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Introduction 1

The purpose of this talk is to develop a theory of weights for strong
maximal operator in the heigher dimensions and to present an elementary
proof of the endpoint estimate for the strong maximal operator.
We first fix some notations.
By weights we will always mean non-negative and locally integrable
functions on Rd .
Given a measurable set E ⊂ Rd and a weight w , w(E ) = E w dx , |E |
denotes the Lebesgue measure of E and 1E denotes the characteristic
function of E .
Let 0 < p ≤ ∞ and w be a weight. We define the weighted Lebesgue
space Lp(Rd ,w) to be a Banach space equipped with the norm (or quasi
norm)

∥f ∥Lp(Rd ,w) =

(

Rd
|f |pw dx

) 1
p

. (A)
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Introduction 2

For a locally integrable function f on Rd , we define the Hardy-Littlewood
maximal operator M by

Mf (x) = sup
Q∈Q

1Q(x)
Q
|f | dy , (A)

where Q is the set of all cubes in Rd with sides parallel to the coordinate
axes and the barred integral Q f dy stands for the usual integral average
of f over Q.
For a locally integrable function f on Rd , we define the strong maximal
operator Md by

Md f (x) = sup
R∈Rd

1R(x)
R
|f | dy , (B)

where Rd is the set of all rectangles in Rd with sides parallel to the
coordinate axes.
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Introduction 3

It is well known that

w({x ∈ Rd : Mf (x) > t}) ≤ C

t
∥f ∥L1(Rd ,Mw), t > 0, (A)

holds for arbitrary weight w and, by interpolation, that

∥Mf ∥Lp(Rd ,w) ≤ C∥f ∥Lp(Rd ,Mw), p > 1, (B)

holds for arbitrary weight w .
These are called the Fefferman-Stein inequality.
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Introduction 4

There is a problem in the book1:
.
Problem 1.1
..

......

Does the analogue of the Fefferman-Stein inequality hold for the strong
maximal operator, i.e.

∥Md f ∥Lp(Rd ,w) ≤ C∥f ∥Lp(Rd ,Mdw), p > 1, (1.1)

for arbitrary w(x) ≥ 0?

Concerning Problem 1.1 it is known that by Lin2 (for d = 2) and by
Pérez3 (for d ≥ 2), (1.1) holds for all p > 1 if w ∈ A∗

∞.

1J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities
and Related Topics, North-Holland, Math. Stud., 116 (1985).

2Kai-Ching Lin, Ph.D. University of California, Los Angeles 1984 United
States. Dissertation: Harmonic Analysis on the Bidisc.

3C. Pérez, A remark on weighted inequalities for general maximal operators,
Proc. Amer. Math. Soc., 119 (1993), no. 4, 1121–1126.
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Introduction 5

We say that w belongs to the class A∗
p whenever

[w ]A∗
p
= sup

R∈Rd R
w dx

(

R
w−1/(p−1) dx

)p−1

< ∞, 1 < p < ∞,

[w ]A∗
1
= sup

R∈Rd

R w dx

ess inf x∈R w(x)
< ∞.

It follows by Hölder’s inequality that the A∗
p classes are increasing, that is,

for 1 ≤ p ≤ q < ∞ we have A∗
p ⊂ A∗

q. Thus one defines

A∗
∞ =

⋃

p>1

A∗
p. (A)
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Introduction 6

The endpoint behavior of Md close to L1 is given by Mitsis4 (for d = 2)
and Luque and Parissis5 (for d ≥ 2). That is, for t > 0,

w({x ∈ Rd : Md f (x) > t}) ≤ C
Rd

|f |
t

(
1 +

(
log+

|f |
t

)d−1
)
Mdw dx

(A)
holds for any w ∈ A∗

∞, where log+ t = max(0, log t).

4T. Mitsis, The weighted weak type inequality for the strong maximal
function, J. Fourier Anal. Appl. 12 (2006), no. 6, 645–652.

5T. Luque and I. Parissis, The endpoint Fefferman-Stein inequality for the
strong maximal function, J. Funct. Anal. 266 (2014), no. 1, 199–212.
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Introduction 7

Concerning Problem 1.1 we established the following.
.
Theorem 1.2 (with H. Saito)
..

......

Let w be any weight on R2 and set W = M2Mw . Then, for t > 0,

w({x ∈ R2 : M2f (x) > t}) ≤ C
R2

|f |
t

(
1 + log+

|f |
t

)
W dx (A)

holds, where the constant C > 0 does not depend on w and f .

In this talk we consider a weaker results of Theorem 1.2 in the heigher
dimensions.
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Introduction 8

Let c = 1, 2, . . . , d .
We say that the set of rectangles in Rd have the complexity c whenever
the sidelengths of the its element R are exactly α1 or α2 or . . . or αc for
varying α1,α2, . . . ,αc > 0.
That is, the set of rectangles with complexity c is the c-parameter family
of rectangles.
For a locally integrable function f on Rd , we define the strong maximal
operator Mc by

Mc f (x) = sup
R∈Rc

1R(x)
R
|f | dy , (A)

where Rc is the set of all rectangles in Rd with sides parallel to the
coordinate axes and having the complexity c .
We notice that M1 is the Hardy-Littlewood maximal operator M.
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Introduction 9

.
Theorem 1.3
..

......

Let c = 1, 2, . . . , d . Let w be any weight on Rd and set
W = McMc−1 · · ·M1w . Then, for p > 1,

w({x ∈ Rd : Mc f (x) > t})
1
p ≤ C

t
∥f ∥Lp(Rd ,W ), t > 0, (A)

holds, where the constant C > 0 does not depend on w and f .

.
Corollary 1.4
..

......

Let c = 1, 2, . . . , d . Let w be any weight on Rd and set
W = McMc−1 · · ·M1w . Then, for p > 1,

∥Mc f ∥Lp(Rd ,w) ≤ C∥f ∥Lp(Rd ,W ) (B)

holds, where the constant C > 0 does not depend on w and f .
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Introduction 10

Probably, the endpoint Fefferman-Stein inequality for the strong maximal
operator with compositions of some maximal operators hold in the heigher
dimensions, but, I can not prove it until now. Further refinement of the
known proofs for the boundedness of the strong maximal operator would
be needed.

In this talk we will present an elementary proof of the endpoint estimate
for the strong maximal operator. Our method used is a covering lemma for
rectangles due to Robert Fefferman and Jill Pipher6

6R. Fefferman and J. Pipher, A covering lemma for rectangles in Rn, Proc.
Amer. Math. Soc., 133 (2005), no. 11, 3235–3241.
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Theorem

In what follows we shall prove the following theorem, which is originally
due to in the paper7.
.
Theorem 2.1
..

......

Let c = 1, 2, . . . , d . Then

|{x ∈ Rd : Mc f (x) > t}| ≤ C
Rd

|f |
t

(
1 + log+

|f |
t

)c−1

dx , t > 0,

(A)
holds, where the constant C > 0 does not depend on f .

7B. Jessen, J. Marcinkiewicz and A. Zygmund Note on the differentiability of
multiple integrals, Fund. Math. 25 (1935), 217–234.
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Proof 1

We denote by Pi , i = 1, 2, . . . , d , the projection on the xi -axis.
First, we notice that the theorem holds for c = 1.
We assume that the theorem holds for c = m − 1 and then we shall prove
it for c = m.
With a standard argument, we may assume that the basis Rm is the set of
all dyadic rectangles (cartesian products of dyadic intervals).
By allowing a multiple constant d!, we further assume that, when
R ∈ Rm, the sidelengths |Pi (R)| decrease and, for some fixed m̂,

|P1(R)| = |P2(R)| = · · · = |Pm̂(R)| > |Pm̂+1(R)|. (A)

Fix t > 0 and given the finite collection of dyadic rectangles
{Ri}Mi=1 ⊂ Rm such that

Ri

|f | dy > t, i = 1, 2, . . . ,M. (2.1)

It suffices to estimate
∣∣∣
⋃M

i=1 Ri

∣∣∣.
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Proof 2

First relabel if necessary so that the Ri are ordered so that their long
sidelengths |P1(Ri )| decrease.
We now give a selection procedure to find subcollection
{R̃i}Ni=1 ⊂ {Ri}Mi=1.

Take R̃1 = R1. Suppose have now chosen the rectangles R̃1, R̃2, . . . , R̃i−1.
We select R̃i to be the first rectangle Rk occurring after R̃i−1 so that

Rk

exp

⎛

⎝
i−1∑

j=1

1R̃j

⎞

⎠

1
m−1

− 1 dy < |Rk |. (A)

Thus, we see that

R̃i

exp

⎛

⎝
i−1∑

j=1

1R̃j

⎞

⎠

1
m−1

− 1 dy < |R̃i |, i = 2, 3, . . . ,N. (2.2)
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Proof 3

We claim that

M⋃

i=1

Ri ⊂

⎧
⎨

⎩x ∈ Rd : Mm−1

⎡

⎣exp
(

N∑

i=1

1R̃i

) 1
m−1

− 1

⎤

⎦ (x) ≥ 1

⎫
⎬

⎭ . (2.3)
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Proof 4

Indeed, choose any point x inside a rectangle Rj that is not one of the

selected rectangles R̃i .
Then, there exists a unique J ≤ N such that

Rj

exp

(
J∑

i=1

1R̃i

) 1
m−1

− 1 dy ≥ |Rj |. (A)

Since, |Pl(R̃i )| ≥ |Pl(Rj)| for l = 1, 2, . . . , m̂ and i = 1, 2, . . . , J, we have
that

Pl(R̃i ) ∩ Pl(Rj) = Pl(Rj) when R̃i ∩ Rj ̸= ∅, (B)

where we have used the property of the dyadic intervals.
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Proof 5

It follows from Fubini’s theorem that

Rj

exp

(
J∑

i=1

1R̃i

) 1
m−1

− 1 dy1dy2 · · · dyd

= |P1(Rj)|m̂
R ′
j

exp

(
J∑

i=1

1R̃ ′
i

) 1
m−1

− 1 dym̂+1dym̂+2 · · · dyd ,

where, for R ∈ Rm,

R ′ =
d∏

l=m̂+1

Pl(R). (A)

Thus,

R′
j

exp

(
J∑

i=1

1R̃′
i

) 1
m−1

− 1 dym̂+1dym̂+2 · · · dyd ≥ |R ′
j |. (B)
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Proof 6

Thanks to the fact that |Pm̂+1(Rj)| < |Pm̂(Rj)|, this implies that

R
exp

(
J∑

i=1

1R̃i

) 1
m−1

− 1 dy ≥ |R |, (C)

where R is a unique dyadic rectangle containing x and satisfies

|P1(R)| = |P2(R)| = · · · = |Pm̂(R)| = |Pm̂+1(Rj)|. (D)

This proves (2.3), because such R should belong to Rm−1.
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Proof 7

It follows from (2.3) and our assumption that

∣∣∣∣∣

M⋃

i=1

Ri

∣∣∣∣∣ ≤

∣∣∣∣∣∣

⎧
⎨

⎩x ∈ Rd : Mm−1

⎡

⎣exp
(

N∑

i=1

1R̃i

) 1
m−1

− 1

⎤

⎦ (x) ≥ 1

⎫
⎬

⎭

∣∣∣∣∣∣

≤ C
Rd

⎛

⎝exp

(
N∑

i=1

1R̃i

) 1
m−1

− 1

⎞

⎠
(

N∑

i=1

1R̃i

)m−2
m−1

dx

= C
∞∑

k=1

1

k! Rd

(
N∑

i=1

1R̃i

) k+m−2
m−1

dx .
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Proof 8

We use an elementary inequality:

( ∞∑

i=1

ai

)s

≤ s
∞∑

i=1

ai

⎛

⎝
i∑

j=1

aj

⎞

⎠
s−1

, s > 1, (2.4)

where {ai}∞i=1 is a sequence of summable nonnegative reals.
Then, for k > 1,

Rd

(
N∑

i=1

1R̃i

) k+m−2
m−1

dx ≤ k +m − 2

m − 1

N∑

i=1 R̃i

⎛

⎝
i∑

j=1

1R̃j

⎞

⎠

k−1
m−1

dx

≤ k
N∑

i=1 R̃i

⎛

⎝
i∑

j=1

1R̃j

⎞

⎠

k−1
m−1

dx .
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Proof 9

Inserting this estimate and changing the order of sums, we obtain

∣∣∣∣∣

M⋃

i=1

Ri

∣∣∣∣∣ ≤ C
Rd

(
N∑

i=1

1R̃i

)
dx + C

N∑

i=1 R̃i

exp

⎛

⎝
i∑

j=1

1R̃j

⎞

⎠

1
m−1

− 1 dx

≤ C
N∑

i=1

|R̃i |,
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Proof 10

where we have used (2.2) and (2.5).

R̃i

exp

⎛

⎝
i−1∑

j=1

1R̃j

⎞

⎠

1
m−1

− 1 dy < |R̃i |, i = 2, 3, . . . ,N. (2.2)

R̃i

exp

⎛

⎝
i∑

j=1

1R̃j

⎞

⎠

1
m−1

− 1 dx (2.5)

≤
R̃i

exp

⎡

⎢⎣

⎛

⎝
i−1∑

j=1

1R̃j

⎞

⎠

1
m−1

+ 1

⎤

⎥⎦− 1 dx

≤ e
R̃i

exp

⎛

⎝
i−1∑

j=1

1R̃j

⎞

⎠

1
m−1

− 1 dx + (e − 1)|R̃i |.
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Proof 11

We shall evaluate the quantity:

(i) =
N∑

i=1

|R̃i |.

By (2.1) we have that

(i) ≤
N∑

i=1 R̃i

|f |
t

dy

=
Rd

(
N∑

i=1

1R̃i

)
· |f |
t

dx .

Ri

|f | dy > t, i = 1, 2, . . . ,M. (2.1)
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Proof 12

We now employ the following inequality:
For a ≥ 0, let

φ(a) =
a

0
exp s

1
m−1 ds. (A)

Then we easily see that, by noticing φ(a) > a,

ab ≤ φ(a) + b(log+ b)m−1, a, b > 0. (B)
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Proof 13

Choosing δ0 small enough determined later, we obtain

(i) ≤ δ0
Rd

φ

(
N∑

i=1

1R̃i

)
dx

+
Rd

|f |
t

(
1 + log+

|f |
δ0t

)m−1

dx .

We have to evaluate the quantity:

(ii) =
Rd

φ

(
N∑

i=1

1R̃i

)
dx .
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Proof 14

There holds

φ(a) =
a

0
exp s

1
m−1 ds

=
∞∑

k=0

1

k!

a

0
s

k
m−1 ds

= a +
∞∑

k=1

m − 1

(k +m − 1)k!
a

k+m−1
m−1 ,

which entails

(ii) =
Rd

(
N∑

i=1

1R̃i

)
dx +

∞∑

k=1

m − 1

(k +m − 1)k! Rd

(
N∑

i=1

1R̃i

) k+m−1
m−1

dx .

(A)
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Proof 15

It follows from (2.4)8 that, for k > 0,

m − 1

(k +m − 1)k! Rd

(
N∑

i=1

1R̃i

) k+m−1
m−1

dx

≤ 1

k!

N∑

i=1 R̃i

⎛

⎝
i∑

j=1

1R̃j

⎞

⎠

k
m−1

dx .

8
( ∞∑

i=1

ai

)s

≤ s
∞∑

i=1

ai

(
i∑

j=1

aj

)s−1

, s > 1, (2.4)
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Proof 16

Inserting this estimate and changing the order of sums, we obtain

(ii) ≤
Rd

(
N∑

i=1

1R̃i

)
dx +

N∑

i=1 R̃i

exp

⎛

⎝
i∑

j=1

1R̃j

⎞

⎠

1
m−1

− 1 dx

≤ C0(i),

where we have used (2.2) and (2.5).

R̃i

exp

⎛

⎝
i−1∑

j=1

1R̃j

⎞

⎠

1
m−1

− 1 dy < |R̃i |, i = 2, 3, . . . ,N. (2.2)

R̃i

exp

⎛

⎝
i∑

j=1

1R̃j

⎞

⎠

1
m−1

−1 dx ≤ e
R̃i

exp

⎛

⎝
i−1∑

j=1

1R̃j

⎞

⎠

1
m−1

−1 dx+(e−1)|R̃i |.

(2.5)
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Proof 17

If we choose δ0 so that C0δ0 =
1
2 , we obtain

(i) ≤ C
Rd

|f |
t

(
1 + log+

|f |
t

)m−1

dx . (A)

This completes the proof.
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