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Abstract

We study quotient singularities of certain finite reducible groups in dimension

4 associated with irreducible reflection groups in GL(3, C). We obtain 6 types of

hypersurface singularities, another type of complete intersection singularities, and 2

types of non complete intersection singularities. We also obtain that their singular

locuses are of pure dimension 2.

1. Introduction

Let G be a finite subgroup of SL(n,C), S = C[X1, . . . , Xn] be the polynomial
ring, and let R = SG be the invariant subring of S under the natural action of G.
We want to study the invariant subring R = SG and the quotient variety Cn/G.
We are interested in the following problems:

(i) To find generators of R and its relations, and to study its properties. In
other words, to determine the embedding dimension of Cn/G, and its defin-
ing equations.

(ii) The dimension and the structure of the singular locus Sing(Cn/G).

About (i), we know that R is Gorenstein, since G ⊂ SL(n,C) ([9]). But R
may not be a complete intersection. However, if R is a complete intersection, then
its embedding dimension is at most 2n − 1 ([4]). About (ii), The dimension of
the singular locus of Cn/G is at most n− 2. In particular, if Cn/G is a complete
intersection, then the dimension of its singular locus is exactly n− 2 ([4]).

We need to study finite subgroups of SL(n,C) before to study invariant sub-
rings R = SG. We adopt the following rough classification of finite subgroups of
SL(n,C).

(A) Abelian groups.

(B) Reducible groups which are not abelian.
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(C) Imprimitive groups.

(D) Primitive groups.

For groups of (A), invariant subrings which are complete intersections are
completely classified by [10]. And it is known that the generators of R and the
relations of R can be calculated since the basic invariants of R (see §2.2) can be
calculated ([7]). The dimension of Sing(Cn/G) is less than n− 2 in some cases.

For groups of (B), (C) and (D), the structure of R and Sing(Cn/G) are not
well studied except the case of n = 2, 3.

In the case of n = 2, the group of (A) induces the rational double point
of type A, the group of (C) induces the RDP of type D, and the group of (D)
induces the RDP of type E.

In the case of n = 3, the structure of R was obtained from [8], [11]. For every
family of (A), (B) and (C), we can find groups which induce each of hypersur-
faces, complete intersections and non complete intersections. For the family (D),
there exist 8 types of groups. Seven of them induce hypersurfaces, and another
induces a complete intersection which is not a hypersurface. C3/G is an isolated
singularity if and only if G is a group of (A) and 1 is not an eigenvalue of A for
every nontrivial element A in G ([11]). Thus Sing(C3/G) is of pure dimension 1
except the above case.

In the case of n ≥ 4, almost nothing are known yet about (i) except for the
family (A). About (ii), it is expected that Sing(Cn/G) is of pure dimension n−2
except some cases. In fact, if there exists nontrivial A in G such that 1 is the
eigenvalue of A whose multiplicity is n− 2, then the dimension of Sing(Cn/G) is
n− 2.

We want to study whether the results like the case n = 3 can be obtained in
the case n = 4. But there are too many types of G. In this article, we treat the
groups of type (B1’) as follows.

The groups of type (B) is naturally classified as follows:

(B1) A direct sum of an irreducible 3-dimensional representation and a 1-
dimensional representation, i.e.,

G =
{(

A′

(detA′)−1

) ∣∣∣∣ A′ ∈ G′
}
,

where G′ is an irreducible group of GL(3,C) (See §2.1).

(B2) A direct sum of an irreducible 2-dimensional representation and two 1-
dimensional representations, i.e. any element of G is the following form:⎛

⎝ A′

a

b

⎞
⎠ , A′ ∈ GL(2,C), ab · detA′ = 1.
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(B3) A direct sum of two irreducible 2-dimensional representations, i.e. any ele-
ment of G is the following form:(

A1

A2

)
, A1, A2 ∈ GL(2,C), detA1 · detA2 = 1.

Even if we treat only type (B1), there exist too many groups. But when G′ is an
irreducible reflection group, the classification of G′ is obtained from [5], [1]. In
this article, we study R = SG with its classification, i.e. we study the invariant
subrings of the following group G:

(B1’)

G =
{(

A′

(detA′)−1

) ∣∣∣∣ A′ ∈ G′
}
,

where G′ is an irreducible reflection group of GL(3,C).

2. Preliminaries

We use the following notation:
S = C[X1, . . . , Xn] the polynomial ring.
G a finite subgroup of GL(n,C).
R = SG the invariant subring of G.
In the identity of GL(n,C).
|G| the order of G.

2.1 Some remarks of finite subgroups of GL(n,C) and invariant
subrings of reflection groups

Definition 2.1. (i) G is called reducible if there exists a proper G-invariant
subspace of Cn. If G is not reducible, we say G is irreducible.

(ii) For an irreducible group G, G is called imprimitive if there exists a decompo-
sition to vector subspaces Cn = W1⊕· · ·⊕Wr (r ≥ 2) such that the following
condition is satisfied: For any A ∈ G and 1 ≤ i ≤ r, there exists 1 ≤ j ≤ r

such that A(Wi) = Wj . If G is not imprimitive, we say G is primitive.

Definition 2.2. A ∈ GL(n,C) is called a pseudo-reflection if A has a finite order
and if rank(In −A) = 1. A finite group generated by pseudo-reflections is called
a reflection group.

Theorem 2.3. (cf.[5]) The following two statements are equivalent:

(i) G is a refletion group.

(ii) R is a polynomial ring, i.e., R is generated by n elements which are alge-
braically independent over C.
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Furthermore, if G is a reflection group, the degrees of n minimal generators of R
are determined uniquely.

Definition 2.4. For a reflection group G, the degrees of n generators of R which
are algebraically independent are called the degrees of G.

Theorem 2.5. (cf.[5]) Let G be a reflection group, and let d1, . . . , dn be the
degrees of G. Then,

(i) |G| = d1d2 · · · dn.

(ii) The number of pseudo-reflections in G is
∑n

i=1(di − 1).

Definition 2.6. For any linear character χ : G −→ C∗ of G, we define

Rχ := {f ∈ S | A(f) = χ(A)f, for all A ∈ G} .

Rχ is an R-module. Elements of Rχ are called χ-invariants.

From [6] §2, ifG is a reflection group, generators of Rχ over R can be obtained
as the following way:

For a pseudo-reflection A ∈ G,

HA := {x ∈ Cn | Ax = x}

is called a reflecting hyperplane of A, and it is a subspace of Cn of dimension
n − 1. Let H1, . . . , Hr be the all distinct reflecting hyperplanes associated with
G. For i = 1, . . . , r, let fi = fi(X1, . . . , Xn) be the linear form defining Hi. fi is
called a reflecting linear form. Let

Ci := {A ∈ G | Ax = x, for all x ∈ Hi} .

Then Ci is a cyclic group. Let Pi be a generator of Ci. For i = 1, . . . , r, we
choose si so that si is the least non-negative integer satisfying χ(Pi) = detP si

i .
Finally let

(2.7) fχ :=
r∏
i=1

fsi
i .

Then fχ is a homogeneous polynomial of degree s1+· · ·+sr, and does not depend
on the choice of Pi. Moreover we have the following.

Theorem 2.8. ([6], Theorem 3.1) If G is a reflection group, then Rχ is a free
R-module of rank 1 generated by the above fχ.

2.2 Basic invariants
We shall explain the way to calculate minimal relations of generators and
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Poincaré series of R according to [11].

Definition 2.9. ([11], p.40-p.41) If R can be written as a direct sum

(2.10) R = C[ξ1, . . . , ξn] ⊕ C[ξ1, . . . , ξn]η1 ⊕ · · · ⊕ C[ξ1, . . . , ξn]ηr

where ξ1, . . . , ξn, η1, . . . , ηr are homogeneous polynomials of R and ξ1, . . . , ξn are
algebraically independent over C, (2.10) is called a basic decomposition of R, and
(ξ1, . . . , ξn; η1, . . . , ηr) are called basic invariants of R. Then any f ∈ R can be
written as f = p0 + p1η1 + · · · + prηr by certain p0, . . . , pr ∈ C[ξ1, . . . , ξn]. This
is called the basic form of f denoted by

bas(f) = p0 + p1η1 + · · · + prηr.

Theorem 2.11. ([3], [11] Theorem 20) For any finite subgroup G ⊂ GL(n,C),
R = SG has a basic decomposition.

The minimal relations of generators of R can be calculated in the following
way([11] p.43):

Let (ξ1, . . . , ξn; η1, . . . , ηr) be the basic invariants of R where ξ1, . . . , ξn are
algebraically independent over C and ξ1, . . . , ξn, η1, . . . , ηt (t ≤ r) are minimal
generators of R. Let

Rel(G) :=
{
ηiηj
∣∣ 1 ≤ i ≤ t, i ≤ j ≤ r

}− {η1, . . . , ηr},
Rel(G) :=

{
h ∈ Rel(G)

∣∣ h′ � h, for any h′ ∈ Rel(G) − {h}} .
Then we have the following theorem.

Theorem 2.12. The minimal relations of generators of R are {h− bas(h) | h ∈
Rel(G)}.

Furthermore, Poincaré series P (R, t) of R is

(2.13) P (R, t) =
1 + tb1 + · · · + tbr

(1 − td1) · · · (1 − tdn)
,

where di = deg ξi (1 ≤ i ≤ n), bj = deg ηj (1 ≤ j ≤ r).

3. Certain reducible groups and their invariant subrings

We use the following notation:
S′ = C[X1, . . . , Xn−1] the polynomial ring, S′ ⊂ S.
G′ an irreducible subgroup of GL(n− 1,C),

G′ �⊂ SL(n− 1,C).
l = l(G′) the least positive integer such that det(A′)l = 1

for any A′ ∈ G′ (note l > 1).
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R′ = (S′)G
′

the invariant subring of G′.
χ(i) (i = 0, 1, 2, . . . ) the linear character of G′ defined by

χ(i)(A′) = (detA′)i (A′ ∈ G′).
R′
χ(i) (i = 0, 1, 2, . . . ) the minimal R′-submodule of S′ which contains all

χ(i)-invariants (note R′
χ(0) = R′).

We shall study the invariant subring R = SG of the following group:

G =
{(

A′

(detA′)−1

) ∣∣∣∣ A′ ∈ G′
}

⊂ SL(n,C).

Proposition 3.1. (cf. [8], §1) R is generated over R′ by X l
n, and R′

χ(i)X
i
n

(1 ≤ i ≤ l − 1).

Proof. Let R̃ be the ring generated over R′ by X l
n, R′

χ(i)X
i
n (1 ≤ i ≤ l − 1).

Clearly, R̃ ⊂ R. Conversely, we shall show R̃ ⊃ R. Let f ∈ R. Then f can be
written as f =

∑r
i=0 giX

i
n by some gi ∈ S′. Let A′ ∈ G′ be any element, and let

A =
(
A′

(detA′)−1

)
∈ G.

Since A(f) = f , we have

r∑
i=0

A′(gi) · (detA′)−iXi
n =

r∑
i=0

giX
i
n.

This means

A′(gi) = (detA′)igi (0 ≤ i ≤ r),

and gi ∈ R′
χ(i) since A′ is arbitrary. Define non-negative integers ki and mi by

0 ≤ ki ≤ l − 1 and i = mil + ki. Then,

R′
χ(i) = {f ∈ S′ | A′(f) = (detA′)if for all A′ ∈ G′}

= {f ∈ S′ | A′(f) = (detA′)mil+kif for all A′ ∈ G′}
= {f ∈ S′ | A′(f) = (detA′)kif for all A′ ∈ G′}
= R′

χ(ki)
.

Thus gi ∈ R′
χ(ki)

. Finally we have

f =
r∑
i=0

giX
i
n =

r∑
i=0

giX
ki
n · (X l

n)
mi ∈ R̃.
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We assume G′ is a reflection group. Then R′ is a polynomial ring. Let
y1, . . . , yn−1 be homogeneous algebraically independent generators of R′ over C,
and let R0 := C[y1, . . . , yn−1, X

l
n]. Let fχ(i) be the generator of R′

χ(i) constructed
as (2.7). Then we have the following theorem.

Theorem 3.2.

R = R0 ⊕R0fχ(1)Xn ⊕R0fχ(2)X
2
n ⊕ · · · ⊕R0fχ(l−1)X

l−1
n .

In other words,

(ξ1, . . . , ξn; η1, . . . , ηr) = (y1, . . . , yn−1, X
l
n; fχ(1)Xn, fχ(2)X

2
n, . . . , fχ(l−1)X

l−1
n )

(r = l − 1)

are the basic invariants of R.

Proof. We use the same notation in the proof of Proposition 3.1. From Propo-
sition 3.1, R = R0[fχ(1)Xn, . . . , fχ(l−1)X

l−1
n ]. Let f ∈ R. Since 0 ≤ ki ≤ l − 1,

and gi ∈ R′
χ(ki)

can be written as gi = hifχ(ki) (hi ∈ R′),

f =
r∑
i=0

giX
ki
n · (X l

n)
mi =

r∑
i=0

fχ(ki)X
ki
n · hi · (X l

n)
mi =

l−1∑
j=0

h̃jfχ(j)X
j
n

for certain h̃j ∈ R0. Thus

R = R0 +R0fχ(1)Xn + · · · +R0fχ(l−1)X
l−1
n .

Since R0 = C[y1, . . . , yn−1, X
l
n], and yj does not contain Xn, we have

R0 +R0fχ(1)Xn + · · ·+R0fχ(l−1)X
l−1
n = R0 ⊕R0fχ(1)Xn⊕ · · · ⊕R0fχ(l−1)X

l−1
n .

Corollary 3.3. Let yn = X l
n and yn+1 = fχ(1)Xn. If fχ(i) = f iχ(1) (1 ≤ i ≤ l−1),

then R = C[y1, . . . , yn, yn+1], and the generators have a unique relation of the
form

yln+1 − ynF (y1, . . . , yn−1) = 0,

where F (y1, . . . , yn−1) is a polynomial of y1, . . . , yn−1.

Proof. From Theorem 3.2,

R = R0 ⊕R0yn+1 ⊕R0y
2
n+1 ⊕ · · · ⊕R0y

l−1
n+1.

Thus R = C[y1, . . . , yn, yn+1] and Rel(G) = {yln+1}. From §2.2, y1, . . . , yn, yn+1

have a unique relation yln+1 − bas(yln+1) = 0. Since f lχ(1) ∈ C[y1, . . . , yn−1],
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bas(yln+1) = f lχ(1)X
l
n is a polynomial of the form ynF (g1, . . . , yn−1).

We can calculate the generators, the relations, and Poincaré series P (R, t) of
R in the following way:

(1) Calculate the generators y1, . . . , yn−1 of R′.

(2) Calculate the generator fχ(i) of the free R′-module R′
χ(i) as (2.7).

(3) Then (y1, . . . , yn−1, X
l
n; fχ(1)Xn, . . . , fχ(l−1)X

l−1
n ) are the basic invariants of

R from Theorem 3.2. Thus we can calculate the minimal relations and
Poincaré series P (R, t) of R as explained in §2.2.

Next, we shall prove the following theorem.

Theorem 3.4. The dimension of the singular locus of Cn/G is n− 2.

Proof. Let F = {x ∈ Cn | Ax = x, for some A ∈ G, A �= In}. Since the singular
locus of Cn/G is F/G (see Theorem 5.1), it is sufficient to show there eixists a
linear subspace H of Cn of dimension n − 2 such that H ⊂ F . Since G′ is a
reflection group, G′ has pseudo-reflections. Let A′ ∈ G′ be a pseudo-reflection,
and we put

A :=
(
A′

(detA′)−1

)
∈ G, HA := {x ∈ Cn | Ax = x} .

Then 1 is the eigenvalue of A whose mutiplicity is n− 2. Thus dimHA = n− 2.
Futhermore, HA ⊂ F .

4. Main results

In this section we study the invariant subring of the group

G =
{(

A′

(detA′)−1

) ∣∣∣∣ A′ ∈ G′
}

⊂ SL(4,C)

where G′ is an irreducible reflection group of GL(3,C). It is known that G′ is
conjugate to one of the following groups ([5], [1]).

Group Order Number of pseudo-reflections Degrees
G(m, p, 3) 6qm2 3(m+ q − 1) m, 2m, 3q
W (H3) 120 15 2, 6, 10
W (J3(4)) 336 21 4, 6, 14
W (L3) 648 24 6, 9, 12
W (M3) 1296 33 6, 12, 18
W (J3(5)) 2160 45 6, 12, 30

Table 4.1
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Here m, p, q are positive integers such that m > 1 and m = pq. Each group will
be explained later.

Remark 4.2. W (A3) in [1] is conjugate to G(2, 2, 3).

We will calculate the invariant subring R = SG for each above group. As
one of the consequences we obtain the following theorems.

Theorem 4.3. (i) If G′ is one of the following groups

G(m,m, 3), G(2p, p, 3), W (H3), W (J3(4)), W (L3), W (J3(5)),

then R is a hypersurface.

(ii) If G′ = G(pq, p, 3) where q is an even number such that q ≥ 4, then R is a
complete intersection, and embedding dimension of R is emb(R) = 6.

(iii) If G′ is one of the following groups

G(pq, p, 3) (q is odd, q ≥ 3), W (M3),

then R is not a complete intersection, emb(R) = 8, and the number of rela-
tions of generators is 9.

Theorem 4.4. For any G′ in the above table, Sing(C4/G) is of pure dimension
2.

Remark 4.5. We note that if C4/G is a complete intersection, the above theorem
is a special case of [2], exp. 10.

Now, we start calculations of R = SG. We use the notation such as∑
3

X2
1 := X2

1 +X2
2 +X2

3 ,

∑
3

X4
1X

3
2X

2
3 := X4

1X
3
2X

2
3 +X3

1X
2
2X

4
3 +X2

1X
4
2X

3
3 ,

∑
6

X4
1X

3
2X

2
3 := X4

1X
3
2X

2
3 +X3

1X
2
2X

4
3 +X2

1X
4
2X

3
3

+X4
1X

2
2X

3
3 +X2

1X
3
2X

4
3 +X3

1X
4
2X

2
3 ,∏

3

(αX1 + βX2 + γX3) := (αX1 + βX2 + γX3)(βX1 + γX2 + αX3)

× (γX1 + αX2 + βX3).

4.1 G′ = G(m, p, 3) (m = pq > 1)
G(m, p, 3) is defined as the group generated by S3 and

A(m, p, 3) :=

⎧⎨
⎩
⎛
⎝a1 0 0

0 a2 0
0 0 a3

⎞
⎠
∣∣∣∣∣∣ am1 = am2 = am3 = 1, (a1a2a3)q = 1

⎫⎬
⎭ ,
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where we regard S3 ⊂ GL(3,C) by the natural way. The generators of R′ are
the following polynomials (see [1]):

y1 = Xm
1 +Xm

2 +Xm
3 ,

y2 = Xm
1 X

m
2 +Xm

2 X
m
3 +Xm

3 X
m
1 ,

y3 = (X1X2X3)q.

We note the polynomials σ1 = X+Y +Z, σ2 = XY +Y Z+ZX, σ3 = XY Z

and δ = (X − Y )(Y − Z)(Z −X) have the relation

(4.6) δ2 + 4σ3
1σ3 − σ2

1σ
2
2 − 18σ1σ2σ3 + 4σ3

2 + 27σ2
3 = 0.

4.1.1 The case m = p, q = 1.

As is explained in [1], G′ = G(m,m, 3) is generated by the following elements
as a reflection group:⎛

⎝0 1 0
1 0 0
0 0 1

⎞
⎠ ,
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ ,
⎛
⎝ 0 ζm 0
ζ−1
m 0 0
0 0 1

⎞
⎠ (ζm = exp

(
2π

√−1
m

))
.

Thus l(G′) = 2. The number of pseudo-reflctions of G′ is 3m, and any pseudo-
reflection of G′ is one of the following form:

(4.7)

⎛
⎝1 0 0

0 0 ζim
0 ζ−im 0

⎞
⎠ ,
⎛
⎝ 0 0 ζim

0 1 0
ζ−im 0 0

⎞
⎠ ,
⎛
⎝ 0 ζim 0
ζ−im 0 0
0 0 1

⎞
⎠ (0 ≤ i ≤ m− 1).

The reflecting linear forms of above pseudo-reflections are

ζimX2 −X3, ζ
i
mX3 −X1, ζ

i
mX1 −X2 (0 ≤ i ≤ m− 1).

By (2.7), we have

fχ(1) = (Xm
1 −Xm

2 )(Xm
2 −Xm

3 )(Xm
3 −Xm

1 ).

From Corollary 3.3, R is generated by y1, y2, y3, and

y4 = X2
4 , y5 = fχ(1)X4 = (Xm

1 −Xm
2 )(Xm

2 −Xm
3 )(Xm

3 −Xm
1 )X4.

From (4.6), we have the following relation:

y2
5 + y4(4y3

1y
m
3 − y2

1y
2
2 − 18y1y2ym3 + 4y3

2 + 27y2m
3 ) = 0.

In other words
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R = C[y1, y2, y3, y4, y5]
∼= C[Y1, Y2, Y3, Y4, Y5]/(Y 2

5 +Y4(4Y 3
1 Y

m
3 −Y 2

1 Y
2
2 −18Y1Y2Y

m
3 +4Y 3

2 +27Y 2m
3 )).

Thus, R is a hypersurface. From (2.13), Poincaré series P (R, t) is

P (R, t) =
1 − t2(3m+1)

(1 − tm)(1 − t2m)(1 − t3)(1 − t2)(1 − t3m+1)
.

4.1.2 The case m �= p, q > 1.

G′ = G(m, p, 3) is generated by G(m,m, 3), and⎛
⎝ζq 0 0

0 1 0
0 0 1

⎞
⎠ .

There are 3(m+ q − 1) pseudo-reflections, and they are of the forms (4.7) or

(4.8)

⎛
⎝ζiq 0 0

0 1 0
0 0 1

⎞
⎠ ,
⎛
⎝1 0 0

0 ζiq 0
0 0 1

⎞
⎠ ,
⎛
⎝1 0 0

0 1 0
0 0 ζiq

⎞
⎠ (1 ≤ i ≤ q − 1).

Let P1 = P1(X1, X2, X3) be the product of the all reflecting linear forms
obtained from the pseudo-reflections of type (4.7), and let P2 = P2(X1, X2, X3)
be the product of those of type (4.8). Then

P1 = (Xm
1 −Xm

2 )(Xm
2 −Xm

3 )(Xm
3 −Xm

1 ), P2 = X1X2X3.

We note that P 2
1 , P

q
2 ∈ C[y1, y2, y3].

(a) The case q is even.
By the method explained in §3, we obtain fχ(i) and fχ(i)X

i
4 as the following

table:

i fχ(i) fχ(i)X
i
4 deg fχ(i)X

i
4

1 P1P2 P1P2X4 =: y5 3m+ 4
2 P 2

2 P 2
2X

2
4 =: y6 8

3 P1P
3
2 P1P

3
2X

3
4 = y5y6 3m+ 12

4 P 4
2 P 4

2X
4
4 = y2

6 16
...

...
...

...
q − 2 P q−2

2 P q−2
2 Xq−2

4 = y
(q−2)/2
6 4(q − 2)

q − 1 P1P
q−1
2 P1P

q−1
2 Xq−1

4 = y5y
(q−2)/2
6 3m+ 4(q − 1)

By Theorem 3.2, R is generated by 1 and fχ(1)X4, fχ(2)X
2
4 , . . . , fχ(q−1)X

q−1
4 as

R0-module. From the above table, we can choose y1, y2, y3 and
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y4 = Xq
4 ,

y5 = P1P2X4 = (Xm
1 −Xm

2 )(Xm
2 −Xm

3 )(Xm
3 −Xm

1 )X1X2X3X4,

y6 = P 2
2X

2
4 = (X1X2X3X4)2.

as a system of generators of C-algebra R. From §2.2, we have Rel(G) = {y2
5 , y

q/2
6 }.

By (4.6), we conclude that the relations are

y2
5 + y6(4y3

1y
p
3 − y2

1y
2
2 − 18y1y2y

p
3 + 4y3

2 + 27y2p
3 ) = 0,

y
q/2
6 − y3y4 = 0.

Thus, R is a complete intersection. Poincaré series P (R, t) is

P (R, t) =
(1 − t4q)(1 − t2(3m+4))

(1 − tm)(1 − t2m)(1 − tq)(1 − t3q)(1 − t8)(1 − t3m+4)
.

(b) The case q is odd.
The χ(i)-invariant fχ(i) and fχ(i)X

i
4 are:

i fχ(i) fχ(i)X
i
4 deg fχ(i)X

i
4

1 P1P2 P1P2X4 =: y5 3m+ 4
2 P 2

2 P 2
2X

2
4 =: y6 8

3 P1P
3
2 P1P

3
2X

3
4 = y5y6 3m+ 12

4 P 4
2 P 4

2X
4
4 = y2

6 16
...

...
...

...
q − 1 P q−1

2 P q−1
2 Xq−1

4 = y
(q−1)/2
6 4(q − 1)

q P1 P1X
q
4 =: y7 3m+ q

q + 1 P2 P2X
q+1
4 =: y8 q + 4

q + 2 P1P
2
2 P1P

2
2X

q+2
4 = y6y7 3m+ q + 8

q + 3 P 3
2 P 3

2X
q+3
4 = y6y8 q + 12

q + 4 P1P
4
2 P1P

4
2X

q+4
4 = y2

6y7 3m+ q + 16
q + 5 P 5

2 P 5
2X

q+5
4 = y2

6y8 q + 20
...

...
...

...
2q − 1 P1P

q−1
2 P1P

q−1
2 X2q−1

4 = y
(q−1)/2
6 y7 3m+ q + 4(q − 1)

Thus R is generated by y1, y2, y3, and

y4 = X2q
4 ,

y5 = P1P2X4 = (Xm
1 −Xm

2 )(Xm
2 −Xm

3 )(Xm
3 −Xm

1 )X1X2X3X4,

y6 = P 2
2X

2
4 = (X1X2X3X4)2,

y7 = P1X
q
4 = (Xm

1 −Xm
2 )(Xm

2 −Xm
3 )(Xm

3 −Xm
1 )Xq

4 ,

y8 = P2X
q+1
4 = X1X2X3X

q+1
4 .
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From §2.2, we have

Rel(G) =
{
y2
5 , y5y7, y5y8, y5y

(q−1)/2
6 , y

(q+1)/2
6 , y

(q−1)/2
6 y8, y

2
7 , y7y8, y

2
8

}
.

With the help of (4.6) and Theorem 2.12, we easily obtain that the minimal
relations are

y2
5 + y6(4y3

1y
p
3 − y2

1y
2
2 − 18y1y2y

p
3 + 4y3

2 + 27y2p
3 ) = 0,

y5y7 + y8(4y3
1y
p
3 − y2

1y
2
2 − 18y1y2y

p
3 + 4y3

2 + 27y2p
3 ) = 0,

y5y8 − y6y7 = 0,

y5y
(q−1)/2
6 − y3y7 = 0,

y
(q+1)/2
6 − y3y8 = 0,(4.9)

y
(q−1)/2
6 y8 − y3y4 = 0,

y2
7 − y4(4y3

1y
p
3 − y2

1y
2
2 − 18y1y2y

p
3 + 4y3

2 + 27y2p
3 ) = 0,

y7y8 − y4y5 = 0,

y2
8 − y4y6 = 0.

Thus, R is not a complete intersection and emb(R) = 8. Poincaré series P (R, t)
is

P (R, t) =
1 + tq+4 + t3m+q + t3m+4 − t4q(t4 + tq + t3m + t3m+q+4)

(1 − tm)(1 − t2m)(1 − t3q)(1 − t2q)(1 − t8)
.

4.2 G′ = W (H3)
Let α =

√
5 − 1, β =

√
5 + 1. W (H3) is defined as the group generated by

following elements:

(4.10)

⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠ ,
⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠ , 1

4

⎛
⎝−α 2 β

2 β −α
β −α 2

⎞
⎠ .

Since each determinant of the above generators is equal to −1, we have l = 2.
For a homogeneous polynomial f , we denote the Reynolds operator by

ρ(f) =
1

|G′|
∑
A′∈G′

A′(f).

It is convenient to use GAP4 ([12]) to calculate ρ(f), for GAP4 provides all ele-
ments of G′ from (4.10). As the Table 4.1, the degrees of the generators of R′ are
2, 6 and 10. Thus we can choose ρ(X2

1 ), ρ(X6
1 ), ρ(X10

1 ) as a system of the gen-
erators of the C-algebra R′. But to simplify, we take the following polynomials
instead:
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y1 := 3ρ(X2
1 ) =

∑
3

X2
1 ,

y2 := α

(
ρ(X6

1 ) − 7
48
y3
1

)

=
1
24

[
2
∑
3

X4
1X

2
2 + (

√
5 − 3)

∑
3

X2
1X

4
2 + 4(1 −

√
5)X2

1X
2
2X

2
3

]
,

y3 := − 3(
√

5 + 5)
50

ρ(X10
1 ) +

19(
√

5 + 5)
3200

y5
1 − 43

√
5 + 80
200

y2
1y2

=
1
27

[
2
∑
3

X2
1X

8
2 + (1 +

√
5)
∑
3

X6
1X

4
2 − (14 + 2

√
5)
∑
3

X6
1X

2
2X

2
3

−2
√

5
∑
3

X4
1X

6
2 + (15 + 5

√
5)
∑
3

X4
1X

4
2X

2
3

]
.

We can find pseudo-reflections among 120 elements of G′, by determine whether
rank(I3 − A) = 1, using GAP4. Thus we find 15 pseudo-reflections, and the
product of their forms gives fχ(1).

fχ(1) = X1X2X3 ·
∏
3

(2X1 + βX2 + αX3) ·
∏
3

(2X1 + βX2 − αX3)

×
∏
3

(2X1 − βX2 + αX3) ·
∏
3

(2X1 − βX2 − αX3).

By Theorem 3.2, R is generated by y1, y2, y3, and

y4 := X2
4 ,

y5 := fχ(1) ·X4

= X1X2X3X4 ·
∏
3

(2X1 + βX2 + αX3) ·
∏
3

(2X1 + βX2 − αX3)

×
∏
3

(2X1 − βX2 + αX3) ·
∏
3

(2X1 − βX2 − αX3).

Note that f2
χ(1) ∈ R′. With the help of computer, we eliminate X1, X2, X3, X4

from y1, y2, y3, y4, y5, and we have

y2
5 + y4

[
28(1 +

√
5)y6

1y
3
2 − 23(1 + 3

√
5)y3

1y
4
2 + 2 · 33(385 − 383

√
5)y5

2

− 211y7
1y2y3 + 25(45 −

√
5)y4

1y
2
2y3 − 211 · 32 · 5(5 + 3

√
5)y1y3

2y3

− 27(3 −
√

5)y5
1y

2
3 + 23 · 52(4 −

√
5)y2

1y2y
2
3 + 52(5 −

√
5)y3

3

]
= 0.

So, R is a hypersurface. From (2.13), Poincaré series P (R, t) is
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P (R, t) =
1 − t32

(1 − t2)2(1 − t6)(1 − t10)(1 − t16)
.

4.3 G′ = W (J3(4))
In this case, our calculation proceed similarly as §4.2. Let α = (1 +

√−7)/2.
W (J3(4)) is defined as the group generated by

⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠ ,
⎛
⎝1 0 0

0 0 −1
0 −1 0

⎞
⎠ , 1

2

⎛
⎝ 1 −1 α

−1 1 α

α α 0

⎞
⎠ .

Then l = 2, and R′ is generated by

y1 := 12ρ(X4
1 ) =

∑
3

X4
1 − 3α

∑
3

X2
1X

2
2 ,

y2 :=
224
9
ρ(X6

1 )

= 2
∑
3

X6
1 + 5α

∑
6

X4
1X

2
2 − (30 + 10

√−7)X2
1X

2
2X

2
3 ,

y3 :=
1
17
(
4096ρ(X14

1 ) − 191y2
1y2
)

= 16α
∑
6

X12
1 X2

2 +
1
2
(
131 − 49

√−7
)∑

6

X10
1 X4

2

+ (35 + 233
√−7)

∑
3

X10
1 X2

2X
2
3 +

3
2
(−49 +

√−7
)∑

6

X8
1X

6
2

+
1
2
(
563 + 159

√−7
)∑

6

X8
1X

4
2X

2
3 − (357 + 273

√−7)
∑
3

X6
1X

6
2X

2
3

+ (95 + 609
√−7)

∑
3

X6
1X

4
2X

4
3

R is generated by y1, y2, y3, and

y4 := X2
4 ,

y5 := 26 · 73 ·
√

7 ·X1X2X3X4(X2
1 −X2

2 )(X2
2 −X2

3 )(X2
3 −X2

1 )

×
∏
3

(αX1 +X2 +X3) ·
∏
3

(αX1 −X2 +X3) ·
∏
3

(αX1 +X2 −X3)

×
∏
3

(αX1 −X2 −X3).

The relation is

y2
5 + y4[320y9

1y2 + 272y6
1y

3
2 − 196y3

1y
5
2 + 27y7

2 + 112y7
1y3
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+ 1736y4
1y

2
2y3 − 441y1y4

2y3 + 1568y2
1y2y

2
3 + 343y3

3 ] = 0.

Thus, R is a hypersurface. Poincaré series P (R, t) is

P (R, t) =
1 − t44

(1 − t4)(1 − t6)(1 − t14)(1 − t2)(1 − t22)
.

4.4 G′ = W (L3)
This case also similar to §4.2 Let ω be the cubic root of 1. W (L3) is defined

as the group generated by⎛
⎝1 0 0

0 1 0
0 0 ω

⎞
⎠ ,
⎛
⎝1 0 0

0 ω 0
0 0 1

⎞
⎠ , 1

3

⎛
⎝ω + 2 ω − 1 ω − 1
ω − 1 ω + 2 ω − 1
ω − 1 ω − 1 ω + 2

⎞
⎠ .

Then, l = 3. R′ is generated by

y1 := 18ρ(X6
1 ) =

∑
3

X6
1 − 10

∑
3

X3
1X

3
2 ,

y2 := 6ρ(X6
1X

3
2 ) =

∑
3

X6
1X

3
2 −
∑
3

X3
1X

6
2 ,

y3 :=
81
155

ρ(X12
1 ) − 41

930
y2
1

=
∑
6

X9
1X

3
2 − 4

∑
3

X6
1X

6
2 + 2

∑
3

X6
1X

3
2X

3
3 .

The fχ(i)’s are

fχ(1) = X1X2X3(X3
1 +X3

2 +X3
3 − 3X1X2X3)

×
∏
3

(X2
1 +X2

2 +X2
3 + 2X1X2 −X2X3 −X3X1),

fχ(2) = f2
χ(1).

Thus R is generated by y1, y2, y3, and

y4 := X3
4 ,

y5 := X1X2X3X4(X3
1 +X3

2 +X3
3 − 3X1X2X3)

×
∏
3

(X2
1 +X2

2 +X2
3 + 2X1X2 −X2X3 −X3X1).

The relation is

4y3
5 + y4(y3

1y
2
2 + 108y4

2 + 36y1y2
2y3 − y2

1y
2
3 − 32y3

3) = 0.

Thus, R is a hypersurface. Poincaré series P (R, t) is
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P (R, t) =
1 − t39

(1 − t6)(1 − t9)(1 − t12)(1 − t3)(1 − t13)
.

4.5 G′ = W (M3)
W (M3) is defined as the group generated by

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ ,
⎛
⎝1 0 0

0 1 0
0 0 ω

⎞
⎠ , 1

3

⎛
⎝ω + 2 ω − 1 ω − 1
ω − 1 ω + 2 ω − 1
ω − 1 ω − 1 ω + 2

⎞
⎠ .

The order of any pseudo-reflection of G′ is 2 or 3, and l = 6. We can choose the
generators of R′ as the followings:

y1 := 18ρ(X6
1 ) =

∑
3

X6
1 − 10

∑
3

X3
1X

3
2 ,

y2 :=
81
155

ρ(X12
1 ) − 41

930
y2
1

=
∑
6

X9
1X

3
2 − 4

∑
3

X6
1X

6
2 + 2

∑
3

X6
1X

3
2X

3
3 ,

y3 :=
486
4181

ρ(X18
1 ) − 1093

112887
y3
1 − 3598

12543
y1y2

= (X3
1 −X3

2 )2(X3
2 −X3

3 )2(X3
3 −X3

1 )2.

Let P1 = P1(X1, X2, X3) be the product of the all reflecting linear forms ob-
tained from the pseudo-reflections of order 2, and let P2 = P2(X1, X2, X3) be the
product of those of order 3. Then

P1 = (X3
1 −X3

2 )(X3
2 −X3

3 )(X3
3 −X3

1 ),

P2 = X1X2X3(X3
1 +X3

2 +X3
3 − 3X1X2X3)

×
∏
3

(X2
1 +X2

2 +X2
3 + 2X1X2 −X2X3 −X3X1).

We note that P 2
1 , P

3
2 ∈ C[y1, y2, y3]. fχ(i) and fχ(i)X

i
4 are

i fχ(i) fχ(i)X
i
4 deg fχ(i)X

i
4

1 P1P2 P1P2X4 =: y5 22
2 P 2

2 P 2
2X

2
4 =: y6 26

3 P1 P1X
3
4 =: y7 12

4 P2 P2X
4
4 =: y8 16

5 P1P
2
2 P1P

2
2X

5
4 = y6y7 38

R is generated by y1, y2, y3, and

y4 := X6
4 , y5 := P1P2X4, y6 := P 2

2X
2
4 , y7 := P1X

3
4 , y8 := P2X

4
4 .
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From §2.2, we have

Rel(G) =
{
y2
5 , y5y6, y5y7, y5y8, y

2
6 , y6y8, y

2
7 , y7y8, y

2
8

}
.

It is clear that P 2
1 = y3, and using computer, we have

P 3
2 =

1
4
y2
1y2 + 8y3

2 − 1
4
y3
1y3 − 9y1y2y3 − 27y2

3 .

By Theorem 2.12, the minimal relations are

y2
5 − y3y6 = 0,

y5y6 −
(

1
4
y2
1y2 + 8y3

2 − 1
4
y3
1y3 − 9y1y2y3 − 27y2

3

)
y7 = 0,

y5y7 − y3y8 = 0,

y5y8 − y6y7 = 0,

y2
6 −
(

1
4
y2
1y2 + 8y3

2 − 1
4
y3
1y3 − 9y1y2y3 − 27y2

3

)
y8 = 0,(4.11)

y6y8 −
(

1
4
y2
1y2 + 8y3

2 − 1
4
y3
1y3 − 9y1y2y3 − 27y2

3

)
y4 = 0,

y2
7 − y3y4 = 0,

y7y8 − y4y5 = 0,

y2
8 − y4y6 = 0.

Thus, R is not a complete intersection, and emb(R) = 8. Poincaré series P (R, t)
is

P (R, t) =
1 + t12 + t16 + t22 + t26 + t38

(1 − t6)2(1 − t12)(1 − t18)
.

4.6 G′ = W (J3(5))
This case is similar to §4.2. Let α =

√
5−1, β =

√
5+1. W (J3(5)) is defined

as the group generated by⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠ , − 1

4

⎛
⎝ α 2ω2 βω

2ω −β αω2

βω2 αω −2

⎞
⎠ , 1

4

⎛
⎝ 2 α −β
α β 2
−β 2 −α

⎞
⎠ .

Since these determinants are −1, we have l = 2. Using GAP4, we can repre-
sent 2160 elements of W (J3(5)) by matrices, and can compute ρ(Xk

1 ). We shall
choose the following y1, y2, y3 of degrees 6, 12, 30 as the generators of R′. Note
that we choose somewhat complicated coefficients for y2, y3 to simplify the later
calculation.
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y1 := 16ρ(X6
1 )

= 4
∑
3

X6
1 + 3

√
5
(
(−1 +

√
5)ω + 1 +

√
5
)∑

3

X4
1X

2
2

− 3
√

5
(
(1 +

√
5)ω + 2

)∑
3

X2
1X

4
2 + 12

√
5
(
2ω +

√
5 + 1

)
X2

1X
2
2X

2
3 ,

y2 :=
(√−15 + 3

√
5 − 5

√−3 + 5
)(80

39
ρ(X12

1 ) +
37

12480
y2
1

)

= 4
∑
3

X10
1 X2

2 + 4ω2
∑
3

X2
1X

10
2 +

1
4

(
(5
√

5 + 3)ω − 5
√

5 + 3
)∑

3

X8
1X

4
2

− 3
2

(
(3
√

5 − 13)ω + 6
√

5
)∑

3

X8
1X

2
2X

2
3

− 1
4

(
10
√

5ω + 5
√

5 + 3
)∑

3

X4
1X

8
2

− 1
2

(
(5
√

5 + 13)ω + 10
√

5
)∑

3

X6
1X

6
2

+
1
2

(
38
√

5ω + 19
√

5 + 21
)∑

3

X6
1X

4
2X

2
3

+
1
2

(
(−19

√
5 − 21)ω + 19

√
5 − 21

)∑
3

X6
1X

2
2X

4
3

+
5
2

(
(13

√
5 − 27)ω + 26

√
5
)
X4

1X
4
2X

4
3 ,

y3 :=

[√−15 − 15
√−3 + 3

√
5 + 15

52

(
−230ρ(X30

1 ) +
32 · 11 · 61099

28
y5
1

)

+
3 · 797 · 911

23

(√−15 + 3
√−3 + 3

√
5 − 3

)
y3
1y2

− 32

2 · 5
(
2287 · 7187

√−15 − 5 · 181 · 10949
)
y1y

2
2

]
· 1
181 · 10949

= 28 · 32 · ω2
∑
3

X26
1 X2

2X
2
3

− 4
(
53
√−15 − 237

√−3 − 159
√

5 − 237
)∑

3

X24
1 X6

2

− 12
(
17
√−15 − 279

√−3 + 51
√

5 + 279
)∑

3

X24
1 X4

2X
2
3

+ 24
(
17
√−15 + 279

)∑
3

X24
1 X2

2X
4
3

− 3
4

(
1093

√−15 − 3459
√−3 + 3279

√
5 + 3459

)∑
3

X22
1 X8

2
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+ 6
(
835

√−15 + 4917
)∑

3

X22
1 X6

2X
2
3

− 9
2

(
869

√−15 − 2205
√−3 − 2607

√
5 − 2205

)∑
3

X22
1 X4

2X
4
3

− 3
(
835

√−15 − 4917
√−3 + 2505

√
5 + 4917

)∑
3

X22
1 X2

2X
6
3

+
3
2
(
1093

√−15 + 3459
)∑

3

X8
1X

22
2

− 9
4
(
2283

√−15 + 1229
)∑

3

X20
1 X10

2

− 9
8

(
161

√−15 + 17287
√−3 − 483

√
5 + 17287

)∑
6

X20
1 X8

2X
2
3

− 9
4

(
13221

√−15 + 25309
√−3 + 39663

√
5 − 25309

)∑
3

X20
1 X6

2X
4
3

+
9
2
(
13221

√−15 − 25309
)∑

3

X20
1 X4

2X
6
3

+
9
8

(
2283

√−15 − 1229
√−3 + 6849

√
5 + 1229

)∑
3

X10
1 X20

2

− 1
8

(
5333

√−15 − 15501
√−3 − 15999

√
5 − 15501

)∑
6

X18
1 X12

2

+
147
2

(
311

√−15 + 159
√−3 + 933

√
5 − 159

)∑
3

X18
1 X10

2 X2
3

− 3
4
(
37967

√−15 + 662793
)∑

3

X18
1 X8

2X
4
3

−
(
83483

√−15 − 287715
√−3 − 250449

√
5 − 287715

)∑
3

X18
1 X6

2X
6
3

+
3
8

(
37967

√−15 − 662793
√−3 + 113901

√
5 + 662793

)∑
3

X18
1 X4

2X
8
3

− 147
(
311

√−15 − 159
)∑

3

X18
1 X2

2X
10
3

− 6
(
145

√−15 − 279
√−3 + 435

√
5 + 279

)∑
3

X16
1 X14

2

+
3
4
(
74645

√−15 + 8883
)∑

3

X16
1 X12

2 X2
3

+
3
8

(
135263

√−15 − 949383
√−3 − 405789

√
5 − 949383

)∑
6

X16
1 X10

2 X4
3
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+
9
4

(
42593

√−15 − 168903
√−3 + 127779

√
5 + 168903

)∑
3

X16
1 X8

2X
6
3

− 9
2
(
42593

√−15 + 168903
)∑

3

X16
1 X6

2X
8
3

− 3
8

(
74645

√−15 − 8883
√−3 + 223935

√
5 + 8883

)∑
3

X16
1 X2

2X
12
3

+ 12
(
145

√−15 + 279
)∑

3

X14
1 X16

2

+ 9
(
1783

√−15 + 11937
√−3 − 5349

√
5 + 11937

)∑
3

X14
1 X14

2 X2
3

+
9
2

(
56385

√−15 − 102631
√−3 + 169155

√
5 + 102631

)∑
3

X14
1 X12

2 X4
3

+ 30
(
27559

√−15 + 24945
)∑

3

X14
1 X10

2 X6
3

+ 27
(
14357

√−15 + 51763
√−3 − 43071

√
5 + 51763

)∑
3

X14
1 X8

2X
8
3

− 15
(
27559

√−15 − 24945
√−3 + 82677

√
5 + 24945

)∑
3

X14
1 X6

2X
10
3

− 9
(
56385

√−15 + 102631
)∑

3

X14
1 X4

2X
12
3

+ 12
(
10975

√−15 − 123399
√−3 − 32925

√
5 − 123399

)∑
3

X12
1 X12

2 X6
3

+ 6
(
41071

√−15 + 160791
√−3 + 123213

√
5 − 160791

)∑
3

X12
1 X10

2 X8
3

− 12
(
41071

√−15 − 160791
)∑

3

X12
1 X8

2X
10
3

− 21
(
80083

√−15 − 177627
√−3 − 240249

√
5 − 177627

)
X10

1 X10
2 X10

3 .

R is generated by y1, y2, y3, and

y4 := ω2X2
4 ,

y5 := 212 · 3 ·X1X2X3X4 ·
∏
3

(X1 + ωX2) ·
∏
3

(X1 − ωX2)

×
∏
3

(X1 + ωX2 + γX3) ·
∏
3

(X1 − ωX2 + γX3) ·
∏
3

(X1 + ωX2 − γX3)

×
∏
3

(X1 − ωX2 − γX3) ·
∏
3

(X1 + βX2 + αX3) ·
∏
3

(X1 − βX2 + αX3)

×
∏
3

(X1 + βX2−αX3) ·
∏
3

(X1−βX2−αX3) ·
∏
3

(X1 + ω2αX2 + ωβX3)
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×
∏
3

(X1 − ω2αX2 + ωβX3) ·
∏
3

(X1 + ω2αX2 − ωβX3)

×
∏
3

(X1 − ω2αX2 − ωβX3),

where

γ =
1
4
ω(

√−15 −√−3 −
√

5 − 3).

The following relation can be easily obtained using GAP4, by linear elimination
of the monomials Xi1

1 · · ·Xi4
4 from some monomials yj11 · · · yj55 of lower degrees.

y2
5 + y4

[1
4
· 32 · 52

(
11
√−15 − 45

√−3 − 33
√

5 − 45
)
y3
3

+ 23 · 33 · 52
(
3
√−15 −√−3 − 9

√
5 − 1

)
y1y

2
2y

2
3

− 45
(
13
√−15 + 5

)
y3
1y2y

2
3

+
1
4

(
7
√−15 + 17

√−3 + 21
√

5 − 17
)
y5
1y

2
3

+ 210 · 35
(
5
√−15 + 3

√−3 + 15
√

5 − 3
)
y5
2y3

− 144
(
677

√−15 + 1035
√−3 − 2031

√
5 + 1035

)
y2
1y

4
2y3

+ 8
(
659

√−15 + 219
)
y4
1y

3
2y3

− 9
4

(
7
√−15 + 17

√−3 + 21
√

5 − 17
)
y6
1y

2
2y3

− 215 · 35
(√−15 − 7

√−3 + 3
√

5 + 7
)
y1y

7
2

− 48
(
6087

√−15 + 23633
√−3 − 18261

√
5 + 23633

)
y3
1y

6
2

+ 27 · 32
(
5
√−15 + 3

)
y5
1y

5
2

]
= 0.

Thus, R is a hypersurface. Poincaré series P (R, t) is

P (R, t) =
1 − t92

(1 − t6)(1 − t12)(1 − t30)(1 − t2)(1 − t46)
.

5. Proof of Theorem 4.4

In this section, we study the singular locus SingV of the quotient variety
V = C4/G associated with the invariant subring R = SG as §4. We note the
following theorem.

Theorem 5.1. (cf. [11]) Let G ⊂ GL(n,C) be a subgroup which contains no
pseudo-reflections, and let
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F = {x ∈ Cn | Ax = x, for some A ∈ G, A �= In}.

Then the singular locus of Cn/G is F/G.

We use the following notation:

r := emb(R), y4 := X l
4, zi := fχ(mi), yi := ziX

mi
4 (5 ≤ i ≤ r),

G̃ := G′ ∩ SL(3,C), Ṽ := C3/G̃, R̃ := (S′)G̃.

We can write

R′ = C[y1, y2, y3], R = C[y1, y2, y3, y4, y5, . . . , yr],

R̃ = C[y1, y2, y3, z5, z6 . . . , zr].

By this representation, we consider V ⊂ Cr and Ṽ ⊂ Cr−1. Let ϕ : C4 −→ V

and ϕ̃ : C3 −→ Ṽ be the natural surjections.
For A ∈ G, we define A′ by

A =
(
A′

(detA′)−1

)
.

And we put

R(G) :={A ∈ G | A′ is a pseudo-reflection in G′},
S(G) :={A ∈ G | A′ ∈ G̃, rank(A′ − I3) = 2}.

Note that R(G) �= ∅ and S(G) �= ∅. Since any pseudo-reflection in G′ is not
contained in G̃, R(G) ∩ S(G) = ∅.

We put

HA := {x ∈ C4 | Ax = x}, H̃A := {x′ ∈ C3 | A′x′ = x′}.

Then, we have

SingṼ =
⋃

A∈S(G)

ϕ̃(H̃A)

by Theorem 5.1. For every A ∈ S(G), ϕ̃(H̃A) is an irreducible component of
SingṼ , and dim ϕ̃(H̃A) = dim H̃A = 3 − rank(A′ − I3) = 1.

Theorem 5.2. (i) For any A ∈ S(G), there exists the natural surjection
ϕ̃(H̃A) × C −→ ϕ(HA).

(ii) SingV =
⋃

A∈R(G)∪S(G)

ϕ(HA).

(iii) SingV is of pure dimension 2.

Proof. (i) Let A ∈ S(G) and deg zj = bj (5 ≤ j ≤ r). We define the morphism
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ψ : Ṽ × C −→ V by

ψ(y1, y2, y3, z5, . . . , zr, s) = (y1, y2, y3, sl, z5sb5 , . . . , zrsbr).

Then ψ is surjective, and the following diagram is commutative:

Ṽ × C
ψ−−−−→ V

ϕ̃×idC

!⏐⏐ !⏐⏐ϕ
C3 × C

=−−−−→ C4

Furthermore, ψ
(
ϕ̃(H̃A) × C

)
= ϕ(HA).

(ii) Clearly, SingV ⊃
⋃

A∈R(G)∪S(G)

ϕ(HA). Conversely, we shall show SingV ⊂
⋃

A∈R(G)∪S(G)

ϕ(HA). Let x = (x1, x2, x3, x4) ∈ C4 such that ϕ(x) ∈ SingV .

First, suppose that x4 �= 0. Then there exists A ∈ G, A �= I4 such that
Ax = x. Since x4 �= 0, we have detA′ = 1, i.e. A′ ∈ G̃. Thus ϕ(x) ∈ ϕ(HB) by
some B ∈ S(G).

Next, suppose that x4 = 0. Let x′ = (x1, x2, x3).
Case 1: R is a hypersuface.

As we studied in §4.1, §4.2, §4.3, §4.4 and §4.6, the relation is of the form

f := yl5 + y4F (y1, y2, y3),

where F = F (y1, y2, y3) is a polynomial of y1, y2, y3. We note that F = f lχ(1) is a
product of reflecting linear forms of G′. Since

∂f

∂y4
= F (y1, y2, y3),

we have F (x′) = F (y1(x′), y2(x′), y3(x′)) = f lχ(1)(x
′) = 0. Thus there exists a

reflecting linear form L of G′ such that L(x′) = 0. We take a pseudo-reflection
A′ ∈ G′ assciated with L, and we let A ∈ R(G) be the element associated with
A′. Then x ∈ HA, thus ϕ(x) ∈ ϕ(HA).
Case 2: G′ = G(pq, p, 3) (q is even, q ≥ 4).

The relations are

f1 := y2
5 + y6F (y1, y2, y3), f2 := y

q/2
6 − y3y4,

where F (y1, y2, y3) = 4y3
1y
p
3−y2

1y
2
2−18y1y2y

p
3 +4y3

2 +27y2p
3 . We note that F = P 2

1

and y3 = P q2 . The Jacobian matrix J =
(
∂fi
∂yj

)
i,j

is
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J =

[
y6Fy1 y6Fy2 y6Fy3 0 2y5 F

0 0 −y4 −y3 0 q
2 · y(q−2)/2

6

]
.

We have y4(x) = y5(x) = y6(x) = 0 from x4 = 0, and rankJ(ϕ(x)) <

emb(R) − dimV = 6 − 4 = 2 where J(ϕ(x)) is the Jacobian matrix at ϕ(x).
Thus F (x) = 0 or y3(x) = 0, i.e. P1(x) = 0 or P2(x) = 0. Both of them, there
exists a reflecting linear form L of G′ such that L(x′) = 0. The rest of the proof
is the same as Case 1.
Case 3: G′ = G(pq, p, 3) (q is odd, q ≥ 3).

By the relations (4.9), we obtain the Jacobian matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y6Fy1 y6Fy2 y6Fy3 0 2y5 F 0 0
y8Fy1 y8Fy2 y8Fy3 0 y7 0 y5 0

0 0 0 0 y8 −y7 −y6 y5

0 0 −y7 0 y
(q−1)/2
6

q−1
2 · y5y(q−3)/2

6 −y3 0
0 0 −y8 0 0 q+1

2 · y(q−1)/2
6 0 −y3

0 0 −y4 −y3 0 q−1
2 · y8y(q−3)/2

6 0 y
(q−1)/2
6

−y4Fy1 −y4Fy2 −y4Fy3 −F 0 0 2y7 0
0 0 0 −y5 −y4 0 y8 y7
0 0 0 −y6 0 −y4 0 2y8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where F = 4y3
1y
p
3 − y2

1y
2
2 − 18y1y2y

p
3 + 4y3

2 + 27y2p
3 . We have y4(x) = y5(x) =

y6(x) = y7(x) = y8(x) = 0 from x4 = 0, and rankJ(ϕ(x)) < emb(R) − dimV =
8−4 = 4. Thus F (x) = 0 or y3(x) = 0. The rest of the proof is the same as Case
2.
Case 4: G′ = W (M3)

Recall the relations (4.11). Let F = F (y1, y2, y3) =
1
4
y2
1y2 + 8y3

2 − 1
4
y3
1y3 −

9y1y2y3−27y2
3 . Note that F = P 3

2 , y3 = P 2
1 , furthermore P1 and P2 are products

of reflecting linear forms of G′. The Jacobian matrix is

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −y6 0 2y5 −y3 0 0
−y7Fy1 −y7Fy2 −y7Fy3 0 y6 y5 −F 0

0 0 −y8 0 y7 0 y5 −y3
0 0 0 0 y8 −y7 −y6 y5

−y8Fy1 −y8Fy2 −y8Fy3 0 0 2y6 0 F

−y4Fy1 −y4Fy2 −y4Fy3 −F 0 y8 0 y6
0 0 −y4 −y3 0 0 2y7 0
0 0 0 −y5 −y4 0 y8 y7
0 0 0 −y6 0 −y4 0 2y8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We have y4(x) = y5(x) = y6(x) = y7(x) = y8(x) = 0 from x4 = 0, and
rankJ(ϕ(x)) < emb(R) − dimV = 8 − 4 = 4. Thus F (x) = 0 or y3(x) = 0.
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The rest of the proof is the same as Case 2.
(iii) For any A ∈ R(G) ∪ S(G), dimϕ(HA) = dimHA = 2. Thus SingV is of

pure dimension 2 from (ii).
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