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Setup

For n ≥ 1, let U ⊂ R
n be an open, bounded neighborhood of the origin

and let Σ : U → R
n+1 be a smooth parametrization of the n-dimensional

submanifold S = Σ(U) of Rn+1 - a hypersurface. Define

Ef (x) =

∫

U

e ix ·Σ(ξ)f (ξ)dξ.

Assume we have k such operators generated by the hypersurfaces
S1, ..,Sk . We assume the transversality assumption :

vol(N1(ζ1), ..,Nk (ζk)) ≥ ν.

for all choices ζi ∈ Σi (Ui). Here by vol(N1(ζ1), ..,Nk (ζk)) we mean the
volume of the k-dimensional parallelepiped spanned by the vectors
N1(ζ1), ..,Nk (ζk).
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Multilinear restriction. Assuming that S1, ..,Sk are transversal

hypersurfaces in R
n+1, the following is conjectured to be true

‖Πk
i=1Ei fi‖

L
2

k−1 (Rn+1)
≤ CΠk

i=1‖fi‖L2(Ui ).

No curvature assumptions are needed ; in fact, curvature complicates

things.

Multilinear Kakeya. Given k families of tubes T1, ..,Tk such that each

tube T ∈ Ti has the property that its core makes an angle ≪ 1 with

the vector ei . We allow tubes in the same family to be parallel. The

multilinear Kakeya conjecture is the following :

‖Πk
i=1(

∑

Ti∈Ti

χTi
)‖

L
1

k−1 (Rn+1)
≤ CΠk

i=1#Ti .

where #Ti is the cardinality of the family of tubes Ti .
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For k = n+ 1 the two estimates are ”morally” equivalent, with the
nonlinear Kakeya being the weaker one : the nonlinear restriction implies
Kakeya, but Kakeya implies the nonlinear restriction with losses of Rǫ !

For k < n+ 1, the Rademacher type argument does not allow for the
nonlinear Kakeya to be obtained from the nonlinear restriction ; however
one can obtain the nonlinear restriction from the nonlinear Kakeya.

The original argument of Bennett, Carbery, Tao proves the nonlinear
Kakeya ; the later argument by Guth does the same.

B. provides another proof of the multilinear restriction estimate in a direct
manner ; most important it highlights improvements of the estimate when
localization is assumed.
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The effect of small support.

Assume that Σ1(suppf1) ⊂ B(H, µ), where B(H, µ) is the neighborhood
of size µ of the k-dimensional affine subspace H. Assume that
|N1(ζ1)− πHN1(ζ1)| . µ,∀ζ1 ∈ Σ1(suppf1), where πH : Rn+1 → H is the
projection onto H. In addition assume that if Ni , i = k + 1, .., n + 1 is a
basis of the normal space H⊥ to H, then N1(ζ1), ..,Nk (ζk),Nk+1, ..,Nn+1

are transversal for any choice ζi ∈ Σi .

Theorem

In addition to transversality conditions, assume that f1 satisfies the above.
Then for any ǫ > 0, there is C (ǫ) such that the following holds true

‖Πk
i=1Ei fi‖

L
2

k−1 (B(0,R))
≤ C (ǫ)µ

n+1−k
2 RǫΠk

i=1‖fi‖L2(Ui ).
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A few ideas about proof - inspired by the argument of Guth.

Given some 0 < δ ≪ 1 we split each domain Ui , thus Si into smaller
pieces of diameter ≤ δ. It suffices to prove the multilinear estimate for
such Si . Moreover, we can assume that the normals Ni (ζ

0
i ) = ei .

We define A(R) to be the best constant for which the estimate

‖Πn+1
i=1 Ei fi‖L

2
n (Q)

≤ A(R)Πn+1
i=1 ‖fi‖L2

holds true for all cubes Q of size R .
Then we use an induction on scale argument to prove

A(δ−1R) ≤ CA(R)

where C is independent on δ and R .

Induction combined with localization reduces the problem to a discreet
Loomis-Whitney inequality.
To keep localization in check, we use differential operators.
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The point is to bring the problem to a scale small enough, say δ−1, where
the estimate is trivial.

The same problem mentioned in the second lecture occurs here :
localization on the physical space collides with the frequency localization ;
we need to use the margin concept.

The above proof sees no difference between k = n + 1 and k < n+ 1.

As for the result with localization, this require a careful definition of the
localization operators so as to not touch at all the frequency localization in
the direction where we have smallness.

The point is to bring the problem to a scale small enough, say δ−1, where
the estimate is trivial by using L∞ bounds in for E1f1 in some directions :

‖E1f1‖L2L∞ . µ
n+1−k

2 ‖f1‖L2 .
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If k = n + 1 the exponent p = 2
k−1 = 2

n
is sharp.

If k < n + 1, then the exponent 2
k−1 is sharp in the generic case ; if one

assumes curvature hypothesis, then it should improve.
Anticipated condition

vol(N1(ζ1), ..,Nk (ζk),SNj (ζj )v) ≥ ν > 0 (1)

for any choices ζi ∈ Si , i = 1, .., k , for any j ∈ {1, .., k}, for any choice
ζ ∈ Sj and for any choice of unit vector v in the tangent space of specific
n − k + 1-dimensional submanifolds S ⊂ Sj .
Under such hypothesis the conjecture is that

‖Πk
i=1Ei fi‖Lp(Rn+1) ≤ CΠk

i=1‖fi‖L2(Ui ).

for any p(k) ≤ p ≤ ∞ were p(k) = 2(n+1+k)
k(n+k−1) < 2

k−1 .
This conjecture is mostly open.
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Theorem

(B.) If Si , i = 1, .., k are k − 1-conical hypersurfaces and satisfy (1) then

‖Πk
i=1Ei fi‖Lp . Πk

i=1‖fi‖L2 .

holds true for all p > p(k).

Guth formulates a weaker version of the above conjecture and proves it for
subsets of the paraboloid using the polynomial partition method. He then
uses it to further improve the linear restriction theory in higher dimensions.

Our proof is entirely analytical in nature. The k − 1-conical surfaces have
a simplified wave packet structure that reduces the geometry of the
problem. They have curvature in the necessary directions and they are flat
in the unnecessary directions.

To keep things simple, we sketch the argument for k = 3. At the end we
will highlight the obstacles that occur for k ≥ 4.
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Geometry

Given a surface Si we let Ni = {Ni (ζi ) : ζi ∈ Si} be the set of normals at
Si . By dspanNi we denote the following subset of the classical span of Ni :

dspanNi = {αNα + βNβ : Nα,Nβ ∈ Ni , α, β ∈ R}.

dspanNi is the set of linear combinations of two vectors in Ni ; it is not a
linear subspace.
With these notation in place, we claim the following result.

Lemma

For any N ∈ dspanN1 and any N2 ∈ N2,N3 ∈ N3 the following holds true
for all real numbers a, b, c :

|aN + bN2 + cN3| & max(|a||N|, |b|, |c |). (2)

The statement is symmetric with respect to S1,S2,S3.

The occurrence of |N| in max(|a||N|, |b|, |c |) is motivated by the fact that
vectors in dspanN1 are not normalized, but vectors in N2 and N3 are.
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Wave packet theory

The construction is sensitive to the 2-conical character of the hypersurface.
The construction of wave packets starts with defining two lattices :
L = r−1

Z
n ∩D, for frequencies, and L = rZn, on the spatial side. Here we

modify the frequency lattice L to account for the 2-conical structure.
With xT ∈ L, ξT ∈ L, define the tube
T := {(x , t) ∈ R

n ×R : |x − xT +∇ϕ(ξT )t| ≤ r} ; denote by T the set of
such tubes. For T ∈ T , define the cut-off χ̃T on R

n+1 by

χ̃T (x , t) = χ̃D(xT−∇ϕ(ξT )t,t;r)(x).

Let Q be a cube of radius R ≫ 1 and φ be a free wave. For each T ∈ T
there is a free wave φT , with φ̂T supported in a parallelepiped of size

roughly 1× 1× R− 1
2 × ...× R− 1

2 . The map φ → φT is linear and

φ =
∑

T∈T

φT ,

Ioan Bejenaru (UCSD) Tokyo November 30, 2016 11 / 26



Wave packet theory

The construction is sensitive to the 2-conical character of the hypersurface.
The construction of wave packets starts with defining two lattices :
L = r−1

Z
n ∩D, for frequencies, and L = rZn, on the spatial side. Here we

modify the frequency lattice L to account for the 2-conical structure.
With xT ∈ L, ξT ∈ L, define the tube
T := {(x , t) ∈ R

n ×R : |x − xT +∇ϕ(ξT )t| ≤ r} ; denote by T the set of
such tubes. For T ∈ T , define the cut-off χ̃T on R

n+1 by

χ̃T (x , t) = χ̃D(xT−∇ϕ(ξT )t,t;r)(x).

Let Q be a cube of radius R ≫ 1 and φ be a free wave. For each T ∈ T
there is a free wave φT , with φ̂T supported in a parallelepiped of size

roughly 1× 1× R− 1
2 × ...× R− 1

2 . The map φ → φT is linear and

φ =
∑

T∈T

φT ,

Ioan Bejenaru (UCSD) Tokyo November 30, 2016 11 / 26



Wave packet theory

The construction is sensitive to the 2-conical character of the hypersurface.
The construction of wave packets starts with defining two lattices :
L = r−1

Z
n ∩D, for frequencies, and L = rZn, on the spatial side. Here we

modify the frequency lattice L to account for the 2-conical structure.
With xT ∈ L, ξT ∈ L, define the tube
T := {(x , t) ∈ R

n ×R : |x − xT +∇ϕ(ξT )t| ≤ r} ; denote by T the set of
such tubes. For T ∈ T , define the cut-off χ̃T on R

n+1 by

χ̃T (x , t) = χ̃D(xT−∇ϕ(ξT )t,t;r)(x).

Let Q be a cube of radius R ≫ 1 and φ be a free wave. For each T ∈ T
there is a free wave φT , with φ̂T supported in a parallelepiped of size

roughly 1× 1× R− 1
2 × ...× R− 1

2 . The map φ → φT is linear and

φ =
∑

T∈T

φT ,

Ioan Bejenaru (UCSD) Tokyo November 30, 2016 11 / 26



and the following estimates hold true

∑

T

sup
q∈QJ(Q)

χ̃T (xq , tq)
−N‖φT ‖

2
L2(q) . rM(φ)

and

(

∑

q0

M(
∑

T

mq0,TφT )

)
1
2

. M(φ),

provided that the coefficients mq0,T ≥ 0 satisfy

∑

q0

mq0,T = 1, ∀T ∈ T . (3)
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Localization of the trilinear estimate.

Assume that Σ1(suppf1) ⊂ B(H, µ), where B(H, µ) is the neighborhood
of size µ of the k-dimensional affine subspace H. Assume that
|N1(ζ1)− πHN1(ζ1)| . µ,∀ζ1 ∈ Σ1(suppf1), where πH : Rn+1 → H is the
projection onto H. In addition assume that if Ni , i = k + 1, .., n + 1 is a
basis of the normal space H⊥ to H, then N1(ζ1), ..,Nk (ζk),Nk+1, ..,Nn+1

are transversal for any choice ζi ∈ Σi .

Under these hypotheses the improved trilinear estimate states that :

‖E1f1E2f2E3f3‖L1(B(0,r)) ≤ C (ǫ)µ
n−2
2 r ǫ‖f1‖L2(U1)‖f2‖L2(U2)‖f3‖L2(U3). (4)

We need the following version of this : assume q is a cube of size r and
that µ & r−1 then

‖E1f1 · E2f2 · E3f3‖L1(q) ≤ C (ǫ)r ǫµ
n−2
2 r−

3
2Π3

i=1‖χ̃qEi fi‖L2 . (5)

Here χ̃q decays fast away from q.
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The estimate says that inside q the main contributions come from Ei fi
inside a dilate of q : consequence of the finite speed of propagation.

The factor r−
3
2 exhibits an apparent improvement : while in (4), the norms

of Ei fi are measured along hyperplanes, in (5) the norms of Ei fi are
measured on cubes of size r .

Finally, the condition µ & r−1 is crucial in using the localization on the
physical side, without altering the localization at scale . µ of Σ1(suppf1).

The proof goes as follows : we rephrase the original trilinear estimate with
estimates in terms of

‖E1f1E2f2E3f3‖L1(q) ≤ C (ǫ)r ǫµ
n−2
2 Π3

i=1‖Ei fi‖L2(Hi )

where Hi are hyperplanes transversal to Ni and passing through q.
The localization machinery improves the left-hand side to ‖χ̃qEi fi‖L2(Hi ).

We average in the direction of each Ni , and obtain (r−
1
2 )3 = r−

3
2 .
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Proof of the main result

Main strategy - induction on scales. Define A(R) to be the best constant
in the estimate

‖E1f1 · E2f2 · E3f3‖Lp(B(x ,R)) ≤ A(R)‖f1‖L2‖f2‖L2‖f3‖L2 .

Then one seeks to quantify the growth of A(R)

A(CR) ≤ (1 + c(R))A(R).
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Proposition

Let Q be a cube of size R ≫ 1. Assume φi = Ei fi , i ∈ {1, 2, 3} have
positive margin. Then there is a free wave table Φ1 = Φ(φ1, φ2,Q) on Q
with depth C0 such that the following properties hold true :

φ1 =
∑

q∈QC0
(Q)

Φ
(q)
1 , (6)

M(Φ) . M(φ), (7)

and for any q′, q′′ ∈ QC0
(Q), q′ 6= q′′

‖Φ
(q′)
1 φ2φ3‖L1(q′′) .ǫ R

− n−2
4

+ǫΠ3
i=1M

1
2 (φi ). (8)
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This ”morally” suffices ; the following estimate is trivial

‖Φ
(q′)
1 φ2φ3‖

L
2
3 (Q)

. R
3
2 ‖Φ

(q′)
1 φ2φ3‖

L∞t L
2
3
x (Q)

. R
3
2 ‖Φ

(q′)
1 ‖L∞t L2x (Q)‖φ2‖L∞t L2x (Q)‖φ3‖L∞t L2x (Q)

. R
3
2M(Φ

(q′)
1 )

1
2M(φ1)

1
2M(φ3)

1
2 .

Interpolating between the above L
2
3 estimate and the improved L1

estimate so as to cancel the power of R reveals

‖Φ
(q′)
1 φ2φ3‖Lp(Q) . M(Φ

(q′)
1 )

1
2M(φ2)

1
2M(φ3)

1
2 .

with p > p(3).

This is a toy model ; more work is needed in implementing the above
argument.
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Wave packet decomposition for φ1,

φ1 =
∑

T1∈T1

φ1,T1
.

For any q0 ∈ QC0
(Q) and T1 ∈ T1 we define

mq0,T1
:= ‖χ̃T1

φ2‖
2
L2(q0)

and
mT1

:=
∑

q0∈QC0
(Q)

mq0,T1
.

Based on this we define

Φ
(q0)
1 :=

∑

T1∈T1

mq0,T1

mT1

φ1,T1
.

It is obvious that :
φ1 =

∑

q0∈QC0
(Q)

Φ
(q0)
1

thus justifying (6).
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All that is left to prove is (8), which is equivalent to

∑

q∈Qj(Q):d(q,q0)&cR

‖Φ
(q0)
1 φ2φ3‖L1(q) .ǫ c

−C r−
n−2
2

+ǫΠ3
i=1M(φi ).

Suffices to prove

∑

q∈Qj (Q):d(q,q0)&cR

‖
∑

T1∩q 6=∅

mq0,T1

mT1

φ1,T1
φ2φ3‖L1(q)

The localized form of the trilinear estimate (5) gives

‖Φ
(q0)
1 φ2φ3‖L1(q) .ǫ r

− n+1
2

+ǫ
∑

T1

mq0,T1

mT1

‖φ1,T1
χ̃q‖L2‖φ2χ̃q‖L2‖φ3χ̃q‖L2 .
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Using the obvious inequality
mq0,T1
mT1

≤
m

1
2
q0,T1

m
1
2
T1

, we obtain :

∑

T1∩q 6=∅

mq0,T1

mT1

‖φ1,T1
χ̃q‖L2

.





∑

T1

‖φ1,T1
χ̃q‖

2
L2

mT1
χ̃T1

(xq , tq)





1
2




∑

T1

mq0,T χ̃T1
(xq, tq)





1
2

.

Next we claim the following estimate

∑

T1∈T1

mq0,T1
χ̃T1

(xq, tq) . ‖χ̃S(q)φ2‖
2
L2 .

Using the definition of mq0,T1
we identify the function

χ̃S(q) = (
∑

T1∈T1

χ̃(xq , tq)χ̃T1
)χq0

which makes the above hold true.
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Then we note that χ̃S(q) has the following decay property :

χ̃S(q)(x , t) .

(

1 +
d((x , t),S(q))

r

)−N

.

Here the surface S(q) is the translate by c(q) of the neighborhood of size
r of cone of normals at S1, CN 1 := {αN1(ζ), ζ ∈ S1, α ∈ R}.
It suffices to prove the following :

∑

q

‖χ̃S(q)φ2‖L2





∑

T1∩q 6=∅

‖φ1,T1
χ̃q‖

2
L2

mT1
χ̃T1

(xq , tq)





1
2

‖φ2χ̃q‖L2‖φ3χ̃q‖L2

.r
3
2Π3

i=1M(φi ).

This can be broken down into the following two claims :
∑

q

‖φ2χ̃S(q)‖
2
L2‖φ3χ̃q‖

2
L2 . r2M(φ2)M(φ3) (9)

and
∑

q





∑

T1∩q 6=∅

‖φ1,T1
χ̃q‖

2
L2

mT1
χ̃T1

(xq , tq)



 ‖φ2χ̃q‖
2
L2 . rM(φ1). (10)
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Proof of (10) : By rearranging the sum, it suffices to show

∑

T1

∑

q∩T1 6=∅

‖φ1,T1
χ̃q‖

2
L2
‖φ2χ̃q‖

2
L2

mT1
χ̃T1

(xq , tq)
. rM(φ1).

The inner sum is estimated as follows :

∑

q∩T1 6=∅

‖φ2χ̃q‖
2
L2

mT1
χ̃T1

(xq , tq)
.

‖φ2χ̃T1
‖2
L2

mT1

. 1,

and the outer one is estimated by

∑

T1

sup
q

‖φ1,T1
χ̃q‖

2
L2 . r

∑

T1

M(φ1,T1
) . rM(φ1),

which is obvious given the size of q in the x1-direction is ≈ r and the mass
of φ1,T1

is constant across slices in space with x1 = constant.
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We continue with the proof of (9). Using the fast decay of χ̃S(q) away
from S(q) and of χ̃q away from q, it suffices to show that

∑

q

‖χS(q)φ2‖
2
L2‖χqφ3‖

2
L2 . r2M(φ2)M(φ3), (11)

where by χA is the characteristic function of the set A.
We define the following relation : q′ ∼ q if q′ ∩ S(q) 6= ∅ and note that
this is equivalent to saying that there is a tube T1 ∈ T1 intersecting both q
and q′ and that d(q, q′) & cR . We start from the obvious inequality

‖χS(q)φ2‖
2
L2 .

∑

q′∼q

‖χq′φ2‖
2
L2

which implies
∑

q

‖χS(q)φ2‖
2
L2‖χqφ3‖

2
L2 .

∑

q

∑

q′∼q

‖χq′φ2‖
2
L2‖χqφ3‖

2
L2

We are tacitly using again at this point the full dispersion property of the
set of normals N1 : the tubes T1 passing through q separate inside q0 ; in
the absence of this property, the above inequality would fail, as we would
encounter large number of tubes T1 ∈ T1 passing through both q and q′.
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We define the following relation : q′ ∼ q if q′ ∩ S(q) 6= ∅ and note that
this is equivalent to saying that there is a tube T1 ∈ T1 intersecting both q
and q′ and that d(q, q′) & cR . We start from the obvious inequality

‖χS(q)φ2‖
2
L2 .

∑

q′∼q

‖χq′φ2‖
2
L2

which implies
∑

q

‖χS(q)φ2‖
2
L2‖χqφ3‖

2
L2 .

∑

q

∑

q′∼q

‖χq′φ2‖
2
L2‖χqφ3‖

2
L2

We are tacitly using again at this point the full dispersion property of the
set of normals N1 : the tubes T1 passing through q separate inside q0 ; in
the absence of this property, the above inequality would fail, as we would
encounter large number of tubes T1 ∈ T1 passing through both q and q′.
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Next we bring the wave packet decomposition for φ2 and φ3. This reduces
(11) to the following

∑

q

∑

q′∼q





∑

T2∩q′ 6=∅

M(φT2
)









∑

T3∩q 6=∅

M(φT3
)



 . M(φ2)M(φ3). (12)

The key point in justifying (12) is that, as we vary (q, q′) with q′ ∼ q, the
number of occurrences of a pair of tubes (T2,T3) on the left hand-side is
bounded by a universal constant. Indeed, if that is the case we bound the
left hand side by

.
∑

T2∈T2

∑

T3∈T3

M(φT2
)M(φT3

) . M(φ2)M(φ3).

We finish the argument by establishing an upper bound on the number of
occurrences of a pair of tubes (T2,T3) on the left-hand side of (12).
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Assume that a pair (T2,T3) shows up multiple times. That means that
there are (q, q′), (q̃, q̃′) such that q ∼ q′, q̃ ∼ q̃′ and
q′ ∩ T2 6= ∅, q̃′ ∩ T2 6= ∅, q ∩ T3 6= ∅, q̃ ∩ T3 6= ∅. We tolerate repeated
occurrences coming from the setup d(q, q̃) . r and d(q′, q̃′) . r , which
are bounded by a universal constant, but rule out all the others.
Consider the case d(q, q̃), d(q′, q̃′) ≫ r . This implies the following :
c(q)− c(q̃) = α3N3 + O(r) for some N3 = N3(ζ3), ζ3 ∈ S3, |α3| ≫ r ,
c(q′)− c(q̃′) = α2N2 + O(r) for some N2 = N2(ζ2), ζ2 ∈ S2, |α2| ≫ r ,
c(q)− c(q′) = α1N1 + O(r), c(q̃)− c(q̃′) = α̃1Ñ1 + O(r),N1, Ñ1 ∈ CN
|α1|, |α̃1| ≫ r .
Since c(q)− c(q′)− (c(q̃)− c(q̃′)) = c(q)− c(q̃)− (c(q′)− c(q̃′)), this
implies

α1N1 − α̃1Ñ1 = α3N3 − α2N2 + O(r)

Since α1N1 − α̃1Ñ1 ∈ dspanN1, the geometric Lemma 3 gives

|α1N1 − α̃1Ñ1 − α3N3 + α2N2| ≥ max(|α2|, |α3|) ≫ r

which is in contradiction with the previous statement.
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Challenges in the case k ≥ 4.

The last bit of the argument cannot rely anymore on l2/L2 techniques.
Instead a true multilinear estimate needs to come into play. This makes
the geometry of the problem far more complicated.

We made use of the triangle inequality at multiple levels, and we could do
that since the key inequality is an L1 improved estimate. If k ≥ 4 the key

inequality requires an interpolation with an L
2

k−1 improved estimate and
2

k−1 < 1. This creates real difficulties in running parts of the argument.
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