## 埼玉大学大学院理工学研究科

# 博士前期課程 数理電子情報系専攻・数学コース

平成 25 年 4月入学, 平成 24 年秋期入学

#### 試験問題

# 数 学

2012年8月16日 13:00~15:00

### 注意事項

- 1. 1, 2, 3, 4 の4問は すべてに解答すること.
- 2. A, B, C の中から、1問を選択し、解答すること.
- 3. 答案用紙1枚につき1間ずつ、計5間を解答すること.
- 4. 解答用紙は裏面も使用してよい.
- 5. 裏面を使用する場合は、その旨を表面に明記すること、
- 6. 配点は各問20点とし、合計100点とする.



行列 
$$A = \begin{pmatrix} -1 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$
 に対し、次の問いに答えよ.

- (1) Aの固有値を求めよ.
- (2)  $P^{-1}AP$  が対角行列となる直交行列 P を 1 つ求めよ.

次の(r)から(r)の記述は正しいか、それとも誤りか、正しければ証明し、誤りであればその根拠を述べよ。

- (r)  $\mathbb{R}^3$  の基底の選び方は有限通りしかない.
- (A)  $x_1, x_2, x_3 \in \mathbb{R}^3$  が線形従属ならば、 $x_1$  は  $x_2$  と  $x_3$  の線形結合として表される.
- (ウ)  $x_1, x_2, x_3 \in \mathbb{R}^3$  が次の 2 つの条件 (a), (b) をともに満たすとする:
  - (a)  $x_1, x_2$  は線形独立である.
  - (b)  $x_3$  は $x_1$  と $x_2$  の線形結合としては表されない.

このとき  $x_1, x_2, x_3$  は線形独立である.

g(x,y) を  $\mathbb{R}^2$  上の  $C^1$  級関数とし,  $f(x,y) = g(x,y) \, e^{-x^2-y^2}$  とする.

(1)  $f_x = f_y = 0$  となる点 (x, y) において

$$yg_x(x,y) - xg_y(x,y) = 0,$$

$$xg_x(x,y) + yg_y(x,y) = 2(x^2 + y^2)g(x,y)$$

が成り立つことを示せ.

(2) g(x,y) が m 次の同次多項式であれば,f が極値をとる点 (x,y) において,g(x,y)=0 または  $x^2+y^2=\frac{m}{2}$  が成り立つことを示せ.

(1) a を実数,  $D_R = \{(x,y) \in \mathbb{R}^2 \mid 0 < x+y < 2R, 0 < x-y < 2R\}$  (R > 0) とし、積分

$$I(a,R) = \iint_{D_R} e^{-(x^2 + axy + y^2)} dx dy$$

を考える. x = u + v, y = u - v とおき, I(a, R) を u, v を変数とする積分で表せ (積分値を求める必要はない).

(2)  $D = \{(x,y) \in \mathbb{R}^2 \mid x+y>0, x-y>0 \}$  とする. 広義積分

$$\iint_D e^{-(x^2 + axy + y^2)} dx dy$$

が収束する a の範囲を求めよ.また,そのときの積分値を a を用いて表せ.必要ならば,  $\int_0^\infty e^{-x^2}dx=\frac{\sqrt{\pi}}{2}$  を用いてよい.

複素数体 $\mathbb{C}$ 上の2変数多項式環 $R = \mathbb{C}[x, y]$ の部分集合

$$I = \{ f(x,y) \in R \mid$$
すべての $a \in \mathbb{C}$  に対して $f(a,0) = 0 \}$ ,

$$M = \{ f(x,y) \in R \mid f(0,0) = 0 \}$$

を考える. 次の問いに答えよ.

- (1) I および M は R のイデアルであることを示せ.
- I は R の単項イデアルであることを示せ.
- (3) M は R の極大イデアルであることを示せ.

Y を位相空間 X の部分位相空間とする。連続写像  $r: X \to Y$  で、任意の点  $y \in Y$  に対して r(y) = y を満たすものが存在するときに Y は X のレトラクトであるという。次の問いに答えよ。ただし、 $\mathbb{R}^n$  には通常の位相が入っているものとする。

- (1) 閉区間 [0, 1] は $\mathbb{R}$  のレトラクトであることを示せ.
- (2)  $S^1$  を平面  $\mathbb{R}^2$  における単位円とする.  $S^1$  は  $\mathbb{R}^2 \{(0,0)\}$  のレトラクトであることを示せ.
- (3) A を平面  $\mathbb{R}^2$  の相異なる 2 点からなる部分集合とする. A は  $\mathbb{R}^2$  のレトラクトではないことを示せ.

С

(1) べき級数  $f(z) = \sum_{n=0}^{\infty} a_n z^n$  は、開円板  $\left\{z \in \mathbb{C} \mid |z| < R\right\}$  上で収束しているとする. このとき、  $0 \le r < R$  に対して

$$\int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = 2\pi \sum_{n=0}^{\infty} |a_n|^2 r^{2n}$$

が成り立つことを示せ. ただし, i は虚数単位とする.

 $(2) 0 \le r < 1 に対して$ 

$$\int_0^{2\pi} \frac{d\theta}{1 - 2r\cos\theta + r^2} = \frac{2\pi}{1 - r^2}$$

が成り立つことを示せ.