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Abstract

The tunnel number of knots directly gives the Heegaard genus of their exteri-

ors. For the link case, if we admit in addition splittings of link exteriors into two

compression bodies, things become more complicated. In this paper we introduce

a concept of types of Heegaard splittings for compact orientable 3-manifolds and

give relations between these types. We also discuss in detail the 2-component link

case using examples.

1. Introduction

Let S be a connected closed orientable surface. A compression body H is a
3-manifold obtained by attaching 2-handles to S × [0, 1] on S ×{0}, and capping
off any resulting 2-sphere boundary components with 3-balls. The component
corresponding to S × {1} of ∂H is denoted by ∂+H and ∂H − ∂+H is denoted
by ∂−H. A compression body H is called a handlebody if ∂−H = ∅.

Suppose a compact 3-manifold M is the union of two compression bodies
H1 and H2 attached along their common boundary S = ∂+H1 = ∂+H2, we call
the decomposition M = H1 ∪S H2 a Heegaard splitting of M and S a Heegaard
surface of M . The Heegaard genus of a 3-manifold M , denoted by g(M), is the
minimal genus of Heegaard surfaces of M . The genus of a surface S is denoted
by g(S). If g(S) = n, g(∂−H1) = m, and g(∂−H2) = l, then we call a Heegaard
splitting M = H1 ∪S H2 a Heegaard splitting of type (n; m, l) or a type (n; m, l)
splitting. If H1 (resp. H2) is a handlebody, we define the type to be (n; 0, l)
(resp. (n; m, 0)). We call a Heegaard surface of a type (n; m, l) splitting simply
type (n; m, l) splitting surface. For example, tunnel number one link exteriors
have type (2; 2, 0) splittings.

For an arbitrary compact 3-manifold M , if M has a type (n; m, l) splitting,
then we can obtain a type (n+1; m, l) splitting by a stabilization. Moreover, the
following proposition is known as a boundary stabilization (see [6]).
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Proposition 1.1. If M has a type (n; m, l) splitting M = H1 ∪ H2 so that
g(∂−H1) = m, g(∂−H2) = l, and ∂−H2 has a genus k component, then M has
also a type (n + k; m + k, l − k) splitting.

Let M be a closed orientable 3-manifold with torus boundary components.
Then we can consider M to be the link exterior E(L) for some link L in some
3-manifold N . We get the following corollary by an application of Proposition
1.1 to the link exteriors.

Corollary 1.2. If the link exterior E(L) has a type (n; m, l) decomposition for a
(m+ l)-component link L, then E(L) has also a type (n+k; m+k, l−k) splitting
for any k satisfying 0 ≤ k ≤ l.

We can restate the definition of the tunnel number of a link using this type.
An m-component link L in a 3-manifold is called a tunnel number n link if the
exterior E(L) of L has a type (n + 1; m, 0) splitting, but does not have a type
(n; m, 0) splitting. We use t(L) to denote the tunnel number of L. Next we con-
sider the relation between tunnel numbers and types of Heegaard splittings. If a
link exterior E(L) has a type (n; m, l) splitting, then the tunnel number of L is
at most n + l − 1 (l ≤ m ≤ n). Hence we obtain the following corollary.

Corollary 1.3. If L is a k-component link, then

g(E(L)) − 1 ≤ t(L) ≤ g(E(L)) +
k

2
− 1.

In this paper, we discuss 2-component link exteriors. For a 2-component link
L, if E(L) has a type (g; 2, 0) (resp. (g; 1, 1)) splitting, then by a boundary sta-
bilization (Proposition 1.1), E(L) has also a type (g +1; 1, 1) (resp. (g +1; 2, 0)).
We consider the existence of a 2-component link exterior which does not have any
type (g; 2, 0) (resp. (g; 1, 1)) splittings but have a type (g; 1, 1) (resp. (g; 2, 0))
splitting.

Kobayashi [4] showed that for a link L which is a connected sum of a (4, 3)
torus knot and a Hopf link, the link exterior has a type (2; 1, 1) splitting, but
does not have any Heegaard splitting of type (2; 2, 0). Note that by the same way
as [4], we can obtain the same result for a connected sum of a (p, q) torus knot
and a Hopf link, where p > q ≥ 3. In section 2, we show other examples.

In section 3, we show the following theorems, using distances of Heegaard
splittings.

Theorem 1.4. For any integer g > 1, there exists infinitely many link exteriors
which have type (g; 1, 1) splittings, but do not have any Heegaard splittings of type
(g; 2, 0).

Theorem 1.5. For any integer g > 1, there exists infinitely many link exteriors
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which have type (g; 2, 0) splittings, but do not have any Heegaard splittings of type
(g; 1, 1).

Theorem 1.6. For any integer g > 1, there exists infinitely many link exteriors
which have both type (g + 1; 2, 0) and (g + 1; 1, 1) splittings but do not have any
Heegaard splittings of type (g; 2, 0) and (g; 1, 1).

Let M be a 3-manifold with a torus boundary component T . We can obtain
a 3-manifold by gluing a solid torus V to M along T in such a way that a slope γ

on T bounds a meridian disk in V . This operation is called a γ-Dehn filling and
the Dehn filled manifold is denoted by M(γ). Note that g(M(γ)) ≤ g(M). It is
also shown in [8] that g(M)−1 ≤ g(M(γ)) ≤ g(M) for a cylindrical 3-manifold M

with an incompressible torus boundary component T with all but finitely many
γ.

For a tunnel number one link exterior, i.e., a link exterior which has a type
(2; 2, 0) splitting, we find a sufficient condition for admitting a type (2; 1, 1) split-
ting.

Theorem 1.7. Let L be a tunnel number one link. If a Dehn filling for the
exterior E(L) along one boundary component yields a solid torus, then E(L) has
type (2; 1, 1) splitting.

2. Examples

In this section, we show some examples of links in S3 satisfying Theorem 1.4
and Theorem 1.6.

Example 2.1. Let L = M(b; (a1, b1), (2, 1), (a2, b2), (2, 1)) be a 2-component
Montesinos link with 4 branches. Then E(L) has a type (2; 1, 1) splitting, and
does not have any type (2; 2, 0) splitting.

We choose an arc τi which is the core of the rational tangle bi

ai
(i = 1 and 2).

Then by Figure 2, we can see E(L) has a type (2; 1, 1) splitting. By the determi-
nation of tunnel number one Montesinos links [7], L is not a tunnel number one
link. Hence E(L) does not have any type (2; 2, 0) splitting.

3. Proofs of Theorem 1.4, 1.5, and 1.6

The idea of these proofs is suggested by T. Kobayashi. The similar methods
are also used in [3] and [5].

Let S be a closed, orientable, genus g surface. The curve complex C(S) is the
complex whose verticies are the isotopy classes of essential simple closed curves
in S, and where distinct verticies x0, x1, . . . , xk determine k-simplex of C(S) if
they are represented by pairwise disjoint simple closed curves in S.
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Figure 1

Figure 2

For given vertices l1, l2 in C(S), the distance d(l1, l2) is the geodesic distance
of C(S): the number of edges in the shortest path from l1 to l2. This definition
extends to a definition of distances between subsets A and B of C(S) by defin-
ing d(A, B) = min{d(a, b) | a ∈ A, b ∈ B}. Let H be a compression body and
S = ∂+H. The compression body set K(H) corresponding to H is a subcomplex
of C(S) consisting of verticies which bound disks in H. Let M be an arbitrary
3-manifold. For a Heegaard splitting M = H1 ∪S H2, the distance of the splitting
is d(S) = d(K(H1),K(H2)). See [2] for details.

Theorem 3.1 ([10, Corollary 4.7]). Suppose P and Q are both Heegaard surfaces
for the compact orientable 3-manifold M . Then either d(P ) ≤ 2g(Q), or Q is
isotopic to P or a stabilization or a boundary stabilization of P .

From Theorem 3.1, we obtain the following corollary. Note the genus in-
creases with a stabilization or a boundary stabilization. Hence, if two Heegaard
surfaces have same genus, then one is not isotopic to a stabilization nor a bound-
ary stabilization of the other.

Corollary 3.2. If H1 ∪S H2 and H ′
1 ∪S′ H ′

2 are genus g Heegaard splittings of
M and d(S) > 2g then S′ is isotopic to S.

Theorem 1.4 (resp. 1.5) follows from Corollary 3.2 and Proposition 3.3 (resp.
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3.4) below.

Proposition 3.3. For any integer g > 1, there exists infinitely many link exte-
riors each of which has a type (g; 2, 0) splitting surface S with d(S) > 2g.

Proposition 3.4. For any integer g > 1, there exists infinitely many link exte-
riors each of which has a type (g; 1, 1) splitting surface S with d(S) > 2g.

For the proof of Proposition 3.3 and Proposition 3.4, first we prepare a knot
whose exterior has a Heegaard splitting with high distance.

Theorem 3.5 ([5]). For any pair of integers g > 1 and n > 0, there is a knot K

in S3 and a genus g splitting of E(K) having a distance greater than n.

Next, from the knot obtained in Theorem 3.5, by adding one more compo-
nent we will construct a 2-component link whose exterior has a Heegaard splitting
with high distance.

Let K be a knot in S3 which satisfies Theorem 3.5. Let H1 ∪S H2 be a genus
g Heegaard splitting of E(K) with d(S) > n. We can choose a knot K ′ in H1 so
that Cl(H1−N(K ′)) become a compression body, where Cl(·) means the closure.
Let H ′

1 =Cl(H1 − N(K ′)) and H ′
2 = H2. Then H ′

1 ∪S′ H ′
2 is a genus g Heegaard

splitting of E(K ∪ K ′). Since K(H ′
i) ⊂ K(Hi), d(S′) ≤ d(S). Then we obtain

the following corollaries.

Corollary 3.6. For any pair of integers g > 1 and n > 0, there is a link L ⊂ S3

and a (g; 2, 0) splitting of E(L) having distance greater than n.

Corollary 3.7. For any pair of integers g > 1 and n > 0, there is a link L ⊂ S3

and a (g; 1, 1) splitting of E(L) having distance greater than n.

Now we prove Proposition 3.3.

Proof of Proposition 3.3. Let N0 = 2g. For an integer k, we will define Nk

and Dk inductively as follows. For an integer Nk−1, by Corollary 3.6, there is a
link Lk ⊂ S3 and a type (g; 1, 1) splitting surface Sk with d(Sk) > Nk−1. Let
Nk = d(Sk). Note that Nk > Nk−1. Sk is a type (2; 1, 1) splitting surface for
E(Lk) with d(Sk) = Nk > 4. Moreover, if k �= k′, since Nk �= Nk′ , E(Lk) and
E(Lk′) are not homeomorphic by Corollary 3.2.

By the same way as this proof, we can show Proposition 3.4 from Corollary
3.7. Moreover we obtain the following Corollary 3.8 from Theorem 3.5.

Corollary 3.8. For any integer g > 1, there exists infinitely many knots in S3

which exteriors have Heegaard genus g.

Let M1 and M2 be compact orientable 3-manifolds. We denoted by M1�M2

the connected sum of M1 and M2. From Heegaard splittings of M1 and M2, we
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can obtain a Heegaard splitting of M1�M2 as follows. We consider M1�M2 is the
union of Cl(M1−B1) and Cl(M2−B2). We take 3-balls B1 and B2 so that each Bi

meets the Heegaard surface Si in a disk Di. Then Cl(S1−D1)∪Cl(S2−D2) gives a
Heegaard splitting of M1�M2. Hence we obtain that g(M1�M2) ≤ g(M1)+g(M2).
Haken [1] also showed the following theorem.

Theorem 3.9 ([1]).

g(M1�M2) = g(M1) + g(M2).

Now we prove Theorem 1.6.

Proof of Theorem 1.6. Let K ⊂ S3 be a knot whose exterior has Heegaard genus
g. By Corollary 3.8, there exist infinitely many such knots. Let L be a splitting
union of K and the trivial knot. Then from connected sum of a genus g splitting
of E(K) and a genus one splitting of the trivial knot exterior which is the solid
torus, we obtain both type (g + 1; 2, 0) and (g + 1; 1, 1) splittings of E(L). How-
ever, by Theorem 3.9, E(L) does not have any Heegaard splitting of type (g; 2, 0)
and (g; 1, 1).

4. Proof of Theorem 1.7

Let M be a tunnel number one link exterior, and M = H1 ∪ H2 be a genus
2 Heegaard splitting, where H1 is a handlebody, and H2 is a compression body.

Proof. Suppose a Dehn filled manifold M(γ) along a slope γ is homeomorphic
to a solid torus. Let F be the torus component of ∂−H2 which contains γ, and
F ′ the other component of ∂−H2. Then we may identify H2 with F × I�∂F ′ × I,
where I = [0, 1], and �∂ means a boundary connected sum along a disk in F ×{1}
and a disk in F ′ × {1}. Here we may assume that γ × {1} ∩ F ′ × I = ∅. We
obtain a genus 2 Heegaard splitting, say H1 ∪ H2(γ), of the solid torus M(γ).
By [9], any genus 2 Heegaard splitting of a solid torus is stabilized. On the other
hand, it is elementally to show that any non-separating proper disk in H2(γ) is
properly isotopic to a disk obtain from γ × I by adding a meridian disk of a
attached solid torus. These imply that there is a proper disk D in H1 such that
∂D∩(γ×{1}) = {∗}. We can take a disk D′ ⊂ F so that D′×{1}∩F ′×I = ∅, and
D′ ∩ γ = γ1 is an arc with ∂D ∩ (γ1 × {1}) = ∅. Let I− = [0, 1

2 ], and I+ = [12 , 1].
Let Ĥ1 = H1∪(D′×I+)∪(F×I−), Ĥ2 =Cl(M−Ĥ1) = (Cl(F−D′)×I+)�∂F ′×I.
Note that Ĥ1 ∪ Ĥ2 is a boundary stabilization of H1 ∪ H2, and is a type (3; 1, 1)
splitting. Let γ2 =Cl(γ − γ1). Disks D in Ĥ1 and γ2 × I+ in Ĥ2 intersect in one
point. Hence the Heegaard splitting M = Ĥ1 ∪ Ĥ2 is stabilized. By destabilizing
Ĥ1 ∪ Ĥ2, we obtain a type (2; 1, 1) splitting of M .
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