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Abstract

In this paper, we discuss the Cauchy problem of the quasilinear hyperbolic
systems of n X n. We estimate the lifespan of the classical solutions to this problem
in the critical case. This is a generalization of the results which have been showed
in [2] and [3] when n = 1 and n = 2, respectively.

1. Introduction
We consider the following quasilinear system of first order;

ou ou

(1.1) e A(u)% =0, (z,t) € R x (0,00),
where u = u(x,t) = “(uy,- -+ ,uy) is the unknown vector function and A(u) is an
n x n matrix with smooth elements a;; (¢,7 = 1,--- ,n). We assume that A(u)

has n distinct real eigenvalues
(1.2) M(u) < Ag(u) < -+ < Ap(u)

in a neighbourhood of v = 0. This assumption means that the system (1.1) is
strictly hyperbolic in the neighbourhood of u = 0. Let I;(u) and r;(u) be left and
right eigenvectors, respectively, corresponding to A;(u), i.e.,

Li(w)A(u) = A(u)l;(uw) and  A(u)r;(u) = N(u)r;(u) (i=1,---,n).

Note that all A;(u),l;(u) and 7;(u) have the same regularity as a;;(u). Without
loss of generality, we may assume that

(1.3) li(u)rj(u) = d;; and bri(u)ri(u) =1 (i,j=1,---,n)

hold for any uw € R™, where d;; is Kronecker’s delta.
We prescribe the initial condition
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(1.4) u(z,0) = ep(x), r € R,

where ¢ is a small positive parameter. We assume that p(x) = “(p1(z), -,
on(x)) is a C1 vector valued function and satisfies

(1.5) igg{(l +a)) T (e(@)] + ¢ (@)} < o0
for some constant p > 0. In this paper, we shall study the existence and the
blow-up of C'* solutions to the Cauchy problem (1.1) and (1.4).

Li Ta-tsien, Zou Yi and Kong De-xing studied the Cauchy problem (1.1)
and (1.4) in [2]. To state their results we need the concept of the weak linear
degeneracy.

Definition. We call the solution of the following ordinary differential equation
the i-th characteristic trajectory u = u'(s) passing through u = 0;

(1.6) dZ—f) = r;(u(s)) for small |s],
u(0) = 0.

Then we say that the i-th characteristic A\;(u) (¢ = 1,--- ,n) is weakly linearly
degenerate, if we have

i (u'(s)) = Mi(0) for small |s|,
namely,
i - Vi(u'(s)) =0 for small |s|.

If all characteristics are weakly linearly degenerate, we say that the system (1.1)
is weakly linearly degenerate.

Now we state the results presented in [2]. They proved that if the system
(1.1) is weakly linearly degenerate, there exists a global C'! solution to (1.1) and
(1.4) for sufficiently small €.

On the other hand, if the system (1.1) is not weakly linearly degenerate, we
can define a nonempty set J C {1,--- ,n} such that A;(u) is not weakly linearly
degenerate if and only if j € J.

For each j € J, either there exists an integer a;; > 0 such that

dl . dOé]‘Jr]
L I =00 =1 o) and I W()| £0
s=0 s=0
or
d ,
(1.7) @(rj -V (W (s))) =0 for any [=0,1,2,---,
s=0
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where u = u(?)(s) is defined by (1.6). In the case (1.7) holds, we define a; = +o0.
Furthermore, set

a=min{a;|j € J}.

Then, they also proved that if the system (1.1) is not weakly linearly degenerate
and « is finite, then there exist an €y and constants ¢ and C' such that

c C
catl = T(e) = catl

holds for 0 < € < 9. Here T'(¢) is the li fespan which is defined by the supremum
over all T > 0 such that a C'! solutions to (1.1) and (1.4) exists in R x [0,7T)).

Therefore, we are interested in the critical case, namely, the case where the
system (1.1) is not weakly linearly degenerate and @ = oco. Since the critical case
for single equation and 2 x 2 system have been studied in [2] and [3], our aim in
this paper is to obtain upper and lower bounds of the lifespan in the critical case
for the n x n system.

To state our results, we introduce a function F(p) € C*°[—M, M];

1
em<—) 0<lpl < M,
a(lp)

0 p=20

(1.8) F(p) =

for some M > 0. Here a(-) satisfies the following assumptions;

(i)  F()eC®[-M,M).

(il a(0) = 0.
1g () d@)>00m ©0M)  y=lpl
(iv)  For any A, B and p > 0, there exists an 9 > 0 such that

a(Ae + Be?)

— <1 f < gop.
(A= Be?) = +u for 0<e<egg

We have to assume (iv) to derive the blow-up of the solutions, because we deal
with n X n systems. Typical examples of a(-) satisfying the assumption (1.9) are

(1) aly) =y" (r>0)

1
exp | —— y >0,
(2) aly) = ( y> (0<r<l)

Now we state our theorem.
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Theorem. Assume that (1.2) and (1.5) hold. Let u = u'(s) be the i-th charac-
teristic trajectory passing through w =0 (i =1,--- ,n). Assume that there exists
io € {1,--+ ,n} such that l;,(0)p(x) £ 0 and

(1.10) riy - Vi, (u(s)) = —F(u” (5)),

where F' is the one defined in (1.8) and (1.9). Furthermore, assume that if i # o,

d’ ; d .,
(1.11) G TN = €| Pl
holds for any 1 =0,1,2,--- . Then there exist an €1 > 0 and constants ¢y, ce, Cy

and Cy > 0 such that

) <T(e) < C’lexp<

(1.12) c1 exp ( a(Cl'ge))

a(cqe)
holds for 0 < e < ejy.

Remark. Our proof of theorem essentially follows the method used in [3] for the
case of 2 x 2 systems. However, as is mentioned in the second remark of Lemma
3 in [3], we have a problem to apply the method to n x n system. We succesfully
overcome the difficulty by using another norm V; which will be defined in section
3.

2. Preliminaries

Since we are assuming the system (1.1) is strictly hyperbolic, if the matrix
A(u) in system (1.1) consists of C* elements a;;(u), there exists an invertible
C*F+1 transformation v = u(@) such that u(0) = 0 and in @-space the i-th char-
acteristic trajectory passing through 4 = 0 coincides with the 4;-axis near the
origin. This means that

(21) fz(szez) = €4, 1= 1,"' ,n

holds for sufficiently small |4;|. Here e; (i = 1,---,n) stands for usual unit
vectors. This transformation is called to be the normalized transformation
and the corresponding variables @ = %(d1, -+ ,4,) are called to be the

normalized coordinates. The existence of the normalized transformation was
shown in [1]. In the normalized coordinates, we can rewrite system (1.1) as

da . . i
—+

(2.2) pr A(u)% =0

with
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it = (%) awan (%),

where (9u/da) is the Jacobi matrix. Denote the i-th eigenvalue of A(i) by ().
Then we have \;(4) = A;(u(@)), (i = 1,---,n). From now on, we omit the
sysmbol A and treat the transformed system (2.2).

Now we introduce important notations. Let

and
(2.4) w; = li(u)%,

where [;(u) is the i-th left eigenvector (i = 1,--- ,n). By (1.3) we have

(2.5) U = Z vgprk (u)
k=1

and

(2.6) % = Zwkm(u).
k=1

Hence, we find that du/0z blows up if and only if w; bolows up for some . Let

d 0 0

be the directional derivative along the i-th characteristic. Then we have (cf.[2])

d’l)i - .
(2.8) 1 Z Bijrk () vjwg, i=1---,m,
Y Gk=1
dw; 2
(2 9) it Z ’Yzjk(u)w]wka 1= 17 , 1,
! Jik=1

By (2.10), (2.11) and (2.1) we have

(2.12) Biji(u) =0 for i,j=1,---,n,
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(2.13) Yigj(uw) = 0 for i,j=1,---,nand i# j,
(2.14) Yiii(u) = =V (u)ri(u) for i,j=1,---,n,
(215) 6ijj(uj€j) =0 for |uj| <M and 4,j5=1,---,n.

Let @ > 0 and y > 0 be costants. On the existence domain of C! solution,
we denote the i-th characteristic passing through a point (y,y/a) by @ = Z;(y, t).
Namely

(2.16) D (@0, 0),

ZTi\Y, —
a

Differentiating (2.16) with respect to y, we get

Y.

d (0%(y,t) _ ou OZ;(y, 1)

2.1 LD o (u(E iz VALY
210 g (P5E) = VAl 0.0) G 0.0 2
Let p;(z,t) be definded by

- . 0% (y,t
(2.18) (006 = ), 0 75,
then we have

dpi - ail(yvt)

7,k=1

where
(220) Bijk(u) = ﬁijk(u) + V)\z(u)rk(u)&]
By (2.12) and (2.1) we have
(2.21) Biji(uje;) = 0 for |u;| <M and i #j,
(2.22) Biis (1) = Vi (w)ri(u) for ¢,57=1,---,n.

Moreover, by (2.14), (2.22), (1.10) and (1.11) we have

(223) Yiotoio (uioeio) = _Bioioio (uioeio) = F(uio) for |uio| <M,

3. The proof of Theorem

We will prove (1.12), by dividing the argument into two parts; the lower
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bound part and the upper bound part.

Firstly we prove the lower bound part. By the existence and uniqueness of
local C! solution to the Cauchy problem (1.1) and (1.4) (cf.[2]), in order to prove
Theorem it suffies to establish a uniform a priori estimates on the C° norm of u
and du/dx on the existence domain of the C'* solution u = u(x,t). Without loss
of generality we may assume

(3.1) 0 < A1(0) < A2(0) < -+ < Ay(0).
In fact under the following invertible transformation;

t=t, T=x—(\(0)— 1),
the system (1.1) is rewritten as

ou ou
2 (Alw) ~ ((0) - D) S =

It is easy to see that (3.1) holds for this system.
By (3.1), we find that for each small g > 0 there exists a § > 0 such that

0.

(3-2) Nip1(w) — Mi(v) > 46y for |ul,jv| <8, i=1,--- ,n—1
and

o .
(3.3) Ni(w) = Xi(w)| < 5 for ful ol <6, =1, 0.

By (3.1) and (3.2) we find that
(3.4) 0 < A(u) < Aa(u) < - < Ap(u)

holds as long as |u(x,t)| < ¢. We introduce some regions in the first quadrant of
(z,t)-plane. For fixed T' > 0, let

(3.5) DY = {(z,1)|0 <t < T, > (\u(0) + o)t}

DT = {(x,t) |0 <t < T,z < (A (0) — do)t},
T = {(2,)[0<t <T,(Ar — o)t <z < (Ma(0) + o)t}

and

DI ={(z,t) | 0 <t <T,~[6 +n(X:(0) = A1(0))]t <
(3.8) z = Xi(0)t < [do + 1(An(0) — Ai(0))]2},
for i =1,--- ,n. Here we have taken n > 0 so small that

T T oo .
(3.9 D; ND; =¢ ifi#j
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and

(3.10) Dl cp”
i=1

hold. Then we get the following lemma.

Lemma 1. Let T > 0 be a costant. Then, there exist constans ¢ and C' indepen-
dent of T such that in the domain DT \ DT,

(3.11) ct < |z — X (0)t] < Ct and cx <z —X(0)t| <Czx

hold fori=1,--- ,n.
Proof: By (3.7) and (3.8) we easily have (3.11).

In the same manner as [2], we define some norms;

(3.12)  V(DI)

_max (1+ |33|)1+M'Ui(xat)”L°°(D£)a

n

(313)  W(DL) = max |[(1+ o) wie, 1)l 1= (1),

(3.14) V() = max sup (14 |z — XN (0)t)) T H|wi(w, b)),
=L (4 e DT\ DT

(3.15) Us(T) = max sup (14 | — X (0)t]) T uy(z, 1),
=L (g 4)e DT\ DT

(3.16) WS (T) = max sup (1 4+ |z — X (0) ) T |w; (2, 1)),
=L (g 4)e DT\ DT

(3.17) Vi(T) = max sup/ |v; (2, t)|dt,
i’n & (&

J#

(3.18)  Wi(T) = max sup / i (0]t
izt G g

(3.19) Vi(T) = max sup / |v; (z, t)|dz,
DI ()

=1, ,n 0<t<T

(3.20) Wi(T) = max sup / |w; (x,t)|dz,
DT (t)

i=1mo<¢<T

(3.21) Voo (T) =  max sup |v; (x, t)],
i=Leom (g t)eR%[0,T)

(3.22) Us(T) = max sup |u; (x,t)],
i=Leom (g t)eR%[0,T)

(3.23) We(T) = max sup |w; (z,t)],
i=Ln (3 1) eRX[0,T]

where ¢; stands for any j-th characteristic in DI and where DI (¢) (¢t > 0) denotes
the t-section of DT
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Di (t) = {=|(z,t) € D{'}.

Then we have the following lemma which we can show by the same manner as
Lemma 3.2 and Lemma 3.3 in [2].

Lemma 2. Let T > 0 be a constant. Then, there exist positive constants
ki, ko, ks, ks > 0 and &y > 0 such that if a C solution to (1.1) and (1.4) ex-
ists in R x [0,T], then

(3.24) V(DL), W(DYL) < ke,
(3.25) W (T) < kae,
(3.26) Wi(T), Wi(T) < kse,
(3.27) Voo (T), Uso(T) < kye

hold for 0 < e < €.

Note that if we take & to be &y < §/k4, where ¢ is the one in (3.2), then
(3.27) admits (3.4) as long as C'! solutions exist.
Using Lemma 1 and Lemma 2 we can prove

Lemma 3. Let the assumption in Theorem be fulfilled. Let T > 0 be a constant
satisfying

(3.28) T exp <@> <1

And assume that there ezists a solution u to (1.1) and (1.4) in C1(R x [0,T7).
Then, there exist positive constants ks, ke and €1 > 0 such that

(3.29) Voo (T), US(T) < kse,
(3.30) Vi(T), Vi(T) < kge,
(3.31) Woo(T) < kre

hold for 0 < e < €.

Remark. Lemma 2 and Lemma 3 lead that the lower bound part of (1.12) hold
for 0 < e < &y.

Proof of Lemma 3: We first estimate

(3.32) Vi(T) = _max sup/ |v; (x, t)| dt.
L_j¥i g Cj
Fix a j-th characteristic ¢; € D] and denote

(333) Ej LT = .’ﬂj(t) (tl S t S tg),
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where 0 < t; < to < T and (x;(t1),t1), (z;(t2),t2) € OD]. Denote the i-th
characteristic passing through (0,0) by C? and let C? intersect with ¢; the point
(x(to),to) (t1 < to < t2). Passing through any given point (z,t) = (z;(t),?)
on ¢&;, we draw the i-th characteristic £ = Z;(y,s) which intersects one of
the boundaries of DT, say, z = (\,(0) + o)t (resp. x = (A\1(0) — &o)t) at a
point Ay = (y,y/(An(0) + do)) (vesp. By = (y,4/(Mi(0) — o)) if to <t < 2
(resp. t; <t < tg).

Then we have

(3.34) Ti(y,t) = z;(t)

which gives a one-to-one correspondence ¢ = t(y) between the segment OTy2
(resp. B,,0) and ¢;(tg <t < t3) (resp. ¢j(t; <t <tg)). Thus, the integral in ¢,
with respect to t can be reduced to the integral with respect to y. Differentiating
(3.34) with respect to ¢, we have

Aj(u(@i(y, 1), 1)) — Ai(u(@:i(y, 1),1) Oy

in which ¢ = ¢(y). Then, noting (3.2) we find that in order to estimate

(3.35) dt = dy,

[. [vi(z, )| dt = /O |vi(xj(t),t)|dt+/totz|yi(:cj(t),t)|dt

¢; ty
to t2
- / i (45, £),1)] dt + / i (&1 (9, 1), )|
t1 tO

Y1 Y2
<C {/ i (Zi (Y, 1), 1)l e=t(y) dy+/ 1Di(Zi(y, 1), 1) |t=t() dy},
0 0
it suffices to estimate

Y1 Y2
/ |pl(jz (ya t)a t) |t:t(y) dy and / |pl (jz (yv t)7 t) |t:t(y) dya
0 0

where p;(Z;(y,t),t) is defined by (2.18).
We now estimate

Y2
[ 19162000l
0
Integrating (2.19) along & = Z;(y, s) with a = A,,(0) 4 d¢, we have

y ) (1  Alu(y, /() +6o>>>>

Pi(Ti(y, 1), ) li=t(y) = Vi (y, m A (0) + 0o

t(y) et ajz Y,s ~
- S B 28 (5, 5), ) ds
Y/ (An(0)400) pss ktj Y
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t(y) L - o4 (
Y, s) .
+/ > (Bijju) - ﬂz’jj(ujej))zTijj(Ii(y,S), s) ds
y/(An(0)+d0) j=1 Y

t(y) _ %
(3.36) +/ 5m(uiei)Mviwi(fi(ya s),s)ds,
3/ (0)+50) Iy

where we use (2.21). By Hadamard’s formula, we have

0B
Bijj(w) — Bijj(uje;) —Ul/ 817] TUL, - TUj_1, Uj, TUj1, - 5 Tly) dT.
0 = Ou

Then using Lemma 1 we have

Y2
/ 192 (@ (9,8), Dl dy
0

Y2 y d
< 7 YN /AN ¢
—A “(yA(m+6>’y

t(y) 5
+C{WC W // (1+s)" W1+ |@i(yvs)‘)7<w>w ds dy
Y/ (\n (0)+30) dy

e // (14 )05y (@, 5),9)| 20 sy
(Zi(y,s S)EDT 8y

+VC / / 1 t+s (1+s) We(Ti\Y,Ss), —F—=ds dy
Z ) S)EDT )T wk (Zi(y, 5), 8)| dy
- / yyt(y) 3 0%i(y, 5)
0 Jy/(An(0)+60)

Biii(ue;) By vw;(Z:(y, s), s)| ds dy.

Introducing the trasformation

{ z = Ii(y, s),

s=2s,
we have the area element

dsdx = Mds dy.
dy

Hence, by (3.25), (3.26), (3.27), (3.28), (1.11) and (1.8) we have
Y2
/ [Pi(Zi(y, 1), t)e=t(y) dy
0

< O{klé‘ + kQEVOCO (T) + k‘gEVl (T) + k38VOZ(T)
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+T sup ex

1 C
(£,5)ERX[0,T] P (W) Voo (T)(Wee(T) + Wl(T))}

1

S C{k18+k2€VO%(T)+I€2€V1 (T)-i-kdEVOCO(T)‘FTeXp (—m>k4(k2+k3)€2}
4

<C {klé‘ + szVO%(T)+k25V1(T)+k36Vo‘;(T)+k4(k2+k3)52} .

Y1
In a similar manner, we can obtain the same estimate for | [p;(Z;(y,1),t)]i=¢(y) dy.
0

Thus we have
(3.37) VA(T) < C {kie + koeVE (T) + koeVi(T) + kseVE (T) + ka(ks + k3)e*} .
Moreover, we have (cf.[2])
(3.38) VA(T) < C {kie + koeVE(T) + kaeVi(T) + kseVE(T) + ka(ko + ks3)e®} .
We next prove

US,(T) < CVE(T).
We fix point a (x,t) € DT\ DI and estimate (1 + |z — X\;(0)¢]) #|u;(z,¢)|. In
the case of (z,t) & O DI, by (3.11) and (2.5) we have

k=1

(1+ Jz = X(0)t) FHui(e, )] < CY (14 ) g (a, 1)
k=1

< O (14 |z = M (0)t) ¥ for (. 1)
k=1

< CVE(T).

On the other hand, in the case of (z,t) € DJT (for some j # i), we find that

(z,t) & U DI Moreover, (2.5) and (2.1) lead to
k#j

ui(z,t) = "u(z, t)e;
= ka(x,t)trk(’u)ei
k=1

= Z vp(x, t) e (u)e; + v (fr(u) — 'rj(uje;))e;.
k#j

By Hadamard’s formula, we have



THE LIFESPAN OF SOLUTIONS TO QUASILINEAR HYPERBOLIC SYSTEMS 27

1
or;
ri(u) —rj(uje;) = uk/o Z 8—1/;(81“’ e SUj_1, U, SUjy1, 5 SUp) dS.
pn

Hence, noting (z,t) ¢ DI, we have
(1 + [a = X (0)) Fui(z, 8)| < CVL(T) + Vo Use (7))
Combining the above facts, we have

UL(T) < C(VL(T) + Vo UL (T))
< C(VE(T) + kaeUS(T).

Hence, if we take €] to be Ckye) < 1/2,
Us(T) <2CVL(T)

holds for 0 < & < &].

Thus we have only to estimate VS (T).

For (z,t) € DT\ DT, by the definition of D}, without loss of generalities,
we may suppose that

(3.39) z = Xi(0)t > [0 + (A (0) = Ai(0))]2,

which implies ¢ < n. Then, the i-th characteristic passing through (z,t)
must intersect with D% at a point (y,t9). Let us denote this characteristic by
¢ = zi(s;x,t), then we have

(3.40) ‘Zi = N(u(zi(s;2,1),8)), to<s<T,
(3.41) zi(to;z,t) = vy,

where tg = y/(A,(0) +dp). Integrating (3.40) from ty to ¢t and using (3.3) we find
x— <)\z’(0) + %) t<y-— (Ai(o) + %) to-

Since y = (A, (0) + do)to, noting (3.39) and t > ty, we have

(3.42) nt <tg <t.

Integrating (2.8) along & = z;(s;x,t) from ¢ to ¢ and multiplying (1 + |z —
Ai(0)t])1# to both sides, we obtain

(1 + o = A (0)t]) vy (0, 8)
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= (L4 |z = X(0)t) vy, to) + (L + & — Ay (0)¢]) 1+

t t n
(3.43) ><</ Zﬂijk(U)vjwkder/ > Buj(w)vjw; ds)a
o s

where we use (2.12). Since (z,t), (y,to) € DT\ DT, Lemma 1, (3.42) and Lemma
2 lead to

(1+ |z = X 0)t)) Hwi(y, to)| < C(1+ ) iy, to)|

C(1 + to) v (y, to)]

C(1+ |y = Mi(0)to]) #vi(y, to)|
CV(DY)

Ckie

INIAN AN IN TN

(3.44)

for 0 < £ < £€g. Now we estimate the second term of (3.43). Since (z;(s;x,t),s) €
DT\ DI (3.42), Lemma 1 and Lemma 2 lead to

(14 |z — A (0)t]) 1+“/ szjk w)vwg(z:(s; x,t), s)| ds
t

0 k#i
k#j

< c{v;(T)WgO(T) /t(l + )~ g

to

W (T Z/ ;| ds+VE (T) / (x| ds
(wi(s;w,t),5)€DT =1 (@i(s;z,t),s)eDT
(3.45) < c{vgo(T)(Ck2 Fhy)e + Vl(T)st}

for 0 < € < &. On the other hand, noting 5;;;(u;e;) = 0 and using Hadamard’s
formula, we have

(14 |z — X (0)t]) 1+”/ ZWW w)vjwj(z;(s;z,t),s)| ds

to]l

C(1+1) 1Jr“/t Z| (Bigj(w) — Bijj(use;))vjw;| ds

0 j=1
t n
C(1+1t) 1+“/ ZZ|ul(xi(s;x,t),s)vjwj|ds
fo j=11#;
<C s (149 )ValT) [ gl ds

(v.5)eDT\D] (20,5)€DT\DJ

+Us x  sup  (1+ S)H”(Uj(yas))Z/ |w;] ds
(y,5)€DT\DT : i,5)€DT\DT
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< CUL(T)Voo( TYWA(T) 4 Uso(T)VE(T) x CWE(T))
< CVE(T) (Vo (T)WA(T) + CWE(T)Uoso (T))
(3.46) < CVE(T)ka(cky + k3)e?

for 0 < £ < &. Combining (3.43), (3.44), (3.45) and (3.46), we get
V(D)
(347) < C {kls + (Chs + k3)eVE (T) + kae Vi (T) + ka(Chs + k3)52v;(T)} .

By the continuity of the norms, we may assume that there exists Ty < T
such that

(349) Vl(To), Vl(Tg) S 2]{766.

Substituting (3.48) and (3.49) into the right-hand side of (3.37), (3.38) and
(3.47) (in which we take T' = Tp), we get

Vl(To), Vl(TQ) <C {kle’:‘ + 2/€2]€562 + 2/€2]€662 + 2k‘3k582 + k4(k2 + kg)EQ} ,
VE(To) < C{kie + 2ks(Chy + k3)e® + 2kakge® + 2kaks(Cha + k3 )™} .

Hence, if we take ks, kg and &1 to be

2/€5(Ok12 + /€3)51 + 2kokeéq + 2k‘4l€5(0]€2 + /€3)51 < Cky,
2koksér + 2kokgé1 + 2kskséq + k4(/€2 + k3)§1 < Cky
and
2Ck1 § k5a
(3.50) 2Ck; < ke,
we have

Voco (TO) S k56,

Vl(T()), Vl(To) < k’6€
for 0 < e < &;. Moreover by (3.50), taking ks bigger if we need, we have
USL(T), VE(T) < kse for e < £. The continuation method (3.29) and (3.30)
admits for any Ty < T, espacially for Top = T. This implies (3.29) and (3.30).
Now we prove (3.31). Integrating (2.9) along & = z;(s;z,t) from tg to t
(t<T' <T), we have

wile,t) = wilpto) + 3 [ i wwsunlasia o). ) ds

j#k vt
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t
+/ (Viii _A/iii(uiei))w?(xi(s;xat)vs) ds
t
t
(3.51) +/ iii (uieq)wi (zi(s; 2, 1), 5) ds,
to

where we use (2.13). In the same manner as the proof of (3.29), the followings
can be seen.

lwi(y, to)| < W(DL') < kye.

t
c 1
j%ék |%akwgwk (zi(s;2,t),5)ds < CWOO(TI)WOO(T/)/tO st
(3.52) < ChaeWoo (T').

t
/ |51 (w) — %ii(uiemwf(iﬂi(s; z,t),8)ds
to

t
:/ uj(xi(s;x,t),s)/ 88%” dr
to

o Ouj
2
< LW VYW [ (s )

w?(xi(s;x,t), 8)ds

(353) < C{kse(Woo(T"))* + Ck§k452} .

By (1.11), (1.8), (3.28) and Lemma 2, we find that

t
/ by (wie) (s (s; 2, 1), 8) ds
to

IN

' X —; c 2 e )
r eorontior p( a(lm(&s)l)) (WS (T")? + C(WL(T'))

y 1 N2 2.2
T exp (—m) (Weo(T7))* + Ckie

(3.54) < (Woo(T"))? + Ck2e?

IN

holds. Thus (3.51)—(3.54) imply
Woo (T') < C {kie + k3 (1 + ka)e® + koeWoo (T') + (1 + kse) Wao (T))* }

for any 7" < T. The continuity of the norms, we may assume that there exists
T" < T such that W (T") < 2k7e. Then we have

Woo(T') < C {kie + k3 (1 + ka)e® + 2kokre® + 4(1 + kse)k7e® } .
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Hence, if we take k7 and £; to be
k3 (1 + ky)&1 + 2kokr&y + 4(1 + kse1)k38; < Chy

and
2Cky < kr,
we have
Weo(T') < kre

for 0 < € < £&;. By the continuation method, (3.31) holds for any 77 < T,
especially for 77 = T'. This completes the proof of Lemma 3.

In the remainder of this section we concentrate on proving the upper bound
part of (1.12). Since we are considering the transformed problem, the initial
condition (1.4) should be rewritten as

(3.55) u(z,0) = ep(z) + O(?).

For the simplicity, we assume ig = 1 in Theorem. Since @;(x) satisfies (1.5) and
does not vanish identically, there exists a point zg € R such that @ () # 0 and
@1 (zg) > 0. We assume @;(xg) > 0, for example. Let z = x1(z¢,t) be the first
characteristic passing through (x,0). Then there exists a t; > 0 depending on
To such that

(3.56) (z1(z0,t),t) € DT for to <t.
In fact, noting (3.40), we have
¢
x1(t) — zp = / A (u(zi(s;z,t),s)) ds.
0
Thus (3.3) implies,
To + <>\1(0) — ) t <ai(t) <wo+ <>\1(0) + ) t.
If we take tg to be
—2x¢ < dpto and zp < {%0 +n(A2 — >\1(0))} to,

we find that (z1(zo,t),t) € DT for t > t,.
There exists an ¢, > 0, such that Lemma 2, Lemma 3 and

(3.57) fo < exp <a (;4€)>
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hold for 0 < € < &4. Then we obtain

Lemma 4. Let x = x1(xo,t) be the same to the above one. Then there exists a
constant B > 0 and &5 depending on ty such that

(3.58) [ur (w1 (0, 1), 1) — e@1(x0)| < Be?
holds for 0 < e < &3 and 0 <t < T(e).
Proof: By (2.8), (2.12), (3.56), Lemma 2 and Lemma 3, we obtain

t
|u1 (21 (2o, t),t) — vi(wo,0)] < / > |Bikvjwi (@i (0, 5), 5)| ds
0 k21

to
S/ > |Bykvjwi (e (0, ), 5)| ds
0 k1
t

+ [ Y IBykvjwi(z (20, 5), 5)| ds

to g1
< C {Voo(tO)Woo(tO)tO + Voo(t)Wgo(t)}
(3.59) < C{kykrto + koky} €2

for 0 < & < &,. On the other hand, by (2.1) we find that
up(z,t) —vi(z,t) = tu(z,t) - ep — vi(z, )

ka(x, t)ri(u) - er —vi(x,t)
k=1

= Z v (z, 1) ("re(u) — 'ri(urer)) - e
k=1

holds. Thus we have
(3.60) lug (2, 1) —v1(2, )| < OV (1) Uno (t) < Chie®.
Combining (3.59) and (3.60) we obtain

[ur(w1(z0,t),t) — ep1(w0)| < |ur(w1(w0,1),t) — vi(z1(T0, 1), )]
+|v1(x1(20,t),t) — v1(x0,0)| + |v1(20,0) — £@1(20)]
<C (2]€Z + kqkrty + k2k4) 2.

Hence, we get (3.58) for 0 < & < &3 if we set &3 = ¢, and B = C(2k3 + kykrto +
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kioks).

From now on we set

1
o =eo (mres) 1 G

and assume that the C* solution to (1.1) and (1.4) exists for ¢t > Ty. By using a
notation wy (t) = wy (z1(xo,t),t), (2.9) is rewritten as

%wl( t) = 7111(“161)101(15)2 + (7111(U) - 7111(U161))wl(7f)2

(3.61) + 3 k(W wjwg(t).
Jj#k

By Lemma 4, we find that
u1(z1(wo,t),t) > ep1(x0) — Be? > 0
holds for t > T and € < &5. Hence, (1.9-iii) implies

a(m(m(lxo,t), t))) =P (‘awl(:col) - Bs2>> '

for t > T and € < &;. Since (z1(zo,t),t) € DT, (3.56) and Lemma 3 lead to

(3.62) v111(urer) = exp (_

0
[v111(u) — 111 (waer)| = |u;(z1(xo, ), Z/ 7111 Ulﬁ“y)d
J#1
< (7(1—Ft)_1_”lfc(t)
< Ce(1+4Tp)™

Ce
1
< Cee (— __ ) .
a(e@i(zo) + Be?)
Moreover, by (1.9-iv), there exists an &y > 0 depending on @1(z¢) and B such

that

a(epy(zo) + Be?)
a(e@y(xg) — Be?)

<1+p,

i.e.,

o (st ) = (Catmm-5)

holds for 0 < € < &y. Thus we have
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1
_ < _
Y111 (w) = 7 (urer)| < CE@XP( a(ep1 (o) = Bgz)>
(3.63) < L L for e < !
. - — T —.
= 1P\ a(epr (o) — Be2) 4

Similarly we have

> yjpwjw(t)| < C+ )T HWE () |w (£)]
i#k
< Ce(1 4 Tp) " H|w ()]
1+pu
a(e@y(zg) + Be?)

< Ceexp (— ) (14w (t)?).

Applying (1.9-iv) with replacing p to u/2, we find that there exists an &, > 0
such that

and

w2
P <_a(w1(xo) T Bssz)) s e

hold for 0 < € < &;. Thus we obtain

> grwywg(t)
itk
< Ceexp < a(g¢11 (;1)%3352)) exp ( a(€¢1(50/)2+ 352)) (Lt wi(t)%)
< C¥exp (a(wl(xol) - ng)> (1+wi(t)?)
(3.64) < 7o ( a(e@l(xol) = Bg?)> wi(®)® + Celexp < a(g@l(xol) - 362))

1\3
for e < (—> . Substituting (3.62), (3.63) and (3.64) into (3.61) we have
d 1

4C
1
a0 = 5 o <_G(E<P1($o) - B€2)) w(®)

, 1
(3.65) —Ceexp <_a(5<p1(9€0) - BEZ)>
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holds for t > Ty.
Now to derive an estimate for wy at t = Ty, we introduce a norm;

W (T) = sup |wi(t) —wi(xo,0)|.
0<t<T

Then we can prove

Lemma 5. There exist constants ks and €3 > 0 such that

(3.66) WL(T) < kge?

holds for 0 < e < éz and T < Ty.

Proof: Integrating (3.61) from 0 to ¢t (¢t < T < Tp) we have
lwi(t) — wi(xo,0)]|

<3 [ gl ds + [ = e )2 s

k70

+ / Y111 (urer)wy(s)? ds
0

t
. 1
< W) (s Jun() = i 0 + un 0,00 ) [ s
! Yoy 2 2
[ unts) [ 28 ] ) — s 0,00 + (o, ) s
0

¢ 1 2 2
(3.67) +/0 exp (—m> (lwi(s) = wi(zo,0)” + [wi (2o, 0)[7) ds.

Moreover, by the initial condition, we have
|w1(x0, O)‘ S Ce
and

lui(s)| < e@(zo) + Be.
Thus it follows from (3.67), (3.56), Lemma 2 and Lemma 3 that

WE(T) < C {koe(WL(T) + &) + (toka + ks) (WL (T))? + £2)e}

1
+T ex —
p< a(e@1 (o) + Be?)

> (WL(T)? + %) for 0<e<és.

35

By WL (0) =0, (3.66) holds for sufficiently small 7. Hence there exists T (< Tp)

such that WL (T) < 2kge? holds. Then we get

W2(T) < C{(ko + 1)e* + kokse® + (toka + ks ) (k3e + 1)® + k3e'} .
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Therefore if we take kg and €3 to be
kaksés + (toka + ks) (k3&s + 1)83 + k33 < ks +1
and
2C (k2 + 1) < ks,
then, we obtain
Wolo(T) < k852
for 0 < € < &€3. By continuation method, we find that (3.66) holds for any T' < Tj.

Proof of (1.12): In the same manner as (3.60), we have
lwi (w0,0) — e@} (z0)] < Ce?,
Thus Lemma 5 implies
lwi (t) — @) (z)| < Ce? for t < Ty,

especially,
’wl(Tg) Z 8()5/1(250) — 052 >0

for 0 < & < &3. Using (3.65), we find that wi(t) > 0 for ¢ > T, and that
wy(t) > €@} (xg) — Ce? for t > Ty. Thus if we take a e; > 0 smaller than &g, &1,
&s, €3, &9 and &1, we have

d

) > 1 1
Rl Zexp [ —
at 1P a(e@i(xg) — Be?)

) wi(t)?,  t> Ty,

1
U)l(To) > 56@1 ($0)

for 0 < € < ¢1. Hence, the fundamental comparison theorem implies

wi (t) > 1 P 1
1= Jwi(To) exp <— a(ep1 (z0) — Be2)) '
15@’ (z0)
> LT

1
a(ep1(20) — Bs2>) !

for 0 < e < 7. Since we assume ¢ (zg) > 0, we find that

1
T

C 1
Tle) < T o <a(w1(wo) - Bs2>>
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< Cexp <m>

hold for 0 < & < &1. This implies the upper bound part of (1.12).
Summing up the arguments in this section, we have found constans ¢y, ca,
C1, Cy and €1 which satisfy

1 oxp (a (0125)> < T(e) < Cpexp (@)

for 0 < € < e7. This completes the proof of (1.12).
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