Linear Algebra Il

. iz TECHNISCHE

1. Exercise Sheet (/=) UNIVERSITAT
Q))\o\ DARMSTADT

Department of Mathematics Summer term 2016
Prof. Dr. Torsten Wedhorn 14. April 2016

Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Three equivalent conditions for isometries)
Let (V, (,)) be an inner product space. Show that the following statements are equivalent:

(i) f is an isometry.
G If Gl = l|x]|| for all x € V.

(iii) If (vy,..., v,) is an orthonormal basis of V, then so is (f (v;), ..., f (v,)).

Exercise G2 (Orthogonal group is a subgroup)
Show that O, (R) is a subgroup of GL,(R).

Exercise G3 (A counter-example to surjectivity of isometries)
Let H be the real vector space of sequences (x,) ey, With Zoo

(a) Prove that (x,y) :=>

n=0

2
nszn < +oo.

x,Y, defines an inner product on H.

(b) Let T : H— H denote the endomorphism mapping (x,),en, to (0, X, X1, X, ...). Show that
T is an isometry of H, that is not surjective.

Exercise G4 (Matrix of an endomorphism with respect to a base)

We endow R with respect to the usual inner product. Let B = (eq, e,) be the basis of R? given
by e; =(1,1) and e, = (2,1). Let f : R> - R? be defined by f(x,y) = (x +y,x —2y).

(a) Compute the matrix of f with respect to B.

(b) Compute the matrix of f* with respect to B.

Homework

Exercise H1 (Normal endomorphisms) (4 points)
Let (V, (,)) be an inner product space.

(a) Let f : V — V be an endomorphism. Show that Ker(f) = Im(f*)*
(b) If f is normal, then Im(f) = Im(f*).
(c) Let f,g : V — V be normal endomorphisms. Show that f o g =0 if and only if go f = 0.




Exercise H2 (Orthogonal projections)
Let (V,(,)) be an inner product space, and let p : V — V be an endomorphism. Recall that p is
called a projection if there exists subspaces V;,V, such that V =V, & V,, and p(x; + x3) = x;
for all x; € V; and i = 1, 2. Furthermore, p is an orthogonal projection if there exists such V;,V,
with V= Vl 4 Vz.
(a) Show that p is a projection if and only if p? = p.
(b) Show that the following statements are equivalent:

(i) p is an orthogonal projection.

(i) p* =p and p? =p.
Exercise H3 (Eigenvalues)

Let f be a self-adjoint endomorphism of a unitary space V. Show that the following statements
are equivalent:

(i) f has real positive eigenvalues.
(ii) For all x e V\ {0}, (f(x),x) > 0.
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Exercise G1 (Determinant of an isometry)
Let f be an isometry of a K-inner product space. Show that |det(f)| = 1.

Exercise G2 (Normal endomorphisms and stable subspaces)
Let (V,(-,-)) be a K-inner product space and let f : V — V be a normal endomorphism. If
P=a,X"+a, ;X" 1+---+a;X +a, € K[X] is a polynomial, set

P(f):=a,f"+a, f" +---+a;f +a,ld, € End(V).

Furthermore, we denote by P the polynomial @, X" +a, ;X" ' +---+a@;X + a.

(a) Show that there exists P € K[X ] such that f* = P(f).

Hint : Do first the unitary case. For this, show that there exists a polynomial P such that
P(4;) = A, for all eigenvalues A; of f. For the euclidean case, use the unitary case and note

that # has real coefficients for all P € C[X].

(b) Let U C V be a subspace such that f(U) € U. Show that f*(U) C U. Furthermore, show
that the restriction f;: U — U of f to U is normal.

(c) Let U C V be a subspace such that f(U) C U. Show that f(U+) C U*.

Exercise G3 (Set of normal endomorphisms)
Let V be a K-inner-product space. Is the set of normal endomorphisms of V a subspace of

Endg (V) ?

Exercise G4 (G-invariant inner-product)
Let V be a K-vector space and let G be a finite subgroup of GLi(V). Show that there exists a
K-inner product (-,-) on V such that (g(x), g(y)) = (x,y) forall g € G and for all x,y € V.

Exercise G5 (Finite subgroups of O,(R))
Let G be a finite subgroup of O,(R) with n elements.

(a) Show that

C:= {(Z _ab) : a,beR,(a,b);é(o,O)}




is a subgroup of GL,(R) and that

a —b

C —»C~*, (b )~—>a+ib
a

is a bijective group homomorphism.

(b) Show that there exists a bijective group homomorphism SO,(R) — S :={z € C, |z| = 1}.

(c) Assume G C SO,(R). Show that there exists A € G such that G = {I,,A,A%,...,A"}.

(d) Show that any element A € O,(R) with det(A) = —1 is an orthogonal reflection (see Exercise
H1) and that A% = I,.

(e) If G is not contained in SO,(R), show that there exists m € N such that n = 2m, and that
G NSO,(R) has m elements.

Homework

Exercise H1 (Reflections) (4+4+4 points)
Let V be a euclidean space, and let H C V be a subspace.

(a) Show that there exists a unique endomorphism ry € End(V) satisfying ry(x) = x for all
x € H and ry(x) = —x for all x € H'.

(b) Show that ry is an isometry. When H is a hyperplane (i.e., a subspace of V with dim(H) =
dim(V)— 1), then ry is called the orthogonal reflection with respect to H.

(c) Forall f € O(V), show that f org o f~! = rpy).

Exercise H2 (Commuting normal endomorphisms) (3+9+12* points)
Let (V, (,)) be a K-inner product space and let f, g : V — V be normal endomorphisms such that
fog=gof.

(a) Let A € K be an eigenvalue of f. Show that the eigenspace E,(f) is g-invariant.

(b) Assume that V is a unitary space. Show that there exists an orthonormal basis of V for
which both f and g have a diagonal matrix.

*(c) Assume now that V is a euclidean space. We want to show that there exists an orthonormal
basis for which both f and g are in normal form (i.e have matrices of the form given by
Theorem 1.17). We choose an orthonormal basis B of V, and denote respectively by A and
B the matrices of f and g with respect to 5. We may view A and B as endomorphisms of
R"™ or C" where n = dimg(V).

(1) Letx = (xq,...,Xx,) € C". Define x := (x4, ..., X,,). Show that (x, x)-NR" is a R-subspace
of R" of dimension < 2. When does it have dimension 0,1,2 ?
(i) Prove that there exists a subspace of dimension 1 or 2 in R" that is stable by both A and
B.
(iii) Deduce the result by induction. Hint: Use Exercise G2(c).

Exercise H3 (The orthogonal group is generated by reflections) (12 points)
Let V be a euclidean space. Show that for every g € O(V) there exists m € N and orthogonal
reflections ry,...,ry_ (see Exercise H1) such that g =ry ory,0---ory .

Hint : First prove the result for dim(V) < 2, then use induction.
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Exercise G1 (Positive definite matrix)
Consider the following matrix:

2 -1 1
A=|-1 2 -1
1 -1 2

(a) Show that A is positive definite.

(b) Determine the unique symmetric positive definite matrix B such that A = B2.

Exercise G2 (Square root of A*A and AA*)
Let A € GL,(C) be a matrix. For a positive definite hermitian matrix B, we denote by +/B the
unique positive definite hermitian matrix such that (+/B)? = B.

(a) Show that A*A and AA* are positive definite hermitian matrices.

(b) For x € C", show that ||Ax|| = ||VA*Ax|| and ||A*x|| = || VAA*x]|.

(c) Recall that there is a unique unitary matrix U, such that A = U,v/A*A. Show that there is a
unique unitary matrix V, such that A= +/AA*V,. Show that V,. = U "

(d) Show that Uy = V,. Deduce that Uy = U,.

(e) Assume A= SU = U’S, where U,U’ € U(n) and S is hermitian positive definite. Show that
Ais normal and that U = U’.

Exercise G3 (Function on Spectrum)

For a matrix A € M,,(C), we denote by o (A) the set of eigenvalues of A, called the spectrum of A.
Let A be a normal matrix, and let f : 0(A) — C be a function, let A € M,,(C) be a normal matrix.
There exists U € U(n) such that A= U*DU, where D = diag(A,,...,A,,) is the diagonal matrix
with diagonal coefficients A,, ..., A,,. We define:

f(A) = Urdiag(f (A1), ..., f(A))U.

(a) Show that f(A) is independant of the choice of the the decomposition A = U*DU. Hint :
Choose a polynomial P € C[X] such that P(A;) = f(A;) for all i = 1,...,n, and prove that

f(A)=P(A).




(b) Let f,g : 0(A) — C be two functions. Prove that:

(f+8)A)=fA)+gA)
(fg)A) =f(A)g(A)
fA) =@y

(c) Show that f(A) is normal and o(f (A)) = f (o (A)).

(d) Let f : 0(A) —» C, A — A. Show that f (A) = A*.

(e) Assume A is invertible, and let f : 0(A) > C, A — % Show that f(A) =A™
(f) Let f : 0(A) > C and g : 0(f(A)) — C. Show that (g o f)(A) = g(f (A)).

(g) Prove the equivalences:

f(A) is unitary <= f has valuesin S! = {z € C, |z| = 1}
f(A) is self-adjoint <= f has values in R
f(A) is positive definite <= f has values in {x € R, x > 0}
f(A) is an orthogonal projection <> f has values in {0, 1}.

Exercise G4 (Polynomial division)
Compute the division with remainder of P by Q in the following cases:

() P=X"+2X3—X?>+X+1andQ=X>+X3—X>+X—3.
(b) P=X2—1and Q=X*—1.

Homework

Exercise H1 (Iwasawa decomposition) (12 points)
Determine the Iwasawa decomposition of the matrix

Exercise H2 (Polar decomposition, Cartan decomposition) (12 points)
Determine the polar decomposition and a Cartan decomposition of the matrix

(2 3)




Exercise H3 (Euclidean ring) (2+4+6+6* points)
(a) Show that the following sets form rings with respect to the addition and multiplication
induced by C :

Z[i]:={a+ bi, a,b € Z}
Q[i]:={a+ bi, a,b € Q}.

(b) Show that every element of Q[i] is of the form z/w for z,w € Z[i] with w # 0 (this means
that Q[i] is the quotient field of Z[i] in the language introduced in §4 of the lecture).

(c) Show that Z[i]is a euclidean ring for the euclidean norm function Z[i]\ {0} —» N, z — |z|?.
*(d) Show that Z[i]* :={z € Z[i]; Iwe Z[i]: 2w =1} ={1,—1,1,—i}.
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Exercise G1 (Equivalence relation)
Let X be a finite set with n elements, and let f : X — X be a mapping such that f o f = Idy.

(a) Show that the relation

x~y e (y=xory=f(x))

defines an equivalence relation on X.

(b) Assume that n is odd. Show that f has a fixed point, i.e there exists x € X such that
flx)=x.

(¢) Generalize this result for a mapping f satisfying f ® := f o...o f =1Idy, where p is a prime
number. Show that if n is not divisible by p, then f has a fixed point. Hint : Use the
equivalence relation: y ~ x < 3k € Z,y = f®(x), where by definition f© := 1dy and
£ = ()P for k < 0.

Exercise G2 (Simple roots)
(a) For a polynomial P = Z?:o a;X' € K[X], we define its derived polynomial as:

P/(X) = ia X"
i=1
Show that (P + Q) = P’ + Q’ and (PQ)’ = P'Q + PQ’ for all polynomials P,Q € K[X].

(b) An element a € K is a simple root of P if P is divisible by X — a but not by (X — a)?. Prove
that « is a simple root if and only if P(a) = 0 and P’(a) # 0.

(c) Let P be an irreducible polynomial in Q[X ]. Show that P has only simple roots in C.

Exercise G3 (System of congruences)
(a) Let a, b € Z be coprime integers. Show that there exists x, y € Z such that

x=1 (moda) y=0 (mod a)
x =0 (mod b) y=1 (mod b)




(b) Let ay, by € Z and consider the following system of congruences:

z=a, (mod a)
z=b, (mod b)

Show that the set of elements z € Z satisfying the above congruences is
{apx + byy + kab, k € Z}.

(c) Determine the integers z € Z satisfying the following congruences:

z=3 (mod>5)
z=7 (mod 3)

(d) Using a similar method, determine the integers z € Z satisfying the following congruences:

1 (mod 3)
2 (mod 7)
3 (mod 11)

Z
Z
Z

Exercise G4 (Greatest common divisor)

Let K be a field. For two polynomials BQ € K[X], we denote by gcd, (P, Q) the unic monic
polynomial that is a greatest common divisor of P and Q in the ring K[X].

(a) Let LQ € Q[X]. Show that gch(P, Q) = gcd(PQ).

(b) Let BQ € Q[X]. Show that P,Q are coprime in Q[X] if and only if they have no common
root in C.

Homework

Exercise H1 (Euclidean algorithm) (4+4+4 points)
Using the Euclidean algorithm, determine the GCD of the following elements a, b in the eu-
clidean ring R:

() a=91091, b=1729inR = Z.
b) a=X"+2X0—3X°"+X2—X+1,b=X"+X?>—2X+1inR=R[X].
() a=10,b=i—7inR=Z[i] (see Ex. H3 on Ex. sheet 3).




Exercise H2 (Irreducible decomposition) (24+2+2+2+2+2 points)
Determine the decomposition of the following polynomials into irreducible factors:

X?+1eR[X]
X?+1eC[X]
X?+1e(z/22)[X]
X% +1e(z/32)[X]
7X?—8X +5 € R[X]
aX?+bX +ceR[X]withac <0

Exercise H3 (Ideals and quotient ring) (2+3+4+3 points)
Let R be a commutative ring and let X C R be a subset. Define a relation on R by x ~ y if
x—y€eX.

(a) Show that ~ is an equivalence relation if and only if X is a subgroup of (R, +).
(b) Let X be a subgroup of (R, +). Show that the map

+: R/ ~) xR/ ~)—R/~, (Ix],[yD = [x+y]

is well defined.
(c) Show that the map

R/~ xR/ ~)—R/~, (Ix],[y]) = [xy]

is well defined if and only if for all a € R and x € X one has ax € X. A subgroup X of (R, +)
satisfying this condition is called ideal of R. Show that in this case R/ ~ is a commutative
ring with respect to the addition and multiplication defined above.

(d) Determine the ideals of the ring Z. If R is a field, what are its ideals?
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Exercise G1 (Long exact sequences, dimensions)
(a) Consider a short exact sequence of finite-dimensional vector spaces:

0-V -V->V"50.

Show that dim(V) = dim(V’) + dim(V").

(b) Let
f fn—2 fn—1

O—>V1—>V22>...—>Vn_1—>Vn—>O
be a long exact sequence of vector spaces. Show that one obtains short exact sequences:
0 — Im(f;) = Viyy = Im(f;11) = 0

foralli=1,...,n—2.
(c) Assume further that the vector spaces Vi, ..., V, in (b) are finite-dimensional. Prove that:

> (—=1)dim(V;) =0.
i=1

Exercise G2 (Quotient of polynomial ring)

Let K be a field and P € K[X] be a nonzero polynomial. Give a basis of the K-vector space
K[X]/(P), where (P) is the principal ideal of K[X ] generated by P, and show dim(K[X]/(P)) =
deg(P).

Exercise G3 (Semi-inner-product)
Let V be an R-vector space and let B : V x V — R be a symmetric bilinear form such that

B(v,v) >0 for all v € V (then B is called a semi-inner product). Define
W:=vVi:={xeV;VyeVB(x,y)=0}.

(a) Show that the following map is well-defined and is an inner-product on V /W :

(V/W)x(V/W)—=K, ([xlw,[ylw)—B(x,y).




(b) Let V be the space of Riemann-integrable R-valued functions on the interval [0,1]. For
functions f, g € V, define:

1
B(f,g) :=J f(x)g(x)dx.
0

Show that B is a semi-inner-product. Give an example of a nonzero function in V=.

*(c) Show that B induces an inner-product on the subspace V' C V of continuous R-valued
functions on the interval [0, 1].

Exercise G4 (Operations on principal ideals)
Let R be a euclidean ring, and let a, b € R be two elements.

(a) Show that the set
I:={ax+by; x,y €R}
is the ideal generated by a greatest common divisor of a and b.

(b) Show that the intersection J := (a)N(b) is an ideal which is generated by a lowest common
multiple of a and b.

(c) Let d be a gcd of a and b and let m be an Iem of a and b. Show that (ab) = (dm).

Homework

Exercise H1 (Matrices and polynomials) (3+4+5 points)
Let K be a field, and let A€ M, (K). Consider the map

¢ : K[X]— M,(K), P— P(A)
(a) Show that ¢ is a K-linear map.

(b) Show that Ker() is an ideal # {0} of K[X].
(c) Let n =2, K =R and let A be the matrix

A= (‘1’ ‘01).

Determine the unique monic generator of the ideal Ker(¢)!. Give a K-basis for Im(¢) and
determine its dimension.

Exercise H2 (A dimension formula) (6+3+3 points)
Let V be a K-vector space, and let V;,V, C V be subspaces.

(a) Show that one has a short exact sequence
0-ViNnV, =V, = (V;+V,)/V, — 0.
(b) Deduce that one has an isomorphism
Vi/(Vi N Vy) = (Vy + V) / V5.
(c) Assume that V; and V, are finite-dimensional. Deduce from (b) that
dim(V; NV,) + dim(V; + V;) = dim(V;) + dim(V,).

1 Such a generator is then the minimal polynomial of A.




Linear Algebra Il

. 7\ TECHNISCHE

6. Exercise Sheet (/=) UNIVERSITAT
Q))\o\ DARMSTADT

Department of Mathematics Summer term 2016
Prof. Dr. Torsten Wedhorn 19. Mai 2016

Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Compute a high power of a matrix)
Consider the matrix:

A= (_11 :1,)) € My(Q)

(a) Determine the minimal polynomial and the characteristic polynomial of A. Is A diagonaliz-
able?

(b) Compute A!°. Hint: Determine the remainder of the polynom division of X'° by u,.

Exercise G2 (Square roots of a matrix)
Consider the symmetric matrix

A= (_11 _31) € M,(R)

(a) Show that y, = u, and that A is positive definite.

(b) Let p € R[X]and M := p(A). Show that M? = A if and only if u, divides p?>—X. Determine
the set of polynomials p € R[X ] satisfying this relation.

(c) Compute the unique symmetric positive definite matrix M such that M2 = A.

Exercise G3 (Minimal polynomials)

Let V be a finite-dimensional K-vector space, W C V a subspace, and f : V — V an endo-
morphism satisfying f(W) c W. We denote respectively by u, uy and uy,y the minimal
polynomials of f, the restriction of f to W, and the induced endomorphism fy , of V/W.

(a) Show that lem(uy, Uy yw) | U | twtyw-

(b) Give an example where u # lem(uy, thy /w)-

Exercise G4 (Eigenvalues)
Let A€ M, (C) be a matrix.

(a) Let P € C[X] such that P(A) = 0. Show that P(A) = 0 for all eigenvalues A € K of A.

(b) Show that the following are equivalent:
(i) Ais nilpotent (i.e., there exists k € N such that Ak =0.)




(ii) One has u, =X" for some r > 1.
(iii) All eigenvalues of A are 0.

Homework

Exercise H1 (Minimal polynomial) (12 points)
Let K be a field and let A € K. For all n > 1 compute the minimal polynomial of the following
n X n matrix:

A1
€ M, (K).
1
A
Exercise H2 (A one-line proof of Cayley-Hamilton’s theorem?) (12 points)

Explain why the following proof is wrong: Let K be a field and let n € N. Let A € M, (K) be a
matrix. One has y, = det(XI, —A). Hence by substituting A for the indeterminate X, we get

14(A) = det(A.I, — A) = det(0) = 0.

Exercise H3 (Nilpotency degree) (8+4 points)
Let V be an n-dimensional vector space and f : V — V a nilpotent endomorphism (i.e., there
exists k € N such that f* = 0). Let m > 1 be the smallest integer such that f™ = 0.

(a) Let x € V with f™!(x) # 0. Show that the system (x, f(x),..., f ™ 1(x)) is linearly inde-
pendant and deduce that m < n.

(b) Give another proof of m < n by using the theorem of Cayley-Hamilton.
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Exercise G1 (Matrix equation)
Let k € N be an odd number. Show that there exists no matrix A € M, (R) such that A% = 3A—7I,.
Is there such a matrix in M, (C) ? Is there such a matrix in M (TF,) ?

Exercise G2 (Rational normal form)
In each of the following cases, determine the rational normal form of the matrix A:
(@ AeM,(K), us=X—-A)"tand y,=(X—A)"for A€K, n>2.
(b) A€ My(R), uy=(X*+X +1)(X —1).
(c) A€ M3(R),A#0and A>=-A

Exercise G3 (A proof of Cayley-Hamilton’s theorem)
In this exercise, we give another proof of the theorem of Cayley-Hamilton for matrices in M, (C)

with n > 1.
(a) Show the relation y,(A) =0 when A € M,,(C) is diagonalizable.

(b) Show that for every matrix A € M,(C) there exists a sequence (A )y Of diagonalizable
matrices A, € M,,(C) that converges to A (with respect to some norm on M, (C); recall that
all norms are equivalent, hence it does not matter which norm one takes).

Hint: First let A be upper-triangular. Show that there exists a sequence (A;), converging
to A such that A; has pairwise distinct eigenvalues. Then use the fact that every matrix in
M, (C) is triangularizable.

(c) Deduce the theorem of Cayley-Hamilton.

Exercise G4 (An identity for characteristic polynomials)
In this exercise, we prove that y,z = ypa for A,B € M, (K).

(a) Show this relation assuming A € GL,(K).
(b) For A,B € M,,(K) arbitrary, consider the function

¢ :K— K[X], A= Xa-n1,)8 — XBa-71,)-

Assume that K is an infinite field. Show that there exists infinitely many A € K such that

P(1)=0.




(c) Deduce that y,5 = ¥4 When K is an infinite field. Hint : Show that ¢ (1) =0 forall A €K,
in particular for A = 0. Note that for all k € N, the function A — ¢, (¢(A)) is polynomial,
where ¢, (P) denotes the k-th coefficient of the polynomial P € K[ X ].

(d) Prove that y45 = x4 for an arbitrary field K.
Hint: If K is finite, then observe that the field of fractions of K[X ] is an infinite field.

Homework

Exercise H1 (Conjugacy classes) (2+4+3+3 points)
(a) Show that the relation

A~ B & Ais similar to B
is an equivalence relation on the set M,,(K). An equivalence class for this relation is called
a conjugacy class.

(b) Let p = (X2 +1)*(X —2)® € R[X]. Determine the number of conjugacy classes of matrices
in M,(R) with characteristic polynomial equal to p.

(c) Determine the number of conjugacy classes of matrices in M,(C) with characteristic poly-
nomial equal to p.

(d) Given two monic polynomials y,u € K[X] such that u divides y and such that y and y
have the same irreducible divisors in K[X ], show that there exists a matrix A € M, (K) with
n =deg(y) such that uy, =u and y, = x.

Exercise H2 (A matrix endomorphism) (4+4+4 points)
Let n > 2 be an integer. Consider the endomorphism

Y : My(K) — M,(K), A A

(a) Show that y? =1 dy,k)- If char(K) # 2, show that 1 is diagonalizable. If char(K) = 2,
show that 1) is not diagonalizable.

(b) Determine the minimal and characteristic polynomial of .

(c) Determine the rational normal form of 1.

Exercise H3 (Rational normal form) (12 points)

Determine characteristic polynomial, minimal polynomial, and the rational normal form of the
matrix:

1 -1 2 a
1 1 -1 0

A=y 1 4 1 |SMO)
00 0 1

where a € C.
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Exercise G1 (Diagonalizability and invariant subspaces)
Let f € End(V) be an endomorphism.

(a) Assume that f is diagonalizable. Let W C V be an f-invariant subspace. Show that the
restriction fy, : W — W is diagonalizable.

(b) Assume V =V, ®V,, where W;, W, are f -invariant subspaces. Show that f is diagonalizable
if and only if f, and fy, are diagonalizable.

Exercise G2 (Jordan normal form)
In each of the following cases, determine the Jordan normal form.

(@) Ae M, (K)and uy, =X — A for A €K.

(b) B € M,(K), B> =B and rk(B) = 3.

(c) C € M,(K)with u. = (X —2)? and y. = (X —2)°.
(d) D € Ms(K) with up, = X? and rk(D) = 3.

Exercise G3 (Diagonalizability and powers of an endomorphism)
(a) LetAe GL,(C) such that A" is diagonalizable for some r > 1. Show that A is diagonalizable
over C.

(b) Does (a) remain true if one replaces C by R ?
(c) Does (a) remain true if one removes the assumption that A is invertible ?

(d) Does (a) remain true if one replaces C by a field of characteristic p ?

Exercise G4 (Endomorphism of space of polynomials)

Let n be an integer, and denote by K, _;[X ] the K-vector space of polynomials of degree < n—1.
Consider the endomorphism:

f K, 1[X]—> K, 1[X], P—P'.

Determine the Jordan normal form of f.




Homework

Exercise H1 (Similar matrices) (12 points)
Show that the following matrices are pairwise non-similar:

21 00 21 00 1 2 7 6
0 210 0200 0 25 8
M=o o020 T|loo2 1M T|7107
0 00 2 0 00 2 312 2
1 41 4 2100
2 3 2 3 1200
A4i=13 3 3 2°% =9 g 20
4 1 41 7 6 0 2
Exercise H2 (Fitting decomposition) (4+4+4 points)

Let f : V — V be an endomorphism of a finite-dimensional K-vector space.

(a) Show that there exists a pair (Vy,, Visom) Of f -stable subspaces, such that V = V;y, & Vs
and such that the restriction f : Vi, = Vyp is nilpotent and f : Vigoy, = Vigom 1S an isomor-
phism.

(b) Show that the pair (Vyp, Visom) is unique with these properties.

(c) Let g € End(V) such that f o g = g o f. Show that g(Vyp) C Vyip and g(Visom) € Visom

ilp

Exercise H3 (Normal forms) (83+3+3+3 points)
In each of the following cases, determine the rational normal form, the minimal polynomial, the
characteristic polynomial. If the matrix is triangularizable, determine the Jordan normal form.

(@) Ae M, (K), n > 2 with tr(A) = b € K and rk(A) = 1.

(b) B € M;(K) nilpotent with rk(B) = 2

(c) C € M,(R) such that C* = I, tr(C) # 0, dim(Ker(C —1,)) = 2.

(d) D € M,(R), with only eigenvalues 1,2 in C, and tr(D) =5 and rk(D —1,) =3
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Exercise G1 (Equivalent conditions)
Let A€ M, (K) be a matrix and A € K. Show that the following properties are equivalent:

(i) Ais similar to the Jordan block J,(A).
(i) The matrix A— AI,, is nilpotent of rank n — 1.

(iii) A is similar to a matrix of the form

A X12 " Xin
Xn—l,n

where x;;,; #Oforalli=1,..,n—1.

(iv) Ais similar to a matrix of the form YJ with J as in (iii).
W) pa= (X — )"

Exercise G2 (Generalized Eigenspaces)
Let f be an endomorphism of a finite dimensional K-vector space V. For a polynomial p in K[X ]
and for k € N, define:

Vi(p) :=Ker(p*(f)), k=1,

and my(p) := dimg(Vi(p)). Note that for A € K the eigenspace of f for the eigenvalue A is

Vl (X - A).

(a) Show that Vi(p) € Vi,1(p) and my,,(p) = my(p) for all k > 1. Conclude that there exists
N such that Vi.(p) = Vy(p) for all k > N. We denote by k..(p) the smallest integer N
satisfying this condition.

(b) Show that if m;(p) = my,,(p) for some k > 1, then V.(p) = Vi.(p) for all r > k.

(c) Show that the sequence a; := m;_;(p)—m;(p) is decreasing (i.e., a;,; < a; for all k). Hint:
Show that p(f) induces an injective K-linear map

Vier2(P)/ Vies1(P) — Vi (P)/Vi(p)-




(d) Assume that p is irreducible and monic. Show that the following are equivalent:
(i) There exists a k € N such that V,.(p) # 0.
(i) Vy(p) #0.
(iii) p divides u;.
Show in this case that k., (p) is the exponent of p in the irreducible decomposition of u; in
K[X].
(e) Show that one has a decomposition into generalized eigenspaces:

V=D Vi ((P)

plus

where the sum is over all irreducible monic factors p of u, in K[X].

Exercise G3 (Similar matrices in low dimensions)
Let K be a field, n € N and A, B € M,,(K) be matrices.

(a) Let n=2. Show that A and B are similar if and only if y, = uz.
(b) Let n = 3. Show that A and B are similar if and only if u, = ug and y, = x;5.

(¢) Does (b) remain true forn=47?

Exercise G4 (Diagonalizability and field extensions)
Let n € N and K C L be a field extension, and let A€ M, (K) be a matrix. If A is triangularizable
over K and diagonalizable over L, show that A is already diagonalizable over K.

Homework

Exercise H1 (Transpose) (12 points)
Let K be a field and A € M,,(K) a matrix. Show that A is similar to its transpose A.
Hint: Use that K is a subfield of an algebraically closed field.

Exercise H2 (Invariant subspaces) (54245 points)
Let f be an endomorphism of a finite-dimensional K-vector space V. We say that an f -invariant
subspace W C V is nontrivial if W # 0, V.

(a) Show that V has no nontrivial f-invariant subspaces if and only if u; = y; and u; is
irreducible in K[X].

(b) For K algebraically closed, determine the endomorphisms with no nontrivial invariant sub-
spaces.

(c) Show that V cannot be written as a direct sum of nontrivial f-invariant subspaces if and
only if up = y¢ = p* for some irreducible polynomial p € K[X].

Exercise H3 (Powers of matrices) (9+3 points)
LetneN.

(a) For all k > 1, show that the map GL,(C) — GL,(C), A~ Ak is surjective.
(b) Is the map M, (C) — M,(C), A~ AF also surjective ?
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Exercise G1 (Exact sequences and dual)
(a) Consider an exact sequence of finite-dimensional K-vector spaces

fi—1 fi fi+1

Vi — V=2V — Vi

Show that the dual sequence

\% \
\Y i+1 \% fi \Y
e V. — V. — VYV >
i+2 i+1 1 e

is exact!.

(b) Let f : V — W be a K-linear map. We define the cokernel of f as the quotient Coker(f) :=
W /Im(f). Show that there is an exact sequence

O—>Ker(f)—>Vi>W—>Coker(f)—>0

and deduce that there is a natural isomorphism:

Ker(f") ~ Coker(f)".

Exercise G2 (Linear forms on K")
For an n-tuple A := (4, ...,4,,) € K", denote by ¢, the map

n
@ K" =K, (Xq,.05X,) Z?Lixi.
i=1

(a) Show that K" — (K™Y, A — ¢ » is an isomorphism.
(b) For (A,,...,A,) € (K")", show that (cp&l, e cp&n) is a basis of (K™)" if and only if the n x n-
matrix whose i-th column is A, is invertible.

1 The result holds also for arbitrary not necessarily finite-dimensional vector spaces.




Exercise G3 (Tridual)

Let V be a K-vector space. Let t,,: V — V"V denote the canonical biduality homomorphism for
V. Similarly, let t,v : V¥ — VYV be the canonical biduality homomorphism of VV. Show the
identity:

(Lv)v o va - Ide .

Exercise G4 (Evaluation morphism)
Let V be a K-vector space and let

V-V

be the canonical homomorphism. Recall that ¢ is injective. Show that ¢ is surjective if and only
if V is finite-dimensional. Hint: For V infinite-dimensional, let 3 = (e;);c; be a basis of V. First
show that the subspace W C V" generated by e € V" is strictly contained in V". Then consider
a nonzero linear form on V" that is zero on W.

Homework

Exercise H1 (Dual basis) (12 points)
Let B = (ey, e,, e3) be the canonical basis of R3. Find all vectors x € R3 such that B, := (e, e, x)
is a basis of R® and determine the dual basis (3,)".

Exercise H2 (Annihilator) (834+3+3+3 points)
Let V be a vector space and (U; C V),; be a family of subspaces.

(a) Assume V is finite-dimensional, and let U C V be a subspace. Show the identity:
U®°=U

where we identified V with V"V via the biduality isomorphism ¢ : V — V"V,
(b) Show that

0 0
() -(z) -0
iel iel iel
(¢) Show that
[}

()

i€l i€l
and for V finite-dimensional, show that this inclusion is an equality.

(d) Give an example where the inclusion in (b) is not an equality.




Exercise H3 (Projections) (6+6 points)
Let V be a K-vector space of finite dimension n and let U C V be a subspace of dimension r < n.

(a) Show that an endomorphism f € End(V) is a projection (i.e., f2 = f) with image U if and
only if there exists a basis (e, ...,e,) of V with e, ...,e, € U and

r

FO)= e (x)e;

i=1

forall x e V.

(b) Assume that (V,(,)) is an inner-product space. Show that an endomorphism f € End(V)
is an orthogonal projection with image U if and only if there exists an orthonormal basis
(e1,...,e,) of V with eq,...,e, € U and

fe) =D e x)e
i=1

forall x e V.




Linear Algebra Il

. &57) TECHNISCHE

11. Exercise Sheet (/) UNIVERSITAT
Q))\o\ DARMSTADT

Department of Mathematics Summer term 2016
Prof. Dr. Torsten Wedhorn 23. Juni 2016

Jean-Stefan Koskivirta, Florian Sokoli

Groupwork

Exercise G1 (Trace as a bilinear form)

Let n > 1 be an integer. Consider the map: ¢ : M, (K) x M, (K) — K, (A,B) — Tr(*AB). For
1 < p,q < n, denote by E, ;, the n x n-matrix whose (i, j)-coefficient is 1 if (i, j) = (p,q) and 0
otherwise. Let B = (E, 4)1<p4<n D€ the n2-tuple consisting of these matrices, in lexicographic
order, i.e B=(Ey,E1 5, ..., E1 1, Eg 1500, Epp)-

(a) Show that ) is a symmetric bilinear form on M, (K).
(b) Determine the matrix Mz(f3). Show that ¢ is nondegenerate.

(c) Let W c M, (K) denote the subspace of upper-triangular matrices. Determine the orthogo-
nal W+.

(d) Determine S,(K)*, where S,(K) denotes the set of symmetric matrices.

Exercise G2 (Biorthogonal)
Let 3 be a symmetric or skew-symmetric bilinear form on a K-vector space V, and let U C V be
a subspace.

(a) Show that U € UL,
(b) Assume now that V is finite-dimensional. Show that U + V+ = U1+,

(¢) Deduce that U = U+ if and only if vicu.

Exercise G3 (Quadratic forms)
A quadratic form on a finite-dimensional K-vector space V is a map q : V — K satisfying the
following properties:

(i) For all A € K, and all x € V, one has q(Ax) = A2q(x).
(i) Themap B;:V xV =K, (x,y) = q(x + y) —q(x) —q(y) is a bilinear form on V.
We denote by Q(V') the set of quadratic forms on V.

(a) Show that Q(V) is a subspace of the K-vector space of functions V — K (endowed with
natural addition and scalar multiplication).

(b) Show that the product of two linear forms on V is a quadratic form.




(c) If B is a bilinear form on V, show that qg(x) := B(x, x) defines a quadratic form on V.
Show that this defines a K-linear map

2wy 5 o)
B = qp
(d) Show that Ker(¢) = Alt(V), the space of alternating forms on V. Deduce that
dimg (Q(V)) = @ Show that for all 1,,A, € V¥, one has 1,1, € Im(¢).

(e) For a quadratic form g, show that 3, is symmetric. If we denote by Sym(V') the K-vector
space of symmetric bilinear forms on V, show that this defines a K-linear map

Y
Q(V) — Sym(V)
qg = [

(f) Show that ¢ o = 2Idgy). Show that for all § € L£2(V), the symmetric bilinear form
Y(¢(B)) is given by (x,y) = B(x,y) + By, x).

(g) When char(K) # 2, show that ¢ is an isomorphism. Show that the restriction of ¢ to
Sym(V) is an isomorphism (in particular, ¢ is surjective). Deduce the dimension of Q(V)
as a K-vector space.

(h) Now assume char(K) = 2. Show that Im(v) is the space Alt(V) c Sym(V') of alternating
forms. Deduce that there is an exact sequence

0->W—-Q(V)—Alt(V)—0
where W is the space of functions q : V — K satisfying
q(x+y)=q(x)+q(y)
q(Ax) = A%q(x)
for all x, y € V and for all A € K. Deduce from (d) that dim(W) > n.

(i) Show that dimg(W) = n, deduce the dimension of Q(V) over K. Deduce that ¢ is sur-
jective. Hint: For a basis (ey,...,e,) of V, show that W — K", q¢ — (q(e;),...,q(e,)) is an
isomorphism.

(j) When char(K) # 2, show that any function q : V — K satisfying the following conditions is
a quadratic form:

(i) For all x € V, one has q(2x) = 4q(x).
(i) Themap B;:V xV =K, (x,y) = q(x + y) —q(x) —q(y) is a bilinear form on V.

Exercise G4 (Bilinear form and dual)
Let V be a K-vector space. For v,w € V, define a map:

Bow: V' xVY =K, (¢,1)— ¢(@)x(w).

(a) Show that 3, is a bilinear form on V".

(b) Let T be the subspace of £L*(V") generated by the elements 3, ,, for v,w € V. For a linear
form A € TV, define a function 8, : V x V — K by B,(v,w) = A(B,,,). Show that this
defines an isomorphism of K-vector spaces

TV — L2(V), A~ B




Homework

Exercise H1 (Totally isotropic subspaces) (12 points)
Let 3 be a symmetric or skew-symmetric bilinear form on a finite-dimensional K-vector space
V, and let U C V be a totally isotropic space. Show the formula:

dimg (U) < dimg (V) — rk(zﬁ ).

Exercise H2 (A bilinear form on a polynomial ring) (3+4+2+3 points)
Let V = K,_[X] be the K-vector space of polynomials of degree < n— 1. For an integer k € N,
let a;(p) denote the k-th coefficient of a polynomial p € K[X].

(a) Show that the map B, : V xV — K, (p,q) — a,(pq) is a symmetric bilinear form.
(b) Let B=(1,X,...,X" 1) denote the canonical basis of V. Compute the matrix of 3 in B.
(c) For what values of k is 8, nondegenerate?

(d) Find a totally isotropic subspace W C V of maximal dimension.

Exercise H3 (Existence of adjoints) (8+4 points)
Let B be a non-degenerate bilinear form on a finite-dimensional K-vector space V, and let
f € End(V) be an endomorphism.

(a) Show that there exists a unique endomorphism f* € End(V) such that for all x, y € V, one
has

B (x),¥)) = Bx, f7(¥))

Show that there is a commutative diagram

v v

o

VVf_V>VV

where fg:V — VvV is the map w — (-, w).
(b) Let B be a basis of V and let BY be the dual basis. Prove the formula:

Mp(f*)=B"'Mp(f")B

where B = Mp(p).
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Exercise G1 (Signature)
Consider the functions:

Y1 My(R) x My (R) > R, (A B)— Tr("AB)
¢2 : MH(R) X MH(R) - R’ (A:B) = Tr(AB)

(a) Show that 1,1, are symmetric bilinear forms.

(b) Determine the signatures of ¢; and 1,. Hint: Show that M, (R) = S,,(R) L A,(R) where
S,(R) denotes the set of symmetric matrices in M,(R), and A, (R) the set of skew-symmetric

matrices in M, (R).

Exercise G2 (Charactersitic polynomials and bilinear forms)
(a) Show that if y, = yp for two diagonalizable matrices A, B € M, (K), then rk(A) = rk(B).

(b) Give a counter-example to (a) when we do not assume that A and B are diagonalizable.

(c) Let A,B € GL,(R) be symmetric matrices such that y, = yz. Show that A and B have the
same signature.

(d) Let A, B € M,(R) be symmetric matrices such that y, = yz. Show that A and B are congru-
ent.

Exercise G3 (Gram-Schmidt algorithm for anisotropic symmetric forms)
Let K be a field of characteristic # 2, and let f € K[X] be an irreducible polynomial of degree

> 2. We denote by K(X) the field of fractions of K[X].
(a) Show that the bilinear form on K(X)? given by the matrix

X 1
=1 7)
is anisotropic.

(b) Let K = R and f = X? + 1. Use the Gram-Schmidt algorithm to determine an orthogonal
basis of K(X)?2. Find a matrix P € GL,(R(X)) such that !PAP is diagonal.




Exercise G4 (Symplectic group)
A non-degenerate, alternating bilinear form is called a symplectic form. Let V be a K-vector
space of even dimension 2n, and let ¢ be a symplectic form on V. We define the symplectic

group of (V,¢) by:
Sp(V,p) :={f € GLg(V), Y(f(x), f(¥)) =(x,y), Vx,y €V}

A maximal totally isotropic subspace U C V is called a Lagrangian.
(a) Show that U is a Lagrangian if and only if U is totally isotropic and dimg(U) = n. Show
that the image of a Lagrangian by an element of Sp(V, 1) is again a Lagrangian.

(b) Let U be a Lagrangian and let (e, ...,e,) be a basis of U. Show that there exists a tuple
(f1,-.-» fn) € V™ such that B = (ey, ..., €,,, f1,---» f) i @ basis of V, and such that:

Mp(B) = (_In In)-

Hint:To construct f;, choose first a vector in the complement of U in span(e,, ..., e,)", then
rescale. Afterwards proceed by induction.

(c) Show that for all Lagrangian subspaces U;, U, in V, there exists f € Sp(V,) such that
f(U)=U,.

(d) Let U;, U, be isotropic subspaces of V of the same dimension. Show that there exists f €
Sp(V,1) such that f(U;) = Us,.

Exercise G5 (Determinant of isometries)
Let 3 be a non-degenerate bilinear form on a finite-dimensional vector space V. Show that any
isometry of V has determinant £1.

Homework

Exercise H1 (Signature)
Consider the symmetric matrix:

€ M5(R).

B

I
o Rk
—_ O
o RO

(a) Determine the signature of A.
(b) Find a matrix P € GL3(R) such that ‘PAP is diagonal.




Exercise H2 (Isometric bilinear forms)
In each case, determine if the matrices A and B are congruent in M, (K):

1 21 2 3 2
(@ K=C,A=1|2 7 3]|landB=|3 1 3
1 3 3 2 3 8

(b) K=R,Aand B as in (a).

7 -2 19 3
(c)K=Q,A=(_2 2)ande(3 11)

(d) K=R,Aand B as in (c).
(e) K=7/5Z,A and B as in (c).

Exercise H3 (An isometric transformation)
Let K be a field, and a, f € K* such that a + 8 € K*. Then show :

(g 2) is congruent to (a-(l)—ﬁ (a+(;3)a[5)'
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Exercise G1 (Theorem of Witt does not hold for degenerate spaces)

Give an example of a degenerate quadratic space (V, 8) over a field K of characteristic # 2, a
subspace U C V, and an injective homomorphism of quadratic spaces s: (U, By) — (V, ) than
cannot be extended to an isometry (V, ) — (V, 8).

Exercise G2 (Generalized Witt decomposition)
Let (V,3) be a quadratic space over a field of characteristic # 2. Show that there exists a
decomposition

(V,p)=V+tL1HLV,

where (H, 8;;) is a hyperbolic space, (V,, By ) is anisotropic, and where both are determined
uniquely up to isometry.

Exercise G3 (Minkowski space of spacetime)

Let V = R* endowed with a Lorentz form, i.e., a symmetric bilinear form g of signature (1, 3).

An x € R* is called time-like (resp. space-like, resp. light-like) if g(x,x) < O (resp. g(x,x) > 0,

resp. g(x,x)=0).

(a) Show that the set of time-like vectors is the disjoint union of two open cones in R* (“open”
with respect to some norm on R*). Here a subset C C R" is called a cone if

x,yeC = x+yedC, AER,j,x€C = Ax €C.

We call one of the cones the future cone and one the past cone (it does not matter which we
cone we choose as future cone).

(b) Let x,y €V be time-like vectors. If both are in the future cone with g(x,x) = g(y,y) =1,
then show that g(x,y) = 1. If x is in the future cone and g(x,y) > 0, then y is in the
future cone.

Exercise G4 (Generalization of Witt’s cancellation to degenerate spaces)

Let K be a field of characteristic # 2. Let (V, ) and (V’, ') be quadratic spaces with orthogonal
decompositions V = U; L U, and V' = U] L U,. Suppose that (V, ) and (V’, ) are isometric
and that (U3, By,) and (U], ﬂU{) are isometric. Show that (U, fy,) and (U, ﬁué) are isometric.
Hint: The following steps might be useful:




(@ Let 1 <r <n, Ae M.(K) be symmetric matrices with A invertible and assume that the
matrices n x n-block matrices

(0 00A) and (0 0 0 A)

are congruent. Show that A and A’ are congruent. Deduce Witt’s cancelation if U, is totally
isotropic and U, is non-degenerate.
(b) Next show that cancelation holds if U, is totally isotropic.

(c) Show the general case: Use induction to assume that U; is one-dimensional and use the
second step to assume that (U, By, ) is anisotropic. Then proceed as in the first step of the
proof of Witt’s theorem.

Homework

Exercise H1 (Signature)
Let n € N and let A € M,(R) be a symmetric matrix. For k = 1,...,n let A; be the matrix

consisting of the first k rows and k columns of A. Suppose that det(A;) # 0 forall k =1,...,n.
Show that the signature of A is (n —s,s), where s is the number of sign changes in the sequence

1,det(A;),det(A,), ..., det(A,).

Exercise H2 (Product of reflections)
Let V be an R-vector space of dimension n > 2 with a non-degenerate symmetric bilinear form

B. Find n reflections s,,...,s, € O(V, ) such that Id, =s; 0s,0---05,.




Exercise H3 (Determinant as quadratic form)
Let K be a field of characteristic # 2.

(a) Show that det: M,(K) — K is a quadratic form (Exercise Sheet 11, G3) and let
pB: My(K) x My(K) = K, (A,B) — det(A+ B) —det(A) — det(B)

be the corresponding symmetric bilinear form.

(b) Let K = R. What is the signature of 3? What is the signature of the restriction of f to the
subspace {A € M,(R) | tr(A) = 0}.




