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Introduction

Given f : Rn → C its Fourier transform it is defined by

f̂ (ξ) =

∫

Rn

e−ix ·ξf (x)dx .

and call this the Fourier transform of f . The Fourier transform is
well-defined for f ∈ L1(Rn) and f̂ ∈ C (Rn).

The following inversion formula holds true

f (x) = cn

∫

Rn

e ix ·ξ f̂ (ξ)dξ,

under reasonable assumptions on f̂ .
Motivated by many applications, it is important to study the case when ĝ

is supported on a hypersurface S :

ĝ = hδS = hdσ.
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Basic Object.

Parametrizing the hypersurface, this is equivalent to studying the following
object :

For n ≥ 1, let U ⊂ R
n be an open, bounded neighborhood of the origin

and let Σ : U → R
n+1 be a smooth parametrization of the n-dimensional

submanifold S = Σ(U) of Rn+1 - a hypersurface. Define

Ef (x) =

∫

U

e ix ·Σ(ξ)f (ξ)dξ.

In this series of lectures we discuss various aspects of the multilinear
estimate :

‖Πk
i=1Ei fi‖Lp . Πk

i=1‖fi‖Lq .

We continue with motivating the study of such objects.
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Harmonic Analysis

The linear restriction estimate : given a smooth compact hypersurface
S ⊂ R

n+1, n ≥ 1 the linear restriction estimate RS(p → q) holds true if

‖f̂ ‖Lq(S,dσ) ≤ C (p,S)‖f ‖Lp(Rn+1). (1)

This justifies why, given f ∈ Lp(Rn+1), one can meaningfully consider the
restriction of f̂ to S as an element Lq(S , dσ). A priori this is true only if
p = 1 ; indeed if S is a subset of a hyperplane estimate fails for p > 1.
However if S has some non-vanishing principal curvatures, then
improvements are available beyond the trivial case p = 1.
Using duality, the linear restriction estimate RS(p → q) is equivalent to
the adjoint linear restriction estimate R∗

S(q
′ → p′) :

‖Ef ‖Lp′ (Rn+1) ≤ C (p,Σ)‖f ‖Lq′ (U), (2)

where p′, q′ are the dual exponents to p, q used in (1). Establishing (1) or
(2) for the full conjectured range of pairs (p, q), respectively (p′, q′) is a
major open problem in Harmonic Analysis.
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Harmonic Analysis

The ball multiplier problem :

‖B1f ‖Lp . ‖f ‖Lp ,

where B̂1f = χB1
(ξ)f̂ (ξ) and B1 is the unit ball. It came as a surprise

when Fefferman proved that, if d ≥ 2, B1 is not bounded unless p = 2.

The Bochner-Riesz means :

Bδ
R f = (1−

|ξ|2

R2
)δχB1

(ξ)f̂ (ξ),

and the question is limR→∞ Bδ
R f = f in Lp ; this is closely related to

finding the relation between δ and the ranges of p for which Bδ
R is

bounded on Lp .

∂B1 = S
n−1 plays a key role in this problem, because this is where the

cut-off switches to 0. This relates this problem to the restriction problem.
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Kakeya Conjecture

Kakeya asked the following question : what is the minimum volume that a
set in R

n containing a unit segment in all directions can have ?
Besicovitch provided a surprising example of sets of arbitrarily small
Lebesgue measure with this property (n = 2).

Relevance in Harmonic Analysis : Fefferman’s example of B1 not being
bounded on Lp , p 6= 2 relies on such sets.

Restate the question in terms of geometric measure theory : what is the
dimension (Hausdorff/Minkowski) of a Kakeya set ?

Conjecture : Full dimension n.

This is closely related to the Restriction Conjecture and Bochner-Riesz
conjecture.
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PDE

Consider the transport equations :

ut − b · ∇u = 0

Taking the space-time Fourier transform gives :

i(−τ + b · ξ)û = 0.

û has to be 0 away from the hyperplane τ = b · ξ, and, thus, supported
on the hyperplane τ = b · ξ ; formally

û = f (ξ)δτ=b·ξ

where one should make sense of the object δτ=b·ξ (as a distribution) and
f (ξ) (last one is computed from initial data). We say that the hyperplane
is the characteristic surface for the transport equation.
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Consider the free (homogenous) wave equation :

utt −∆u = 0 ⇒ (−τ2 + ξ2)û = 0.

Therefore û is supported on the cone τ = ±|ξ| and formally

û = f (ξ)δτ=±|ξ|

The cone is the characteristic surface for the wave equation.

Similarly, consider the Schrödinger equation :

iut −∆u = 0 ⇒ (τ + ξ2)û = 0 ⇒ û = f (ξ)δτ=−|ξ|2.

The paraboloid is the characteristic surface for the Schrödinger equation.
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Relations with other areas of Mathematics.

The problem originated in Number Theory : counting lattice points inside
a large domain RΩ. Depending on the choice of Ω this is related to
problems such as : average number of representation of a natural number
as sum of squares, average number of integer divisors, etc.

Combinatorics, Incidence Geometry ; we’ll highlight this later.

Interestingly, all these fields bring their all flavor to obtaining results in the
field of restriction theory.
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The role of Curvature.

Probably the best understood problem is the following problem :

‖Ef ‖Lp . ‖f ‖L2(U).

We use the (x , t) coordinates on the physical side and (ξ, τ) on the
Fourier side. If S = Σ(U) is flat, say τ = 0 (transport equation), then
Σ(ξ) = ξ and

Ef (x , t) =

∫

U

e ix ·ξf (ξ)dξ.

and Ef (x , t) is constant in the t direction ; thus no integrability properties
can be expected beyond

‖Ef ‖L∞ . ‖f ‖L2(U).

This changes if S has some curvature. All information is transported in
the normal direction to S and curvature implies many such directions.
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Wave packets.

Setup : τ = ϕ(ξ), ξ ∈ U,Σ(ξ) = (ξ, ϕ(ξ)) and t, x are dual variables :

Ef (x , t) =

∫

U

e i(x ·ξ+tϕ(ξ))f (ξ)dξ.

Fix a time scale T = R2. Discretize the Fourier space at scale ∆ξ = R−1

and the physical space at scale ∆x = R . Given ξT , xT define the tube T :

T := {(x , t) ∈ R
n × R : |x − xT +∇ϕ(ξT )t| ≤ R}.

Its center line goes into the direction of the normal N(Σ(ξT )) at S . If f is
concentrated near ξT and f̌ at scale R−1 and it is supported near xT at
scale R , the Ef is concentrated in T .
A wave packet decomposition

Ef =
∑

T

φT .

reveals the dispersion along tubes, thus allowing for improved Lp estimates.
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Tomas-Stein ; Strichartz estimates.

The classical result is due to Tomas-Stein : if S has n-nonvansihing
principal curvatures (non-zero Gaussian curvature), then

‖Ef ‖Lp . ‖f ‖L2

for p ≥ 2(n+2)
n

; d = n + 1, n is the dimension of the ambient space for ξ.
More generally, if S has l n-nonvansihing principal curvatures then the
above holds for p ≥ 2(l+2)

l
.

These estimates, known as Strichartz estimates, played a crucial role in the
field of dispersive PDE’s : Schödinger equation, Wave equation,
Klein-Gordon etc.

The wave packet is the known example to saturate the above estimate.
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The L
2 bilinear theory

Assume S1 and S2 are compact transversal hypersurfaces. Then the
following L2 bilinear estimate holds true :

‖E1f1 · E2f2‖L2 . ‖f1‖L2‖f2‖L2 ,

These estimates (and variations of) are widely used in the context of
dispersive equation in conjunction with the X s,b estimates. Free
solutions/waves to dispersive equation have the Fourier transform
supported on characteristic hypersurfaces. The solutions to nonlinear
dispersive equations do not enjoy the same property, but are expected to
be ”concentrated” on the same hypersurfaces ; the X s,b space is a tool
that quantifies the decay of such solutions away from corresponding
characteristic hypersurface.
Combinations of the bilinear theory and the Strichartz theory (Lpt L

q
x) led to

major inroads in the theory of dispersive equations.

No curvature is needed in the above estimate.
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Bilinear restriction estimates.

For the restriction theory, the Tomas-Stein result covers some range of it ;
say n = 2 and S is a subset of the sphere, or the paraboloid. The
restriction conjecture essentially says that

‖Ef ‖L3 . ‖f ‖L∞ ,

while the above gives p = 4 > 3.
The next major advancement came from bilinear restriction estimates :

‖E1f1 · E2f2‖Lp . ‖f1‖L2‖f2‖L2 .

If n = 2 and S is the paraboloid, the linear estimate gives an L4 estimate
for Ef ; leading to an L2 bilinear estimate. Bourgain proves a bilinear
estimate with p < 4 that, if one assumes transversality.

Relevance : Tao shows that any such improvement for the bilinear estimate
implies a result for the linear restriction problem.
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It gets more interesting as Klainerman-Machedon conjectured that the
best exponent for the bilinear estimate should be p = n+3

n+1 < n+2
n

; they
conjecture the same result both for cone and paraboloid.

Remarks :

- relevance of n+2
n

: L
2(n+2)

n · L
2(n+2)

n → L
n+2
n ; the bilinear estimate gives

better exponents over the linear estimate.
- curvature is needed to obtain any bilinear result below L2.
- the unexpected feature : same optimal exponent for the cone and
paraboloid.
- thus the bilinear estimate ”twists” the role of curvature.

There is a lot of work in this direction and the optimal results are due
to Wolff, for the cone, and Tao, for the paraboloid with almost sharp
results : p > n+3

n+1 . Tao also obtains the end-point result for the cone

p = n+3
n+1 .

Additional results in various contexts : Tao-Vargas (precursor to Tao’s
result), Lee (quadratic surfaces with different signs), Lee-Vargas
(k-conical surfaces).
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Key applications : Restriction theory is improved to p > 5
3 , n = 2 ;

Shrödinger maximal function estimate is improved by Lee.

Applications in PDE : inverse Strichartz inequalities, i.e. wave packet is
optimal for the Strichartz estimate, (Bourgain) with applications in profile
decomposition, fine technicalities in Wave Maps problem
(Tataru-Sterbenz), improvements in iterations scheme (Candy-Herr on
Dirac-Klein-Gordon), estimates on eigenfunction on manifolds without
boundary (Sogge), etc.

Question : what is the precise role of curvature ? The above proofs were
surface dependent : paraboloid and cone. Lee shows that for in the case of
τ = ξ21 − ξ22 , the bilinear improvement fails, although the surface has
non-vanishing Gaussian curvature.

In the second lecture we will discuss a precise resolution of the role of the
curvature in the bilinear estimate and unification of the argument in the
bilinear theory.
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Multilinear restriction estimates.

Assuming that S1, ..,Sk are transversal hypersurfaces in R
n+1, the

following is conjectured to be true

‖Πk
i=1Ei fi‖

L
2

k−1 (Rn+1)
≤ CΠk

i=1‖fi‖L2(Ui ).

Transversality : There exists ν > 0 such that for any ζi ∈ Si , i ∈ {1, .., k},
the following holds true

vol(N1(ζ1), ..,Nk (ζk)) ≥ ν.

Here vol is the standard volume form of k vectors in R
k . No curvature

assumptions are needed ; in fact, curvature complicates things.
There are two easy cases. If Si are transversal hyperplanes then this is the
classical Loomis-Whitney inequality ; for instance

‖f (x1, x2) · g(x2, x3) · h(x1, x3)‖L1 . ‖f ‖L2‖g‖L2‖h‖L2 .

The other case that is well-understood is the bilinear L2 estimate

‖E1f1 · E2f2‖L2 . ‖f1‖L2‖f2‖L2 .
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‖E1f1 · E2f2‖L2 . ‖f1‖L2‖f2‖L2 .
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Let k = n + 1, this is the maximal number of possible transversal
hypersurfaces. Recall the wave packet decomposition :

Ei fi =
∑

T∈Ti

φT ,

We prepare the data such that the wave packet decomposition is
randomized

Ei fi =
∑

T∈Ti

ωTφT ,

where ωT are independent random variables taking values ±1 with equal
probability. Taking the Expected Value and using Khinchin’s inequality

E (|

N∑

n=1

ωnan|
p) ≈

(
N∑

n=1

|an|
2

) p

2

,

for any 0 < p < ∞, leads to the ....
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Multilinear Kakeya.

We are given n+ 1 families of tubes T1, ..,Tn+1 such that each tube
T ∈ Ti has the property that its core makes an angle ≪ 1 with the vector
ei . We allow tubes in the same family to be parallel. The multilinear
Kakeya conjecture is the following :

‖Πn+1
i=1 (

∑

Ti∈Ti

χTi
)‖

L
1
n (Rn+1)

≤ CΠn+1
i=1#Ti .

where #Ti is the cardinality of the family of tubes Ti .

This is a version of the ”joints problem” in incidence geometry, as the left
hand-side counts the number of joints with multiplicity.

The nonlinear Kakeya is weaker than the original multilinear estimate, but
it allows to obtain the near-optimal version :

‖Πk
i=1Ei fi‖

L
2

k−1 (B(x ;R))
≤ CRǫΠk

i=1‖fi‖L2(Ui ).
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What is known

Bennett, Carbery and Tao proved the near-optimal Kakeya and, as a
consequence, the near-optimal multilinear restriction estimate. Guth
provides a simplified argument for the near-optimal Kakeya, using ideas
from capacity theory and highlights the underlying idea of an induction on
scales type argument.

Recently, B. provides a direct argument for the near-optimal multilinear
restriction estimate. This has the advantage it that provides good
estimates when one of the factors has good localization properties - this
plays a crucial role in improved estimates when curvature comes into play.

The most striking result is the sharp end-point case for the multilinear
Kakeya. Here Guth introduces the polynomial partition method and uses
ideas from algebraic topology. Carbery and Valdirmasson provide an
alternative argument, using only basic theorems of Borsuk-Ulam type ; this
is more familiar to an analyst, given that Brower’s fixed point theorem
relies on such results.
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Applications.

Bourgain and Guth improved the known ranges for the linear restriction
conjecture in higher dimensions ; the bilinear restriction estimate is useful
in lower dimensions, but not in in higher.

Guth takes further the polynomial partition ideas and improves the
restriction theory ; recall that if n = 2 the conjecture is

‖Ef ‖L3 . ‖f ‖L∞ .

Guth proves this for p > 3.25 ; the bilinear theory does it with
p = 10

3 = 3.333.., while Bourgain-Guth improved for p > 3.29..

Bourgain and Demeter prove the decoupling conjecture for paraboloid with
deep consequences in PDE. They solve another open problem of sharp
Strichartz estimates for the Schrödinger equation on the irrational tori.
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The optimal end-point multilinear restriction conjecture is still open.
If k = n + 1 the exponent p = 2

k−1 = 2
n
is sharp.

If k < n + 1, then the exponent 2
k−1 is sharp in the generic case ; if one

assumes curvature hypothesis, then it should improve.
Under transversality and appropriate curvature conditions the conjecture is
that

‖Πk
i=1Ei fi‖Lp(Rn+1) ≤ CΠk

i=1‖fi‖L2(Ui ).

for any p(k) ≤ p ≤ ∞ were p(k) = 2(n+1+k)
k(n+k−1) < 2

k−1 .

If Si are subsets of the paraboloid sphere satisfying the transversality
condition, the conjecture is expected to hold true.
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This conjecture is mostly open. It was speculated by Bennett, Carbery and
Tao : ”simple heuristics suggest that the optimal k-linear restriction theory
requires at least n + 1− k non-vanishing principal curvatures, but that
further curvature assumptions have no further effect”.
It was formulated by Bennett ; however some progress has been made only
recently.

B. establishes the conjecture for k − 1 conical hypersurfaces - this is
k-linear equivalent of Wolff’s bilinear result for cones. This result will be
discussed in the third lecture.

Guth formulates a weaker version of the above conjecture and proves it for
subsets of the paraboloid using the polynomial partition method. He then
uses it to further improve the linear restriction theory in higher dimensions.
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