Linear Algebra II 1. Exercise Sheet

TECHNISCHE UNIVERSITÄT DARMSTADT

14. April 2016

Summer term 2016

Department of Mathematics Prof. Dr. Torsten Wedhorn Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Three equivalent conditions for isometries) Let (V, \langle, \rangle) be an inner product space. Show that the following statements are equivalent:

- (i) f is an isometry.
- (ii) ||f(x)|| = ||x|| for all $x \in V$.
- (iii) If $(v_1, ..., v_n)$ is an orthonormal basis of V, then so is $(f(v_1), ..., f(v_n))$.

Exercise G2 (Orthogonal group is a subgroup) Show that $O_n(\mathbb{R})$ is a subgroup of $GL_n(\mathbb{R})$.

Exercise G3 (A counter-example to surjectivity of isometries) Let *H* be the real vector space of sequences $(x_n)_{n \in \mathbb{N}_0}$ with $\sum_{n=0}^{\infty} x_n^2 < +\infty$.

- (a) Prove that $\langle x, y \rangle := \sum_{n=0}^{\infty} x_n y_n$ defines an inner product on *H*.
- (b) Let $T : H \to H$ denote the endomorphism mapping $(x_n)_{n \in \mathbb{N}_0}$ to $(0, x_0, x_1, x_2, ...)$. Show that *T* is an isometry of *H*, that is not surjective.

Exercise G4 (Matrix of an endomorphism with respect to a base) We endow \mathbb{R} with respect to the usual inner product. Let $\mathcal{B} = (e_1, e_2)$ be the basis of \mathbb{R}^2 given by $e_1 = (1, 1)$ and $e_2 = (2, 1)$. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by f(x, y) = (x + y, x - 2y).

- (a) Compute the matrix of f with respect to \mathcal{B} .
- (b) Compute the matrix of f^* with respect to \mathcal{B} .

Homework

Exercise H1 (Normal endomorphisms)

Let (V, \langle, \rangle) be an inner product space.

- (a) Let $f: V \to V$ be an endomorphism. Show that $\text{Ker}(f) = \text{Im}(f^*)^{\perp}$
- (b) If f is normal, then $\text{Im}(f) = \text{Im}(f^*)$.
- (c) Let $f, g: V \to V$ be normal endomorphisms. Show that $f \circ g = 0$ if and only if $g \circ f = 0$.

(4 points)

Exercise H2 (Orthogonal projections)

Let (V, \langle , \rangle) be an inner product space, and let $p : V \to V$ be an endomorphism. Recall that p is called a projection if there exists subspaces V_1, V_2 such that $V = V_1 \oplus V_2$, and $p(x_1 + x_2) = x_1$ for all $x_i \in V_i$ and i = 1, 2. Furthermore, p is an orthogonal projection if there exists such V_1, V_2 with $V = V_1 \perp V_2$.

- (a) Show that *p* is a projection if and only if $p^2 = p$.
- (b) Show that the following statements are equivalent:
 - (i) *p* is an orthogonal projection.

(ii) $p^* = p$ and $p^2 = p$.

Exercise H3 (Eigenvalues)

Let f be a self-adjoint endomorphism of a unitary space V. Show that the following statements are equivalent:

- (i) *f* has real positive eigenvalues.
- (ii) For all $x \in V \setminus \{0\}, \langle f(x), x \rangle > 0$.

Linear Algebra II 2. Exercise Sheet

Department of Mathematics Prof. Dr. Torsten Wedhorn Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Determinant of an isometry)

Let *f* be an isometry of a \mathbb{K} -inner product space. Show that $|\det(f)| = 1$.

Exercise G2 (Normal endomorphisms and stable subspaces)

Let $(V, \langle \cdot, \cdot \rangle)$ be a K-inner product space and let $f : V \to V$ be a normal endomorphism. If $P = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \in \mathbb{K}[X]$ is a polynomial, set

$$P(f) := a_n f^n + a_{n-1} f^{n-1} + \dots + a_1 f + a_0 \operatorname{Id}_V \in \operatorname{End}(V).$$

Furthermore, we denote by \overline{P} the polynomial $\overline{a}_n X^n + \overline{a}_{n-1} X^{n-1} + \cdots + \overline{a}_1 X + \overline{a}_0$.

(a) Show that there exists $P \in \mathbb{K}[X]$ such that $f^* = P(f)$.

Hint : Do first the unitary case. For this, show that there exists a polynomial *P* such that $P(\lambda_i) = \overline{\lambda_i}$ for all eigenvalues λ_i of *f*. For the euclidean case, use the unitary case and note that $\frac{P+\overline{P}}{2}$ has real coefficients for all $P \in \mathbb{C}[X]$.

- (b) Let $U \subseteq V$ be a subspace such that $f(U) \subseteq U$. Show that $f^*(U) \subseteq U$. Furthermore, show that the restriction $f_U: U \to U$ of f to U is normal.
- (c) Let $U \subseteq V$ be a subspace such that $f(U) \subseteq U$. Show that $f(U^{\perp}) \subseteq U^{\perp}$.

Exercise G3 (Set of normal endomorphisms)

Let *V* be a \mathbb{K} -inner-product space. Is the set of normal endomorphisms of *V* a subspace of End_{\mathbb{K}}(*V*)?

Exercise G4 (G-invariant inner-product)

Let *V* be a K-vector space and let *G* be a finite subgroup of $GL_{\mathbb{K}}(V)$. Show that there exists a K-inner product $\langle \cdot, \cdot \rangle$ on *V* such that $\langle g(x), g(y) \rangle = \langle x, y \rangle$ for all $g \in G$ and for all $x, y \in V$.

Exercise G5 (Finite subgroups of $O_2(\mathbb{R})$) Let *G* be a finite subgroup of $O_2(\mathbb{R})$ with *n* elements.

(a) Show that

$$C := \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} : a, b \in \mathbb{R}, (a, b) \neq (0, 0) \right\}$$

Summer term 2016 21. April 2016

is a subgroup of $GL_2(\mathbb{R})$ and that

$$C \to \mathbb{C}^{\times}, \qquad \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mapsto a + ib$$

is a bijective group homomorphism.

- (b) Show that there exists a bijective group homomorphism $SO_2(\mathbb{R}) \to S^1 := \{z \in \mathbb{C}, |z| = 1\}$.
- (c) Assume $G \subseteq SO_2(\mathbb{R})$. Show that there exists $A \in G$ such that $G = \{I_2, A, A^2, \dots, A^{n-1}\}$.
- (d) Show that any element $A \in O_2(\mathbb{R})$ with det(A) = -1 is an orthogonal reflection (see Exercise H1) and that $A^2 = I_2$.
- (e) If *G* is not contained in $SO_2(\mathbb{R})$, show that there exists $m \in \mathbb{N}$ such that n = 2m, and that $G \cap SO_2(\mathbb{R})$ has *m* elements.

Homework

Exercise H1 (Reflections)

Let *V* be a euclidean space, and let $H \subset V$ be a subspace.

- (a) Show that there exists a unique endomorphism $r_H \in \text{End}(V)$ satisfying $r_H(x) = x$ for all $x \in H$ and $r_H(x) = -x$ for all $x \in H^{\perp}$.
- (b) Show that r_H is an isometry. When *H* is a hyperplane (i.e., a subspace of *V* with dim(*H*) = dim(*V*) 1), then r_H is called the *orthogonal reflection with respect to H*.
- (c) For all $f \in O(V)$, show that $f \circ r_H \circ f^{-1} = r_{f(H)}$.

Exercise H2 (Commuting normal endomorphisms) $(3+9+12^* \text{ points})$ Let (V, \langle, \rangle) be a \mathbb{K} -inner product space and let $f, g : V \to V$ be normal endomorphisms such that $f \circ g = g \circ f$.

- (a) Let $\lambda \in \mathbb{K}$ be an eigenvalue of f. Show that the eigenspace $E_{\lambda}(f)$ is g-invariant.
- (b) Assume that V is a unitary space. Show that there exists an orthonormal basis of V for which both f and g have a diagonal matrix.
- *(c) Assume now that *V* is a euclidean space. We want to show that there exists an orthonormal basis for which both *f* and *g* are in normal form (i.e have matrices of the form given by Theorem 1.17). We choose an orthonormal basis \mathcal{B} of *V*, and denote respectively by *A* and *B* the matrices of *f* and *g* with respect to \mathcal{B} . We may view *A* and *B* as endomorphisms of \mathbb{R}^n or \mathbb{C}^n where $n = \dim_{\mathbb{R}}(V)$.
 - (i) Let $x = (x_1, ..., x_n) \in \mathbb{C}^n$. Define $\overline{x} := (\overline{x}_1, ..., \overline{x}_n)$. Show that $\langle x, \overline{x} \rangle_{\mathbb{C}} \cap \mathbb{R}^n$ is a \mathbb{R} -subspace of \mathbb{R}^n of dimension ≤ 2 . When does it have dimension 0, 1, 2 ?
 - (ii) Prove that there exists a subspace of dimension 1 or 2 in \mathbb{R}^n that is stable by both *A* and *B*.
 - (iii) Deduce the result by induction. Hint: Use Exercise G2(c).

Exercise H3 (The orthogonal group is generated by reflections) (12 points) Let *V* be a euclidean space. Show that for every $g \in O(V)$ there exists $m \in \mathbb{N}$ and orthogonal reflections r_{H_1}, \ldots, r_{H_m} (see Exercise H1) such that $g = r_{H_1} \circ r_{H_2} \circ \cdots \circ r_{H_m}$. Hint : First prove the result for dim $(V) \leq 2$, then use induction.

(4+4+4 points)

Linear Algebra II 3. Exercise Sheet

Department of Mathematics Prof. Dr. Torsten Wedhorn Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Positive definite matrix) Consider the following matrix:

$$A := \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

- (a) Show that *A* is positive definite.
- (b) Determine the unique symmetric positive definite matrix *B* such that $A = B^2$.

Exercise G2 (Square root of *A***A* and *AA**)

Let $A \in GL_n(\mathbb{C})$ be a matrix. For a positive definite hermitian matrix B, we denote by \sqrt{B} the unique positive definite hermitian matrix such that $(\sqrt{B})^2 = B$.

- (a) Show that A^*A and AA^* are positive definite hermitian matrices.
- (b) For $x \in \mathbb{C}^n$, show that $||Ax|| = ||\sqrt{A^*Ax}||$ and $||A^*x|| = ||\sqrt{AA^*x}||$.
- (c) Recall that there is a unique unitary matrix U_A such that $A = U_A \sqrt{A^*A}$. Show that there is a unique unitary matrix V_A such that $A = \sqrt{AA^*}V_A$. Show that $V_{A^*} = U_A^*$.
- (d) Show that $U_A = V_A$. Deduce that $U_{A^*} = U_A^*$.
- (e) Assume A = SU = U'S, where $U, U' \in U(n)$ and *S* is hermitian positive definite. Show that *A* is normal and that U = U'.

Exercise G3 (Function on Spectrum)

For a matrix $A \in M_n(\mathbb{C})$, we denote by $\sigma(A)$ the set of eigenvalues of A, called the spectrum of A. Let A be a normal matrix, and let $f : \sigma(A) \to \mathbb{C}$ be a function, let $A \in M_n(\mathbb{C})$ be a normal matrix. There exists $U \in U(n)$ such that $A = U^*DU$, where $D = \text{diag}(\lambda_1, ..., \lambda_n)$ is the diagonal matrix with diagonal coefficients $\lambda_1, ..., \lambda_n$. We define:

$$f(A) := U^* \operatorname{diag}(f(\lambda_1), ..., f(\lambda_n))U.$$

(a) Show that f(A) is independent of the choice of the the decomposition $A = U^*DU$. Hint : Choose a polynomial $P \in \mathbb{C}[X]$ such that $P(\lambda_i) = f(\lambda_i)$ for all i = 1, ..., n, and prove that f(A) = P(A).

Summer term 2016 28. April 2016 (b) Let $f, g : \sigma(A) \to \mathbb{C}$ be two functions. Prove that:

$$(f + g)(A) = f(A) + g(A)$$
$$(f g)(A) = f(A)g(A)$$
$$\overline{f}(A) = (f(A))^*$$

- (c) Show that f(A) is normal and $\sigma(f(A)) = f(\sigma(A))$.
- (d) Let $f : \sigma(A) \to \mathbb{C}, \lambda \mapsto \overline{\lambda}$. Show that $f(A) = A^*$.
- (e) Assume *A* is invertible, and let $f : \sigma(A) \to \mathbb{C}, \lambda \mapsto \frac{1}{\lambda}$. Show that $f(A) = A^{-1}$.
- (f) Let $f : \sigma(A) \to \mathbb{C}$ and $g : \sigma(f(A)) \to \mathbb{C}$. Show that $(g \circ f)(A) = g(f(A))$.

(g) Prove the equivalences:

$f(A)$ is unitary $\iff f$ has values in $S^1 = \{z \in \mathbb{C}, z = 1\}$
$f(A)$ is self-adjoint $\iff f$ has values in \mathbb{R}
$f(A)$ is positive definite $\iff f$ has values in $\{x \in \mathbb{R}, x > 0\}$
$f(A)$ is an orthogonal projection $\iff f$ has values in $\{0, 1\}$.

Exercise G4 (Polynomial division)

Compute the division with remainder of *P* by *Q* in the following cases:

(a) $P = X^7 + 2X^3 - X^2 + X + 1$ and $Q = X^5 + X^3 - X^2 + X - 3$.

(b) $P = X^{12} - 1$ and $Q = X^4 - 1$.

Homework

Exercise H1 (Iwasawa decomposition) Determine the Iwasawa decomposition of the matrix

$$A := \begin{pmatrix} 0 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Exercise H2 (Polar decomposition, Cartan decomposition)(12 points)Determine the polar decomposition and a Cartan decomposition of the matrix

$$\begin{pmatrix} -1 & -1 \\ 2 & -1 \end{pmatrix}$$

Exercise H3 (Euclidean ring)

(a) Show that the following sets form rings with respect to the addition and multiplication induced by $\mathbb C$:

$$\mathbb{Z}[i] := \{a + bi, a, b \in \mathbb{Z}\}$$
$$\mathbb{Q}[i] := \{a + bi, a, b \in \mathbb{Q}\}.$$

- (b) Show that every element of $\mathbb{Q}[i]$ is of the form z/w for $z, w \in \mathbb{Z}[i]$ with $w \neq 0$ (this means that $\mathbb{Q}[i]$ is the quotient field of $\mathbb{Z}[i]$ in the language introduced in §4 of the lecture).
- (c) Show that $\mathbb{Z}[i]$ is a euclidean ring for the euclidean norm function $\mathbb{Z}[i] \setminus \{0\} \to \mathbb{N}, z \mapsto |z|^2$.
- *(d) Show that $\mathbb{Z}[i]^{\times} := \{z \in \mathbb{Z}[i]; \exists w \in \mathbb{Z}[i]: zw = 1\} = \{1, -1, i, -i\}.$

(2+4+6+6* points)

Linear Algebra II 4. Exercise Sheet

Department of Mathematics Prof. Dr. Torsten Wedhorn Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Equivalence relation)

Let *X* be a finite set with *n* elements, and let $f : X \to X$ be a mapping such that $f \circ f = Id_X$.

(a) Show that the relation

$$x \sim y \Leftrightarrow (y = x \text{ or } y = f(x))$$

defines an equivalence relation on X.

- (b) Assume that *n* is odd. Show that *f* has a fixed point, i.e there exists $x \in X$ such that f(x) = x.
- (c) Generalize this result for a mapping f satisfying $f^{(p)} := f \circ ... \circ f = Id_X$, where p is a prime number. Show that if n is not divisible by p, then f has a fixed point. Hint : Use the equivalence relation: $y \sim x \Leftrightarrow \exists k \in \mathbb{Z}, y = f^{(k)}(x)$, where by definition $f^{(0)} := Id_X$ and $f^{(k)} := (f^{-1})^{(-k)}$ for k < 0.

Exercise G2 (Simple roots)

(a) For a polynomial $P = \sum_{i=0}^{n} a_i X^i \in K[X]$, we define its derived polynomial as:

$$P'(X) := \sum_{i=1}^{n} i a_i X^{i-1}.$$

Show that (P+Q)' = P' + Q' and (PQ)' = P'Q + PQ' for all polynomials $P, Q \in K[X]$.

- (b) An element $\alpha \in K$ is a simple root of *P* if *P* is divisible by $X \alpha$ but not by $(X \alpha)^2$. Prove that α is a simple root if and only if $P(\alpha) = 0$ and $P'(\alpha) \neq 0$.
- (c) Let *P* be an irreducible polynomial in $\mathbb{Q}[X]$. Show that *P* has only simple roots in \mathbb{C} .

Exercise G3 (System of congruences)

(a) Let $a, b \in \mathbb{Z}$ be coprime integers. Show that there exists $x, y \in \mathbb{Z}$ such that

$$\begin{cases} x \equiv 1 \pmod{a} & \qquad \begin{cases} y \equiv 0 \pmod{a} \\ x \equiv 0 \pmod{b} & \qquad \end{cases} & \begin{cases} y \equiv 0 \pmod{a} \\ y \equiv 1 \pmod{b} \end{cases}$$

Summer term 2016 5. Mai 2016 (b) Let $a_0, b_0 \in \mathbb{Z}$ and consider the following system of congruences:

$$\begin{cases} z \equiv a_0 \pmod{a} \\ z \equiv b_0 \pmod{b} \end{cases}$$

Show that the set of elements $z \in \mathbb{Z}$ satisfying the above congruences is

$$\{a_0x + b_0y + kab, \ k \in \mathbb{Z}\}.$$

(c) Determine the integers $z \in \mathbb{Z}$ satisfying the following congruences:

$$\begin{cases} z \equiv 3 \pmod{5} \\ z \equiv 7 \pmod{3} \end{cases}$$

(d) Using a similar method, determine the integers $z \in \mathbb{Z}$ satisfying the following congruences:

$$\begin{cases} z \equiv 1 \pmod{3} \\ z \equiv 2 \pmod{7} \\ z \equiv 3 \pmod{11} \end{cases}$$

Exercise G4 (Greatest common divisor)

Let *K* be a field. For two polynomials $P,Q \in K[X]$, we denote by $gcd_K(P,Q)$ the unic monic polynomial that is a greatest common divisor of *P* and *Q* in the ring K[X].

- (a) Let $P, Q \in \mathbb{Q}[X]$. Show that $gcd_{\mathbb{Q}}(P, Q) = gcd_{\mathbb{C}}(P, Q)$.
- (b) Let $P,Q \in \mathbb{Q}[X]$. Show that P,Q are coprime in $\mathbb{Q}[X]$ if and only if they have no common root in \mathbb{C} .

Homework

Exercise H1 (Euclidean algorithm) (4+4+4 points)Using the Euclidean algorithm, determine the GCD of the following elements *a*, *b* in the euclidean ring *R*:

(a)
$$a = 91091$$
, $b = 1729$ in $R = \mathbb{Z}$.

(b)
$$a = X^7 + 2X^6 - 3X^5 + X^2 - X + 1$$
, $b = X^5 + X^2 - 2X + 1$ in $R = \mathbb{R}[X]$.

(c) a = 10, b = i - 7 in $R = \mathbb{Z}[i]$ (see Ex. H3 on Ex. sheet 3).

Exercise H2 (Irreducible decomposition)

(2+2+2+2+2+2 points)Determine the decomposition of the following polynomials into irreducible factors:

$$X^{2} + 1 \in \mathbb{R}[X]$$

$$X^{2} + 1 \in \mathbb{C}[X]$$

$$X^{2} + 1 \in (\mathbb{Z}/2\mathbb{Z})[X]$$

$$X^{2} + 1 \in (\mathbb{Z}/3\mathbb{Z})[X]$$

$$7X^{2} - 8X + 5 \in \mathbb{R}[X]$$

$$aX^{2} + bX + c \in \mathbb{R}[X] \text{ with } ac < 0$$

Exercise H3 (Ideals and quotient ring)

(2+3+4+3 points)Let *R* be a commutative ring and let $X \subseteq R$ be a subset. Define a relation on *R* by $x \sim y$ if $x - y \in X$.

- (a) Show that \sim is an equivalence relation if and only if X is a subgroup of (R, +).
- (b) Let *X* be a subgroup of (R, +). Show that the map

$$+: (R/\sim) \times (R/\sim) \longrightarrow R/\sim, ([x], [y]) \mapsto [x+y]$$

is well defined.

(c) Show that the map

$$(R/\sim) \times (R/\sim) \longrightarrow R/\sim, ([x], [y]) \mapsto [xy]$$

is well defined if and only if for all $a \in R$ and $x \in X$ one has $ax \in X$. A subgroup X of (R, +)satisfying this condition is called ideal of R. Show that in this case R/\sim is a commutative ring with respect to the addition and multiplication defined above.

(d) Determine the ideals of the ring \mathbb{Z} . If *R* is a field, what are its ideals?

Linear Algebra II 5. Exercise Sheet

technische

UNIVERSITÄT

Department of Mathematics Prof. Dr. Torsten Wedhorn Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Long exact sequences, dimensions)

(a) Consider a short exact sequence of finite-dimensional vector spaces:

$$0 \to V' \to V \to V'' \to 0.$$

Show that $\dim(V) = \dim(V') + \dim(V'')$.

(b) Let

$$0 \to V_1 \xrightarrow{f_1} V_2 \xrightarrow{f_2} \dots \xrightarrow{f_{n-2}} V_{n-1} \xrightarrow{f_{n-1}} V_n \to 0$$

be a long exact sequence of vector spaces. Show that one obtains short exact sequences:

$$0 \to \operatorname{Im}(f_i) \to V_{i+1} \to \operatorname{Im}(f_{i+1}) \to 0$$

for all i = 1, ..., n - 2.

(c) Assume further that the vector spaces $V_1, ..., V_n$ in (b) are finite-dimensional. Prove that:

$$\sum_{i=1}^{n} (-1)^{i} \dim(V_{i}) = 0.$$

Exercise G2 (Quotient of polynomial ring)

Let *K* be a field and $P \in K[X]$ be a nonzero polynomial. Give a basis of the *K*-vector space K[X]/(P), where (*P*) is the principal ideal of K[X] generated by *P*, and show dim(K[X]/(P)) = deg(*P*).

Exercise G3 (Semi-inner-product)

Let *V* be an \mathbb{R} -vector space and let $B : V \times V \to \mathbb{R}$ be a symmetric bilinear form such that $B(v, v) \ge 0$ for all $v \in V$ (then *B* is called a *semi-inner product*). Define

$$W := V^{\perp} := \{ x \in V ; \forall y \in V, B(x, y) = 0 \}.$$

(a) Show that the following map is well-defined and is an inner-product on V/W:

$$(V/W) \times (V/W) \rightarrow K$$
, $([x]_W, [y]_W) \mapsto B(x, y)$.

1

Summer term 2016 12. Mai 2016

(b) Let *V* be the space of Riemann-integrable \mathbb{R} -valued functions on the interval [0,1]. For functions $f, g \in V$, define:

$$B(f,g) := \int_0^1 f(x)g(x)dx.$$

Show that *B* is a semi-inner-product. Give an example of a nonzero function in V^{\perp} .

*(c) Show that *B* induces an inner-product on the subspace $V' \subset V$ of continuous \mathbb{R} -valued functions on the interval [0, 1].

Exercise G4 (Operations on principal ideals)

Let *R* be a euclidean ring, and let $a, b \in R$ be two elements.

(a) Show that the set

$$I := \{ax + by; x, y \in R\}$$

is the ideal generated by a greatest common divisor of *a* and *b*.

- (b) Show that the intersection $J := (a) \cap (b)$ is an ideal which is generated by a lowest common multiple of *a* and *b*.
- (c) Let *d* be a gcd of *a* and *b* and let *m* be an lcm of *a* and *b*. Show that (ab) = (dm).

Homework

Exercise H1 (Matrices and polynomials) Let *K* be a field, and let $A \in M_n(K)$. Consider the map

$$\varphi: K[X] \to M_n(K), \ P \mapsto P(A)$$

- (a) Show that φ is a *K*-linear map.
- (b) Show that $\text{Ker}(\varphi)$ is an ideal $\neq \{0\}$ of K[X].
- (c) Let n = 2, $K = \mathbb{R}$ and let *A* be the matrix

$$A:=\begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}.$$

Determine the unique monic generator of the ideal $\text{Ker}(\varphi)^1$. Give a *K*-basis for $\text{Im}(\varphi)$ and determine its dimension.

Exercise H2 (A dimension formula)

Let *V* be a *K*-vector space, and let $V_1, V_2 \subseteq V$ be subspaces.

(a) Show that one has a short exact sequence

$$0 \to V_1 \cap V_2 \to V_1 \to (V_1 + V_2)/V_2 \to 0.$$

(b) Deduce that one has an isomorphism

$$V_1/(V_1 \cap V_2) \simeq (V_1 + V_2)/V_2.$$

(c) Assume that V_1 and V_2 are finite-dimensional. Deduce from (b) that

$$\dim(V_1 \cap V_2) + \dim(V_1 + V_2) = \dim(V_1) + \dim(V_2).$$

(3+4+5 points)

(6+3+3 points)

¹ Such a generator is then the minimal polynomial of *A*.

Linear Algebra II 6. Exercise Sheet

Department of Mathematics Prof. Dr. Torsten Wedhorn Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Compute a high power of a matrix) Consider the matrix:

$$A := \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} \in M_2(\mathbb{Q})$$

- (a) Determine the minimal polynomial and the characteristic polynomial of *A*. Is *A* diagonalizable?
- (b) Compute A^{10} . Hint: Determine the remainder of the polynom division of X^{10} by μ_A .

Exercise G2 (Square roots of a matrix) Consider the symmetric matrix

$$A := \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix} \in M_2(\mathbb{R})$$

- (a) Show that $\chi_A = \mu_A$ and that *A* is positive definite.
- (b) Let $p \in \mathbb{R}[X]$ and M := p(A). Show that $M^2 = A$ if and only if μ_A divides $p^2 X$. Determine the set of polynomials $p \in \mathbb{R}[X]$ satisfying this relation.
- (c) Compute the unique symmetric positive definite matrix M such that $M^2 = A$.

Exercise G3 (Minimal polynomials)

Let *V* be a finite-dimensional *K*-vector space, $W \subset V$ a subspace, and $f : V \to V$ an endomorphism satisfying $f(W) \subset W$. We denote respectively by μ , μ_W and $\mu_{V/W}$ the minimal polynomials of *f*, the restriction of *f* to *W*, and the induced endomorphism $f_{V/W}$ of V/W.

- (a) Show that lcm(μ_W , $\mu_{V/W}$) | μ | $\mu_W \mu_{V/W}$.
- (b) Give an example where $\mu \neq \text{lcm}(\mu_W, \mu_{V/W})$.

Exercise G4 (Eigenvalues)

Let $A \in M_n(\mathbb{C})$ be a matrix.

- (a) Let $P \in \mathbb{C}[X]$ such that P(A) = 0. Show that $P(\lambda) = 0$ for all eigenvalues $\lambda \in K$ of A.
- (b) Show that the following are equivalent:

(i) *A* is nilpotent (i.e., there exists $k \in \mathbb{N}$ such that $A^k = 0$.)

Summer term 2016 19. Mai 2016

- (ii) One has $\mu_A = X^r$ for some $r \ge 1$.
- (iii) All eigenvalues of A are 0.

Homework

Exercise H1 (Minimal polynomial)

(12 points) Let *K* be a field and let $\lambda \in K$. For all $n \geq 1$ compute the minimal polynomial of the following $n \times n$ matrix:

 $\begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \ddots & 1 \\ & & & & \ddots \end{pmatrix} \in M_n(K).$

Exercise H2 (A one-line proof of Cayley-Hamilton's theorem?) (12 points) Explain why the following proof is wrong: Let *K* be a field and let $n \in \mathbb{N}$. Let $A \in M_n(K)$ be a matrix. One has $\chi_A = \det(XI_n - A)$. Hence by substituting *A* for the indeterminate *X*, we get

$$\chi_A(A) = \det(A.I_n - A) = \det(0) = 0.$$

Exercise H3 (Nilpotency degree)

(8+4 points)

Let V be an *n*-dimensional vector space and $f: V \rightarrow V$ a nilpotent endomorphism (i.e., there exists $k \in \mathbb{N}$ such that $f^k = 0$). Let $m \ge 1$ be the smallest integer such that $f^m = 0$.

- (a) Let $x \in V$ with $f^{m-1}(x) \neq 0$. Show that the system $(x, f(x), ..., f^{m-1}(x))$ is linearly independant and deduce that $m \leq n$.
- (b) Give another proof of $m \le n$ by using the theorem of Cayley-Hamilton.

Linear Algebra II 7. Exercise Sheet

TECHNISCHE UNIVERSITÄT DARMSTADT

Department of Mathematics Prof. Dr. Torsten Wedhorn Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Matrix equation)

Let $k \in \mathbb{N}$ be an odd number. Show that there exists no matrix $A \in M_k(\mathbb{R})$ such that $A^2 = 3A - 7I_k$. Is there such a matrix in $M_k(\mathbb{C})$? Is there such a matrix in $M_k(\mathbb{F}_2)$?

Exercise G2 (Rational normal form)

In each of the following cases, determine the rational normal form of the matrix A:

(a) A∈ M_n(K), μ_A = (X − λ)^{n−1} and χ_A = (X − λ)ⁿ for λ∈ K, n ≥ 2.
(b) A∈ M₄(ℝ), μ_A = (X² + X + 1)(X − 1).
(c) A∈ M₃(ℝ), A≠0 and A³ = −A

Exercise G3 (A proof of Cayley-Hamilton's theorem)

In this exercise, we give another proof of the theorem of Cayley-Hamilton for matrices in $M_n(\mathbb{C})$ with $n \ge 1$.

- (a) Show the relation $\chi_A(A) = 0$ when $A \in M_n(\mathbb{C})$ is diagonalizable.
- (b) Show that for every matrix A ∈ M_n(C) there exists a sequence (A_k)_{k∈N} of diagonalizable matrices A_k ∈ M_n(C) that converges to A (with respect to some norm on M_n(C); recall that all norms are equivalent, hence it does not matter which norm one takes).
 Hint: First let A be upper-triangular. Show that there exists a sequence (A_k)_k converging

to A such that A_k has pairwise distinct eigenvalues. Then use the fact that every matrix in $M_n(\mathbb{C})$ is triangularizable.

(c) Deduce the theorem of Cayley-Hamilton.

Exercise G4 (An identity for characteristic polynomials) In this exercise, we prove that $\chi_{AB} = \chi_{BA}$ for $A, B \in M_n(K)$.

- (a) Show this relation assuming $A \in GL_n(K)$.
- (b) For $A, B \in M_n(K)$ arbitrary, consider the function

 $\phi: K \longrightarrow K[X], \quad \lambda \mapsto \chi_{(A-\lambda I_n)B} - \chi_{B(A-\lambda I_n)}.$

Assume that *K* is an infinite field. Show that there exists infinitely many $\lambda \in K$ such that $\phi(\lambda) = 0$.

Summer term 2016 26. Mai 2016

- (c) Deduce that $\chi_{AB} = \chi_{BA}$ when *K* is an infinite field. Hint : Show that $\phi(\lambda) = 0$ for all $\lambda \in K$, in particular for $\lambda = 0$. Note that for all $k \in \mathbb{N}_0$, the function $\lambda \mapsto c_k(\phi(\lambda))$ is polynomial, where $c_k(P)$ denotes the *k*-th coefficient of the polynomial $P \in K[X]$.
- (d) Prove that χ_{AB} = χ_{BA} for an arbitrary field *K*.
 Hint: If *K* is finite, then observe that the field of fractions of *K*[*X*] is an infinite field.

Homework

Exercise H1 (Conjugacy classes)

(a) Show that the relation

 $A \sim B \iff A$ is similar to B

is an equivalence relation on the set $M_n(K)$. An equivalence class for this relation is called a *conjugacy class*.

- (b) Let $p = (X^2 + 1)^2 (X 2)^3 \in \mathbb{R}[X]$. Determine the number of conjugacy classes of matrices in $M_7(\mathbb{R})$ with characteristic polynomial equal to p.
- (c) Determine the number of conjugacy classes of matrices in $M_7(\mathbb{C})$ with characteristic polynomial equal to p.
- (d) Given two monic polynomials $\chi, \mu \in K[X]$ such that μ divides χ and such that μ and χ have the same irreducible divisors in K[X], show that there exists a matrix $A \in M_n(K)$ with $n = \deg(\chi)$ such that $\mu_A = \mu$ and $\chi_A = \chi$.

Exercise H2 (A matrix endomorphism)

Let $n \ge 2$ be an integer. Consider the endomorphism

$$\psi: M_n(K) \longrightarrow M_n(K), \ A \mapsto A^t$$

- (a) Show that $\psi^2 = Id_{M_n(K)}$. If char(K) $\neq 2$, show that ψ is diagonalizable. If char(K) = 2, show that ψ is not diagonalizable.
- (b) Determine the minimal and characteristic polynomial of ψ .
- (c) Determine the rational normal form of ψ .

Exercise H3 (Rational normal form) (12 points) Determine characteristic polynomial, minimal polynomial, and the rational normal form of the matrix:

$$A := \begin{pmatrix} 1 & -1 & 2 & a \\ 1 & 1 & -1 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in M_4(\mathbb{C})$$

where $a \in \mathbb{C}$.

(2+4+3+3 points)

(4+4+4 points)

Linear Algebra II 8. Exercise Sheet

Department of Mathematics Prof. Dr. Torsten Wedhorn Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Diagonalizability and invariant subspaces)

Let $f \in \text{End}(V)$ be an endomorphism.

- (a) Assume that f is diagonalizable. Let $W \subseteq V$ be an f-invariant subspace. Show that the restriction $f_W : W \to W$ is diagonalizable.
- (b) Assume $V = V_1 \oplus V_2$, where W_1, W_2 are *f*-invariant subspaces. Show that *f* is diagonalizable if and only if f_{V_1} and f_{V_2} are diagonalizable.

Exercise G2 (Jordan normal form)

In each of the following cases, determine the Jordan normal form.

- (a) $A \in M_n(K)$ and $\mu_A = X \lambda$ for $\lambda \in K$.
- (b) $B \in M_4(K)$, $B^2 = B$ and rk(B) = 3.
- (c) $C \in M_n(K)$ with $\mu_C = (X-2)^2$ and $\chi_C = (X-2)^3$.
- (d) $D \in M_5(K)$ with $\mu_D = X^2$ and $\operatorname{rk}(D) = 3$.

Exercise G3 (Diagonalizability and powers of an endomorphism)

- (a) Let $A \in GL_n(\mathbb{C})$ such that A^r is diagonalizable for some $r \ge 1$. Show that A is diagonalizable over \mathbb{C} .
- (b) Does (a) remain true if one replaces \mathbb{C} by \mathbb{R} ?
- (c) Does (a) remain true if one removes the assumption that A is invertible ?
- (d) Does (a) remain true if one replaces \mathbb{C} by a field of characteristic p ?

Exercise G4 (Endomorphism of space of polynomials)

Let *n* be an integer, and denote by $K_{n-1}[X]$ the *K*-vector space of polynomials of degree $\leq n-1$. Consider the endomorphism:

$$f: K_{n-1}[X] \to K_{n-1}[X], P \mapsto P'.$$

Determine the Jordan normal form of f.

Summer term 2016 2. Juni 2016

Homework

Exercise H1 (Similar matrices)

Show that the following matrices are pairwise non-similar:

$$A_{1} := \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, A_{2} := \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}, A_{3} := \begin{pmatrix} 1 & 2 & 7 & 6 \\ 0 & 2 & 5 & 8 \\ 7 & 1 & 0 & 7 \\ 3 & 1 & 2 & 2 \end{pmatrix}$$
$$A_{4} := \begin{pmatrix} 1 & 4 & 1 & 4 \\ 2 & 3 & 2 & 3 \\ 3 & 2 & 3 & 2 \\ 4 & 1 & 4 & 1 \end{pmatrix}, A_{5} := \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 9 & 8 & 2 & 0 \\ 7 & 6 & 0 & 2 \end{pmatrix}.$$

Exercise H2 (Fitting decomposition)

Let $f: V \rightarrow V$ be an endomorphism of a finite-dimensional *K*-vector space.

- (a) Show that there exists a pair $(V_{\text{nilp}}, V_{\text{isom}})$ of *f*-stable subspaces, such that $V = V_{\text{nilp}} \oplus V_{\text{isom}}$ and such that the restriction $f: V_{\text{nilp}} \to V_{\text{nilp}}$ is nilpotent and $f: V_{\text{isom}} \to V_{\text{isom}}$ is an isomorphism.
- (b) Show that the pair (V_{nilp}, V_{isom}) is unique with these properties.
- (c) Let $g \in \text{End}(V)$ such that $f \circ g = g \circ f$. Show that $g(V_{\text{nilp}}) \subset V_{\text{nilp}}$ and $g(V_{\text{isom}}) \subset V_{\text{isom}}$

Exercise H3 (Normal forms)

(3+3+3+3 points)In each of the following cases, determine the rational normal form, the minimal polynomial, the characteristic polynomial. If the matrix is triangularizable, determine the Jordan normal form.

- (a) $A \in M_n(K)$, $n \ge 2$ with $tr(A) = b \in K$ and rk(A) = 1.
- (b) $B \in M_3(K)$ nilpotent with rk(B) = 2
- (c) $C \in M_4(\mathbb{R})$ such that $C^4 = I_4$, tr $(C) \neq 0$, dim $(\text{Ker}(C I_4)) = 2$.
- (d) $D \in M_4(\mathbb{R})$, with only eigenvalues 1, 2 in \mathbb{C} , and tr(D) = 5 and rk($D I_4$) = 3

(12 points)

(4+4+4 points)

Linear Algebra II 9. Exercise Sheet

Department of Mathematics Prof. Dr. Torsten Wedhorn Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Equivalent conditions)

Let $A \in M_n(K)$ be a matrix and $\lambda \in K$. Show that the following properties are equivalent:

- (i) *A* is similar to the Jordan block $J_n(\lambda)$.
- (ii) The matrix $A \lambda I_n$ is nilpotent of rank n 1.
- (iii) A is similar to a matrix of the form

$$J := \begin{pmatrix} \lambda & x_{1,2} & \cdots & x_{1,n} \\ & \ddots & \ddots & \vdots \\ & & \ddots & x_{n-1,n} \\ & & & \lambda \end{pmatrix}$$

where $x_{i,i+1} \neq 0$ for all i = 1, ..., n - 1.

(iv) A is similar to a matrix of the form ${}^{t}J$ with J as in (iii).

(v) $\mu_A = (X - \lambda)^n$.

Exercise G2 (Generalized Eigenspaces)

Let *f* be an endomorphism of a finite dimensional *K*-vector space *V*. For a polynomial *p* in *K*[*X*] and for $k \in \mathbb{N}$, define:

$$V_k(p) := \operatorname{Ker}(p^k(f)), \ k \ge 1,$$

and $m_k(p) := \dim_K(V_k(p))$. Note that for $\lambda \in K$ the eigenspace of f for the eigenvalue λ is $V_1(X - \lambda)$.

- (a) Show that $V_k(p) \subseteq V_{k+1}(p)$ and $m_{k+1}(p) \ge m_k(p)$ for all $k \ge 1$. Conclude that there exists N such that $V_k(p) = V_N(p)$ for all $k \ge N$. We denote by $k_{\infty}(p)$ the smallest integer N satisfying this condition.
- (b) Show that if $m_k(p) = m_{k+1}(p)$ for some $k \ge 1$, then $V_r(p) = V_k(p)$ for all $r \ge k$.
- (c) Show that the sequence $a_k := m_{k+1}(p) m_k(p)$ is decreasing (i.e., $a_{k+1} \le a_k$ for all k). Hint: Show that p(f) induces an injective K-linear map

$$V_{k+2}(p)/V_{k+1}(p) \longrightarrow V_{k+1}(p)/V_k(p).$$

Summer term 2016 9. Juni 2016

(d) Assume that *p* is irreducible and monic. Show that the following are equivalent:

(i) There exists a $k \in \mathbb{N}$ such that $V_k(p) \neq 0$.

- (ii) $V_1(p) \neq 0$.
- (iii) p divides μ_f .

Show in this case that $k_{\infty}(p)$ is the exponent of p in the irreducible decomposition of μ_f in K[X].

(e) Show that one has a decomposition into generalized eigenspaces:

$$V = \bigoplus_{p \mid \mu_f} V_{k_{\infty}(p)}(p)$$

where the sum is over all irreducible monic factors p of μ_f in K[X].

Exercise G3 (Similar matrices in low dimensions)

Let *K* be a field, $n \in \mathbb{N}$ and $A, B \in M_n(K)$ be matrices.

- (a) Let n = 2. Show that *A* and *B* are similar if and only if $\mu_A = \mu_B$.
- (b) Let n = 3. Show that *A* and *B* are similar if and only if $\mu_A = \mu_B$ and $\chi_A = \chi_B$.
- (c) Does (b) remain true for n = 4?

Exercise G4 (Diagonalizability and field extensions)

Let $n \in \mathbb{N}$ and $K \subseteq L$ be a field extension, and let $A \in M_n(K)$ be a matrix. If A is triangularizable over K and diagonalizable over L, show that A is already diagonalizable over K.

Homework		

Exercise H1 (Transpose)

Let *K* be a field and $A \in M_n(K)$ a matrix. Show that *A* is similar to its transpose ^{*t*}A. *Hint*: Use that *K* is a subfield of an algebraically closed field.

Exercise H2 (Invariant subspaces) (5+2+5 points)Let *f* be an endomorphism of a finite-dimensional *K*-vector space *V*. We say that an *f*-invariant subspace $W \subset V$ is nontrivial if $W \neq 0, V$.

- (a) Show that *V* has no nontrivial *f*-invariant subspaces if and only if $\mu_f = \chi_f$ and μ_f is irreducible in *K*[*X*].
- (b) For *K* algebraically closed, determine the endomorphisms with no nontrivial invariant subspaces.
- (c) Show that *V* cannot be written as a direct sum of nontrivial *f*-invariant subspaces if and only if $\mu_f = \chi_f = p^k$ for some irreducible polynomial $p \in K[X]$.

Exercise H3 (Powers of matrices)

(9+3 points)

(12 points)

Let $n \in \mathbb{N}$.

- (a) For all $k \ge 1$, show that the map $GL_n(\mathbb{C}) \longrightarrow GL_n(\mathbb{C})$, $A \mapsto A^k$ is surjective.
- (b) Is the map $M_n(\mathbb{C}) \longrightarrow M_n(\mathbb{C})$, $A \mapsto A^k$ also surjective ?

Linear Algebra II 10. Exercise Sheet

Department of Mathematics Prof. Dr. Torsten Wedhorn Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Exact sequences and dual)

(a) Consider an exact sequence of finite-dimensional K-vector spaces

$$\cdots \to V_{i-1} \xrightarrow{f_{i-1}} V_i \xrightarrow{f_i} V_{i+1} \xrightarrow{f_{i+1}} V_{i+2} \to \dots$$

Show that the dual sequence

$$\cdots \to V_{i+2}^{\vee} \xrightarrow{f_{i+1}^{\vee}} V_{i+1}^{\vee} \xrightarrow{f_i^{\vee}} V_1^{\vee} \to \ldots$$

is $exact^1$.

(b) Let $f : V \to W$ be a *K*-linear map. We define the cokernel of *f* as the quotient Coker(*f*) := $W/\operatorname{Im}(f)$. Show that there is an exact sequence

$$0 \to \operatorname{Ker}(f) \to V \xrightarrow{f} W \to \operatorname{Coker}(f) \to 0$$

and deduce that there is a natural isomorphism:

$$\operatorname{Ker}(f^{\vee}) \simeq \operatorname{Coker}(f)^{\vee}.$$

Exercise G2 (Linear forms on K^n) For an *n*-tuple $\underline{\lambda} := (\lambda_1, ..., \lambda_n) \in K^n$, denote by $\varphi_{\underline{\lambda}}$ the map

$$\varphi_{\underline{\lambda}}: K^n \to K, \ (x_1, ..., x_n) \mapsto \sum_{i=1}^n \lambda_i x_i.$$

- (a) Show that $K^n \to (K^n)^{\vee}$, $\underline{\lambda} \mapsto \varphi_{\underline{\lambda}}$ is an isomorphism.
- (b) For $(\underline{\lambda}_1, ..., \underline{\lambda}_n) \in (K^n)^n$, show that $(\varphi_{\underline{\lambda}_1}, ..., \varphi_{\underline{\lambda}_n})$ is a basis of $(K^n)^{\vee}$ if and only if the $n \times n$ -matrix whose *i*-th column is $\underline{\lambda}_i$ is invertible.

Summer term 2016 16. Juni 2016

¹ The result holds also for arbitrary not necessarily finite-dimensional vector spaces.

Exercise G3 (Tridual)

Let *V* be a *K*-vector space. Let $\iota_V : V \to V^{\vee \vee}$ denote the canonical biduality homomorphism for *V*. Similarly, let $\iota_{V^{\vee}} : V^{\vee} \to V^{\vee \vee \vee}$ be the canonical biduality homomorphism of V^{\vee} . Show the identity:

$$(\iota_V)^{\vee} \circ \iota_{V^{\vee}} = \mathrm{Id}_{V^{\vee}}.$$

Exercise G4 (Evaluation morphism) Let *V* be a *K*-vector space and let

 $\iota: V \to V^{\vee \vee}$

be the canonical homomorphism. Recall that ι is injective. Show that ι is surjective if and only if *V* is finite-dimensional. Hint: For *V* infinite-dimensional, let $\mathcal{B} = (e_i)_{i \in I}$ be a basis of *V*. First show that the subspace $W \subset V^{\vee}$ generated by $e_i^{\vee} \in V^{\vee}$ is strictly contained in V^{\vee} . Then consider a nonzero linear form on V^{\vee} that is zero on *W*.

Homework

Exercise H1 (Dual basis)

Let $\mathcal{B} = (e_1, e_2, e_3)$ be the canonical basis of \mathbb{R}^3 . Find all vectors $x \in \mathbb{R}^3$ such that $\mathcal{B}_x := (e_1, e_2, x)$ is a basis of \mathbb{R}^3 and determine the dual basis $(\mathcal{B}_x)^{\vee}$.

Exercise H2 (Annihilator)

Let *V* be a vector space and $(U_i \subseteq V)_{i \in I}$ be a family of subspaces.

(a) Assume V is finite-dimensional, and let $U \subset V$ be a subspace. Show the identity:

$$U^{oo} = U$$

where we identified *V* with $V^{\vee\vee}$ via the biduality isomorphism $\iota: V \to V^{\vee\vee}$.

(b) Show that

$$\left(\bigcup_{i\in I}U_i\right)^o = \left(\sum_{i\in I}U_i\right)^o = \bigcap_{i\in I}U_i^o.$$

(c) Show that

$$\sum_{i \in I} U_i^o \subseteq \left(\bigcap_{i \in I} U_i\right)^o$$

and for *V* finite-dimensional, show that this inclusion is an equality.

(d) Give an example where the inclusion in (b) is not an equality.

(3+3+3+3 points)

(12 points)

Exercise H3 (Projections)

(6+6 points)

Let *V* be a *K*-vector space of finite dimension *n* and let $U \subseteq V$ be a subspace of dimension $r \leq n$.

(a) Show that an endomorphism $f \in \text{End}(V)$ is a projection (i.e., $f^2 = f$) with image *U* if and only if there exists a basis $(e_1, ..., e_n)$ of *V* with $e_1, ..., e_r \in U$ and

$$f(x) = \sum_{i=1}^r e_i^{\vee}(x)e_i$$

for all $x \in V$.

(b) Assume that (V, \langle, \rangle) is an inner-product space. Show that an endomorphism $f \in \text{End}(V)$ is an orthogonal projection with image U if and only if there exists an orthonormal basis $(e_1, ..., e_n)$ of V with $e_1, ..., e_r \in U$ and

$$f(x) = \sum_{i=1}^{r} \langle e_i, x \rangle e_i$$

for all $x \in V$.

Linear Algebra II 11. Exercise Sheet

TECHNISCHE UNIVERSITÄT DARMSTADT

Summer term 2016

23. Juni 2016

Department of Mathematics Prof. Dr. Torsten Wedhorn Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Trace as a bilinear form)

Let $n \ge 1$ be an integer. Consider the map: $\psi : M_n(K) \times M_n(K) \to K$, $(A, B) \mapsto \text{Tr}({}^tAB)$. For $1 \le p, q \le n$, denote by $E_{p,q}$ the $n \times n$ -matrix whose (i, j)-coefficient is 1 if (i, j) = (p, q) and 0 otherwise. Let $\mathcal{B} = (E_{p,q})_{1 \le p,q \le n}$ be the n^2 -tuple consisting of these matrices, in lexicographic order, i.e $\mathcal{B} = (E_{1,1}, E_{1,2}, ..., E_{1,n}, E_{2,1}, ..., E_{n,n})$.

- (a) Show that ψ is a symmetric bilinear form on $M_n(K)$.
- (b) Determine the matrix $M_{\mathcal{B}}(\beta)$. Show that ψ is nondegenerate.
- (c) Let $W \subset M_n(K)$ denote the subspace of upper-triangular matrices. Determine the orthogonal W^{\perp} .
- (d) Determine $S_n(K)^{\perp}$, where $S_n(K)$ denotes the set of symmetric matrices.

Exercise G2 (Biorthogonal)

Let β be a symmetric or skew-symmetric bilinear form on a *K*-vector space *V*, and let $U \subset V$ be a subspace.

- (a) Show that $U \subseteq U^{\perp \perp}$.
- (b) Assume now that *V* is finite-dimensional. Show that $U + V^{\perp} = U^{\perp \perp}$.
- (c) Deduce that $U = U^{\perp \perp}$ if and only if $V^{\perp} \subseteq U$.

Exercise G3 (Quadratic forms)

A quadratic form on a finite-dimensional *K*-vector space *V* is a map $q : V \to K$ satisfying the following properties:

(i) For all $\lambda \in K$, and all $x \in V$, one has $q(\lambda x) = \lambda^2 q(x)$.

(ii) The map $\beta_q : V \times V \to K$, $(x, y) \mapsto q(x + y) - q(x) - q(y)$ is a bilinear form on *V*.

We denote by Q(V) the set of quadratic forms on *V*.

- (a) Show that Q(V) is a subspace of the *K*-vector space of functions $V \to K$ (endowed with natural addition and scalar multiplication).
- (b) Show that the product of two linear forms on *V* is a quadratic form.

(c) If β is a bilinear form on *V*, show that $q_{\beta}(x) := \beta(x, x)$ defines a quadratic form on *V*. Show that this defines a *K*-linear map

$$\begin{array}{ccc} \mathcal{L}^2(V) & \xrightarrow{\phi} & \mathcal{Q}(V) \\ \beta & \mapsto & q_{\beta} \end{array}$$

- (d) Show that $\operatorname{Ker}(\phi) = \operatorname{Alt}(V)$, the space of alternating forms on *V*. Deduce that $\dim_{K}(\mathcal{Q}(V)) \geq \frac{n(n+1)}{2}$. Show that for all $\lambda_{1}, \lambda_{2} \in V^{\vee}$, one has $\lambda_{1}\lambda_{2} \in \operatorname{Im}(\phi)$.
- (e) For a quadratic form q, show that β_q is symmetric. If we denote by Sym(V) the K-vector space of symmetric bilinear forms on V, show that this defines a K-linear map

$$\begin{array}{ccc} \mathcal{Q}(V) & \xrightarrow{\psi} & \operatorname{Sym}(V) \\ q & \mapsto & \beta_q \end{array}$$

- (f) Show that $\phi \circ \psi = 2 \operatorname{Id}_{\mathcal{Q}(V)}$. Show that for all $\beta \in \mathcal{L}^2(V)$, the symmetric bilinear form $\psi(\phi(\beta))$ is given by $(x, y) \mapsto \beta(x, y) + \beta(y, x)$.
- (g) When char(K) \neq 2, show that ψ is an isomorphism. Show that the restriction of ϕ to Sym(V) is an isomorphism (in particular, ϕ is surjective). Deduce the dimension of Q(V) as a K-vector space.
- (h) Now assume char(K) = 2. Show that Im(ψ) is the space Alt(V) \subset Sym(V) of alternating forms. Deduce that there is an exact sequence

$$0 \to W \to \mathcal{Q}(V) \to \operatorname{Alt}(V) \to 0$$

where *W* is the space of functions $q: V \rightarrow K$ satisfying

$$q(x + y) = q(x) + q(y)$$
$$q(\lambda x) = \lambda^2 q(x)$$

for all $x, y \in V$ and for all $\lambda \in K$. Deduce from (d) that dim(W) $\geq n$.

- (i) Show that $\dim_{K}(W) = n$, deduce the dimension of $\mathcal{Q}(V)$ over K. Deduce that ϕ is surjective. Hint: For a basis $(e_1, ..., e_n)$ of V, show that $W \to K^n$, $q \mapsto (q(e_1), ..., q(e_n))$ is an isomorphism.
- (j) When char(K) \neq 2, show that any function $q : V \rightarrow K$ satisfying the following conditions is a quadratic form:
 - (i') For all $x \in V$, one has q(2x) = 4q(x).
 - (ii) The map $\beta_q : V \times V \to K$, $(x, y) \mapsto q(x + y) q(x) q(y)$ is a bilinear form on *V*.

Exercise G4 (Bilinear form and dual)

Let *V* be a *K*-vector space. For $v, w \in V$, define a map:

$$\beta_{v,w}: V^{\vee} \times V^{\vee} \to K, \quad (\phi, \chi) \mapsto \phi(v)\chi(w).$$

- (a) Show that $\beta_{v,w}$ is a bilinear form on V^{\vee} .
- (b) Let *T* be the subspace of $\mathcal{L}^2(V^{\vee})$ generated by the elements $\beta_{v,w}$ for $v, w \in V$. For a linear form $\lambda \in T^{\vee}$, define a function $\beta_{\lambda} : V \times V \to K$ by $\beta_{\lambda}(v, w) = \lambda(\beta_{v,w})$. Show that this defines an isomorphism of *K*-vector spaces

$$T^{\vee} \longrightarrow \mathcal{L}^2(V), \quad \lambda \mapsto \beta_{\lambda}$$

Homework

Exercise H1 (Totally isotropic subspaces)

(12 points)

(8+4 points)

Let β be a symmetric or skew-symmetric bilinear form on a finite-dimensional *K*-vector space *V*, and let $U \subset V$ be a totally isotropic space. Show the formula:

$$\dim_K(U) \leq \dim_K(V) - \frac{\operatorname{rk}(\beta)}{2}.$$

Exercise H2 (A bilinear form on a polynomial ring) (3+4+2+3 points)Let $V = K_{n-1}[X]$ be the *K*-vector space of polynomials of degree $\leq n-1$. For an integer $k \in \mathbb{N}$, let $a_k(p)$ denote the *k*-th coefficient of a polynomial $p \in K[X]$.

- (a) Show that the map $\beta_k : V \times V \to K$, $(p,q) \mapsto a_k(pq)$ is a symmetric bilinear form.
- (b) Let $\mathcal{B} = (1, X, ..., X^{n-1})$ denote the canonical basis of *V*. Compute the matrix of β_k in \mathcal{B} .
- (c) For what values of *k* is β_k nondegenerate?
- (d) Find a totally isotropic subspace $W \subset V$ of maximal dimension.

Exercise H3 (Existence of adjoints)

Let β be a non-degenerate bilinear form on a finite-dimensional *K*-vector space *V*, and let $f \in \text{End}(V)$ be an endomorphism.

(a) Show that there exists a unique endomorphism $f^* \in \text{End}(V)$ such that for all $x, y \in V$, one has

$$\beta(f(x), y)) = \beta(x, f^*(y)).$$

Show that there is a commutative diagram

$$V \xrightarrow{f^*} V$$

$$f_{\beta} \downarrow \qquad \qquad \downarrow f_{\beta}$$

$$V^{\vee} \xrightarrow{f^{\vee}} V^{\vee}$$

where $f_{\beta}: V \to V^{\vee}$ is the map $w \mapsto \beta(\cdot, w)$.

(b) Let \mathcal{B} be a basis of *V* and let \mathcal{B}^{\vee} be the dual basis. Prove the formula:

$$M_{\mathcal{B}}(f^*) = B^{-1}M_{\mathcal{B}}(f^{\vee})B$$

where $B = M_{\beta}(\beta)$.

Linear Algebra II 12. Exercise Sheet

TECHNISCHE UNIVERSITÄT DARMSTADT

30. Juni 2016

Summer term 2016

Department of Mathematics Prof. Dr. Torsten Wedhorn Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Signature) Consider the functions:

 $\psi_1: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to \mathbb{R}, \quad (A, B) \mapsto \operatorname{Tr}({}^tAB)$ $\psi_2: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to \mathbb{R}, \quad (A, B) \mapsto \operatorname{Tr}(AB)$

- (a) Show that ψ_1, ψ_2 are symmetric bilinear forms.
- (b) Determine the signatures of ψ_1 and ψ_2 . Hint: Show that $M_n(\mathbb{R}) = S_n(\mathbb{R}) \perp A_n(\mathbb{R})$ where $S_n(\mathbb{R})$ denotes the set of symmetric matrices in $M_n(\mathbb{R})$, and $A_n(\mathbb{R})$ the set of skew-symmetric matrices in $M_n(\mathbb{R})$.

Exercise G2 (Charactersitic polynomials and bilinear forms)

- (a) Show that if $\chi_A = \chi_B$ for two diagonalizable matrices $A, B \in M_n(K)$, then rk(A) = rk(B).
- (b) Give a counter-example to (a) when we do not assume that A and B are diagonalizable.
- (c) Let $A, B \in GL_n(\mathbb{R})$ be symmetric matrices such that $\chi_A = \chi_B$. Show that *A* and *B* have the same signature.
- (d) Let $A, B \in M_n(\mathbb{R})$ be symmetric matrices such that $\chi_A = \chi_B$. Show that *A* and *B* are congruent.

Exercise G3 (Gram-Schmidt algorithm for anisotropic symmetric forms)

Let *K* be a field of characteristic $\neq 2$, and let $f \in K[X]$ be an irreducible polynomial of degree ≥ 2 . We denote by K(X) the field of fractions of K[X].

(a) Show that the bilinear form on $K(X)^2$ given by the matrix

$$A := \begin{pmatrix} X & 1 \\ 1 & f \end{pmatrix}$$

is anisotropic.

(b) Let $K = \mathbb{R}$ and $f = X^2 + 1$. Use the Gram-Schmidt algorithm to determine an orthogonal basis of $K(X)^2$. Find a matrix $P \in GL_2(\mathbb{R}(X))$ such that ^{*t*}*PAP* is diagonal.

Exercise G4 (Symplectic group)

A non-degenerate, alternating bilinear form is called a *symplectic form*. Let *V* be a *K*-vector space of even dimension 2n, and let ψ be a symplectic form on *V*. We define the symplectic group of (V, ψ) by:

$$Sp(V,\psi) := \{ f \in GL_K(V), \ \psi(f(x), f(y)) = \psi(x, y), \ \forall x, y \in V \} \}$$

A maximal totally isotropic subspace $U \subset V$ is called a *Lagrangian*.

- (a) Show that *U* is a Lagrangian if and only if *U* is totally isotropic and $\dim_K(U) = n$. Show that the image of a Lagrangian by an element of $Sp(V, \psi)$ is again a Lagrangian.
- (b) Let *U* be a Lagrangian and let $(e_1, ..., e_n)$ be a basis of *U*. Show that there exists a tuple $(f_1, ..., f_n) \in V^n$ such that $\mathcal{B} = (e_1, ..., e_n, f_1, ..., f_n)$ is a basis of *V*, and such that:

$$M_{\mathcal{B}}(\beta) = \begin{pmatrix} I_n \\ -I_n \end{pmatrix}$$

Hint: To construct f_1 , choose first a vector in the complement of U in span $(e_2, ..., e_n)^{\perp}$, then rescale. Afterwards proceed by induction.

- (c) Show that for all Lagrangian subspaces U_1 , U_2 in V, there exists $f \in Sp(V, \psi)$ such that $f(U_1) = U_2$.
- (d) Let U_1, U_2 be isotropic subspaces of *V* of the same dimension. Show that there exists $f \in Sp(V, \psi)$ such that $f(U_1) = U_2$.

Exercise G5 (Determinant of isometries)

Let β be a non-degenerate bilinear form on a finite-dimensional vector space *V*. Show that any isometry of *V* has determinant ±1.

Homework

Exercise H1 (Signature) Consider the symmetric matrix:

$$A := \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in M_3(\mathbb{R}).$$

- (a) Determine the signature of *A*.
- (b) Find a matrix $P \in GL_3(\mathbb{R})$ such that ^{*t*}*PAP* is diagonal.

Exercise H2 (Isometric bilinear forms)

In each case, determine if the matrices A and B are congruent in $M_m(K)$:

(a)
$$K = \mathbb{C}, A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 7 & 3 \\ 1 & 3 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 3 & 2 \\ 3 & 1 & 3 \\ 2 & 3 & 8 \end{pmatrix}$

(b) $K = \mathbb{R}$, A and B as in (a).

(c)
$$K = \mathbb{Q}, A = \begin{pmatrix} 7 & -2 \\ -2 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 19 & 3 \\ 3 & 11 \end{pmatrix}$

(d) $K = \mathbb{R}$, A and B as in (c).

(e) $K = \mathbb{Z}/5\mathbb{Z}$, *A* and *B* as in (c).

Exercise H3 (An isometric transformation)

Let *K* be a field, and $\alpha, \beta \in K^{\times}$ such that $\alpha + \beta \in K^{\times}$. Then show :

$$\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \text{ is congruent to } \begin{pmatrix} \alpha + \beta & 0 \\ 0 & (\alpha + \beta)\alpha\beta \end{pmatrix}.$$

Linear Algebra II 13. Exercise Sheet

UNIVERSITÄT DARMSTADT

Summer term 2016

7. Juli 2016

technische

Department of Mathematics Prof. Dr. Torsten Wedhorn Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Theorem of Witt does not hold for degenerate spaces)

Give an example of a degenerate quadratic space (V,β) over a field K of characteristic $\neq 2$, a subspace $U \subseteq V$, and an injective homomorphism of quadratic spaces $s: (U, \beta_U) \rightarrow (V, \beta)$ than cannot be extended to an isometry $(V, \beta) \rightarrow (V, \beta)$.

Exercise G2 (Generalized Witt decomposition)

Let (V, β) be a quadratic space over a field of characteristic $\neq 2$. Show that there exists a decomposition

$$(V,\beta) = V^{\perp} \perp H \perp V_a,$$

where (H, β_H) is a hyperbolic space, (V_a, β_{V_a}) is anisotropic, and where both are determined uniquely up to isometry.

Exercise G3 (Minkowski space of spacetime)

Let $V = \mathbb{R}^4$ endowed with a Lorentz form, i.e., a symmetric bilinear form g of signature (1,3). An $x \in \mathbb{R}^4$ is called *time-like* (resp. *space-like*, resp. *light-like*) if g(x, x) < 0 (resp. g(x, x) > 0, resp. g(x, x) = 0).

(a) Show that the set of time-like vectors is the disjoint union of two open cones in \mathbb{R}^4 ("open" with respect to some norm on \mathbb{R}^4). Here a subset $C \subseteq \mathbb{R}^n$ is called a *cone* if

$$x, y \in C \implies x + y \in C, \qquad \lambda \in \mathbb{R}_{>0}, x \in C \implies \lambda x \in C.$$

We call one of the cones the *future cone* and one the *past cone* (it does not matter which we cone we choose as future cone).

(b) Let $x, y \in V$ be time-like vectors. If both are in the future cone with g(x, x) = g(y, y) = 1, then show that $g(x, y) \ge 1$. If x is in the future cone and g(x, y) > 0, then y is in the future cone.

Exercise G4 (Generalization of Witt's cancellation to degenerate spaces)

Let *K* be a field of characteristic $\neq 2$. Let (V, β) and (V', β') be quadratic spaces with orthogonal decompositions $V = U_1 \perp U_2$ and $V' = U'_1 \perp U'_2$. Suppose that (V, β) and (V', β') are isometric and that (U_1, β_{U_1}) and $(U'_1, \beta_{U'_1})$ are isometric. Show that (U_2, β_{U_2}) and $(U'_2, \beta_{U'_2})$ are isometric. *Hint*: The following steps might be useful:

(a) Let $1 \le r \le n$, $A \in M_r(K)$ be symmetric matrices with A invertible and assume that the matrices $n \times n$ -block matrices

 $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 & 0 & A' \end{pmatrix}$

are congruent. Show that A and A' are congruent. Deduce Witt's cancelation if U_1 is totally isotropic and U_2 is non-degenerate.

- (b) Next show that cancelation holds if U_1 is totally isotropic.
- (c) Show the general case: Use induction to assume that U_1 is one-dimensional and use the second step to assume that (U_1, β_{U_1}) is anisotropic. Then proceed as in the first step of the proof of Witt's theorem.

Homework

Exercise H1 (Signature)

Let $n \in \mathbb{N}$ and let $A \in M_n(\mathbb{R})$ be a symmetric matrix. For k = 1, ..., n let A_k be the matrix consisting of the first k rows and k columns of A. Suppose that $\det(A_k) \neq 0$ for all k = 1, ..., n. Show that the signature of A is (n-s,s), where s is the number of sign changes in the sequence $1, \det(A_1), \det(A_2), ..., \det(A_n)$.

Exercise H2 (Product of reflections)

Let *V* be an \mathbb{R} -vector space of dimension $n \ge 2$ with a non-degenerate symmetric bilinear form β . Find *n* reflections $s_1, \ldots, s_n \in O(V, \beta)$ such that $\mathrm{Id}_V = s_1 \circ s_2 \circ \cdots \circ s_n$.

Exercise H3 (Determinant as quadratic form) Let *K* be a field of characteristic $\neq 2$.

(a) Show that det: $M_2(K) \rightarrow K$ is a quadratic form (Exercise Sheet 11, G3) and let

$$\beta: M_2(K) \times M_2(K) \to K, \qquad (A,B) \mapsto \det(A+B) - \det(A) - \det(B)$$

be the corresponding symmetric bilinear form.

(b) Let $K = \mathbb{R}$. What is the signature of β ? What is the signature of the restriction of β to the subspace $\{A \in M_2(\mathbb{R}) \mid tr(A) = 0\}$.