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Bilinear Extension Estimates
For f ∈ L2(Rn) let

eit|∇|f(x) =

∫
Rn

f̂(ξ)eit|ξ|eix·ξdξ.

Note that eit|∇| is a homogeneous (or free) solution to the wave equation and is
(essentially) the extension operator for the cone {τ = |ξ|}.

Bilinear Extension

Suppose supp f̂ , supp ĝ ⊂ {|ξ| ≈ 1}. For which p do we have∥∥eit|∇|feit|∇|g∥∥
Lp

t,x(R1+n)
. ‖f‖L2(Rn)‖g‖L2(Rn)?

Timothy Candy – Bilinear Restriction Estimates and Applications 2 / 24



Universität Bielefeld

Bilinear Extension
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t,x(R1+n)
. ‖f‖L2(Rn)‖g‖L2(Rn)?

• Immediate observation:

f̂ , ĝ have compact support =⇒ eit|∇|feit|∇|g has compact Fourier support

hence by Bernstein’s inequality followed by Holder∥∥eit|∇|feit|∇|g∥∥
L∞t,x
.
∥∥eit|∇|feit|∇|g∥∥

L∞t L1
x
. ‖f‖L2‖g‖L2

and thus the case p =∞ is always true.
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Suppose supp f̂ , supp ĝ ⊂ {|ξ| ≈ 1}. For which p do we have∥∥eit|∇|feit|∇|g∥∥
Lp

t,x(R1+n)
. ‖f‖L2(Rn)‖g‖L2(Rn)?

• Immediate observation:
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Bilinear Extension Estimates
Can do better by exploiting the curvature of the cone. More precisely, the
Strichartz estimate

‖eit|∇|f‖
L

2 n+1
n−1

t,x (Rn+1)
. ‖f‖L2

x

implies that, after an application of Holder,∥∥eit|∇|feit|∇|g∥∥
L

n+1
n−1
t,x

. ‖eit|∇|f‖
L

2 n+1
n−1

t,x

‖eit|∇|g‖
L

2 n+1
n−1

t,x

. ‖f‖L2
x
‖g‖L2

x
.

Hence

curvature =⇒ bilinear extension estimate for
n+ 1

n− 1
6 p 6∞.

In general range is sharp (just take f = g and use fact that linear Strichartz is
sharp).
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Bilinear Extension Estimates
Alternative approach is to exploit transversality. For example, we have

Theorem

Assume that supp f̂ ⊂ {|ξ − e1| � 1}, supp ĝ ⊂ {|ξ + e1| � 1}. Then∥∥eit|∇|feit|∇|g∥∥
L2

t,x
. ‖f‖L2

x
‖g‖L2

x

• Proof follows by a change of variables together with Plancheral and
Cauchy-Schwartz.

• Version is true for general phases eitΦ1(∇)f , eitΦ2(∇)g under the
transversality assumption

|∇Φ1(ξ)−∇Φ2(η)| & 1

for ξ ∈ supp f̂ , η ∈ supp ĝ.
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Timothy Candy – Bilinear Restriction Estimates and Applications 5 / 24



Universität Bielefeld

Bilinear Extension Estimates

∥∥eit|∇|feit|∇|g∥∥
Lp

t,x(R1+n)
. ‖f‖L2(Rn)‖g‖L2(Rn).

To summarise

curvature =⇒ n+ 1

n− 1
6 p 6∞

transversality =⇒ 2 6 p 6∞

• The region n+1
n−1 6 p 6∞ only requires curvature, and is a linear estimate.

• The fully transverse case p = 2 is a bilinear estimate, and does not need
any curvature. In particular is true for hyperplanes (i.e. solns to transport
equation).

• Can improve range of p by exploiting both Transversality and Curvature.
First progress below p = 2 due to Bourgain ’91.

• Conjecture of Klainerman-Machedon: Under suitable transversality and
curvature assumptions, the bilinear extension estimate holds for p > n+3

n+1 .
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Bilinear Extension Estimates

Theorem (Wolff ’01)
Let n+3

n+1 < p 6∞ and assume

supp f̂ ⊂ {|ξ − e1| � 1}, supp ĝ ⊂ {|ξ + e1| � 1}.

Then ∥∥eit|∇|feit|∇|g∥∥
Lp

t,x(R1+n)
. ‖f‖L2(Rn)‖g‖L2(Rn).

• The endpoint p = n+3
n+1 is also known and is due to Tao ’01.

• Although the above was stated for the cone, it is also true for general
surfaces under appropriate Curvature and Transversality assumptions. A
precise statement will be given later.
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Applications

• Linear Restriction.
Bilinear extension estimates originally devised to improve the range of linear
restriction estimates (i.e. Bourgain, Tao-Vargas-Vega).

• Improved Strichartz Estimates.
For instance we have the following estimate due to J. Ramos ’12

‖eit|∇|f‖
L

2 n+1
n−1

t,x

. ‖f‖
Ḃ

1
2
2,q

with q = 2n+1
n−1 (q = 2 corresponds to standard Strichartz bound). Stronger

versions of this estimate (also due to J. Ramos’12) play a key role in the
profile decomposition for the linear wave equation.
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Applications

• Null Form Estimates.
The bilinear restriction estimate can be used as a building block to prove
estimates without any assumptions on the Fourier Transform of f and g.

For instance, for waves u = eit|∇|f , v = eit|∇|g we have

‖∂tu∂tv −∇u · ∇v‖Lq
t,x
. ‖f‖Ḣs‖g‖Ḣs

for q > n+3
n+1 and s = n+2

2 −
n+1
q (see Lee-Vargas ’08).

The null form Q0(u, v) = ∂tu∂v −∇u · ∇v is a substitute for the lack of
transversality, in particular, this estimate fails for a general bilinear form like
|∇u · ∇v|.
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for q > n+3
n+1 and s = n+2

2 −
n+1
q (see Lee-Vargas ’08).

The null form Q0(u, v) = ∂tu∂v −∇u · ∇v is a substitute for the lack of
transversality, in particular, this estimate fails for a general bilinear form like
|∇u · ∇v|.

Timothy Candy – Bilinear Restriction Estimates and Applications 9 / 24



Universität Bielefeld

Applications

• Null Form Estimates.
The bilinear restriction estimate can be used as a building block to prove
estimates without any assumptions on the Fourier Transform of f and g.

For instance, for waves u = eit|∇|f , v = eit|∇|g we have

‖∂tu∂tv −∇u · ∇v‖Lq
t,x
. ‖f‖Ḣs‖g‖Ḣs
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Applications: Nonlinear Dispersive PDE

• In applications to nonlinear dispersive PDE, it is useful to have a slightly
stronger version of the bilinear restriction estimate.

• Let
I = {(−∞, t1), [t1, t2), ..., [tN ,∞)}

and
J = {(−∞, s1), [s1, s2), ..., [sM ,∞)}

be (finite) partitions of R.
• Given families (fI)I∈I and (gJ)J∈J , we want

∥∥∥(∑
I∈I

1I(t)e
it|∇|fI

)(∑
J

1J(t)eit|∇|gJ

)∥∥∥
Lp

t,x

.
(∑

I

‖fI‖2L2
x

) 1
2
(∑

J

‖gJ‖2L2
x

) 1
2

• Implied constant independent of I, J , (so the number of intervals plays no
role) and the families (fI)I∈I , (gJ)J∈J .

Timothy Candy – Bilinear Restriction Estimates and Applications 10 / 24



Universität Bielefeld

Applications: Nonlinear Dispersive PDE

• In applications to nonlinear dispersive PDE, it is useful to have a slightly
stronger version of the bilinear restriction estimate.

• Let
I = {(−∞, t1), [t1, t2), ..., [tN ,∞)}

and
J = {(−∞, s1), [s1, s2), ..., [sM ,∞)}

be (finite) partitions of R.
• Given families (fI)I∈I and (gJ)J∈J , we want

∥∥∥(∑
I∈I

1I(t)e
it|∇|fI

)(∑
J

1J(t)eit|∇|gJ

)∥∥∥
Lp

t,x

.
(∑

I

‖fI‖2L2
x

) 1
2
(∑

J

‖gJ‖2L2
x

) 1
2

• Implied constant independent of I, J , (so the number of intervals plays no
role) and the families (fI)I∈I , (gJ)J∈J .

Timothy Candy – Bilinear Restriction Estimates and Applications 10 / 24



Universität Bielefeld

Applications: Nonlinear Dispersive PDE

• In applications to nonlinear dispersive PDE, it is useful to have a slightly
stronger version of the bilinear restriction estimate.

• Let
I = {(−∞, t1), [t1, t2), ..., [tN ,∞)}

and
J = {(−∞, s1), [s1, s2), ..., [sM ,∞)}

be (finite) partitions of R.
• Given families (fI)I∈I and (gJ)J∈J , we want

∥∥∥(∑
I∈I

1I(t)e
it|∇|fI

)(∑
J

1J(t)eit|∇|gJ

)∥∥∥
Lp

t,x

.
(∑

I

‖fI‖2L2
x

) 1
2
(∑

J

‖gJ‖2L2
x

) 1
2

• Implied constant independent of I, J , (so the number of intervals plays no
role) and the families (fI)I∈I , (gJ)J∈J .

Timothy Candy – Bilinear Restriction Estimates and Applications 10 / 24



Universität Bielefeld

Applications: Nonlinear Dispersive PDE

• In applications to nonlinear dispersive PDE, it is useful to have a slightly
stronger version of the bilinear restriction estimate.

• Let
I = {(−∞, t1), [t1, t2), ..., [tN ,∞)}

and
J = {(−∞, s1), [s1, s2), ..., [sM ,∞)}

be (finite) partitions of R.
• Given families (fI)I∈I and (gJ)J∈J , we want

∥∥∥(∑
I∈I

1I(t)e
it|∇|fI

)(∑
J

1J(t)eit|∇|gJ

)∥∥∥
Lp

t,x

.
(∑

I

‖fI‖2L2
x

) 1
2
(∑

J

‖gJ‖2L2
x

) 1
2

• Implied constant independent of I, J , (so the number of intervals plays no
role) and the families (fI)I∈I , (gJ)J∈J .

Timothy Candy – Bilinear Restriction Estimates and Applications 10 / 24



Universität Bielefeld

Applications: Nonlinear Dispersive PDE

• In applications to nonlinear dispersive PDE, it is useful to have a slightly
stronger version of the bilinear restriction estimate.

• Let
I = {(−∞, t1), [t1, t2), ..., [tN ,∞)}

and
J = {(−∞, s1), [s1, s2), ..., [sM ,∞)}

be (finite) partitions of R.
• Given families (fI)I∈I and (gJ)J∈J , we want

∥∥∥(∑
I∈I

1I(t)e
it|∇|fI

)(∑
J

1J(t)eit|∇|gJ

)∥∥∥
Lp

t,x

.
(∑

I

‖fI‖2L2
x

) 1
2
(∑

J

‖gJ‖2L2
x

) 1
2

• Implied constant independent of I, J , (so the number of intervals plays no
role) and the families (fI)I∈I , (gJ)J∈J .

Timothy Candy – Bilinear Restriction Estimates and Applications 10 / 24



Universität Bielefeld

Observations

∥∥∥(∑
I∈I

1I(t)e
it|∇|fI

)(∑
J

1J(t)eit|∇|gJ

)∥∥∥
Lp

t,x

.
(∑

I

‖fI‖2L2
x

) 1
2
(∑

J

‖gJ‖2L2
x

) 1
2

• The function u =
∑
I 1I(t)e

it|∇|fI is known as a (rescaled U2) atom, or
alternatively as an `2 family of free solutions. Thus we are asking:

Does bilinear restriction estimates hold for `2 families?

• Bilinear restriction for `2 families =⇒ bilinear restriction for homogeneous
solutions
(just take I = {R}, J = {R} to be the trivial partitions).
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Observations
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1I(t)e

it|∇|fI
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J∈J

1J(t)eit|∇|gJ

)∥∥∥
Lp

t,x

=
(∑
I,J

∥∥eit|∇|fIeit|∇|gJ‖pLp
t,x(I∩J×Rn)
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p
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(∑
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‖fI‖pL2
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) 1
p
( ∑
J∈J
‖gJ‖pL2
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) 1
p

• In the interesting region p < 2, this is weaker than the estimate we want,
since `p ⊂ `2!
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Bilinear Restriction for `2 families

Theorem (C.-Herr’16, wave version)

Let p > n+3
n+1 . Let u =

∑
I 1I(t)e

it|∇|fI , v =
∑
J 1J(t)eit|∇|gJ be `2 families

with
supp û ⊂ {|ξ − e1| � 1}, supp v̂ ⊂ {|ξ + e1| � 1}.

Then

‖uv‖Lp .
(∑

I

‖fI‖2L2
x

) 1
2
(∑

J

‖gJ‖2L2
x

) 1
2

• For n = 2 the range p > 13
7 was obtained in Sterbenz-Tataru’10 via the

homogeneous estimate and an interpolation argument.

• proof follows argument of Tao’01, Lee-Vargas’10 (does not follow from
homogeneous case).
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General Version: Assumptions

We assume we have phases Φj : Λj → R satisfying, for some constants C1, C2,
C3, N

1 (Transversality) For all ξ ∈ Λ1, η ∈ Λ2 we have

|∇Φ1(ξ)−∇Φ2(η)| > C1.

2 (Curvature) Let Σj(a, h) = {ξ ∈ Λj ∩ (Λk + h)|Φj(ξ) = Φk(ξ − h) + a}.
Then for all (a, h) ∈ R1+n, ξ, ξ′ ∈ Σj(a, h), and η ∈ Λk we have

|(∇Φj(ξ)−∇Φj(ξ
′)) ∧ (∇Φj(ξ)−∇Φk(η))| > C2|ξ − ξ′|.

3 (Regularity) Φj ∈ CN (Λj) and

sup
|κ|6N

‖∂κΦj‖L∞(Λj) 6 C3.

• Conditions on phases are based on assumptions used in Lee-Vargas’10,
Bejenaru’16.
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General Version

Theorem (C.-Herr’16)
Let p > n+3

n+1 . Assume that the phases Φ1 and Φ2 satisfy the transversality,
curvature, and regularity assumptions.
Let u =

∑
I 1I(t)e

itΦ1(∇)fI , v =
∑
J 1J(t)eitΦ2(∇)gJ be `2 families with

supp û ⊂ Λ1, supp v̂ ⊂ Λ2.

Then

‖uv‖Lp .
(∑

I

‖fI‖2L2
x

) 1
2
(∑

J

‖gJ‖2L2
x

) 1
2

• The implied constant depends on the constants C1, C2, C3, N but is
otherwise independent of the phases Φ1 and Φ2.

• Case of homogeneous solutions: Lee-Vargas’10, Bejenaru’16.
• Φj = (m2

j + |ξ|2)
1
2 and Λ1 = {|ξ − e1| � 1}, Λ2 = {|ξ + e1| � 1} satisfies

conditions with constant independent of the masses m1, m2.
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supp û ⊂ Λ1, supp v̂ ⊂ Λ2.

Then

‖uv‖Lp .
(∑

I

‖fI‖2L2
x

) 1
2
(∑

J

‖gJ‖2L2
x

) 1
2

• The implied constant depends on the constants C1, C2, C3, N but is
otherwise independent of the phases Φ1 and Φ2.

• Case of homogeneous solutions: Lee-Vargas’10, Bejenaru’16.
• Φj = (m2

j + |ξ|2)
1
2 and Λ1 = {|ξ − e1| � 1}, Λ2 = {|ξ + e1| � 1} satisfies

conditions with constant independent of the masses m1, m2.

Timothy Candy – Bilinear Restriction Estimates and Applications 15 / 24



Universität Bielefeld

General Version

Theorem (C.-Herr’16)
Let p > n+3

n+1 . Assume that the phases Φ1 and Φ2 satisfy the transversality,
curvature, and regularity assumptions.
Let u =

∑
I 1I(t)e

itΦ1(∇)fI , v =
∑
J 1J(t)eitΦ2(∇)gJ be `2 families with
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Transference Principle

Motivation for why we need to consider `2 families rather than just free solutions,
comes from the transference principle.

• Existence for dispersive PDE requires careful choice of Banach space
X ⊂ C(I,Hs). Should think of X as containing pertubations of free
solutions (say for the wave equation eit|∇|f ).

• Need to prove estimates for functions in X . For instance, may want to prove

‖uv‖Lp
t,x
. ‖u‖X‖v‖X .
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Transference Principle

Motivation for why we need to consider `2 families rather than just free solutions,
comes from the transference principle.

• The Transference Principle states that it is enough to prove estimates for
homogeneous solutions. Thus

‖eit|∇|feit|∇|g‖Lp
t,x
. ‖f‖L2

x
‖g‖L2

x

=⇒ ‖uv‖Lp
t,x
. ‖u‖X‖v‖X

• Typical example is X = Xs,b, point is that can write elements of Xs,b as
averages of free solutions, namely,

u(t, x) =

∫
R
eitτeit|∇|fτdτ

with
∫
R ‖fτ‖L2dτ . ‖u‖X0,b .
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Weak Transference Principle

Important endpoint spaces do not satisfy transference principle. Instead we only
have a weaker variant.

• X satisfies the weak transference principle if∥∥∥(∑
I∈I

1I(t)e
it|∇|fI

)(∑
J

1J(t)eit|∇|gJ

)∥∥∥
Lp

t,x

.
(∑

I

‖fI‖2L2
x

) 1
2
(∑

J

‖gJ‖2L2
x

) 1
2

implies that
‖uv‖Lp

t,x
. ‖u‖X‖v‖X .

• Typical examples of function spaces satisfying weak transference but not
transference include U2, V 2, and null frame type spaces.

• Main result can then be restated as:

If X satisfies weak transference =⇒ Bilinear restriction estimates hold in X
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Applications to DKG system

Dirac-Klein-Gordon system for a spinor ψ : R1+3 → C4 coupled with a scalar
field φ : R1+3 → R is given by

−iγµ∂µψ +Mψ = φψ

�φ+m2φ = ψψ

}
(DKG)

• We use summation convention, ψ = ψ†γ0, ψ† is conjugate transpose,
� = ∂2 −∆ is the wave operator, and M,m > 0.

• Classical model in relativistic quantum mechanics
• The Dirac matrices γµ ∈ C4×4 are given by

γ0 =

(
I 0
0 −I

)
, γj =

(
0 σj

−σj 0

)
with the Pauli matrices σj given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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Scattering and GWP for DKG

We consider the Cauchy problem for (DKG) with data

ψ(0) = ψ0 : R3 → C4,
(
φ(0), ∂tφ(0)

)
= (φ0, φ1) : R3 → R× R.

Let 〈Σ〉σ denote σ spherical derivatives (Σji = xj∂i − xj∂j).

Theorem (C.-Herr’16)
Suppose that 2M > m > 0 and σ > 0 or m > 2M > 0 and σ > 7

30 . There
exists δ > 0 such that if

‖〈Σ〉σψ0‖L2
x

+ ‖〈Σ〉σ(φ0, φ1)‖
H

1
2×H−

1
2
6 δ

then Cauchy problem is globally well-posed, and moreover the solution scatters
to free solutions as t→ ±∞.

• Result is sharp up to spherical derivatives (i.e. optimal result would be
σ = 0).

• First GWP and scattering result in the resonant case m > 2M .
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Previous Results

• Special global solutions Chadam-Glassey’74 (examples of large data global
solutions).

• Local subcritical results D’Ancona-Foschi-Selberg’07

• GWP and scattering in nonresonant case 2M > m: subcritical
Bejenaru-Herr ’14, endpoint Besov case with angular regularity Wang’15

• In the case n = 1 related results can be found in Machihara’07,
Machihara-Nakanishi-Tsugawa’10, C.’13...
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Sketch of Proof

• Diagonlisation of Dirac operator: ψ = ψ+ + ψ− where

Π± =
1

2

(
I +

1

〈ξ〉M
(
ξjγ

0γj +Mγ0
))
, ψ± = Π±(∇)ψ.

(and 〈ξ〉M = (M2 + |ξ|2)
1
2 ) DKG system then equivalent to

(−i∂t ± 〈∇〉M )ψ± = Π±(∇)
(
<(φ+)γ0ψ

)
(−∂t ± 〈∇〉m)φ+ = 〈∇〉−1

m (ψψ)

• Duhamel Formula, duality: problem reduces to proving estimates for∫
R1+3

φ+ψ
(1)
± ψ

(2)
± dtdx

key role play by the resonance function

rm,M = |〈ξ − η〉m ∓1 〈ξ〉M ±2 〈η〉M |

(measures how far φ, ψ(1) and ψ(2) are from free solutions).
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Sketch of Proof

• If 2M > m then get lower bound on rm,M =⇒ problem nonresonant.

• If 2M < m then no lower bound and no null structure =⇒ seems to cause
difficulties in closing argument

• But in resonant case, have transversality when rm,M = 0!!! Thus can apply
bilinear restriction estimate + spherical Strichartz =⇒ gives result.
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Summary

• Obtain (sharp) bilinear restriction estimates for families of `2 solutions∥∥∥(∑
I∈I

1I(t)e
it|∇|fI

)(∑
J

1J(t)eit|∇|gJ

)∥∥∥
Lp

t,x

.
(∑

I

‖fI‖2L2
x

) 1
2
(∑

J

‖gJ‖2L2
x

) 1
2

.

• Would be of interest to extend more estimates in Harmonic analysis from
free solutions to `2 families!

• Bilinear restriction estimates needed to control resonant interaction in DKG
system.

Thank you for listening!!
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