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Given a function f 2 Lp(Rd), does it make sense to restrict its Fourier
Transform to a hypersurface?
Well, where does the Fourier Transform of a function in Lp(Rd) live?

kbf k
L

p

0 (Rd )  kf k
L

p(Rd ) for 1  p  2.

J. Ramos Maravall (ICMAT) 28th November 2016 2 / 38



Given a function f 2 Lp(Rd), does it make sense to restrict its Fourier
Transform to a hypersurface?
Well, where does the Fourier Transform of a function in Lp(Rd) live?

kbf k
L

p

0 (Rd )  kf k
L

p(Rd ) for 1  p  2.

J. Ramos Maravall (ICMAT) 28th November 2016 2 / 38



Therefore, the Fourier Transform of a function in Lp with 1  p  2
lives in Lp

0 . The Lp spaces are defined modulo zero measure sets.

But bf may live in a subset of Lp0 sufficiently good so that the
restriction makes sense.
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We have, for example:

Theorem (Riemann–Lebesgue)

Let f 2 L1(Rd), then bf lives on the space of continuous functions that
tend to zero at infinity.

The continuity ensures that the restriction makes sense and we have for a
zero measure set S ,

kbf k
L

1(S)  kf k
L

1(Rd ).
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On the other hand, given g 2 L2(Rd), there exists f 2 L2(Rd) such
that bf = g . Indeed, the Fourier transform is a bijection from L2(Rd)
to L2(Rd). The restriction can not make sense for functions in L2(Rd).

What is going on for the cases f 2 Lp(Rd) with 1 < p < 2? Well, we
can not expect continuity as in the case of L1(Rd) and the restriction
to an arbitrary zero measure set may not make sense.

J. Ramos Maravall (ICMAT) 28th November 2016 5 / 38



On the other hand, given g 2 L2(Rd), there exists f 2 L2(Rd) such
that bf = g . Indeed, the Fourier transform is a bijection from L2(Rd)
to L2(Rd). The restriction can not make sense for functions in L2(Rd).

What is going on for the cases f 2 Lp(Rd) with 1 < p < 2? Well, we
can not expect continuity as in the case of L1(Rd) and the restriction
to an arbitrary zero measure set may not make sense.

J. Ramos Maravall (ICMAT) 28th November 2016 5 / 38



If we require some curvature to surface, things change.

Conjecture

Let S = Sd�1, if 1  p, q  1 then

kbf k
L

q(S)  Ckf k
L

p(Rd )

for every function and constant C independent of f , if and only if

p <
2d

d + 1
and p0 � d + 1

d � 1
q.

More generally, for every compact surface with boundary, with
non-vanishing gaussian curvature, it is conjectured the same necessary and
sufficient conditions.

The Conjecture for dimension d = 2 was proven by Fefferman and
Zygmund in the seventies.

It is open for dimension d � 3. Nevertheless, a lot of partial results have
been achieved.
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The boundedness of

T : Lp(Rd) �! Lq(S)

f 7! bf |
S

is equivalent to the boundedness of the adjoint

T ⇤ : Lq
0
(S) �! Lp

0
(Rd)

g 7! dgd�

To see that the adjoint is that one, we just use Parseval:

hTf , gi =
ˆ
S

bf (⇠)g(⇠)d�(⇠) =
ˆ
Rd

f (x)

ˆ
S

e2⇡ix⇠g(⇠)d�(⇠)dx = hf ,T ⇤gi.

Therefore our problem is equivalent to study

kdgd�k
L

p

0 (Rd )  Ckgk
L

q

0 (S).
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I will focus on the following tools in the restriction theory:

i) Induction on scales
Enlarge the scale for which an estimate is valid.

ii) L4 Orthorgonality
Under assumption on S1, S2

k
⇣X

n

\f1�⌧
n

d�
⌘⇣X

n

0

\f2�⌧
n

0d�
⌘
k2
L

2(B
R

) ⇠
X

n

X

n

0

k \f1�⌧
n

d� \f2�⌧
n

0d�k2
L

2(B
R

)

iii) Transversality
Under assumption on S

n

k
Y

n=1

df
n

d�k
L

p

0 (B
R

) .
Y

n=1

kf
n

k
L

2

Our result, as we will see, links the three tools.
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Why is the case of dimension d = 2 easy ?
i) The sum function of (a quarter of) S1,

f : S1 ⇥ S1 �! R2

(a, b) 7! a+ b

is injective.
It implies good orthogonality
ii) Transversality
If S1 and S2 are ✓-arcs whose separation is comparable to ✓, then

k
2Y

n=1

df
n

d�k
L

2

. ✓�
1

2

2Y

n=1

kf
n

k
L

2

In this case, as
p =

4
3

! p0 = 4 = 2 ⇥ 2

we can use easily transversality and orthogonality.
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In dimension d = 3 the objective is to push up p as close as possible to 3
2 .

p < 4
3 = 1.33... Tomas 1975 Measure decay

p = 4
3 = 1.33... Stein–Sjolin 1975 Mesaure decay

p = 58
43 = 1.3488... Bourgain 1991 Kakeya

p = 42
31 = 1.3548... Wolff 1995 Kakeya

p = 34
25 = 1.36 Tao–Vargas–Vega 1998 Bilinear

p = 26
19 = 1.3684... Tao–Vargas 2000 Bilinear

p = 10
7 = 1.42857... Tao 2003 Sharp bilinear

p = 33
23 = 1.43478... Bourgain–Guth 2011 Multilinear+Kakeya

p = 325
225 = 1.444... Guth 2014 Polynomial partition
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Case q = 2. The relevant for dispersive equations.
The proof relies basically in the following measure asymptotic behaviour

Proposition

If d� is the surface measure of the sphere, then

cd�(x) = C
e2⇡i |x |

|x |(d�1)/2 + C
e�2⇡i |x |

|x |(d�1)/2 + O(|x |�d/2) when |x | ! 1.
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Conjecture (Kakeya Conjecture)

Let p = d

d�1 , and let {T
w

i

}
w

i

be any collection of R ⇥ R
1

2 ⇥ · · ·⇥ R
1

2

tubes, whose orientations w are R� 1

2 separated . Then,

k
NX

i=1

�
T

w

i

k
L

p(Rd )  C
d

R✏(NR
d+1

2 )
1

p for every ✏ > 0.

That is, the tubes behave as disjoint (up to an epsilon). The conjecture
remains open in dimensions d � 3. The case d = 2 was proven by Córdoba.
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In higher dimensions there have been some partial results.
We have the trivial bounds

k
NX

i=w

�
T

w

k
L

1(Rd )  C
d

N.

If we interpolate it with the conjecture, we get

k
NX

i=w

�
T

w

k
L

p(Rd )  C
d

R✏(NR
d+1

2 )
1

pN
1� d

p(d�1)

for p � d

d�1 .
In dimension d = 3, the best result asserts

k
NX

i=w

�
T

w

k
L

5

3 (Rd )
 C

d

R✏(NR2)
3

5N
1

10

and is due to Wolff.
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Let f
w

be the characteristic function of a cap in Sd�1 with radio equals to
1

100
p
R

and centered at w 2 Sd�1. The Fourier Transform is

[f
w

d�(x) =

ˆ
|w�✓| 1

100

p
R

e2⇡ix ·✓d✓.

Observe that the cap is contained in a disc of dimensions
1/R ⇥ 1/

p
R ⇥ · · ·⇥ 1/

p
R . Let T

w

be the tube

T
w

:=

(
x 2 Rd : |x · w |  R

100
, |x � w(x · w)| 

p
R

100

)
.

If x 2 T
w

and ✓,w 2 Sd�1 obey |w � ✓|  1p
R

, then |x · (w � ✓)|  1
100 .

Hence, for x 2 T
w

,

|[f
w

d�(x)| = |
ˆ
|w�✓| 1p

R

e2⇡ix✓d✓| = |
ˆ
|w�✓| 1p

R

e2⇡ix(✓�w)d✓|

⇠ |
ˆ
|w�✓| 1p

R

d✓| ⇠ R�(d�1)/2.
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Informally, in general we have

dfd� =
X

j ,m

c
j ,m�j ,m

where the coefficients obey k{c
j ,m}j ,mk`2  kf k

L

2

, the functions �
j ,m are

adapted to a tube in the direction w
j

and position a
m

and Fourier
supported in the cap centered at w

j

.
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p < 4
3 = 1.33... Tomas 1975 Measure decay
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Asuming that |a
m

� a
m

0 | ⇠ 1, it is an estimate of the form

k \f �
B 1

100
(a

m

)d� \f �
B 1

100
(a

m

0 )d�kLq(Rd+1) . kf �
B 1

100
(a

m

)k
L

p(Rd )kf �B 1
100

(a
m

0 )kLp(Rd ).

Of course, by Cauchy–Schwarz, a linear estimate

k \f �
B 1

100
(a

m

)d�k
L

2q(Rd+1) . kf �
B 1

100
(a

m

)k
L

p(Rd ).

implies the bilinear one.

Tao–Vargas–Vega proved that the bilinear estimate also implies the linear one.
The key of the proof is the Whitney decomposition, which is very useful when
restriction estimates depends only on the distance.

The point of the bilinear estimates is that the distance gives some help in order to
prove restriction estimates. Tubes pointing out in separated directions.
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Why are multilinear estimates interesting?
Let, for example in Rd when S

i

is the hyperplane with normal vector e
i

passing through the origin for i = 1, · · · , d . We have then

d
f

1

d�(x) =

ˆ
e

2⇡i

P
j>1 ⇠

j

·x
j

f

i

(⇠
2

, · · · , ⇠
d

)d⇠ = b
f

1

(x
2

, · · · , x
d

),

· · ·

d
f

i

d�(x) =

ˆ
e

2⇡i

P
j 6=i

⇠
j

·x
j

f

i

(⇠
1

, · · · , ⇠
i�1

, ⇠
i+1

, · · · , ⇠
d

)d⇠ = b
f

i

(x
1

, · · · , x
i�1

, x
i+1

, · · · , x
d

),

· · ·

d
f

d

d�(x) =

ˆ
e

2⇡i

P
j<d

⇠
j

·x
j

f

i

(⇠
1

, · · · , ⇠
d�1

)d⇠ = b
f

D

(x
1

, · · · , x
d�1

).

We have clearly that kdf
i

d�k
L

q = 1 for every q < 1 and 1  i  d .
However we have

k
dY

i=1

df
i

d�k
2

d�1

 C
dY

i=1

kf
i

k
L

2(S).
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Let’s see it, for the sake of simplicity, in the case of dimension d = 3

kbf
1

b
f

2

b
f

3

k
L

1 =

ˆ ˆ ˆ
| df

1

d�(x) df
2

d�(x) df
3

d�(x)|dx
1

dx

2

dx

3

=

ˆ ˆ ˆ
|bf

1

(x
2

, x
3

)bf
2

(x
1

, x
2

)bf
3

(x
1

, x
2

)|dx
1

dx

2

dx

3

=

ˆ ˆ
|bf

1

(x
2

, x
3

)|
ˆ

|bf
2

(x
1

, x
2

)bf
3

(x
1

, x
2

)|dx
1

dx

2

dx

3


ˆ ˆ

|bf
1

(x
2

, x
3

)|(
ˆ

|bf
2

(x
1

, x
3

)|2dx
1

)
1
2 (

ˆ
|bf

3

(x
1

, x
2

)|2dx
1

)
1
2
dx

2

dx

3

=

ˆ
(

ˆ
|bf

2

(x
1

, x
3

)|2dx
1

)
1
2

ˆ
|bf

1

(x
2

, x
3

)|(
ˆ

|bf
3

(x
1

, x
2

)|2dx
1

)
1
2
dx

2

dx

3


ˆ
(

ˆ
|bf

2

(x
1

, x
3

)|2dx
1

)
1
2 (

ˆ
|bf

1

(x
2

, x
3

)|2dx
2

)
1
2 (

ˆ ˆ
|bf

3

(x
1

, x
2

)|2dx
1

dx

2

)
1
2
dx

3

= (

ˆ ˆ
|bf

3

(x
1

, x
2

)|2dx
1

dx

2

)
1
2

ˆ
(

ˆ
|bf

2

(x
1

, x
3

)|2dx
1

)
1
2 (

ˆ
|bf

1

(x
2

, x
3

)|2dx
2

)
1
2
dx

3

 (

ˆ ˆ
|bf

3

(x
1

, x
2

)|2dx
1

dx

2

)
1
2 (

ˆ ˆ
|bf

2

(x
1

, x
3

)|2dx
1

dx

3

)
1
2 (

ˆ
|bf

1

(x
2

, x
3

)|2dx
2

dx

3

)
1
2

= kbf
1

k
L

2(S1)kbf2kL2(S2)kbf3kL2(S3)

= kf
1

k
L

2(S1)kf2kL2(S2)kf3kL2(S3).
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Theorem (Bennett–Carbery–Tao)

(d=3, paraboloid case) Let S
n

= {(⇠, ⌧) : ⇠ 2 supp f
n

, |⇠|2 = ⌧}
(n = 1, 2, 3) satisfy

|n(⇠1) ^ n(⇠2) ^ n(⇠3)| ⇠ 1

for all choices ⇠
n

2 S
n

, where n(⇠
n

) is the normal vector to S
n

in ⇠
n

.
Then there exist constants C and  such that

k
3Y

n=1

df
n

d�k
L

1(B
R

)  C (log2 R)


3Y

n=1

kf
n

k
L

2

for all R > 0.

Their theorem applies to more general surfaces. The curvature does not
appear, just transversality.
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Roughly speaking the Bourgain-Guth argument to deduce linear estimates
from trilinear ones follows the following idea:
if

|n(⇠1) ^ n(⇠2) ^ n(⇠3)| ⇠ 1

is because S1, S2 and S3 live in a small neighborhood of the vertices of a
triangle with area 1.

If we are not in that case, S1, S2 and S3 are close to be aligned, and we
have, as in the case of two dimensions, good orthogonality properties.
Dichotomy between transversality and orthogonality.
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Theorem

Let S
n

= {(⇠, ⌧) : ⇠ 2 supp f
n

, |⇠|2 = ⌧} (n = 1, 2, 3) satisfy

|n(⇠1) ^ n(⇠2) ^ n(⇠3)| � ✓

for all choices ⇠
n

2 S
n

. Then there exist constants C and  such that

k
3Y

n=1

df
n

d�k
L

1(B
R

)  ✓�
1

2C (log2 R)


3Y

n=1

kf
n

k
L

2

for all R > 0.
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Refined orthogonality:
Consider the cases when S1, S2, S3 2 [0, 2]2 are
i)

d(S1, S2) ⇠ |S1| ⇠ |S2| ⇠ 2�j d(S3, S1) ⇠ 1 and \(S1, S2, S3) ⇠ 1

ii)

d(S1, S2) ⇠ d(S1, S3) ⇠ d(S2, S3) ⇠ 1 and S1, S2, S3 ⇢ strip of width 2�t

\(S1, S2, S3) ⇠ 2�t

J. Ramos Maravall (ICMAT) 28th November 2016 29 / 38



⌧ j
k

:= the square with length side 2�j whose left-down vertex is placed in
the point k . t j

w ,m:= the strip in the plane of width 2�j which passes
through m 2 [0, 2]2 and in the direction w .

Definition

Let S1, S2, S3 ⇢ S and the transversality condition holds. We write
(S1, S2, S3) ⇠ (r , j , t,w ,m, ✓) if we can find
(r , j , t,w ,m) 2 N⇥ N⇥ N⇥ S1 ⇥ R2, r  j , such that, perhaps reordering
the S

n

, we have

S1 ⇢ {(⇠, 1
2 |⇠|

2) : ⇠ 2 ⌧ j
k

\ t j+t

w ,m},

S2 ⇢ {(⇠, 1
2 |⇠|

2) : ⇠ 2 ⌧ j
k

0 \ t j+t

w ,m},
S3 ⇢ {(⇠, 1

2 |⇠|
2) : ⇠ 2 ⌧ r

k

00 \ tr+t

w

0,m, },

for some k , k 0, k 00,w 0 such that m 2 ⌧ j
k

, d(⌧ j
k

, ⌧ j
k

0) ⇠ 2�j ,
d(⌧ j

k

0 , ⌧ r
k

00) ⇠ d(⌧ j
k

, ⌧ r
k

00) ⇠ 2�r , |w � w 0| ⇠ 2�t and

✓ ⇠ 2�j2�r2�t .
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Figure : Example of S1, S2, S3 with (S1, S2, S3) ⇠ (r , j , t,w ,m, ✓).
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Proposition

Let ⌧ j

k

, ⌧ j

k

0 be such that d(⌧ j

k

, ⌧ j

k

0) = 2

�r & 2

�j

, then for every m 2 ⌧ j

k

,m0 2 ⌧ j

k

0 ,

w ,w 0 2 S1

with |w � w

0| . 2

�t

, we have

ˆ
�P(j,t,w,m)

��R⇤
f

1

�
⌧ j

k

\t

j+t

w,m
R⇤

f

2

�
⌧ j

k

0\t

j+t

w

0,m\t

2j�r

w

0?,m0

��2

.
X

↵, ↵0: ↵22

�(j+2t)Zw
↵022

�(2j�r+2t)Zw0

ˆ
�P(j,t,w,m)

��R⇤
f

1

�
⌧ j

k

\t

j+t

w,m\t

j+2t
w

?,↵

R⇤
f

2

�
⌧ j

k

0\t

j+t

w

0,m\t

2j�r

w

0?,m0\t

2j�r+2t
w

0?,↵0

��2.

Proposition

Let ⌧ j

k

0 , ⌧
r

k

00 be such that d(⌧ j

k

0 , ⌧
r

k

00) ⇠ 2

�r

, then for every w ,w 0 2 S1

with

|w � w

0| . 2

�t

, m 2 ⌧ j

k

0 , we have

ˆ
�P(j,t,w,m)

��R⇤
f

1

�
⌧ j

k

0\t

j+t

w,m
R⇤

f

2

�⌧ r

k

00\t

r+t

w

0,m

��2

.
X

↵, w00,↵0: ↵22

�(j+2t)Zw,
w

002S1
j+t�r

,

↵022

�(2j�r+2t)Zw00

ˆ
�P(j,t,w,m)

���R⇤
f

1

�
⌧ j

k

0\t

j+t

w,m\t

j+2t
w

?,↵

R⇤
f

2

�
⌧ r

k

00\t

r+t

w

0,m\%j+t�r

w

00,m\t

2j�r+2t
w

00?,↵0

���
2

.
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The orthogonality implies
ˆ
P(j ,t,w ,m)

��R⇤f1R
⇤f2R

⇤f3
�� .
ˆ
P(j ,t,w ,m)

⇣X

↵

��R⇤f1�⌧ j
k

\tj+t

w,m\tj+2t

w

?,↵

��2
⌘ 1

2

⇣X

↵0

��R⇤f2�⌧ j
k

0\t
j+t

w,m\tj+2t

w

?,↵0

��2
⌘ 1

2

⇣ X

w

00,↵00

��R⇤f3�⌧ r
k

00\tr+t

w

0,m\%
j+t�r

w

00,m \t2j�r+2t

w

00?,↵00

��2
⌘ 1

2

. 2
j+r+t

2 kf1k2kf2k2kf3k2.
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If (S1, S2, S3) ⇠ (r , j , t,w ,m, ✓), then by definition,

|n(⇠1) ^ n(⇠2) ^ n(⇠3)| ⇠ 2�(j+r+t)

for all choices ⇠
n

2 S
n

.
We can invoke Guth’s Kakeya multilinear estimate with the transversality
condition to perform an induction on scales.

Theorem (Guth)

If (S1, S2, S3) ⇠ (r , j , t,w ,m, ✓), then

ˆ
R3

3Y

n=1

⇣ X

k22��Z2\ suppf
n

µ�
⌧�
k

⇤ ��
⌧�
k

⌘ 1

2

. 2
j+r+t

2 23�
3Y

n=1

⇣ X

k22��Z2\ suppf
n

kµ�
⌧�
k

k
⌘ 1

2

for all finite measure µ�
⌧�
k

.
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Definition

We denote by K(�) the smallest constant C such that
ˆ
P(j ,t,w ,m)[�]

|R⇤f1R
⇤f2R

⇤f3|  C2
j+r+t

2 kf1k
L

2

kf2k
L

2

kf3k
L

2

for every f1, f2, f3 with (S1, S2, S3) ⇠ (r , j , t,w ,m, ✓).

Proposition

K(1) . 1

Proposition

K(2�) . K(�).
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For a triple (S1, S2, S3) ⇠ (r , j , t,w ,m, ✓) we have proven the result. But
the hypothesis

|n(⇠1) ^ n(⇠2) ^ n(⇠3)| & ✓

does not imply (S1, S2, S3) ⇠ (r , j , t,w ,m, ✓).
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Lemma

Let S1, S2, S3 satisfy

|n(⇠1) ^ n(⇠2) ^ n(⇠3)| & ✓

for all choices ⇠
n

2 S
n

. Then, there exists a collection
{S1,i , S2,i , S3,i , ri , ji , ti ,wi

,m
i

}
i=1 such that

i) It is a partition

S1 ⇥ S2 ⇥ S3 =
[

iC(✓)

S1,i ⇥ S2,i ⇥ S3,i .

ii) (S1,i , S2,i , S3,i ) ⇠ (r
i

, j
i

, t
i

,w
i

,m
i

, ✓0) triangle type with ✓ . 2�(j+r+t).
iii)

X

i

kf1k
L

2(S
1,i )kf2kL2(S

3,i )kf3kL2(S
3,i )

 C (log2 ✓
�1)kf1k

L

2(S
1

)kf2kL2(S
2

)kf3kL2(S
3

)

J. Ramos Maravall (ICMAT) 28th November 2016 37 / 38



J. Ramos Maravall (ICMAT) 28th November 2016 38 / 38


