Linear Algebra I & II Test

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2016

August 1, 2016

Department of Mathematics Prof. Dr. Torsten Wedhorn Jean-Stefan Koskivirta, Florian Sokoli

Exercise 1

Which of the following tuples are:

- a) linearly independent ?
- b) a generating system of \mathbb{R}^3 ?
- c) a basis of \mathbb{R}^3 ?

$$\begin{aligned} \mathcal{B}_1 &:= \left(\begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\1 \end{pmatrix} \right) \quad \mathcal{B}_4 &:= \left(\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\2 \end{pmatrix} \right) \\ \mathcal{B}_2 &:= \left(\begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \right) \quad \mathcal{B}_5 &:= \left(\begin{pmatrix} 1\\2\\3\\0 \end{pmatrix} \right) \\ \mathcal{B}_3 &:= \left(\begin{pmatrix} 2\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\2 \end{pmatrix} \right) \quad \mathcal{B}_6 &:= \left(\begin{pmatrix} 1\\0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\0\\2 \end{pmatrix} \right) \end{aligned}$$

Remarks:

- You do not need to justify your answers.
- Points are deducted for incorrect answers.
- Mark the properties satisfied by each system with an X in the table below.

	\mathcal{B}_1	\mathcal{B}_2	\mathcal{B}_3	\mathcal{B}_4	\mathcal{B}_5	\mathcal{B}_6
a)						
b)						
c)						

Exercise 2

Let *K* be a field and *V*, *W* two finite-dimensional *K*-vector spaces. Let $f : V \to W$ be a linear map and set $n := \dim(V)$ and $m := \dim(W)$. Mark each assertion true or false in the table below.

- (A1) If rk(f) = 0 then Ker(f) = V.
- (A2) If f is surjective, then Ker(f) = 0.
- (A3) If rk(f) = n, then f is injective.
- (A4) If n = m, then f is an isomorphism.
- (A5) f is an isomorphism if and only if n = m and f is injective.

Assertion	(A1)	(A2)	(A3)	(A4)	(A5)	(A6)
True						
False						

Remarks :

- You do not need to justify your answers.
- Points are deducted for incorrect answers.

Exercise 3

Let $a, b \in \mathbb{C}$. Determine the solutions $(x, y, z) \in \mathbb{C}^3$ of the following linear system:

$$\begin{cases} x + ay + z &= 1\\ x - 2y + az &= -1\\ -x + y - z &= b \end{cases}$$

Exercise 4

Let *K* be a field, $n \in \mathbb{N}$, $n \ge 2$, and let *V* be a *K*-vector space. Let $v_1, ..., v_n$ be linearly dependent vectors in *V* such that any n - 1 of them are linearly independent.

- (1) Show that there exists $\alpha_1, ..., \alpha_n \in K^{\times}$ such that $\alpha_1 v_1 + ... + \alpha_n v_n = 0$.
- (2) Let $\alpha_1, ..., \alpha_n \in K^{\times}$ as in (1). Show that for all $\beta_1, ..., \beta_n \in K$ such that $\beta_1 v_1 + ... + \beta_n v_n = 0$, there exists $\lambda \in K$ such that $\beta_i = \lambda \alpha_i$ for all i = 1, ..., n.

Exercise 5

Let *K* be a field, $n \in \mathbb{N}$, and let *V* be a *K*-vector space of dimension *n*. Let $U, W \subseteq V$ be subspaces of dimension n - 1. Show that U + W = V if and only if $U \neq W$.

Exercise 6

Let *K* be a field and *V* a *K*-vector space of dimension 3. Let $\mathcal{B} = (v_1, v_2, v_3)$ be a basis of *V*, and let $\mathcal{B}^{\vee} := (\varphi_1, \varphi_2, \varphi_3)$ denote the dual basis of \mathcal{B} . Show that for all $v \in V$, one has

$$v \in \operatorname{Span}(v_1, v_2) \Longleftrightarrow \varphi_3(v) = 0.$$

(8 points)

Exercise 7 Consider the matrix:

$$A := \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 2 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 2 & 3 & 1 \end{pmatrix}.$$

- (1) Show that rk(A) = 2, and that $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$ is an eigenvector.
- (2) Determine det(*A*), Tr(*A*), χ_A , μ_A , the Jordan normal form of *A*, as well as the rational normal form of *A*.

Exercise 8

Determine the signature of the following symmetric matrices:

$$A := \begin{pmatrix} 0 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}, \quad B := \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad C := \begin{pmatrix} 7 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Exercise 9

Let *K* be a field of characteristic $\neq 2$. Show that the matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

are congruent. Are they similar?

Exercise 10

Let $A \in M_n(\mathbb{C})$ be a matrix. If A is similar to 2A, show that A is nilpotent. Is the converse true?