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PROBLEM SHEETS AND SOLUTIONS FOR COMMUTATIVE
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1. PROBLEM SHEET 1

Exercise 1: Let A be an integral domain. Show that A[X] is an integral domain.

Solution: Let f, g € A[X] be nonzero polynomials. Write f = a, X" +a, 1 X" 1+
wotagand g = by, X + by 1 XM+ L+ bg With ap, by, # 0. Then the coefficient
of degree n +m of fg is apb,,, hence is nonzero, so fg # 0.

Exercise 2: Let A be a ring and J(A) its Jacobson radical. Show that
x € J(A) <= 1—ax is a unit for all a € A.

In particular, show that if x is nilpotent, then 1 — z is a unit.

Solution: (=) Let z € J(A) and let m C A be a maximal ideal. Then for all
a € A, one has 1 — ax ¢ m, because otherwise 1 = (1 — ax) + ax € m which is
impossible. Hence 1 — ax is not contained in any maximal ideal of A, so it is a unit.
(<) Assume x ¢ J(A). Then there exists a maximal ideal m C A such that
x ¢ m. Then the ideal m + Ax must be all of A, so we can write 1 = y 4 ax with
a € A and y € m. It follows that 1 — ax = y € m is not a unit.
In particular, if x is nilpotent, 1 + z is a unit because N (A4) C J(A).

Exercise 3: Let A be a ring and N(A) its nilradical. Show that the following
assertions are equivalent:

(1) A has exactly one prime ideal.
(2) Every element of A is either a unit or nilpotent.

(3) A/N(A) is a field.

Solution: (1) = (2) Let p C A be the unique prime ideal of A. Then N(A) =p
because N'(A) is the intersection of all prime ideals. If z ¢ p = N'(A), then z is not
contained in any maximal ideal (the only maximal ideal being p), so it is a unit.

(2) = (3) Let € A not nilpotent. Then z is a unit in A with inverse y. Hence
the class x + N (A) is a unit in A/N(A) with inverse y + N (A). It follows that any
nonzero element of A/N(A) is a unit.

(3) = (1) By assumption, the ideal N'(A) is maximal. It is the intersection of
all prime ideals. Thus if p C A is prime, we must have p = N (A4) by maximality of
N (A). Hence N'(A) is the only prime ideal in A.

Exercise 4 : Let A be a ring. An element z € A is called idempotent if x? = .
Show that if A is a local ring, its only idempotent elements are 0 and 1.
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Solution: Let m C A denote the unique maximal ideal of the local ring A. Recall
that the units of A are A\ m. Clearly 0,1 are idempotent. Let x € A, z # 0,1 be
idempotent. From z? = z, we deduce z(x — 1) = 0. In particular, z and = — 1 are
zero-divisors, so are not units. Hence z,2 —1 € m, and then 1l =2z — (z —1) em
which is a contradiction. It follows that 0,1 are the only idempotent elements of A.

Exercise 5 : Let Z[i] denote the set of complex numbers of the form a + bi with
a,beZ.

(i) Show that Z[i] is a subring of C.
(ii) If p is a prime number, show that

Z[i]/(p) ~ F,[X]/(X? + 1)

where F;, denotes the finite field with p elements.

(iii) Deduce that the ideal (p) is a prime ideal of Z[i] if and only if there exists no
element = € F,, such that 2% + 1 = 0.

(iv) Show that this is the case if and only if p =3 mod 4.

Solution: (i) One has 0,1 € Z[i]. If a,b,c,d € Z, then (a + bi) + (¢ + di) =
(a4c)+(b+d)i € Z]i] and —(a+bi) = (—a)+(=b)i € Z[i]. Finally (a+bi)(c+di) =
(ac — bd) + (ad + be)i € Z[i]. Hence Z[i] is a subring of C.

(ii) Let ev; : Z[X] — Z[i] be the unique Z-algebra homomorphism mapping X
to i. It is clearly surjective. If P € Ker(ev;), then P(i) = 0. Write down the
polynomial division of P by X? + 1 in Z[X] (this is possible because X? + 1 is
monic) : There exists Q, R € Z[X] such that P = (X? +1)Q + R and deg(R) < 2.
Hence we can write R = a+bX with a,b € Z. By evaluating at ¢, we find a+bi = 0,
hence a = b = 0. It follows that Ker(ev;) = (X2 + 1). From this we obtain an
isomorphism Z[X]/(X? + 1) ~ Z[i]. It induces an isomorphism:

Z(X]/(p, X* +1) ~ Z[i]/(p).

Now consider the map Z[X] — F,[X] given by reducing coefficients modulo p.
This map is surjective with kernel (p) = pZ[X]. Hence there is an isomorphism
Z1X]/(p) ~ Fp[X], and it induces an isomorphism:

Z[X]/(p, X* +1) ~F,[X]/(X? +1).

Combining these two isomorphisms, we find Z[i]/(p) ~ F,[X]/(X? + 1).
(iii) We have equivalences

(p) prime in Z[i] <= Z[i]/(p) is an integral domain
<= F,[X]/(X? + 1) is an integral domain
<= X? + 1 is irreducible in F,[X]

<= X2 + 1 has no root in F,.

The last equivalence holds because X2 + 1 has degree 2.
(iv) If p = 2, then 12 + 1 = 0, so there is a solution. Now assume p is an odd
prime number. For all z € F, we have

P 4+1=0=2?=-1
<= z has order 4 in the group F;.
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Since F; is cyclic of order p—1, the existence of an element of order 4 is equivalent
to 4|p — 1, which is the same as p =1 (mod 4).

2. PROBLEM SHEET 2

Exercise 1: Let A be a nonzero ring. An A-module M is free if M is isomorphic
to a direct sum @, ; M; where M; = A for all i € I.

(1) Show that M is free and finitely generated if and only if M is isomorphic
to A™ for some n > 0.

(2) Show that if A™ ~ A™ for n,m > 0, then n = m. Hence if M is free and
finitely generated, we can define its rank rk(M) as the unique integer n > 0
such that M ~ A"™.

(3) Let 0 > M’ = M — M"” — 0 be an exact sequence of finitely generated
free modules. Show that rk(M) = rk(M’) + rk(M").

Solution:

(1) clearly A™ is free, finitely generated. Conversely, assume M = @, A is
finitely generated. Then we will show that [ is finite. Assume the contrary and
let z1,...,2, € M be a generating system. For j € I, denote by p; : M — A the
natural projection map (a;)icr +— a;. It is a surjective A-module homomorphism.
Since I is infinite, we can find j € I such that pj(z:) = ... = pj(z,,) = 0. But
x1,..., &y generate M so their images p;(z1),...,p;(zy,) generate A because p; is
surjective. This is a contradiction.

(2) Let f: M — N be an isomorphism of A-modules. Since A is nonzero, there
exists a maximal ideal m C A. Clearly, one has f(mM) = mN. Hence it follows
that f induces an isomorphism of A-modules

M/mM — N/mN.

In particular, this is an isomorphism of A/m-vector spaces (note that M/mM has
a natural structure of A/m-vector space).

Now assume that M = A™ for some n > 0. Then M/mM = A" /mA" ~ (A/m)"
is an n-dimensional A/m-vector space. It follows that if A™ ~ A™ as A-modules,
we must have n = m.

(3) Let 0 — M’ Lo M % M" - 0 be an exact sequence of finitely generated
free modules.

Claim: There exists an A-linear map 8 : M"” — M such that go 8 = idp».

To show this, we may assume for simplicity M" = A" for some r > 1. Denote by
e1,...,er € A" the usual basis vectors of A”. Since g is surjective, we may choose
x; € M such that g(x;) = e; for all i = 1,...,7. Define 8 by

r
6(0‘15 ) aT‘) = Zalzz
i=1

It is clear that 3 satisfies the condition g o 8 = id s, which proves the claim.

Claim: M is the direct sum of f(M’) = Ker(g) and g(M").

Let x € M. We have g(z) € M" so g(8(g(z))) = g(z), hence g(z — (g(x))) =0
and thus z — 8(g(z)) € Ker(g). Hence any element of M is the sum of an element
of Ker(g) and an element of 8(M"). To show M = Ker(g) ® S(M"), it remains
to prove Ker(g) N S(M") = 0. For this, let z € Ker(g) N B(M"). We can write
x = B(y) with y € M”. Then 0 = g(z) = g(8(y)) = y and then x = 0.
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Now we finish the proof. We have f(M') ~ M’ ~ A? where d = rk(M') and
B(M") ~ M" ~ A". We deduce M ~ A% @ A™ ~ A7+d,

Exercise 2 : Let A be a subring of Q. Show that there exists a multiplicative
subset S C Z such that A = S71Z.

Solution:

For a multiplicative subset S C Z, there is a ring homomorphism S~'Z — Q,
2+ & (where the second fraction is to be understood as a fraction of two integers).
This map is well-defined and injective. It induces an identification of S~1Z with a
subring of Q. More precisely,

Sflzz{geQ,seS,an}.

Let A C Q be asubring. Clearly, A contains Z because 1 € A and A is an additive
group. We want to find a multiplicative subset S C Z such that A = S~!Z. Using
the previous considerations, it is natural to define

S::{SEZ 1€A}.
s

In other words, S = ZN A*, and this shows clearly that S is a multiplicative subset
of Z.

Claim: A = S~1Z.

If a € Z and s € §, then § = a% € A. Hence S7'Z C A. Conversely, let z € A
and write x = ¢ with a,b € Z, b # 0 and a,b coprime. We can find r,s € Z such

b
that ar + bs = 1. It follows

1
g:s—Fr:UEA

and we deduce b € S, and hence x € S~!'Z. This proves the claim.

Exercise 3 : Let S be a multiplicative subset of a ring A and let M be a finitely
generated A-module. Show that S~'M = 0 if and only if there exists s € S such
that sM = 0.

Solution:

For any A-module M, the equation S™'!M = 0 means exactly that for each
m € M, there exists s € S such that sm = 0. Of course, the element s that satisfies
sm = 0 may depend on m. The point of the exercise is to show, provided M is
finitely generated, that we can find s independent of m. This is achieved as follows:
Take a finite generating system x1,...,z, € M. As we explained above, for each
i=1,...,n we can find s; € S such that s;x; = 0. Then define

§ 1= 81...Sp-

It is clear that sxz; = 0 for all ¢ = 1,...,n. Since every element of M is a linear
combination of x1, ..., x,, it follows that sm = 0 for all m € M. In other words,
sM = 0.

Exercise 4 : Let A be a ring, and let 0 — M’ oM 2 M 5 0be a sequence of
A-modules. Show that the following conditions are equivalent:

(1) The sequence 0 — M’ Lo M & M7 = 0 s exact.
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(2) The sequence 0 — M, ELR M, ELN M, — 0 is exact for all prime ideals
pC A

(3) The sequence 0 — M/, Im, My, 22 M/ — 0 is exact for all maximal ideals
mcC A

Solution:

(1) = (2) follows from the lectures. (2) = (3) is clear. It remains to show the

implication (3) = (1).

(a)

f is injective.
Consider the exact sequence 0 — Ker(f) — M’ 4 M. For any maximal

ideal m C A, the sequence 0 — Ker(f)m — M}, Im, M,, is thus exact. By
assumption (3), the map fy is injective, which implies Ker(f), = 0 for all
maximal ideal m C A. It follows by the lectures that Ker(f) = 0.

g is surjective.

Definition 2.0.1. The cokernel of a A-module homomorphism f: M — N is
defined as N/ima(f).

Note that Coker(f) = 0 < f is surjective. Hence, it is equivalent to show
Coker(g) = 0. As above, it suffices to show that Coker(g)m = 0 for all maximal
ideal m C A. Look at the exact sequence M 2 M" — Coker(g) — 0. Local-
izing at m, we obtain an exact sequence My < M/ — Coker(g), — 0. By
assumption, gy, is surjective, and so Coker(g), = 0.

One has go f =0 (in other words ima(f) C Ker(g).

We know that the localization gy, o fi,, of the map g o f is zero at all maximal
ideals m C A, by assumption. Hence it suffices to prove the following general
lemma:

Lemma 2.0.2. Let f : M — N be an A-module homomorphism. If fu @ My —
Ny is the zero map for all mazimal ideal m C A, then f = 0.

To prove the Lemma, let x € M be an element. There is a commutative
diagram

It follows that the image of f(x) € N in N, is zero for all maximal ideal
m C A. Hence it follows from the lecture that f(z) = 0.
One has ima(f) = Ker(g).
The inclusion map ima(f) — Ker(g) is surjective (i.e an equality) when local-
ized at each maximal ideal m C A. As in step (b), we deduce that it must be
surjective, hence ima(f) = Ker(g), which terminates the proof.

Exercise 5 : Let A be a ring and I C A a decomposable ideal. If r(I) = I, show
that I has no embedded prime ideals (recall that r(I) denotes the radical of I).
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Solution:

Let I = g1 N...N g, be a minimal primary decomposition of I. Let p;, = r(q;),
i = 1,...,n denote the prime ideals belonging to I. Recall that a non-minimal
element of the set {p1,...,pn} (with respect to inclusion) is called an embedded
prime. Taking radicals, we deduce

I=r(I)=r(g1N..0qn) =p1 N .c. NPy

Since I has exactly n prime ideals belonging to it, the decomposition I = p; N
...Np, must be a minimal decomposition of I (otherwise I would have a minimal
decomposition with strictly less than n primary ideals). Hence we deduce that p;
is not contained in p; for all ¢ # j. The result follows.

3. PROBLEM SHEET 3

Exercise 1 : Let A be a nonzero ring.

(1) Let M be a Noetherian A-module and f : M — M a surjective A-module
homomorphism. Show that f is an isomorphism.

(2) Assume that M is Artinian, and let f : M — M be an injective A-module
homomorphism. Show that f is an isomorphism.

Solution:
(1) We have an ascending chain of submodules of M:

Ker(f) C Ker(f?) C ...

Since M is Noetherian, this chain is stationary: There exists n > 1 such that
Ker(f™) = Ker(f"*!) = ... Let 2 € Ker(f). Since f is surjective, we can find y € M
such that = f*(y). Hence f"*l(y) = f(z) = 0, so y € Ker(f"*!) = Ker(f").
Hence we conclude x = 0, so f is injective.

(2) We have a descending chain of submodules of M:

ima(f) D ima(f?) O ...

Since M is Artinian, this chain is stationary: There exists n > 1 such that
ima(f") = ima(f"*!) = ... Now let y € M be an element. Applying f»
we have f"(y) € ima(f") = ima(f™*!). Hence there exists * € M such that
f(y) = f**ti(x). Since f is injective, we deduce y = f(x) and hence f is surjec-
tive.

Exercise 2 :

(1) Let A be a nonzero ring and S C A a multiplicative subset. Let M be a
Noetherian (resp. Artinian) A-module. Show that S~'M is a Noetherian
(resp. Artinian) S~!A-module. In particular, show that if A is a Noetherian
(resp. Artinian) ring, then S~!A is a Noetherian (resp. Artinian) ring.

(2) Let A be a ring such that A, is Noetherian for all prime ideals p C A. Does
it imply that A is Noetherian?

Solution:
(1) If N is a submodule of M, then S~IN is a submodule of S~1M. We claim
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that for every submodule N’ C S~!M, there exists a submodule N C M such that
N’ = S~IN. Indeed, put

N :={zeM, %eN’}.

In other words, N = f~1(N’) where f : M — S™'M, z 7. Then N is clearly a
submodule of M.
Claim : One has S™'N = N'.
Indeed, if z € N and s € S, then { = L. T €N, so0 S~I!N c N'. Conversely, if
1

i-%¢ N’ which implies x € N

2 € N’ where z € M and s € S, then one has
and thus £ € S™'N.

Hence we showed that for all submodule N’ C S~'M, one has the formula
S=YHf~Y(N')) = N’. Now assume that M is a Noetherian (resp. Artinian) A-
module. Take an ascending (resp. descending) chain C of S~!A-submodules in
S~!M. The chain f~'C obtained by taking preimages in M by f is again as-
cending (resp. descending), hence is stationary by assumption. But then applying
S~! shows that the chain C = S~!(f~1(C)) is also stationary. Hence S™'M is a
Noetherian (resp. Artinian) S~!-module.

(2) If A, is Noetherian for all prime ideal p, it does not imply that A is Noe-
therian. For example, let k be a field and A the ring

A=EkN

where addition and multiplication are defined componentwise. We claim that A
has Krull dimension 0 (in other words, every prime ideal is a maximal ideal). This
follows from the following lemma:

Lemma 3.0.1. Let A be a nonzero ring such that for all x € A, there ezists y € A
such that x = z%y. Then

(a) Every prime ideal of A is mazimal.
(b) If m C A is mazimal ideal, the local ring Ay is a field.

Proof.

(a) Let p be a prime ideal and 2 € A such that « ¢ p. There exists y € A such
that x = 22y, hence z(1 — 2y) = 0. Since = ¢ p, we deduce that 1 — xy € p. This
shows that the class x 4+ p is a unit in the ring A/p. Hence every nonzero element
of A/p is a unit, so A/p is a field and p is maximal.

(b) First we claim that if z € m, then §{ =0 in Ay. Indeed, let y € A such that
(1 —2y) = 0. Since € m, we have 1 — zy ¢ m (otherwise 1 =1 —zy + 2y € m
is a contradiction). Hence T = I(ll_;fyg”) = 0. Next, we claim that the natural map
f:A— Ay, 2+ 7 is surjective. It suffices to show that any element of the form
% for x € A — m is in the image of f. Choose y € A such that x(1 — zy) = 0.
Since = ¢ m, we have 1 — xy € m since m is prime. Hence y ¢ m because otherwise

1=1-— 2y + zy € m leads to a contradiction. We deduce:

1 zy oy
r x 1
Hence f is surjective. Note that Ay, is not the zero ring, because the multiplica-
tive subset A—m does not contain 0. Since m C Ker(f), we deduce that Ker(f) =m
and Ay, ~ A/m, thus A, is a field.
O
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Let us show that A = kN satisfies the condition of Lemma 3.0.1. If z = (,,) €
kN then define y := (y,,) by

. mi ifx, #0
N0 tw, =0

It is clear that z = z2y.

Since a field is a Noetherian ring, the localization Ay, is Noetherian for all maxi-
mal ideal m C A. Finally, we claim that A is not Noetherian. For a subset m € N,
define an ideal

L, = {z = (z,) € kN, x; =0 for all j > m}.
It is clear that we have a strictly ascending chain of ideals
IhchLicl,C---

which shows that A is not Noetherian.

Exercise 3 :

(1) Let A be a ring where every prime ideal is finitely generated. Show that A
is Noetherian.

(2) Let A be an integral domain where every prime ideal is principal. Show
that A is a PID.

Solution:

(1) Assume that A is not Noetherian. Let ¥ denote the set of all ideals which are
not finitely generated. Since A is Noetherian, ¥ is nonempty. Assume that A C X
is a nonempty, totally ordered subset. We claim that the set

J = U I
IeA
is an upper bound of A in X. It is easy to see that J is an ideal (because A is
totally ordered). If J was finitely generated, then there would exist z1,...,x, € J
generating J. There exists I € A such that zy,...,z, € I, but then J = [ is in
A, so it is not finitely generated, which is a contradiction. Hence we have showed
that ¥ satisfies the condition of Zorn’s Lemma. Therefore there exists a maximal
element in ¥, denote by J such a maximal element.

We claim that J is a prime ideal. Let x,y € A such that xy € J. Assume for a
contradiction that x ¢ J and y ¢ J. The ideal J+(z) and J+(y) contain J properly,
hence by maximality these ideals are not in 3, so they are finitely generated. Let
21, ..., 2n, be a generating system of J 4 (x). We can write z; = y; + a;x, where
y; € J and a; € A for each i = 1,...,n. Let I C J denote the ideal I = (y1,...,Yn)-
It is clear that we have the relation

I+ (x)=J+ ().
The ideal quotient (J : ) contains J and y € (J : x), so the inclusion J C (J : z)
is strict. Hence by maximality of J, the ideal (J : z) is finitely generated. One has
the relation

J=TI+ (z)(J:x).
Indeed, one clearly has I + (x)(J : ) C J. Conversely, let z € J. We can write

zZ=w —+ ax
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for some a € A and w € I. Since ax € J, we have a € (J : z), 80 z € [ + (z)(J : ).
Finally, I and (J : z) are finitely generated, so J = I 4 (z)(J : ) is finitely
generated, which is a contradiction. We have showed that J is a prime ideal.

Now by assumption, every prime ideal is finitely generated, so J is finitely gen-
erated. This is a contradiction. It follows that A is Noetherian.
(2) By (1), we know that A is Noetherian. Assume that A is not a PID and let ¥
be the set of ideals which are not principal. Since A is Noetherian, there exists a
maximal element J € ¥. We claim that J is a prime ideal. For a contradiction,
assume there is x,y € A such that « ¢ J, y ¢ J and zy € J. The ideals J + (x)
and J + (y) contain J properly, so they are principal by maximality of J. Hence
J + (z) = (a) and J + (y) = (b) for some a,b € A. Note that we have

(J:a)a=J.

Indeed, for all z € J, we have z = a2’ for 2/ € A thus 2’ € (J : a) and hence
z € (J : a)a. The inclusion J C (J : a) is strict because b € (J : a) and b ¢ J.
It follows by maximality of J that (J : a) is principal, and hence so is J = (J :
a)a. This is a contradiction. We have proved the claim that J is a prime ideal.
Now by assumption every prime ideal is principal, so J is principal, and this is a
contradiction. In conclusion, A is a PID.

Exercise 4 : Let p be a prime number, and U C C* defined by
U::{xGCX, dn > 1, xpnzl}.

Since U is an abelian group, it is endowed with a natural structure of Z-module.
Show that U is an Artinian Z-module which is not Noetherian.

Solution:
For each n > 1, let U, C U denote the subgroup of z € U such that z’" = 1. We
have an infinite strictly ascending sequence

UycU,cU;C...

which shows that U is not a Noetherian Z-module.

Claim : The U, are exactly the proper subgroups of U.

First of all, it is clear that U, is cyclic of order p™ and that Uy,...,U,_; are
exactly the proper subgroups of U,,. Now, let H C U be a proper subgroup. Let m
be the supremum of all integers &k such that U, C H. Since the union of all U, is all
of U, it must be a finite integer. Let x € H. It generates a cyclic subgroup of order
p" for some r > 0 and we must have (x) = U,. Hence r < m because otherwise
Umn+1 C U, C H contradicts the definition of m. Finally, we obtain H C U,,, and
then clearly H = U,,. This proves the claim.

It follows easily that any descending chain of subgroups must be stationary, so
U is an Artinian Z-module.

Exercise 5 : What is the length of Z/nZ as a Z-module?

Solution:
If n = p is a prime number, then it is clear that ¢(Z/pZ) = 1. We claim that if
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n=plt - p& with o; € N and py, ..., p, pairwise distinct prime numbers, then

U(Z/nZ) = Zal

Let 6(n) denote this function. One has clearly 6(nm) = §(n)+d(m) for all n,m > 1.
We prove by induction on d(n) that £(Z/nZ) = §(n) for all n > 1. If §(n) = 1 then
n is prime and ¢(Z/nZ) = 6(n) = 1. Now let n > 1 not prime. We can write
n =dm with 1 < d,m < n. Let H C Z/nZ denote the unique (cyclic) subgroup
of order d. The quotient H' := (Z/nZ)/H is cyclic of order m. We have an exact
sequence:
0—H—Z/nZ— H — 0.

Hence by additivity of the length we deduce ¢(Z/nZ) = ¢(H) + ¢(H'). Since d(d)
and 6(m) are < §(n), we deduce by induction that ¢(H) = 6(d) and £(H') = §(m).
Hence

UZ/nZ) = 5(d) + 5(m) = 6(n)

which terminates the proof.

4. PROBLEM SHEET 4

Exercise 1 : Let k be a field and V, W finite-dimensional k-vector spaces. Let
B := (e1,...,en) and B’ := (uy,...,us) be basis of V and W, respectively. For k-
linear endomorphisms f: V — V and g : W — W, denote by A and B the matrices
of f and g in the basis B and B’, respectively. Determine the matrix of f ® ¢ in the
basis (e; ® u;);; of V@ W.

Solution:
The map

VW =VeWw

defined by (z,y) — f(x) ® ¢g(y) is k-bilinear and hence induces a k-linear map
f®g: VW =V W mapping x ®y to f(z) ® g(y).

We know by the lectures that (e; ® u;);; is a k-basis of V@ W. Let A =
(@rs)1<rs<n and B = (bys)1<rs<m denote the matrices of f and ¢ in the basis
(e1,...,en) and (uq, ..., uy, ) respectively. In other words

f(el) = Zar,ier
r=1

i) = Z bs,jUs
s=1

foralll1 <i<mnand1l<j<m. It follows:

(f@9g)(ei® fj) = flei) @ gley)

( Q- zer> (i b&j“s)
r=1 s=1

n

=3 zm: ar,ibs,j(er ® uy).

r=1s=1
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We order the set {1,...,n} x {1,...,m} by lexicographic order, i.e
(a,b) < (¢,d) <= (a < c¢) or (a =cand b<d).
This gives an ordering of the vectors e; ® u; and the matrix of f ® g in this basis is:
aiB -+ a,B
: : € Mym (k).
an1B - apnB

Exercise 2 : Let A be a nonzero ring and B an A-algebra. Let M be an A-module
and NV a B-module. Show that

Homy (M, N) ~ Homp(M ®4 B, N).

Solution:
If f: M — N is an A-linear map, we define an A-bilinear map
M x B— N, (z,b) — bf(z).

It follows that there is a unique A-linear map ¢(f): M ® 4 B — N mapping  ® b
to bf(z). Recall that M ® 4 B is naturally endowed with a structure of B-module
such that b'(x ® b) = x @ bb’ for all b,b’ € B and x € M.

Claim : The map ¢(f) is B-linear.

Indeed, for all x € M, b,l’ € B, one has

P()V (x @) = ¢(f)(x @ bb') =0’ f(z) = V'(&(f)(x @ D)).

We have defined a map f — ¢(f), Homy (M, N) — Homp(M ®4 B, N). The set
Homp(M ®4 B, N) has a natural structure of B-module by the lectures. One can
also define a B-module structure on Hom4 (M, N) as follows: If f € Homy (M, N)
and b € B, then we define bf by

bf : M — N, x+— bf(x).
It is easy to see that Hom4 (M, N) becomes a B-module in this way.

Claim : The map f — ¢(f) defined above is B-linear.

Let f € Homa (M, N) and ¥ € B. One has for all x € M and b € B,
oV f)(z@b) = b((V'f)(x)) = b(V'(f(x))) = bV f(z) = V'(4(f)(x®D)) = (V' b (f))(z@D)
which shows that ¢(V'f) = b'¢(f) as claimed.

Claim : ¢ is injective.

Indeed, assume that f € Homs (M, N) and ¢(f) = 0. In particular, one has for
all x € M:

hence f = 0.
Claim : ¢ is surjective.
Let g € Homp(M ®4 B, N) be an element. Define a map f: M — N by
fla)=yg(z®1)
for all x € M. It is clear that f is A-linear. We show that ¢(f) = g. Indeed, for all
x € M and b € B, one has
o(f)(x@b) =bf(x) =bglx®1) =gz ®Db)

which proves the claim.
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We have shown that ¢ defines an isomorphism of B-modules Hom 4 (M, N) =~
Homp(M ®4 B, N).

Exercise 3 : A ring A is called absolutely flat if every A-module is flat. Show that
the following assertions are equivalent:

(1) A is absolutely flat.

(2) Every principal ideal I satisfies I? = I.

(3) For every finitely generated ideal I C A, there exists an ideal J such that
A=1aJ.

Solution:
(1) = (2) : Let € A. By assumption, A/(z) is a flat A-module. Consider the
injection (z) — A. Then after tensoring with A/(x), we obtain an injective map

fo(@)@a (A/(x) = Af(x).
Recall that M ®4 A/T ~ M/IM for all A-module M. Hence (z) ®4 (A/(z)) ~
(x)/(2?). Since f maps = to 0, we deduce that f = 0, and so we must have
(x) ®4 (A/(z)) = 0, hence (z) = (22).

) = (3) : Let + € A. Then z = ax? for some element a € A. Hence ax =
22?2 = (az)?, so e := ax is idempotent. Clearly e € (z) so (e) C (z). Conversely,
= ex € (e) so we deduce (e) = (x). Hence every principal ideal is generated by
an idempotent.

Claim : Ife, f € A are idempotents, then the ideal (e, f) is generated by e+ f—ef.

Indeed, one has clearly (e+ f —ef) C (e, f). Conversely, one has e(e+ f —ef) =
e? +ef —ef = e and similarly f(e + f — ef) = f. This proves the claim.

By induction, we deduce that any finitely generated ideal of A is principal,
generated by an idempotent element. If e is an idempotent, then one has

A=(e)®(1—e).

Indeed, if z € A then x = ze + x(1 —¢€) so A = (e) + (1 — e¢). Furthermore, the
intersection (e) N (1 — e) is 0 because if x = ae = b(1 — e) for some a,b € A, then
r = ae = ae? = b(1 — e)e = 0. This shows (3).

(2

(3)=(1):
We will need the following proposition:

Proposition 4.0.1. Let M be an A-module. The following are equivalent:
(i) M is flat A-module.
(ii) For every finitely generated ideal I C A, the induced map IQM — AQM ~ M
18 1njective.
Before proving the Proposition, we need some lemmas:

Lemma 4.0.2. Let M, N be A-modules. Let x1,...,x, € M and y1,...,y, € N.

(i) Assume that Y. % @y; # 0in M®N. If M C M and N' C N
are submodules such that x1,...,x, € M' and yi,...,y, € N', then one has
ST ®y; #0in M @N'.

(ii) Assume that > x;®y; =0 in M @ N. Then there exists finitely generated
submodules M' C M and N’ C N such that x1,...,x, € M' and y1, ...,y € N’
and Y0 x; ®y; =0 in M' @ N'.
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Proof. (i) : One has the following equivalence:

Zwi@)yi =0in M®N <= V bilinear map B : M xN — P, one has ZB(mi7yi) =0
i=1 i=1
Indeed, this follows simply from the fact that for each bilinear map B : M x N — P,
there exists an A-linear map f : M ® N — P such that B(z,y) = f(z ® y).

Hence, we also have an equivalence :

Zwi@)yi #0in M®N <= T a bilinear map B : M xN — P, such that ZB(mi7yi) #0
i=1 i=1
Hence if M’ € M and N’ C N are as in the assumption, there exists a bilinear
map M x N — P such that Y ., B(z;,y;) # 0 in P. Hence by restriction of B, we
obtain a bilinear map B : M’ x N’ — P such that >\, B(x;,y;) # 0 in P. Hence
using again the above equivalence for M’ and N’, we deduce that > z; ® y; # 0
in M’ ® N’. This proves (1).

(74) : We use the construction of the tensor product M ® N. Recall by lectures
that
M@N =AMxN) /D

where AM*N) is the direct sum of copies of A indexed by M x N, and D ¢ AM*N)
is the submodule generated by the elements of the form

for z,2/ € M, 3,y € N, a € A. Here [x,y] denotes the basis vector of AM*N)
corresponding to (z,y) € M x N.
We now prove the assertion. Assume that > . ;2; ® y; = 0 in M ® N. This

means that
n

Z[%, yil € D.

i=1
Hence Y7 [zi,yi] can be written as a finite sum of elements of AM*N) of the 4
types listed above. This finite sums involves a finite number of elements 1, ..., 2}, €
M and yi,...,y, € N. Let M’ C M (respectively N’ C N) denote the submodule
generated by 21, ..., Zpn, &), ..., 2. (respectively Y1, ..., Yn, Y1, - Ys)-

Then it is clear that a similar relation is true in the module A , and

this shows that Y.  2; ® y; = 0 in M’ ® N’. This terminates the proof of the

lemma. O

M’'xN")

Using the above lemma, we deduce the following result, which is weaker that
Proposition 4.0.1:

Lemma 4.0.3. Let M be an A-module. The following are equivalent:
(i) M is flat A-module.
(i) For all injective map f : Ny — Na of finitely generated A-modules, the map
idy @ f : M ® N1y — M ® Ny is injective.
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Proof. (i) = (i1) is obvious.
(#3) = (i) : Let f: Ny — N3 be an injective map of A-modules (we don’t assume
Ny, Ny are finitely generated). Assume by way of contradiction that the map

Zd®fM®N1—>M®N2

is not injective. Let Z?:l r; ® y; € M ® N1 be a nonzero element in the kernel of
f- Hence we have

in ® fyi) =0
i=1

in M ® Na. By part (i) of the previous lemma, there exists a finitely generated
submodule Nj C N, such that f(v1),..., f(yn) € Ny and Y i 2; @ f(y;) = 0 in
M ® Nj. Let N{ C N; denote the submodule generated by y,...,y,. It is clear
that f restricts to an injective map

f N — N
and hence we get a map idy ® f' : M@N] — M @ Nj. We have again y | z;®
y; € Ker(idy @ f'). By part (i) of the previous lemma, we have " | #;®y; # 0 in
M®N7. This shows that idy;® f’ is not injective, which contradicts the assumption.
This terminates the proof of the lemma. O

We now prove another weaker version of Proposition 4.0.1:

Lemma 4.0.4. Let M be an A-module. The following are equivalent:
(i) M is flat A-module.
(i) For every ideal I C A, the induced map I @ M — A ® M is injective.

Proof. (i) = (i1) is obvious.

(#4) = (i) : By Lemma 4.0.3, it suffices to show that for all injective maps
f : N' — N of finitely generated A-modules, idy; ® f : M @ N' — M ® N is
injective. We may assume that N = A"/D and N’ = D'/D where D C D' C A"
are submodules. Write + : D — A™ and «/ : D’ — A™ and f : N’ — N for the
inclusion maps. We have a commutative diagram with exact rows:

M®D— MDD — s MQN ———0

J_ J/id]y[@L/ J{Zd]M@f

M@D—"M oA — s M@N—— 30

Assume that both maps idy; ® ¢/ and idy; ® ¢/ are injective. Then we show that
idp ® f is also injective. Indeed, if z € Ker(idy;® f), choose a preimage y € MQD'.
Then by commutativity, (idys ® ¢')(y) is mapped to 0 in M ® N, so there exists
z € M ® D such that
(idpy @ ) (y) = (idp @ 0)(2)

But then the image of z by the map M ® D — M ® D’ must be y because of
commutativity and injectivity of the map idy ® ¢/ (by assumption). It follows that
x =0 and so idy; ® f is injective.

Hence it suffices to show that if D C A™ is a submodule, then M®D — M®A™ ~
M™ is injective. This holds for n = 1 by assumption. Assume this is true for some
n > 1. We then show that it holds for n + 1. Let D C A”*! be a submodule. Let
D’ C D be the set of elements of the form (z,0,...,0) (some z € A) in D. Then D’
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is the kernel of the restriction to D of the map A"™* — A" p: (zg,21,...,7) —>

(z1,...,25). In particular, p yields an injective map " : D" := D/D’ — A™. We
get a commutative diagram:

M®D — MDD — s MD"—0

J{idM @ JidM L lidzw@b“

0 M Mt M™ 0
The injectivity of the maps idy; ® ¢ and idy; ® ¢/ implies the injectivity of idy; ® ¢.
This terminates the proof of the lemma. O

Finally, we finish the proof of Proposition 4.0.1. Again, note that (i) = (i) is
obvious. The proof of (ii) = (i) is basically a combination of Lemmas 4.0.3 and
4.0.4. Indeed, let M be an A-module satisfying (i7). To show that M is flat, it
suffices to show by Lemma 4.0.4 that for all ideal I C A (not necessarily finitely
generated), the induced map I ® M — A® M is injective. Assuming this is not the
case, then we can find (using the proof of Lemma 4.0.3) a finitely generated ideal
I' C I such that I'®@ M — A® M is not injective. This contradicts the assumption
(i), and proves the Proposition.

We finally can prove the implication (3) = (1) of Exercise 3. Assume that for
every finitely generated ideal I C A, there exists an ideal J C A such that A = I J.
Let M be any A-module. We need to show that M is flat. By Proposition 4.0.1, it
suffices to show that for each finitely generated ideal I C A, the map IQM — AQM
is injective.

Let J C A an ideal such that I @& J = A and let p : A — I denote the projection
map with respect to this decomposition. If + : I — A is the natural inclusion map,
we have p ot = id;. Hence we deduce that the composition

T @M 229, Ao pp P9 1o g

is again the identity map of I ® M. It follows that ¢ ® idp; is injective. This shows

(3)-

Exercise 4 : Let A be a ring such that for every x € A, there exists n > 1 such
that ™ = . Show that:

(1) Every prime ideal of A is maximal.
(2) A is absolutely flat.

Solution:
(1) : Let p C A be a prime ideal and x € A\ p. There exists n > 1 such that
2" =z, thus (2"~ — 1) = 0. Since z ¢ p, we deduce 2"~ 1 — 1 € p, which shows
that o + p is a unit in A/m with inverse 2”2 + p. Hence A/p is a field, so p is
maximal.

(2) : By Exercise 3, it suffices to show I? = I for each principal ideal I C A. Let
r € Aand I = (z). Then I? = (2?) C (z). Conversely, x = 2" = 2%(2"2) € (2?)
which shows 12 = I. We deduce that A is absolutely flat.

Exercise 5 : Let A be a nonzero ring and M an A-module. Show that the following
assertions are equivalent:
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(1) M is a flat A-module.
(2) M, is a flat A,-module for all prime ideal p.
(3) My is a flat Ay-module for all maximal ideal m.

Solution:

(1) = (2): We know by the lectures that if M is a flat A-module, then B ®4 M
is a flat B-module for any A-algebra B. In particular, M, ~ A, ®4 M is a flat
Ap-algebra for all prime ideal p C A.

(2) = (3) is obvious.

(3) = (1): Let f: N’ — N be an injective map of A-modules. We have to show
that idy; @ f : M ®4 N' — M ®4 N is injective. For all maximal ideal m C A,
there is an isomorphism

(M@AN)m ~ M RAp Nn

Hence, by the assumption that My, is a flat Ay,-module, we know that the local-
ization at m of the map idy @ f: M ®4 N' — M ®4 N is injective, for all m. One
then deduces that idy; @ f : M @4 N’ — M ®4 N is injective as in Ex.4 of Problem
sheet 2.

5. PROBLEM SHEET 5

Exercise 1 : If A = (4,,ap), and B = (B, 8,)n are two inverse systems, a
morphism of inverse systems f : A — B is a family of maps f, : A, — B, such
that the following diagram commutes for all n > 0:

an+11\ Tﬁnﬁ—l
fn+l

An+1 — Bn+1

(1) Show that f induces a group homomorphism f : @An — lim B,
(2) Let A = (A, @n)n, B = (Bn,Bn)n and C = (Cyp,vn)n be three inverse
systems and
0sALBL OS50

an exact sequence (i.e the sequence for each n is exact). Then show that
the sequence

0~ lim A, % lim B, % limC,
is exact.
(3) Assume further that for each n > 1, the map «, is surjective. Show that g
is surjective.
(4) Deduce the following result: Let 0 — G’ G % 6" = 0 be an exact
sequence of abelian groups, and (G,), a descending chain of subgroups
of G. Endow G with the attached topology, and G’ (resp. G") with the

topology attached to the chain (f~1(G,))n (resp. (9(Gn))n ). Then one
has an exact sequence of completions

0o Lasa o
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Solution:
(1) : Let (zn)n>0 € lim A,,. Then the commutativity of the above diagram shows
that the sequence (f(zy,))n>0 is an element of Jim B,,. This induces a map

f:&iLnAn%LiLan

which is clearly a group homomorphism.

(2) : Since f,, : A, — B, is injective for each n > 0, it is clear that f is injective. We
also have §o f = 0 because gy o f, = 0 for each n > 0. Finally, let (Yn)n>o0 € @Bn
be in the kernel of §. Hence g, (y,) = 0 for each n > 0, so we can write y, = f(z,)
for some z,, € A,. It remains to show that (x,),>0 is an element of @An. We
have for each n > 0:

n(@n) = Yn = Brnt1(Ynt1) = 5n+1(fn+1($n+1)) = fn(an+1($n+1))

Since f,, is injective, we deduce z,, = api1(Tn41) which shows that (z,)n>0,

hence Ker(g) = ima(f).

(3) : Let z := (25 )n>0 € Um C), be an element. We construct a preimage in lim B,,.
For each n > 0, let y,, € B, such that g,(y,) = z,. It is not true in general that
(Yn)n>0 € @Bm so we need to modify y,,. We will construct a sequence (y/,) by
induction satisfying g, (y;,) = zn and y;, = Bn11(y,,1) for all n > 0.

Put y) := yo. Assume we have constructed yj, ...,y;,. We define y,, . € B, 41 as
follows. Note that

gﬂ(y;z - Bn—i—l(yn-i-l)) = Zn — gn(ﬂn-ﬁ-l (yn-i-l))
= 2n = Ynt1(9n+1(Yn+1))

= Zn — ’Yn—}-l(zn—&-l)

It follows that ¢}, — Bn+1(Yn+1) € Ker(g,) = ima(f,), so we can write

y; - ﬁn+1(yn+1) = fn(xn)

for some z, € A,. Since a1 is surjective, we can find x,1; € A, 41 such that
nt1(Tn+1) = . Then define

y;L-‘rl = Yn+1 T+ fn+1(zn+1)-
‘We have the relation:
Brt1Wny1) = Bry1(Wns1) + Bry1 (for1 (@ng1))

= Brt1(Un+1) + fu(ans1(zni1))

= Bnt1(Un+1) + fulzn)

=y,
Hence this construction gives a sequence 3" := (y},)n>0 which lies in 1&13” and
such that g(y') = z. This shows that § is surjective.
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(4) : Consider the inverse systems (G/Gp)n, (G'/f~HG:))n and (G”/g(Gp))n
where the maps are the obvious ones. We have an exact sequence of inverse systems

0——G'/fYG") — G/G,, ——— G"/9(G)) —— 0

0——G'/f G ) — G/Grin —— G /g(Grnir) ——0

The assumptions of Question (3) are satisfied in this situation, so we deduce an
exact sequence:

0= G'/5 7 (Gh) L im GGy & im G /g(G).

These inverse limits identify with the completions of G, G, G” with respect to
the chains of subgroups (f~1(G%))n, (Gn)n, (9(Gr))n. Hence we have an exact
sequence:

0o Lags o

Exercise 2 : Let A be an integral domain and I C A an ideal. If A is an integral
domain, is the I-adic completion A an integral domain?

Solution:

Consider the polynomial P(X,Y) =Y? - X? — X3 € C[X,Y] and let I C C[X,Y]
denote the ideal generated by I. If we plot the vanishing locus of P in R?, we get
the following picture:
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In a neighborhood of the (0,0), the term 23 becomes negligible in comparison to
the lower order terms z? and y2, hence when (z,y) € R? is close to 0, the equation
P(x,y) = 0 is close to the equation y? — 22 = 0, which is equivalent to y = 4.
This explains the two branches of the curve around the point (0,0).

Let A be the quotient ring:

C[X,Y]
(Y2 - X2 - X3)

It is clear that A is an integral domain. This amounts to showing that I is a
prime ideal. This follows easily from the fact that the polynomial Y2 — X2 — X3 is
irreducible in the UFD C[X,Y].

The maximal ideals of A correspond to maximal ideals of C[X,Y] containing I.
It is shown in Algebraic Geometry that the maximal ideals of C[X,Y] are all of
the form (X —a,Y —b) for all (a,b) € C2. Hence maximal ideals of A correspond
bijectively to those pairs (a,b) € C? satisfying P(a,b) = 0. Given the behavior of
the above curve locally around (0,0), we consider the ideal corresponding to the
point @ = 0, b = 0. Hence, let x,y € A denote the classes of X and Y respectively
and consider the maximal ideal m defined by

A=

m:= (z,y).
Note that the quotient A/m is isomorphic to C by the map Q(z,y)+m — Q(0,0)

(where Q € C[X,Y]). Let A denote the m-adic completion of A. Consider the exact
sequence of abelian groups

0-1—-C[X,Y] 5 A—0
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Let mg C C[X,Y] be the maximal ideal my := (X,Y’). Then we have the chain of
ideals of C[X,Y]:

C[X,Y]DmpgDmiD..
which defines the mg-adic topology on C[X,Y]. The image of this chain by 7 is the

chain of powers of m. Since I is a finitely generated C[X,Y]-module, we obtain an
exact sequence

0—1—C[X,Y] = A—o0.
Furthermore, since I is generated by P, multiplication by P is a surjective map
of C[X,Y]-modules C[X,Y] — I, hence after completion, multiplication by P
induces a surjective map C[X,Y] — I. In other words, I is generated by P as an

—

C[X,Y]-module. We have proved:

—

. CX.Y]
A== p)

In Exercise 5, it is shown that the (X)-adic completion of C[X] is the ring of
power series C[[X]]. By following precisely the same arguments, one can show that
the completion of C[X,Y] for the (X, Y )-adic topology is the ring

—

C[X,Y]~C[[X,Y]]

of formal series in the variables X,Y. An element of C[[X,Y]] is a formal sum

f — Z an’anym,
n,m>0
Multiplication is defined similarly to Exercise 5: If f = 3"~ apmX"Y™ and
g = En,mZO by,m XY™, then let fg be the power series Zn,mZO Cn,mX"Y"™ where

Cn,m is defined by
Cn,m = Z ai,jbr,s
(4,5)+(r;8)=(n,m)
The sum is over the set of pairs of pairs ((4,7), (r,s)) of non-negative integers such
that (¢,7) 4 (r,s) = (n,m) (hence this is a finite sum). Similarly to Ex 5. Question
(3), the units of C[X,Y] are the power series f = > <, anmX"Y™ such that

ag,0 # 0.
Therefore, we conclude:

Lemma 5.0.1. The completion of A for the m-adic topology is isomorphic to the
ring
Clx,Y]]

Bi=
(Y2 — X2 — X3)

The element 1+ X is a unit of C[X,Y] because its constant term is nonzero in
C. We claim:

Lemma 5.0.2. Let A be a ring such that 2 € A*. Let g =}, b, X" € A[[X]].
Assume that by € A* and is a square in A. Then there exists f € A[[X]] such that
fr=y.
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Proof. we construct f =5 ., a,X" inductively. Since by is a square, let ag € A*
be an element such that a3 = by. Assume that we have defined ag, ..., a,. Then

define:
1 n
Ap41 = % (bn+1 - kgl akan-l-l—k)

Note that a,y1 is well-defined because 2ag is a unit of A. Then it is clear that
fP=g O

For example, the element 1 + X € C[[X]] is a unit and its constant term is a
square in C. Therefore, there exists F' € C[[X]] such that F? =1+ X.

Denote by x,y € B the classes modulo (P) of X,Y respectively. Denote also by
f € B the class of F. We have the relation

y? =221+ 2) = 222 = (af)?

In other words, we have the relation (y — 2 f)(y + «f) = 0 in the ring B. It is clear
that none of the elements y 4+ x f is zero, because otherwise, the element Y + F X
would be divisible by Y2 — X2 — X? in the ring C[[X,Y]]. This is a contradiction
because if Y + FX = (Y2 — X2 — X3)Q(X,Y) for some Q € C[[X,Y]], then by
replacing X by 0 we get that Y = Y2Q(0,Y), which is clearly impossible. Hence
we have seen that the completion A is not an integral domain even though A is an
integral domain.

Actually, one can simplify further the expression of the ring A as follows. Note
that (Y —XF)(Y +XF)=Y? - X2F?2 =Y? - X2~ X3. One can show that there
is an isomorphism

ClX. Y] _ ClX,Y]] __ CxY]]
(Xy) (Y-XF)(Y+XF) (Y2-X2-X3)
defined by mapping h(X,Y) to h(Y — FX,Y + FX).
By repeating all previous arguments, one recognizes that % is the comple-

tion of the ring C' := Cz[;(yl)/] with respect to the m;-adic topology, where m; = (z,y)

(again, z,y denote the classes of X,Y). The representation in R? of the equation
a2y = 0 is simply a cross : Two line intersecting perpendicularly at (0,0). The above
isomorphism says that the above curve has a singularity at the point (0,0) which
"looks like" a cross.

Exercise 3 : Let A be a Noetherian ring and I C A an ideal. Show that I C J(A)
if and only if every maximal ideal of A is closed with respect to the I-adic topology
of A.

Solution:

(=) : Assume I C J(A) and let m C A be a maximal ideal. We must show that
A\ m is open with respect to the I-adic topology. Let x € A\ m. Then the set
x + I is an open neighborhood of x and is contained in A\ m. Indeed, if z + I
would intersect m, it would imply a relation z + y = z with y € I and z € m, thus
x = z —y € m, which is a contradiction.

(<) : Assume that every maximal ideal is closed for the I-adic topolgy and assume
for a contradiction that there exists z € I which is not contained in a maximal ideal
m. Since A\ is open, there exists n > 1 such that z +I™ C A\ m. Since 2" ¢ m
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(because m is a prime ideal), the ideal m + (2"~ 1) is strictly larger than m hence
m+ (z"71) = A by maximality. We deduce that we can write 1 = az”~! + y with
y € m. But then

r—ax"™ =y
is an element of x + I™ which lies in m, which is a contradiction. This proves the
assertion.

Exercise 4 : Let A be a ring and I C A an ideal. Show that the completion A is
a flat A-algebra.

Solution:

Using Lemma 0.0.3 of the Solutions to Problem sheet 4, Exercise 3, it suffices
to show that for each injective map M’ — M of finitely generated A-modules, the
induced map

A XA M — A ®Xa M
is injective. Let M and M’ be the I-adic completions of M and M'. By the Artin-
Rees lemma, the topology induced on M’ from the I-adic topology on M coincides
with the I-adic topology of M’. Hence we may apply Exercise 1 (4) to show that

M — M
is again injective. Since M, M’ are finitely generated, we have A®s M ~ M.

Hence it follows that A®4 M’ — A®4 M is injective, which proves that Ais a flat
A-algebra.

Exercise 5 : Let A be a ring. Denote by A[[X]] the ring of power series with
coefficients in A. An element f € A[[X]] is a formal sum f =" -, a,X". Addition
and multiplication are defined as follows: B

D anX > bp X" = (an +by) X"

n>0 n>0 n>0

D an X" D b X" =Y e, X" with ¢ = arbn_i.
n>0 n>0 n>0 k=0

(1) Show that A[[X]] is a ring.

(2) Determine the group of units of A[[X]].

(3) Show that A[[X]] is isomorphic to the (X)-adic completion of A[X].

Solution:

(1) : It is clear that (A[[X]],+) is an abelian group. We show that multiplication
is associative: Let f =3 S an X", g=> sobpu X" and h =} ., c, X™ three
elements of A[[X]]. Write (f-g)-h=3,5,dnX". We have: -

n k
dn, = Z (Z azbkz> Cn—k

k=0 \i=0
Z a,bsct
r+s+t=n
where the sum is over all nonnegative r,s,t > 0 such that r + s+ ¢ = n. This
expression is clearly symmetric, so we deduce that (f-g)-h=f-(g-h).
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Finally, it is easy to see that multiplication is distributive with respect to addition
and that the element
1+0X +0X> 4 ...

(denoted simply by 1) the an identity element for multiplication.

(2) : We claim that one has the following description:

AIX* =3 ) " an X", ag € A
n>0
It is clear that )~ -, a, X™ — ao defines a ring homomorphism A[[X]] — A, hence
sends a unit to a unit. This proves the inclusion "C". Now, let f = Y om0 an X"
be an element of A[[X]] such that ag € AX. We construct an inverse to f. Define
by := aal and by induction:

1 n
bn = _;0 i:Zlaibnfi

It is clear by definition that fg = 1. Thus f is a unit in A[[X]].
(3) : Let fT[—)?] denote the completion of A[X] with respect to the (X)-adic topology.
We know that o

ATX] ~ lim A[X]/(X")

—

Define a map ¢ : A[[X]] — A[X] by mapping f = }_, -, a, X" to the sequence
(P, + (X™))n>1 where

n—1
Py=> apX*
k=0
It is clear that (P,), € A[X]. The map ¢ is clearly a ring homomorphism. It is
injective because if P, € (X™) for each n > 1, then we deduce that ag = ... = a, =0

for all n > 0, so f = 0. Finally, we prove surjectivity: Let z := (Qn + (X™))n>1
be a sequence in @A[X]/(X") By definition, the difference Q1 — Q, must
be divisible by X™. This shows that for each n > 0, the n-th coefficient of Q,, is
the same for all m > n. Denote by a, € A this coefficient. Then it is clear that
f=>,50anX" satisfies ¢(f) = x. This shows that ¢ is an isomorphism.



