZ.
i=r+2

Similarly, the cones (C e and (C( () are respectively given by the inequalities

7.

(=)™ Hg, _|_an+1 i 4 Z )Tt <0, (4.4.1)
i=r+1

1)"+TI1+Z(— n+r 1 1 zxz_i_ Z z+r+1 n+1 z:L,Z <0. (442)

i=r+1

Define a,b € Q by a = li:(r()n#and b = W. It is clear that a,b are

positive numbers. If we multiply (4.4.1] - ) by a, (4.4.2) by b, and add up these inequalities,
we find E%)()\) < 0. The result follows. O

Lemma can be generalized a follows. For a subset S C {1,...,n} and u € S,
define S™ := S\ {u}. Suppose S = {uy,...,u,} with u; < --- < u, and r > 2. The proof
of the following Lemma is completely similar to Lemma [£.4.2] modulo a change of variable.
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Lemma 4.4.3. We have an inclusion C™“ N C(“T asn C (CpHa g-

H S(ur
We now explain a similar result regarding the various cones of partial Hasse invariants.
Lemma 4.4.4. Let 2 <r < n. Assume that r and n are of same parity. Then
r—1
(i+1) (1) (1)
Proof. For 1 < i < r — 1, the cone (C(+ e is given by the set of A = (z1,...,2,) € Z"

satisfying the inequality F Z(J; )()\) < (), Where

z+1 1—d nt+1—d d-‘r’r—i—l ¢y
T‘“ E q"wg—q wi + E q Tq+ E 4.
d=i+2 d=r+1

In the above equation, we used that r and n have the same parity, hence (—1)"*" = 1.
Similarly, (C“J " is defined by E;l()r)()\) < 0, where
p a7 T T

E;()r) — x4+ an+1 dy .+ Z d+r ¢t dop .
d=r+1
Finally, CPHa 7. is defined by E%)()\) < 0, where
r+1
(1) _ n+1—d d+r+1 n+1 dg.
E T+ Z q Tyq+ Z Tq.
d=r+2
One can check easily that
r—1
S+ )T E N+ @ UTEL (N = B@HER () (443)

i=1

where P,(z) is the polynomial P,(z) = 2 37—} 2"~ (z+1)"' — (z+1)"!. The coefficient of
z¥in P, ( ) is positive for all d > 0, and it is —1 for d = 0. In particular, we have P,(¢") > 0.
Hence shows that if E(erl (A\) <0 foreach 1 <i<r—1and E;?T)()\) < 0, then

also E(Ti)()\) < 0. This proves the result. O

4.5 Generalization to admissible subsets

We can generalize Lemma as follows. For any subset S C {1,...,n} and any i € S,
define i" as the "next element" in S. More precisely, if S = {uy,...,u,} withu; < --- < u,,
define u} := ujyy for 1 < j < r and uf := uy. For any subset S such that [S| > 1, we

define .
u™)
pHa s m C'pHa S(w)
ues

Similarly, we define @pHa,S as the Q>p-subcone generated in Q" by épHa7S.

Lemma 4.5.1. Suppose that r := |S| > 1 and that (S,j) is an admissible pair. Assume
furthermore that v and n are of same parity. Then

~

Cota,s € Cllas
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Proof. The proof is completely similar to Lemma Write S = {u,...,u,} with
u; < --- < u,. Using the Galois action, we may assume that j = u;. Then we find again
the relation

N2 (g + )TN (V) + (" + 1)U ES (V) = Po(a)ES™M (V)

where P,(z) is the polynomial P,(z) =z 3_ 2"~ (z+1)""' — (v +1)"~'. The result follows

as in Lemma [4.4.4] ]
Finally, we state a useful lemma used in the next section. Assume that S = {uy,..., u,}

with u; < -+ < w, and r > 2. Furthermore, assume that (S,u;) is an admissible pair.

Then we have

Lemma 4.5.2.

(1) The pair (S™) uy) is admissible.
(2) Assume that the parity of v and n are different. Then (S, u,) is admissible.

Proof. The first assertion is immediate. To show , it suffices to show that n —u, + us is
odd. Since (S,u,) is admissible, u, — us has the same parity as r. The result follows. [

4.6 Intersection-sum cones

Denote by Cd the intersection-sum cone corresponding to the stratum S. We recall its
definition. For S such that |S| = 1, we set C§ := Cppa s. For |S| > 1, we define inductively

Cg = CpHa,s + ﬂ S

u€esS

Proposition 4.6.1. If (S, j) is an admissible pair, then €% C GpHa -

Proof. 1t suffices to show C’Jr C (CpHa g- Since CpHa,s is obviously contained in Cl(f,}la’s, it
is enough to show (g C’;L(u) C (CpHa s We prove the result by induction on |S|. Write
= |S|. We may assume that S = {uy,...,u,} with vy < -+ < w, and j = uy. First,

assume that r and n have different parity. In this case, the pairs (S ul) and (S u,)

are admissible by Lemma 4.5.2 By induction, we have C+ur) C C seury and Ch s C

(C’(;I’")S wy- We deduce by Lemma [4.4.3| that

+ +
ﬂ Ciw € Cdtuny N Cotuy € Comauy-
uesS

We now assume that » and n have the same parity. In this case, we consider the pairs
(S® ut) for each u € S. It is clear that they are all admissible. Hence, we have by

induction C'§,, C (C(H ‘s By Lemma (1.5.1} we deduce
ﬂ Cow C ﬂ cly pHa s(u) CpHaS - CpHas
u€eS ueS
This terminates the proof. O

Corollary 4.6.2. If S is an admissible subset, then C% C Cpnas-

Proof. By definition, (S, 7) is admissible for all j € S. We deduce from Proposition m
that C¥ C Njes Gija s = CpHa,s- The result follows. O

Finally, we complete the proof of Theorem | Since we always have Cppas C Cx 5 C
€& by Theorem [3.2.3, we deduce from Corollary 2| that these three cones must coincide.
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