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Abstract

We study quotient singularities of certain finite reducible groups in dimension
4 associated with irreducible reflection groups in GL(3,C). We obtain 6 types of
hypersurface singularities, another type of complete intersection singularities, and 2
types of non complete intersection singularities. We also obtain that their singular
locuses are of pure dimension 2.

1. Introduction

Let G be a finite subgroup of SL(n, C), S = C[X1,..., X,] be the polynomial
ring, and let R = S be the invariant subring of S under the natural action of G.
We want to study the invariant subring R = S¢ and the quotient variety C"/G.
We are interested in the following problems:

(i) To find generators of R and its relations, and to study its properties. In
other words, to determine the embedding dimension of C"/G, and its defin-
ing equations.

(ii) The dimension and the structure of the singular locus Sing(C"/G).

About (i), we know that R is Gorenstein, since G C SL(n,C) ([9]). But R
may not be a complete intersection. However, if R is a complete intersection, then
its embedding dimension is at most 2n — 1 ([4]). About (ii), The dimension of
the singular locus of C*/G is at most n — 2. In particular, if C"/G is a complete
intersection, then the dimension of its singular locus is exactly n — 2 ([4]).

We need to study finite subgroups of SL(n, C) before to study invariant sub-
rings R = S¢. We adopt the following rough classification of finite subgroups of
SL(n, C).

(A) Abelian groups.

(B) Reducible groups which are not abelian.
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(C) Imprimitive groups.
(D) Primitive groups.

For groups of (A), invariant subrings which are complete intersections are
completely classified by [10]. And it is known that the generators of R and the
relations of R can be calculated since the basic invariants of R (see §2.2) can be
calculated ([7]). The dimension of Sing(C"/G) is less than n — 2 in some cases.

For groups of (B), (C) and (D), the structure of R and Sing(C"/G) are not
well studied except the case of n = 2, 3.

In the case of n = 2, the group of (A) induces the rational double point
of type A, the group of (C) induces the RDP of type D, and the group of (D)
induces the RDP of type E.

In the case of n = 3, the structure of R was obtained from [8], [11]. For every
family of (A), (B) and (C), we can find groups which induce each of hypersur-
faces, complete intersections and non complete intersections. For the family (D),
there exist 8 types of groups. Seven of them induce hypersurfaces, and another
induces a complete intersection which is not a hypersurface. C3/G is an isolated
singularity if and only if G is a group of (A) and 1 is not an eigenvalue of A for
every nontrivial element A in G ([11]). Thus Sing(C?/G) is of pure dimension 1
except the above case.

In the case of n > 4, almost nothing are known yet about (i) except for the
family (A). About (ii), it is expected that Sing(C"/G) is of pure dimension n —2
except some cases. In fact, if there exists nontrivial A in G such that 1 is the
eigenvalue of A whose multiplicity is n — 2, then the dimension of Sing(C"/G) is
n—2.

We want to study whether the results like the case n = 3 can be obtained in
the case n = 4. But there are too many types of G. In this article, we treat the
groups of type (B1’) as follows.

The groups of type (B) is naturally classified as follows:

(B1) A direct sum of an irreducible 3-dimensional representation and a 1-
dimensional representation, i.e.,

o~ { () [ e}

where G’ is an irreducible group of GL(3,C) (See §2.1).

(B2) A direct sum of an irreducible 2-dimensional representation and two 1-
dimensional representations, i.e. any element of G is the following form:

A/

a , A€ GL(2,C), ab-det A’ = 1.
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(B3) A direct sum of two irreducible 2-dimensional representations, i.e. any ele-
ment of G is the following form:

( A 1 ) Aj, Ay € GL(2,C), det A; -det Ay = 1.

2
Even if we treat only type (B1), there exist too many groups. But when G’ is an
irreducible reflection group, the classification of G’ is obtained from [5], [1]. In

this article, we study R = S with its classification, i.e. we study the invariant
subrings of the following group G:

®1)
o= {(Frar) [ et

where G’ is an irreducible reflection group of GL(3,C).

2. Preliminaries

We use the following notation:
S =C[Xy,...,X,] the polynomial ring.

G a finite subgroup of GL(n, C).
R =8¢ the invariant subring of G.

I, the identity of GL(n,C).

|G| the order of G.

2.1 Some remarks of finite subgroups of GL(n,C) and invariant
subrings of reflection groups
Definition 2.1. (i) G is called reducible if there exists a proper G-invariant
subspace of C". If GG is not reducible, we say G is irreducible.

(ii) For an irreducible group G, G is called imprimitive if there exists a decompo-
sition to vector subspaces C* = W1 @---@W,. (r > 2) such that the following
condition is satisfied: For any A € G and 1 < i < r, thereexists 1 < j <r
such that A(W;) = W;. If G is not imprimitive, we say G is primitive.

Definition 2.2. A € GL(n,C) is called a pseudo-reflection if A has a finite order
and if rank(l,, — A) = 1. A finite group generated by pseudo-reflections is called
a reflection group.

Theorem 2.3. (cf.[5]) The following two statements are equivalent:
(i) G is a refletion group.

(ii) R is a polynomial ring, i.e., R is generated by n elements which are alge-
braically independent over C.
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Furthermore, if G is a reflection group, the degrees of n minimal generators of R
are determined uniquely.

Definition 2.4. For a reflection group G, the degrees of n generators of R which
are algebraically independent are called the degrees of G.

Theorem 2.5. (cf.[5]) Let G be a reflection group, and let di,...,d, be the
degrees of GG. Then,

(i) |G| = didy - - - d.
(ii) The number of pseudo-reflections in G is Y ., (d; — 1).
Definition 2.6. For any linear character y : G — C* of G, we define
R, :={feS|A(f)=x(A)f, forall Ac G}.
R, is an R-module. Elements of R, are called x-invariants.

From [6] §2, if G is a reflection group, generators of R, over R can be obtained
as the following way:
For a pseudo-reflection A € G,

Hy ={zecC"| Az =z}

is called a reflecting hyperplane of A, and it is a subspace of C™ of dimension
n — 1. Let Hy,...,H, be the all distinct reflecting hyperplanes associated with
G. Fori=1,...,r,let f; = fi(X1,...,X,) be the linear form defining H;. f; is
called a reflecting linear form. Let

C;={AeG| Az =u, forall x € H;}.

Then Cj is a cyclic group. Let P; be a generator of C;. For ¢ = 1,...,r, we
choose s; so that s; is the least non-negative integer satisfying x(P;) = det P;".
Finally let

(2.7) A=11#
=1

Then f, is a homogeneous polynomial of degree s+ - -+s,, and does not depend
on the choice of P;. Moreover we have the following.

Theorem 2.8. ([6], Theorem 3.1) If G is a reflection group, then R, is a free
R-module of rank 1 generated by the above f, .

2.2 Basic invariants
We shall explain the way to calculate minimal relations of generators and
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Poincaré series of R according to [11].

Definition 2.9. ([11], p.40-p.41) If R can be written as a direct sum

(210) R = C[fl,,gn] @(C[gl, ..,fn]'fh D @(C[gl, ..,fn]'f}r

where &£1,...,&,,m1,...,n, are homogeneous polynomials of R and &3,...,&, are
algebraically independent over C, (2.10) is called a basic decomposition of R, and
(&1, &M, -, mp) are called basic invariants of R. Then any f € R can be
written as f = po + p1m + -+ - + prye by certain po,...,p. € Céq,...,&,]. This
is called the basic form of f denoted by

bas(f) = po +pim + -+ + pe1y-

Theorem 2.11. ([3], [11] Theorem 20) For any finite subgroup G C GL(n,C),
R = S€ has a basic decomposition.

The minimal relations of generators of R can be calculated in the following
way([11] p.43):

Let (&1,-.-,&n;m, .-, nr) be the basic invariants of R where &1,...,&, are
algebraically independent over C and &1,...,&,,m,...,n: (¢ < r) are minimal
generators of R. Let

Rel(G) := {nmj | 1<i<t,i<j gr} - {nl,...,nr},
Rel(G) := {h € Rel(G) | h' { h, for any h' € Rel(G) — {h}}.
Then we have the following theorem.

Theorem 2.12. The minimal relations of generators of R are {h — bas(h) | h €
Rel(G)}.

Furthermore, Poincaré series P(R,t) of R is

e
(1 —tdr).. (1 —tdn)’

(2.13) P(R,t) =

where d; = deg§; (1 <i<mn),bj =degn; (1<j5<r).

3. Certain reducible groups and their invariant subrings

We use the following notation:
S"=C[X1,...,Xn—1] the polynomial ring, S’ C S.

G’ an irreducible subgroup of GL(n — 1,C),
G' ¢ SL(n—1,C).
I=1G") the least positive integer such that det(A’)! = 1

for any A’ € G’ (note I > 1).
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R = (8¢ the invariant subring of G'.
x(2) (i=0,1,2,...) the linear character of G’ defined by
X(i)(A") = (det A')" (A" € G").
R;( @) (1=0,1,2,...) the minimal R’-submodule of S’ which contains all
x(i)-invariants (note R, ) = R’).

We shall study the invariant subring R = S of the following group:

G:{( A et A ) ’ A’eG’} C SL(n, C).

Proposition 3.1. (cf. [8], §1) R is generated over R’ by X!,
(1<i<i-—1).

and Rx(l

Proof. Let R be the ring generated over R’ by X!, R X, 1<i<i-1).
Clearly, R C R. Conversely, we shall show R D R. Let f € R. Then f can be
written as f = >_|_, ;X by some g; € S". Let A’ € G’ be any element, and let

- (A e

Since A(f) = f, we have
ZA’ gi) - (det A) ' X! = ZngZ.

This means
A'(g;) = (det A")'g; (0<i<r),

and g; € R;(i) since A’ is arbitrary. Define non-negative integers k; and m; by
0<k; <I—1andi=myl+k;. Then,

iy ={f €S8 A (f) = (det A')' f for all A" € G'}
={f eS| A(f) = (det A)™il*ki f for all A’ € G'}
={fe S| A(f) = (det A)¥i f for all A’ € G'}
=Ry

Thus g; € R;(ki). Finally we have

f= Zng —Zng’“ (XL)™ € R.
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We assume G’ is a reflection group. Then R’ is a polynomial ring. Let
Y1,---,Yn_1 be homogeneous algebraically independent generators of R’ over C,
and let Ry := Cly1, ..., yn—1, XL]. Let fy(;) be the generator of R;(i) constructed
as (2.7). Then we have the following theorem.

Theorem 3.2.
R = Ry® Rofy1)Xn ® Rofyo)Xa @+ @ Rofya-1) X,

In other words,

(51)"'7571;7717"'7777‘) = (y17"'7yn 17Xn7fx Xnafx "'7fX(l*1)X1%7,_1)

are the basic invariants of R.

Proof. We use the same notation in the proof of Proposition 3.1. From Propo-
sition 3.1, R = Ro[fy1)Xn,---, fxa—1) X5 ']. Let f € R. Since 0 < k; <1 —1,
and g; € R;(ki) can be written as g; = h; fy(x,) (hi € R'),

I
-

f= Zng’“ (X5)™ *fo(k )Xt hi (X)™ =Y hyifpnXi
=0

<.
Il
o

for certain h~j € Ry. Thus

R=Ro+ RofyyXn+-+ RofX(Z—l)Xrlz_l-

Since Ry = C[y1, ..., Yn—1,X}], and y; does not contain X,,, we have
Ro+ RofyyXn + -+ Rofra—1) X5 ' = Ro® Rofr (1) Xn ® -+ @ Ro fyyq—1) X"

O
Corollary 3.3. Let y, = X}, and y, 11 = fy () Xn- If fro) = fioy @<i<i-1),
then R = Cly1,...,Yn,Yn+1), and the generators have a unique relation of the
form

y’f],—',—l - ynF(ylv s >yn—1) = 07
where F(y1,...,Yn—1) is a polynomial of y1,...,¥n_1.

Proof. From Theorem 3.2,
R = Ro® Royn1 @ Roypyy & -+ @ Royp -

Thus R = C[y1,- -, Yn,Yn+1] and Rel(G) = {yfﬂ_l}. From §2.2, y1,...,Yn, Ynt1
have a unique relation y!, ; — bas(y},;) = 0. Since fi(l) € Clyr,- -y Yn—1],
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bas(yl 1) = fi(l)X,lL is a polynomial of the form v, F(g1,...,Yn—1) O

We can calculate the generators, the relations, and Poincaré series P(R,t) of
R in the following way:

(1) Calculate the generators yi,...,y,—1 of R’

(2) Calculate the generator f ;) of the free R'-module R;((i) as (2.7).

(3) Then (y1,. .., Yn—1, X5 fro)Xns - - - fxu—1) X} 1) are the basic invariants of

R from Theorem 3.2. Thus we can calculate the minimal relations and
Poincaré series P(R,t) of R as explained in §2.2.

Next, we shall prove the following theorem.
Theorem 3.4. The dimension of the singular locus of C"/G is n — 2.

Proof. Let F = {x € C" | Ax = z, for some A € G, A # I,,}. Since the singular
locus of C"/G is F/G (see Theorem 5.1), it is sufficient to show there eixists a
linear subspace H of C" of dimension n — 2 such that H C F. Since G’ is a
reflection group, G’ has pseudo-reflections. Let A’ € G’ be a pseudo-reflection,
and we put

A’ n
A::< I(detA')1>€G’ Hy ={xeC"| Az =x}.

Then 1 is the eigenvalue of A whose mutiplicity is n — 2. Thus dim Hx = n — 2.
Futhermore, H4 C F. O

4. Main results

In this section we study the invariant subring of the group

G:{( A s ) ‘ A’GG’}CSL(4,C)

where G’ is an irreducible reflection group of GL(3,C). It is known that G’ is
conjugate to one of the following groups ([5], [1]).

Group | Order | Number of pseudo-reflections | Degrees
G(m,p,3) | 6gm> 3(m+q—1) m, 2m, 3q
W(Hs) | 120 15 2, 6, 10
W(J5(4)) | 336 21 4,6, 14
W(Ls) | 648 24 6,9, 12
W(Ms) | 1296 33 6, 12, 18
W(J5(5)) | 2160 45 6, 12, 30

Table 4.1
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Here m, p, ¢ are positive integers such that m > 1 and m = pq. Each group will
be explained later.

Remark 4.2. W(A3) in [1] is conjugate to G(2,2, 3).

We will calculate the invariant subring R = S¢ for each above group. As
one of the consequences we obtain the following theorems.

Theorem 4.3. (i) If G’ is one of the following groups
G(m,m,3), G(2p,p,3), W(Hs), W(Js(4)), W(Ls), W(J3(5)),
then R is a hypersurface.

(ii) If G = G(pgq, p,3) where ¢ is an even number such that ¢ > 4, then R is a
complete intersection, and embedding dimension of R is emb(R) = 6.

(iii) If G’ is one of the following groups
G(pq,p,3) (¢ is odd, g > 3), W (Ms3),
then R is not a complete intersection, emb(R) = 8, and the number of rela-
tions of generators is 9.

Theorem 4.4. For any G’ in the above table, Sing(C*/G) is of pure dimension
2.

Remark 4.5. We note that if C*/G is a complete intersection, the above theorem
is a special case of [2], exp. 10.

Now, we start calculations of R = S¢. We use the notation such as

X7 = X7+ X5+ X3,
3

> OXIXIXE = X{XIX3 + X{X3X5 + X7 X3 X3,
3
> OXIXIXF = X{XIXF + XTX3X4 + XTX5 X35
6
+ X1X3X5 + XTX3X5 + XXX,
[T(aX1 + 8X2 +7X5) = (aX1 + X2 + 7 X3)(BX1 + 7 Xs + aX3)
3
x (vX1 + aXs + BX3).

4.1 G =G(m,p,3) (m=pqg>1)

G(m,p,3) is defined as the group generated by &3 and
a1 0 0

A(m,p,3) := 0 ay O al* = ay' = ay' =1, (a1a2a3)1 =1 3,
0 0 as
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where we regard &3 C GL(3,C) by the natural way. The generators of R’ are
the following polynomials (see [1]):

Yo = X" X"+ XX+ X" X,
yz = (X1 X2X3)%.

We note the polynomials 01 = X +Y + 2,00 = XY +YZ+7ZX,03=XYZ
and 0 = (X = Y)(Y — Z2)(Z — X) have the relation

(4.6) 5%+ 40:1303 — 0%05 — 18010903 + 403 + 270§ =0.

4.1.1 The case m =p, q = 1.

As is explained in [1], G’ = G(m, m, 3) is generated by the following elements
as a reflection group:

01 0 10 0 0 Cn O
omy/—1

10 of,loo0 1], (¢t o o <cmexp<7T ))

00 1 01 0 0 0 1 m

Thus I(G’) = 2. The number of pseudo-reflctions of G’ is 3m, and any pseudo-
reflection of G’ is one of the following form:

1 0 0 0 0 ¢, 0 ¢ 0
@an o o ¢ |, {o 1 of.,[¢i 0o 0] (0<i<m-—1).
0 ¢t 0 ¢G:i0 0 0 0 1

The reflecting linear forms of above pseudo-reflections are

CL Xy — X3, 0 X3 — X1, ¢ X1 —Xo (0<i<m—1).
By (2.7), we have

Frey = (X7 = X5") (X" — X5")(X3" — XT").
From Corollary 3.3, R is generated by y1,ys2,ys, and
ya = X3, ys = frnXa = (X7" = X3")(X3" — X5")(X5" — X]") X

From (4.6), we have the following relation:

vs + ya(4ylys — yivs — 18y1yoys' + 4y + 27y3™) = 0.

In other words
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R= C[ylayQ,y33y4; ys]
= C[Y1, Ya, Y3, Yy, Y5/ (Y4 Y4 (4YP Y =Y PY5 — 18Y1 Yo V3" +4Y5 +2TY™) ).

Thus, R is a hypersurface. From (2.13), Poincaré series P(R,t) is
1— t2(3m+1)
(1 —tm)(1 —2m)(1 — 3)(1 — ¢2)(1 — t3m+1)’

P(R,t) =

4.1.2 The case m # p, ¢ > 1.
G’ = G(m,p, 3) is generated by G(m,m,3), and

Ca

0 0
0 1 0
0 01

There are 3(m + g — 1) pseudo-reflections, and they are of the forms (4.7) or

¢ 0 0\ /1 0 0\ /1 0 0
(4.8) 0 1 0],[o ¢ o], {01 0of (1<i<qg-1)
o011/ \o o 1)/ \oo ¢

Let P, = Pi(X1, X2, X3) be the product of the all reflecting linear forms
obtained from the pseudo-reflections of type (4.7), and let P, = Py(X7, X2, X3)
be the product of those of type (4.8). Then

Py= (X" = X9")(X5" — X3 (X5" — XT"), Py = X1 X5 X3

We note that P?, P§ € Cly1, y2, ys)-
(a) The case ¢ is even.

By the method explained in §3, we obtain f, ;) and f, ;X + as the following
table:

i | fa frXi deg fy () Xi

1 P1P2 P1P2X4 =5 3m+4

2 P2 P3X3 =:ys 8

3 P, P3 PiP}X3 = ysye 3m + 12

4 Py PiX$ =192 16
g—2| P§? PyXYT =yl 4(q—2)
q—1 P1P2‘171 PlpzqilXZil :y5yéq_2)/2 3m +4(q—1)

By Theorem 3.2, R is generated by 1 and f, )Xy, fX(Q)XZ, .. .,fx(q_l)XiFl as
Rp-module. From the above table, we can choose y1,y2,y3 and
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Ys = PPy Xy = (X" — XJ)(XT — X)X — XX, X0 X3 Xy,
ye = PIX7 = (X1X2X3X,)2.

as a system of generators of C-algebra R. From §2.2, we have Rel(G) = {2,y

By (4.6), we conclude that the relations are

Y2 + yo(4u3yh — y3y2 — 18y1yayl + 4y3 + 27y3") = 0,

2
yd/

—y3ys = 0.

Thus, R is a complete intersection. Poincaré series P(R,t) is

(1 o t4q)(1 o t2(3m+4))

P(R,t) =

(b) The case ¢ is odd.

The x(i)-invariant f, ;) and fy )X} are:

(1 —¢m)(1—t2m)(1 —t9)(1 — t39)(1 — ¢8)(1 — t3m+4)’

i Ix(@) fr() X4 deg fr ) X4

1 Plpg P1P2X4 =15 3m+4

2 P} P?X3 =:ys 8

3 PP} PiP}X3 = ysye 3m+ 12

4 Pl PixXd =2 16
g—1| pit PIixamt = ylam )/ 4(q—1)

q Py PX{ =y, 3m+q
q+1 Py P XTI = e q+4
q+2 | PP? PIP2XIT? = yeyy 3m+q+8
qg+3 | P} PIXTT = yoys q+12
¢+4 | PP} P PIXIT = 2y, 3m+q+16
¢+5 | Py PIXIY® = yys q+20
2 — 1| PP | PRI X2 = a2y s 4 g+ 4(g— 1)

Thus R is generated by y1,y2, y3, and

Ys = X2q7

ys = PP Xy = (X7" — X3")(X3" — X3")(X5" — XT") X1 X0 X3 Xy,
Yo = P3X3; = (X1X2X35X4)%,
yr = PLX{ = (X7" — X3")(X5" — X35") (X5 — X7")XT,
Yys = P2XZ+1 = X1X2X3XZ+1.

q/2

6

}.
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From §2.2, we have

—-1)/2 1)/2 —-1)/2
Rel(G)={yé,y5y7,y5ys7y5yéq )2 ysat D2 g L=/ ys,y37y7ys,y§}-

With the help of (4.6) and Theorem 2.12, we easily obtain that the minimal
relations are

Y2 + yo(4yiyh — yiy3 — 18y1yeyh + 4y + 27y3") =0,

ysyr + s (4yTh — yivs — 18y1yanfh + dys + 27y3") = 0,

Ysys — Yeyr = 0,

y5yéq_l)/2 —y3yr =0,
(4.9) (q+1)/2 —y3ys =0,
(q 1)/2

Ys ys — ysys = 0,

V7 — ya(4yiyh — yiy3 — 18yiyayh + 43 + 27y5") = 0,

Yrys — Yays = 0,

Yz — yays = 0.
Thus, R is not a complete intersection and emb(R) = 8. Poincaré series P(R,t)
is
1+ tat+4 + $3m+q + 3mt+4 _ t4q(t4 + 17 + $3m + t3m+q+4)

(= tm) (1 — 2 (1 — Pn) (1 — ) (1 — %)

P(R,t) =

4.2 G' =W(Hj3)
Let « = V5 —1, 3 =+5+ 1. W(H3) is defined as the group generated by
following elements:

-1 0 0 10 0\ (- 2 3
(4.10) o 1 o), (o1 o), 2 8 -a
0 0 1 00 -1 B —a 2

Since each determinant of the above generators is equal to —1, we have [ = 2.
For a homogeneous polynomial f, we denote the Reynolds operator by

AI

P>

|G A/EG/

It is convenient to use GAP4 ([12]) to calculate p(f), for GAP4 provides all ele-
ments of G’ from (4.10). As the Table 4.1, the degrees of the generators of R’ are
2, 6 and 10. Thus we can choose p(X?), p(X?9), p(X1°) as a system of the gen-
erators of the C-algebra R’. But to simplify, we take the following polynomials
instead:
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1= 3p(X7) =) X7,
3

7
Yo = (P(Xf) - Eyf)

1
o [2 S OXIXT+(VE-3)> XPX5+4(1- \/5)X12X22X§] :
3 3

Yz = — @P(Xlw) +

19(v545) 5 43V5+80 ,
Y1 — Y192
3200 200

1
=7 [22)(%){5 +(1+V5) Y XIXS — (14+2V5) Y XIXEXE
3 3 3

—2v5 ) X{X§ + (15+5V5) Y XfXg*X??] .
3

3

We can find pseudo-reflections among 120 elements of G’, by determine whether
rank(I3 — A) = 1, using GAP4. Thus we find 15 pseudo-reflections, and the
product of their forms gives fy(1)-

A = X1 X X5 [[(2X1 + BXs + aXs) - [[(2X1 + 8X2 — aX3)
3 3

X H(2X1 — ﬁXz + OéXg) . H(2X1 — ﬁXz — OéXg).
3 3

By Theorem 3.2, R is generated by y1,y2,ys3, and

Yg 1= XZ7
Ys = fx(1) - Xy
= X1 XXX, - [[(2X1 + BX2 + aX3) - [[(2X1 + X2 — aX3)

3 3

< [[2X1 — BXa + aXs) - [[(2X1 — BX2 — aXs).
3 3

Note that f;%u) € R’. With the help of computer, we eliminate X1, X2, X3, X4
from Y1,Y2,Y3,Y4, Ys, and we have
vz +ya |2°(1+ VB)yiws — 2°(1+ 3VB)yiys + 2 3°(385 — 383V5)y3
— 2"y yays + 2°(45 — VB)yiydys — 2'1 3% 5(5+ 3VB)y1ysys
—27(3 = VB)ylys +2° - 5°(4 — VB)yiyays +5°(5 — VB)y3| = 0.

So, R is a hypersurface. From (2.13), Poincaré series P(R,t) is
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1—¢%2

PO = epa =m0 - o - i)

4.3 G'=W(J5(4))

In this case, our calculation proceed similarly as §4.2. Let o = (1 ++/—7)/2.
W (J3(4)) is defined as the group generated by

1 0 O 1 0 0 1 1 -1 @«
0O -1 0|, {0 0O -1/, 3 -1 1 «
0 0 1 0 -1 0 a o 0

Then [ = 2, and R’ is generated by

1 =12p(X}) =Y X{ 30> X7X3,
3 3

224
Y2 = 70(){?)

— 23" X$ 503 XPXZ - (30 + 10V/—T)X?X3X2,
3 6
1
yo = 1= (4096p(X}1) — 191y7ys)
1
=160 3 XINE 4 (131 - 49V 3 XS

6

3
+(35+233v=T) > X{°X3 X3 + 5 (—49+v=7) > X¥XS
3 6

+

N | =

(563 + 159v/=7) Y~ XFX3X3 — (357 4 273V/=7) > X X5 X3
6 3

+(95+609v=T) > XT X3 X3
3

R is generated by y1, y2, y3, and
Ya 1= XZ)
ys =207 VT X1 Xo X3 Xo(XT — X3)(X3 — X3)(X3 — X7)
X H(aXl + Xo + Xg) . H(aXl - Xo+ Xg) . H(aXl + X5 — Xg)
3 3 3
X H(aXl — X2 — Xg)
3

The relation is

Yz + ya[320y ys + 27205y — 196y7y5 + 27y] + 112y]ys



16 T. Odaira

+ 1736y yays — 441y1y5ys + 1568yTyays + 343y3] = 0.

Thus, R is a hypersurface. Poincaré series P(R,t) is

1—t*
(1—tH(1—t9)(1— ) (1 —2)(1 —t22)°

P(R,t) =

4.4 G =W(L3)
This case also similar to §4.2 Let w be the cubic root of 1. W (L3) is defined

as the group generated by

1 0 0 1 0 0 w+2 w—-1 w-1
01 0], [0 w O ' 3 w—1 w+2 w-1
0 0 w 0 0 1 w—1 w—1 w+2

Then, | = 3. R’ is generated by

y1 = 18p(X?) le - 1OZX1X2,

Yo = 6p(X7X3) ZXlXQ ZX1X2,
3

81 41
= X12 o 2
Y3 155/’( i) 930
=Y XVX5-4> XPX§+2> XIXIXE.
6 3 3

The fy;)’s are
fey = X1 Xo X3(X7 + X5 + X5 — 3X1 X5 X3)
X H(Xl2 + X2+ X2 +2X, Xy — Xo X5 — X3X1),
3
fx(2) = f)%(l)'
Thus R is generated by v, y2,ys3, and

Ya = Xf,
ys = X1 Xo X3 Xa (X7 + X35 + X§ — 3X1X2X3)

< JTXT + X3 + X3 +2X1 X5 — Xo X5 — X3X)).

The relation is
4y3 + ya(yTys + 108y5 + 36y1y5ys — yiys — 32y3) = 0.

Thus, R is a hypersurface. Poincaré series P(R,t) is
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1—¢%
(1 —6)(1 —9)(1 — ¢12)(1 — #3)(1 — ¢13)°

P(R,t) =

4.5 G =W(Ms3)
W (Ms) is defined as the group generated by

1 0 0 1 0 0 w+2 w—1 w-1
00 1], 101 0}, =-|jw—-1 w+2 w-1
01 0 0 0 w w—1 w—1 w+2

17

The order of any pseudo-reflection of G’ is 2 or 3, and [ = 6. We can choose the

generators of R’ as the followings:
yi = 18p(X{) = XP —10> X7 X3,
3 3

81 1o 41,

Yo 1= ﬁp( 1) - %yl
=Y XVX5 4> XPX§+2)> XTXIX,
6 3 3
486 (x19) 1093 4 3598
Y37 g1 P\ T 110887t T 125439192

= (X7 — X5)*(X3 — X5)* (X5 — X7)*.

Let P, = P;(X1, X2, X3) be the product of the all reflecting linear forms ob-
tained from the pseudo-reflections of order 2, and let Py = P5(Xy, X2, X3) be the

product of those of order 3. Then
Pr= (X7 - X39)(X5 — X5)(X3 - X7),
Py = X1 X0 X3(X3 + X5 4+ X3 - 3X1 X5 X3)

< JT(XT + X3 + X3 +2X1 X, — Xo X5 — X3X)7).
3

We note that PZ, Py € Cly1, y2,ys). fyw) and fyq)X] are

ARNG F@Xi deg fy(» X4
1 Plpg P1P2X4 =15 22
2| P2 | P2X2 =y 26
3 P1 PIXEE =1Y7 12
4 P2 132)(411 =178 16
5| PPS | PLPEXE = ysyr 38

R is generated by y1,y2,ys, and

ya == X3, ys = PP Xy, yo := Ps X3, yr := PLX}, ys := P, X},
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From §2.2, we have

Rel(G) = {42, Y56, Ysy7, Ys s, Yo Yys: Yo Yrls, Ya | -

It is clear that P? = y3, and using computer, we have

1 1
Py = Zy%yz + 8y — Zy:fyS — 9y1y2y3 — 27y3.

By Theorem 2.12, the minimal relations are
Y3 —ysys = 0,
Y56 — (iyfyz +8y5 — iy:fys — 911203 — 27y§> yr =0,
Ysyr — ysys = 0,
Ysys — yeyr =0,

1 1
(4.11) Yo — (nyyg + 8ys — Zy?ys — 9Y1Y2y3 — 27y§> ys = 0,
1 2 3 1 3 2
Yeys — | yYr¥2 + 8yy — it Yy1y2ys — 27y3 | ya = 0,
Y2 — yays = 0,
Yrys — Yays = 0,
y§ —yays = 0.

Thus, R is not a complete intersection, and emb(R) = 8. Poincaré series P(R,t)
is
112 4410 4422 4420 4438

PR = =g =

4.6 G =W(J5(5))
This case is similar to §4.2. Let a = v/5—1, 8 = v/5+1. W(J3(5)) is defined
as the group generated by

-1 0 0 1 [ @ 2w?  Pw 1 2 a -0
0O 1 0}, — 1 2w B aw? |, 1 a [B 2
0 0 1 fw? aw 2 -0 2 -«

Since these determinants are —1, we have [ = 2. Using GAP4, we can repre-
sent 2160 elements of W (J3(5)) by matrices, and can compute p(XF). We shall
choose the following 1, y2,y3 of degrees 6,12,30 as the generators of R’. Note
that we choose somewhat complicated coefficients for s, y3 to simplify the later
calculation.
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y1 = 16p(X7)
:42X§+3\/5((—1+\/5)w+1+\/5) > XiX3
3 3
—3V5 ((1 +VB)w + 2) ZX%XQ‘ +12v5 (Zw +V5+ 1) X2X2X2,
= (V=15+3V5-5/-3+5) (39 (xX12) 4+ 1234;0,1/%)

—4 leloxg + 4 ZX%XZN +3 ((5%5 +3)w—5V5 + 3) 3 xixi
3

((3\/5—13 w—|—6\/_>ZX8X2X3
1ofw+5f+3)ZXfX2
5\/—+13w+10\/_)ZX6X2

_|_

_|_

“19v5 — 21)w + 19v/5 — 21) ZX6X2X3

_|_
N[Ot NI~ N l\'>|’—‘ »Jkl’—‘ l\Dl

-3 (
-5 (¢
(38\/_w +19v5 + 21) Z X6xix2
((
(

(13V5 - 27T)w + 26v5 ) X{ X1 X4,

v—15 —15v/—-3 + 3\/5—1— 15 32.11-61099
52 —2%p(X70) + T?J?

Y3 =

+ 2T (VT8 433 + 35 - 8) s
32
2.5
=2%.3%w? ) XPOX3X]
3

1

(2287 - 7187y/—15 — 5 - 181 - 10949) ylyz] ' 18110949

4 (53\/—1 —237v/=3 — 1595 — 237) 3 XPXS
3

—12 (17V=15 - 279V=3 + 51V5 + 279) 3° X P X} X3
3

+24 (1715 + 279) Z X#Hxix}

.Jkloo

(1093\/—1 — 3459v/=3 + 3279v/5 + 3459) Z X2 x8
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6 (835v/—15 +4917) >~ X2 X5 X3
3
g (869v/=T5 — 2205v/=3 — 2607v/5 — 2205) >~ X2 X4 X
3
3 (835\/T 4917y =3 + 2505v/5 + 4917) S XPPX3XS
3
(1093v/—15 + 3459) Z XPX3?
(2283v/—15 + 1229) Z X1°Xx3°
<161\/——15 + 17287/~ 3 — 483V/5 + 17287) 3 XPXSx?
6
(13221\/——15 +25309v/~3 + 396635 — 25309) 3 XPx5x
3

(13221v/~15 — 25309) ZXIQOX2X3

OOI@ l\')l@ »-lklto OOICD »-lklto N W

(2283\/—15 — 1229V/=3 + 6849v/5 + 1229) Z X 1020

-3 (5333\/—15 — 15501v/=3 — 15999v/5 — 15501) ZXPX?

|7
(311\/—1 +159v/=3 + 933v/5 — 159) Z X18x10x2

(37967v/=15 + 662793) > X ¥ X5 X3
3

— (83483v/—15 — 287715v/—3 — 250449+/5 — 287715) ZXPX2 X8

— %\w

3
+32 (37967\/—15 — 662793v/—3 + 1139015 + 662793) > X8 x3XS§
3

147 (311V/~15 — 159) > X8 X3X3°
3

—6 (145\/—1 — 279V =3 + 435V/5 + 279) 3 xiexi
3

(74645\/—15 + 8883 Z X10x32x2

OOlC»J »Jklbo

(135263\/—1 — 949383v/—3 — 405789/5 — 949383) Z X{0x10x2
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9 16 '8 y6
+3 (42593\/—15 — 168903v/=3 + 127779v/5 + 168903) 3 XXX
3

(42593v/=15 + 168903) >~ X X§ X5
3

<74645\/—1 — 8883v/—3 + 223935V/5 + 8883) > X19x3 x5

3

OO|C/~J l\DI@

+12 (145V/=15 4 279) > X' X0
3

9 (1783\/—15 +11937V—3 — 5349v/5 + 11937) S XMXIN
3

_|_

N ©

<56385\/—15 — 102631v/=3 + 169155v/5 + 102631) 3 XHXPXE
3
+ 30 (27559v/—15 + 24945) >~ X1 X3°X§
3
+27 (14357\/—15 4 51763v/—3 — 430715 + 51763) 3 XXX
3

—9(56385v/—15 + 102631) > X* X3 X;?
3

— 15 ( 27559/ —15 — 24945+/—3 + 826775 + 24945) Z XHMx$x10
3

+12 (10975\/—15 — 123399v/—3 — 32925/5 — 123399) Z X12x12x§
3

+6 (41071\/715 + 160791v/—3 + 123213/5 — 160791) Z X2x10x8
3

— 12 (41071v/=15 — 160791) >~ X {2 X5 X3°
3

—-21 (80083\/——15 — 177627/ =3 — 240249V/5 — 177627) X10Xx30x30.
R is generated by y1, Y2, y3, and
Yq 1= wQXf,
ys =23 X1 Xo XXy - [[(X1 + wXo) - [ (X1 — wXa)
3 3

X H(X1 —|—OJX2 —|—’}/X3) . H(Xl — (JJXQ —|—’}/X3) . H(Xl —|—OJX2 — ’}/X3)
3 3 3

X H(X1 - (J.)XQ - ’}/Xg) . H(Xl + ﬁXg + OéXg) . H(X1 — ﬂXQ + OéXg)
3 3

< [](X1 + BXo—aXs) - [[(X1-BX2—aXs) - [[(X1 +w?aXs + wBXs)
3 3 3
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X H(X1 — UJQOéXQ + w6X3) . H(Xl + wzan — o.)ﬂXg)
3 3
x [[(X1 - w?aXs — wpXs),
3

where
7= (VT - VB - VB - 3)

The following relation can be easily obtained using GAP4, by linear elimination
of the monomials X' --- X}* from some monomials y]' - --y2* of lower degrees.

W2+ us E 325 (11V/=15 — 45V/=3 — 33v/5 — 45) 4}
4+93.33.52 (3\/Tf\/—_379\/5*1)y1y§y?2,
— 45 (13V/=15 + 5) ydyay3
+ i (7\/—_15 +17V =3 +21v5 — 17) yiy3
+210.3% (5v/=15 + 3V=3 + 15v5 - 3) yfus
~ 144 (677\/—715 +1035v/—3 — 203175 + 1035) Y2ytys
+8 (659v/=15 + 219) y{y3ys
- % (7V=T15+17V=3 + 21V5 — 17) vy
_ol5.35 (\/——15—7\/—_3+3\/5+7)y1y5
a8 (6087\/75 +23633v/—3 — 18261/5 + 23633) oyl
+27.3% (5v/—=15 + 3) y?yg} =0.
Thus, R is a hypersurface. Poincaré series P(R,t) is

1 -1
(1—1t5)(1 —t12)(1 —#39)(1 — ¢2)(1 — ¢46)°

P(R,t) =

5. Proof of Theorem 4.4

In this section, we study the singular locus SingV of the quotient variety
V = C*/G associated with the invariant subring R = S¢ as §4. We note the
following theorem.

Theorem 5.1. (cf. [11]) Let G C GL(n,C) be a subgroup which contains no
pseudo-reflections, and let
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F={2eC"| Az ==z, for some A€ G, A+#I,}.
Then the singular locus of C"/G is F/G.
We use the following notation:

r:=emb(R), ys := XJ, 2 := fy(my), ¥i = 2X5" 5<i<r),
G :=G'NSL(3,C), V:=C3/G, R:= (5)°.

We can write

R/ = (C[yl’y27y3]7 R = (C[ylvy27y3ay47y5a .. '7y7‘}7
R =Cly1, 92,13, 25, 26 - - - » %)

By this representation, we consider V.C C” and V. C C"~!. Let ¢ : C* — V
and ¢ : C3> — V be the natural surjections.
For A € G, we define A’ by

A= ()

R(G) :={A € G| A is a pseudo-reflection in G'},
):={Ae G| A e, rank(A' — I3) = 2}.

And we put

Note that R(G) # 0 and S(G) # 0. Since any pseudo-reflection in G’ is not
contained in G, R(G) NS(G) = 0.
We put

Ha=f{oeC | Av=a}, Hai={o' € C*| Aa’ =o'},

Then, we have

SingV = | @(Ha)
AES(G)

by Theorem 5.1. For every A € S(G), @(H,) is an irreducible component of
SingV, and dim p(H4) = dim H4 = 3 —rank(A’ — I3) = 1.

Theorem 5.2. (i) For any A € S(G), there exists the natural surjection
P(Ha) x C— @(Ha).

(i) SingV = U ©(Hpy).
ACR(G)US(G)
(iii) SingV is of pure dimension 2.

Proof. (i) Let A € S(G) and degz; =b; (5 < j < r). We define the morphism
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¥ :VxC—V by

l b b
w(ylay27y3az5a' "7ZT53) = (y17y25y378 y R5S 5,...,ZTS r)'

Then 1 is surjective, and the following diagram is commutative:

VxCc v

@Xidc]\ T‘P

C3xC —— C*

Furthermore, 1 (@(ﬁA) X (C) = p(Hy).

(ii) Clearly, SingV D U ©(H ). Conversely, we shall show SingV’ C
AER(G)US(G)

U ©(Ha). Let © = (71,22, 73,24) € C* such that p(x) € SingV.
AER(G)US(G)

First, suppose that x4 # 0. Then there exists A € G, A # I, such that
Az = x. Since 24 # 0, we have det A’ = 1, i.e. A’ € G. Thus p(z) € ¢(Hg) by
some B € S(G).

Next, suppose that x4 = 0. Let 2’ = (21, 2, z3).
Case 1: R is a hypersuface.

As we studied in §4.1, §4.2, §4.3, §4.4 and §4.6, the relation is of the form

f = yé + y4F(y1;y27y3)a

where F' = F(y1,y2,y3) is a polynomial of y1,y2, y3. We note that F' = f ) is a
product of reflecting linear forms of G’. Since

af
ZL _F
ay4 (ylay27y3)a

reflecting linear form L of G’ such that L(z’) = 0. We take a pseudo-reflection
A’ € G’ assciated with L, and we let A € R(G) b
A’. Then = € Ha, thus p(z) € ¢(Hjy).
Case 2: G' = G(pq,p,3) (¢ is even, g > 4).
The relations are

we have F(a') = F(y1(2'),y2(2'), ys3(2’)) = f)l((l)(x’) = 0. Thus there exists a
e

the element associated with

q/2
6

fi =93 + v F(y1,y2.y3), fo:=vd'" — ysya,

where F(y1, 2, ys) = 4y3y5 —y3y3 —18y1yayh +4y3 +27ys”. We note that F = P?
Afi
3%‘ i,j

and y3 = Py. The Jacobian matrix J = is
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— Yoy, YoFy, YoFy, 0 2ys F

0 0 -y —ys 0 Lyt

J

We have ysa(x) = ys(x) = ys(z) = 0 from x4, = 0, and rankJ(p(z)) <
emb(R) —dimV = 6 — 4 = 2 where J(p(z)) is the Jacobian matrix at ¢(z).
Thus F(xz) =0 or y3(x) = 0, i.e. Pi(x) =0 or Pa(x) = 0. Both of them, there
exists a reflecting linear form L of G’ such that L(z’) = 0. The rest of the proof
is the same as Case 1.
Case 3: G' = G(pq,p,3) (qis odd, ¢ > 3).

By the relations (4.9), we obtain the Jacobian matrix

yGFyl yGFyQ yGFyg, 0 2ys5 F 0 0
y8Fy1 y8Fy2 ySFyz 0 Yy 0 Ys 0
0 0 0 0 us ~y7 Y Us
0 0 a7 St e Sl T |
J = 0 0 —ys 0 0 %1 : yéqil)/z 0 Y3 |-
0 0 —y —ys 0 T R By Canl
_y4Fy1 _y4Fy2 _y4Fy3 -F 0 0 2y7 0
0 0 0 -y —w 0 Ys Y7
0 0 0 —ys 0 ~ys 0 2y

where F = 432 — 292 — 18y1301% + 493 + 27y2". We have yy(z) = ys(z) =
ye(x) = y7(x) = ysg(x) = 0 from x4 = 0, and rankJ(¢(x)) < emb(R) —dimV =
8 —4 =4. Thus F(z) = 0 or ys(z) = 0. The rest of the proof is the same as Case
2.

Case 4: G' = W(M3)

1 1
Recall the relations (4.11). Let F' = F(y1,y2,y3) = Zy%yg + 8y5 — Zy:fyg -

9y192y3 — 27y3. Note that F' = P3, y3 = P2, furthermore P; and Py are products
of reflecting linear forms of G’. The Jacobian matrix is

0 0 —Ye 0 2y5 —Y3 0 0
—yrby, —yiky, -—yiFy, O ye Y5 —F 0
0 0 —Ys 0 Y7 0 Ys Y3
0 0 0 0 ¥y —Y7 —Yo Us
J=|-ysky, —ysky, —ysF,, O 0 2 0 F
—vyaFy, —yaFy, —ysFy, —F 0 Ys 0 Y6
0 0 —1Y4 —13 0 0 2y 0
0 0 0 -y5 —vya 0 ys yr
L 0 0 0 —Ye 0 —Ya 0 2y8_

We have yi() = us(z) = vo(x) = y(x) = s(x) = 0 from =4 = 0, and
rankJ(p(z)) < emb(R) —dimV = 8 —4 = 4. Thus F(z) = 0 or ys(z) = 0.
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The rest of the proof is the same as Case 2.

(iii) For any A € R(G)US(G), dimp(H4) = dim H4 = 2. Thus SingV is of

pure dimension 2 from (ii). O
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