埼玉大学大学院理工学研究科

博士前期課程 数理電子情報専攻・数学プログラム

令和7年4月入学,令和6年秋期入学

試験問題

数 学

2024年8月22日 13:00~15:00

注意事項

- $1. \begin{bmatrix} 1 \end{bmatrix}, \begin{bmatrix} 2 \end{bmatrix}, \begin{bmatrix} 3 \end{bmatrix}, \begin{bmatrix} 4 \end{bmatrix}$ の 4 問はすべてに解答すること.
- 2. A, B, C の中から、1問を選択し、解答すること.
- 3. 答案用紙1枚につき1問ずつ、計5問を解答すること.
- 4. 答案用紙は裏面も使用してよい.
- 5. 裏面を使用する場合は、その旨を表面に明記すること.
- 6. 配点は各問 20 点とし、合計 100 点とする.

$$A = \begin{pmatrix} 3 & 1 & -2 \\ -2 & 0 & 2 \\ -3 & -3 & 4 \end{pmatrix}$$
 とし、 $\boldsymbol{v}_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ とおく.

- (1) A の固有値と固有ベクトルを求めよ.
- v_0 を A の固有ベクトルの 1 次結合の形で表せ.
- $\lim_{n\to\infty}\frac{A^n v_0}{\|A^n v_0\|} \ を求めよ.$

n を 3 以上の整数とし、u、v、w を \mathbb{R}^n の 1 次独立なベクトルとする。 e_1 , e_2 , e_3 を \mathbb{R}^3 の基底とし、 $f:\mathbb{R}^3 \to \mathbb{R}^n$ を次で定まる線形写像とする.

$$f(e_1) = \mathbf{u} - 2\mathbf{w}$$

 $f(e_2) = \mathbf{u} - \mathbf{v} + \mathbf{w}$
 $f(e_3) = 5\mathbf{u} + a\mathbf{v} - \mathbf{w}$

ただし a は実定数とする. 次の問いに答えよ.

- f が単射でないときの a の値を求めよ.
- a が (1) で求めた値のとき、f の像 Im(f) の次元を求めよ.
- a が (1) で求めた値のとき、f の核 $\operatorname{Ker}(f)$ の基底を 1 つ求めよ.

次の問いに答えよ.

- (1) 関数 $f(x,y) = \min\{|x|,|y|\}$ の原点における偏微分可能性を調べ,偏微分可能な場合は原点における全微分可能性を調べよ.
- (2) 関数 $g(x,y) = \max\{|x|,|y|\}$ の原点における偏微分可能性を調べ,偏微分可能な場合は原点における全微分可能性を調べよ.

- _______ 次の問いに答えよ.ただし $-\frac{\pi}{2}$ < $\arctan x < \frac{\pi}{2}$ とする.
 - $\lim_{x \to \infty} x \left(\frac{\pi}{2} \arctan x \right) を求めよ.$
 - (2) 広義積分 $\int_0^\infty \frac{1}{\sqrt{x}} \left(\frac{\pi}{2} \arctan x\right) dx$ は収束することを示せ、積分値は求めなくてよい.
 - $D = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0, \ y \ge x^2 \} \text{ とする.}$ 広義積分 $\iint_D \frac{\sqrt{x}}{x^2 + y^2} \, dx \, dy$ は収束することを示せ. 積分値は求めなくてよい.

R を単位元 1 をもつ可換環とする. R^* は R の単元 (可逆元) 全体の集合を表し, R[X] は X を不定元 (変数) とする R 上の 1 変数多項式環を表すものとする.

- (1) R^* は乗法に関してアーベル群をなすことを示せ.
- $R=\mathbb{Z}$ (整数全体のなす環) のとき、 $(R[X])^*$ を求めよ.
- (3) $R=\mathbb{R}$ (実数全体のなす体) のとき, $(R[X]/(X^2+1))^*$ を求めよ.

距離空間 $(X,d_X),\,(Y,d_Y)$ に対し、 関数 $d_{X\times Y}:(X\times Y)\times(X\times Y)\to\mathbb{R}$ を

$$d_{X\times Y}((x_1,y_1),(x_2,y_2)) = d_X(x_1,x_2) + d_Y(y_1,y_2)$$

と定める.次の問いに答えよ.

- $d_{X\times Y}$ は $X\times Y$ 上の距離関数であることを示せ.
- $\{(x_n,y_n)\}_{n\in\mathbb{N}}$ を距離空間 $(X\times Y,d_{X\times Y})$ 内のコーシー列とする. このとき $\{x_n\}_{n\in\mathbb{N}}$ は距離空間 (X,d_X) 内のコーシー列であることを示せ.
- $(X,d_X), (Y,d_Y)$ が完備距離空間ならば $(X\times Y,d_{X\times Y})$ も完備距離空間であることを示せ.

次の広義積分を求めたい.

$$I = \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + x + 1} \, dx$$

- $(1) \qquad f(z) = \frac{e^{iz}}{z^2+z+1} \; の極とその留数をすべて求めよ.$
- (2) 実数 $R \geq 2$, $\theta \in [0,\pi]$ に対して

$$|f(Re^{i\theta})| \le \frac{1}{R^2 - R - 1}$$

を示せ.

(3) Iの値を求めよ.