Stability of standing waves for nonlinear Schrödinger equation with attractive delta potential and repulsive nonlinearity

Masahiro Kaminaga and Masahito Ohta

(Received October 19, 2009; Revised November 11, 2009)

Abstract

We study the orbital stability of standing wave solutions for a nonlinear Schrödinger equation with an attractive delta potential and a repulsive power nonlinearity in one space dimension.

1. Introduction

In this paper, we consider the following nonlinear Schrödinger equation with a delta potential:

(1)
$$i\partial_t u = -\partial_x^2 u + \gamma \delta(x)u + \alpha |u|^{p-1}u, \quad (t,x) \in \mathbb{R} \times \mathbb{R},$$

where $\gamma \in \mathbb{R}$, $\alpha = \pm 1$, $1 , and <math>\delta(x)$ is the delta measure at the origin. The equations of the form (1) arise in a wide variety of physical models with a point defect on the line (see, e.g., [5, 8, 9, 10, 11] and references therein). The formal expression $-\partial_x^2 + \gamma \delta(x)$ in (1) is formulated as a linear operator A_{γ} or H_{γ} associated with a quadratic form a_{γ} on $H^1(\mathbb{R})$:

$$a_{\gamma}(u,v) = \Re \left\{ \int_{\mathbb{R}} \partial_x u(x) \overline{\partial_x v(x)} \, dx + \gamma u(0) \overline{v(0)} \right\}, \quad u,v \in H^1(\mathbb{R}).$$

Remark that $H^1(\mathbb{R}) \hookrightarrow C_b(\mathbb{R})$. The linear operator $A_\gamma : H^1(\mathbb{R}) \to H^{-1}(\mathbb{R})$ is defined by

$$\langle A_{\gamma}u,v\rangle = a_{\gamma}(u,v), \quad u,v \in H^1(\mathbb{R}).$$

Moreover, we define a linear operator H_{γ} in $L^2(\mathbb{R})$ by $H_{\gamma}v = -\partial_x^2 v$ for $v \in D(H_{\gamma})$ with the domain

$$D(H_{\gamma}) = \{ v \in H^2(\mathbb{R} \setminus \{0\}) \cap H^1(\mathbb{R}) : \partial_x v(+0) - \partial_x v(-0) = \gamma v(0) \}.$$

²⁰⁰⁰ Mathematics Subject Classification. 35Q55, 35B35.

Key words and phrases. onlinear Schrödinger equation, delta potential, standing wave, stability.

M. Kaminaga and M. Ohta

Then, H_{γ} is a self-adjoint operator in $L^2(\mathbb{R})$, and satisfies

$$(H_{\gamma}u, v)_{L^2} = a_{\gamma}(u, v), \quad u, v \in D(H_{\gamma}).$$

The following spectral properties of H_{γ} are known: $\sigma_{\rm ess}(H_{\gamma}) = \sigma_{\rm ac}(H_{\gamma}) = [0, \infty)$, $\sigma_{\rm sc}(H_{\gamma}) = \emptyset$. If $\gamma \ge 0$, $\sigma_{\rm p}(H_{\gamma}) = \emptyset$. If $\gamma < 0$, $\sigma_{\rm p}(H_{\gamma}) = \{-\gamma^2/4\}$ with its positive normalized eigenfuction $(|\gamma|/2)^{1/2} e^{-|\gamma||x|/2}$ (see [1, Chapter I.3] for details).

In this paper, we consider the case where $\gamma < 0$ and $\alpha = 1$ (attractive potential and repulsive nonlinearity), and study the structure and the orbital stability of standing wave solutions $e^{i\omega t}\varphi_{\omega}(x)$ for (1), where $\omega \in \mathbb{R}$ and $\varphi_{\omega} \in H^1(\mathbb{R})$ is a positive solution of the stationary problem:

(2)
$$A_{\gamma}\varphi + \omega\varphi + \alpha|\varphi|^{p-1}\varphi = 0 \quad \text{in } H^{-1}(\mathbb{R})$$

The well-posedness of the Cauchy problem for (1) in the energy space $H^1(\mathbb{R})$ follows from an abstract result in Cazenave [3] (see Theorem 3.7.1 and Corollary 3.3.11 in [3], and also Section 2 of [7]).

Proposition 1. For any $u_0 \in H^1(\mathbb{R})$ there exist $T^* = T^*(u_0) \in (0,\infty]$ and a unique solution $u \in C([0,T^*), H^1(\mathbb{R}))$ of (1) with $u(0) = u_0$ such that $\lim_{t\to T^*} ||u(t)||_{H^1} = \infty$ if $T^* < \infty$. Moreover, u(t) satisfies the conservation of charge and energy:

$$||u(t)||_{L^2} = ||u_0||_{L^2}, \quad E(u(t)) = E(u_0)$$

for all $t \in [0, T^*)$, where the energy E is defined by

$$E(v) = \frac{1}{2} \|\partial_x v\|_{L^2}^2 + \frac{\gamma}{2} |v(0)|^2 + \frac{\alpha}{p+1} \|v\|_{L^{p+1}}^{p+1}$$

for $v \in H^1(\mathbb{R})$.

The stability of standing waves is defined as follows.

Definition. We say that a standing wave solution $e^{i\omega t}\varphi_{\omega}$ of (1) is stable in $H^1(\mathbb{R})$ if for any $\varepsilon > 0$ there exists $\eta > 0$ such that if $u_0 \in H^1(\mathbb{R})$ and $||u_0 - \varphi_{\omega}||_{H^1} < \eta$, then the solution u(t) of (1) with $u(0) = u_0$ exists for all $t \ge 0$ and satisfies

$$\sup_{t\geq 0} \inf_{\theta\in\mathbb{R}} \|u(t) - e^{i\theta}\varphi_{\omega}\|_{H^1} < \varepsilon.$$

Otherwise, $e^{i\omega t}\varphi_{\omega}$ is said to be *unstable in* $H^1(\mathbb{R})$. Moreover, $e^{i\omega t}\varphi_{\omega}$ is said to be *stable in* $H^1_{rad}(\mathbb{R})$ if the condition $u_0 \in H^1(\mathbb{R})$ is replaced by $u_0 \in H^1_{rad}(\mathbb{R})$ in the above definition of the stability in $H^1(\mathbb{R})$.

Before we state our main results, we recall some known results for the case where $\gamma \in \mathbb{R}$ and $\alpha = -1$ (attractive nonlinearity). When $\gamma \in \mathbb{R}$, $\alpha = -1$ and $\omega > \gamma^2/4$, the stationary problem (2) has a unique positive solution in $H^1(\mathbb{R})$. The positive solution φ_{ω} of (2) is given by

$$\varphi_{\omega}(x) = \left(\frac{(p+1)\omega}{2}\right)^{1/(p-1)} \left\{ \cosh\left(\frac{(p-1)\sqrt{\omega}}{2}|x| + b_{\gamma}(\omega)\right) \right\}^{-2/(p-1)}$$

for $x \in \mathbb{R}$, where $b_{\gamma}(\omega) = \tanh^{-1}(-\frac{\gamma}{2\sqrt{\omega}})$ (see [5, 6, 7]).

For the stability of standing wave solutions $e^{i\omega t}\varphi_{\omega}$ of (1), the case where $\gamma < 0$ and $\alpha = -1$ (attractive potential and attractive nonlinearity) was first studied by Goodman, Holmes and Weinstein [8] for the special case p = 3, and then by Fukuizumi, Ohta and Ozawa [7] for general case $1 . The following is proved in [7]. If <math>1 , the standing wave solution <math>e^{i\omega t}\varphi_{\omega}$ of (1) is stable in $H^1(\mathbb{R})$ for any $\omega \in (\gamma^2/4, \infty)$. If p > 5, there exists $\omega_1^* = \omega_1^*(\gamma, p) \in (\gamma^2/4, \infty)$ such that $e^{i\omega t}\varphi_{\omega}$ is stable in $H^1(\mathbb{R})$ for any $\omega \in (\omega_1^*, \infty)$.

The case where $\gamma > 0$ and $\alpha = -1$ (repulsive potential and attractive nonlinearity) was studied by Fukuizumi and Jeanjean [6] for radial case, and by Le Coz, Fukuizumi, Fibich, Ksherim and Sivan [12] for general case. The following is proved in [6]. If $1 , the standing wave solution <math>e^{i\omega t}\varphi_{\omega}$ of (1) is stable in $H^1_{\rm rad}(\mathbb{R})$ for any $\omega \in (\gamma^2/4, \infty)$. If 3 , there ex $ists <math>\omega_2^* = \omega_2^*(\gamma, p) \in (\gamma^2/4, \infty)$ such that $e^{i\omega t}\varphi_{\omega}$ is stable in $H^1_{\rm rad}(\mathbb{R})$ for any $\omega \in (\omega_2^*, \infty)$, and is unstable for any $\omega \in (\gamma^2/4, \omega_2^*)$. If $p \geq 5$, $e^{i\omega t}\varphi_{\omega}$ is unstable for any $\omega \in (\gamma^2/4, \infty)$. While, it is proved in [12] that if 1 and $<math>\omega \in (\gamma^2/4, \infty)$ or if $3 and <math>\omega \in (\omega_2^*, \infty)$, then the standing wave solution $e^{i\omega t}\varphi_{\omega}$ of (1) is unstable in $H^1(\mathbb{R})$.

Remark that for the case where $\gamma = 0$ and $\alpha = -1$ (attractive nonlinearity without potential), it is well-known that the standing wave solution $e^{i\omega t}\varphi_{\omega}$ is stable for any $\omega \in (0, \infty)$ if $1 , and it is unstable for any <math>\omega \in (0, \infty)$ if $p \ge 5$ (see [2, 4, 3]).

We now state our main results for the case $\gamma < 0$ and $\alpha = 1$ (attractive potential and repulsive nonlinearity).

Theorem 1. Let $\gamma < 0$, $\alpha = 1$, $1 and <math>0 < \omega < \gamma^2/4$. Then, the stationary problem (2) has a unique positive solution $\varphi_{\omega} \in H^1(\mathbb{R})$ given by

(3)
$$\varphi_{\omega}(x) = \left(\frac{(p+1)\omega}{2}\right)^{1/(p-1)} \left\{ \sinh\left(\frac{(p-1)\sqrt{\omega}}{2}|x| + c_{\gamma}(\omega)\right) \right\}^{-2/(p-1)}$$

for $x \in \mathbb{R}$, where $c_{\gamma}(\omega) = \tanh^{-1}(2\sqrt{\omega}/|\gamma|)$. Moreover, the standing wave solution $e^{i\omega t}\varphi_{\omega}$ of (1) is stable in $H^1(\mathbb{R})$.

Theorem 2. Let $\gamma < 0$, $\alpha = 1$, $\omega = 0$ and $1 . Then, the stationary problem (2) has a unique positive solution <math>\varphi_0 \in H^1(\mathbb{R})$ given by

M. Kaminaga and M. Ohta

(4)
$$\varphi_0(x) = \left(\frac{2(p+1)\gamma^2}{\{4+(p-1)|\gamma||x|\}^2}\right)^{1/(p-1)}$$

for $x \in \mathbb{R}$. Moreover, the stationary solution φ_0 of (1) is stable in $H^1(\mathbb{R})$.

Remark. We do not consider the case $\omega \notin (0, \gamma^2/4)$ or $\omega = 0$ and $p \ge 5$ in Theorems 1 and 2. In Section 2, we prove that there are no nontrivial solutions of (2) in $H^1(\mathbb{R})$ for these cases (see Propositions 2, 3 and 5).

The plan of this paper is as follows. In Section 2, we study the structure of solutions of the stationary problem (2). In Section 3, we prove Theorem 1 by the method of Cazenave and Lions [4] (see Section III of [4] in particular). In Section 4, we prove Theorem 2 by modifying the argument in Section 3.

2. Stationary problem

First, we define the action S_{ω} and the set \mathcal{A}_{ω} of the nontrivial solutions for the stationary problem (2) as follows.

$$S_{\omega}(v) = \frac{1}{2} \|\partial_x v\|_{L^2}^2 + \frac{\omega}{2} \|v\|_{L^2}^2 + \frac{\gamma}{2} |v(0)|^2 + \frac{\alpha}{p+1} \|v\|_{L^{p+1}}^{p+1},$$

$$\mathcal{A}_{\omega} = \{ u \in H^1(\mathbb{R}) : S'_{\omega}(u) = 0, \ u \neq 0 \}.$$

The following regularity result for solutions of (2) is known.

Lemma 1. Let $\gamma \in \mathbb{R} \setminus \{0\}$, $\alpha \in \mathbb{R}$, $\omega \in \mathbb{R}$ and $\varphi \in \mathcal{A}_{\omega}$. Then, φ satisfies the following.

(5) $\varphi \in C(\mathbb{R}) \cap C^2(\mathbb{R} \setminus \{0\}),$

(6)
$$-\varphi''(x) + \omega\varphi(x) + \alpha|\varphi(x)|^{p-1}\varphi(x) = 0, \quad x \in \mathbb{R} \setminus \{0\},$$

(7) $\varphi'(+0) - \varphi'(-0) = \gamma \varphi(0),$

(8)
$$\lim_{x \to +\infty} \varphi(x) = 0, \quad \lim_{x \to +\infty} \varphi'(x) = 0,$$

(9)
$$|\varphi'(x)|^2 = \omega |\varphi(x)|^2 + \frac{2\alpha}{p+1} |\varphi(x)|^{p+1}, \quad x \in \mathbb{R} \setminus \{0\}.$$

For the proof of Lemma 1, see those of Lemma 3.2 in [7] and of Lemma 25 in [6].

Proposition 2. Let $1 , <math>\gamma < 0$ and $\alpha > 0$. If $\omega \ge \gamma^2/4$, then \mathcal{A}_{ω} is empty.

Proof. Suppose that there exists $\varphi \in \mathcal{A}_{\omega}$. Then, we have

$$\|\partial_x \varphi\|_{L^2}^2 + \omega \|\varphi\|_{L^2}^2 - |\gamma| |\varphi(0)|^2 + \alpha \|\varphi\|_{L^{p+1}}^{p+1} = \frac{d}{d\lambda} S(\lambda \varphi)|_{\lambda=1} = 0.$$

Moreover, since the first eigenvalue of H_{γ} is $-\gamma^2/4$, i.e.,

$$\inf\{\|\partial_x v\|_{L^2}^2 - |\gamma| |v(0)|^2 : v \in H^1(\mathbb{R}), \ \|v\|_{L^2} = 1\} = -\frac{\gamma^2}{4},$$

we have

$$0 = \|\partial_x \varphi\|_{L^2}^2 + \omega \|\varphi\|_{L^2}^2 - |\gamma| |\varphi(0)|^2 + \alpha \|\varphi\|_{L^{p+1}}^{p+1}$$

$$\ge (\omega - \gamma^2/4) \|\varphi\|_{L^2}^2 + \alpha \|\varphi\|_{L^{p+1}}^{p+1} \ge \alpha \|\varphi\|_{L^{p+1}}^{p+1} > 0.$$

This is a contradiction. Hence, \mathcal{A}_{ω} is empty.

Lemma 2. Let $\gamma \in \mathbb{R} \setminus \{0\}$, $\alpha \in \mathbb{R}$ and $\omega \in \mathbb{R}$. Let φ be a nontrivial solution of (5)–(9). Then, $\varphi(x) \neq 0$ for all $x \in \mathbb{R}$.

Proof. Suppose that there exists $x_0 \in \mathbb{R}$ such that $\varphi(x_0) = 0$. If $x_0 > 0$, then by (9) we have $\varphi'(x_0) = 0$. By the uniqueness of solutions of the Cauchy problem for (6), we see that $\varphi(x) = 0$ for all $x \in (0, \infty)$, and by (7) we have $\varphi(0) = \varphi'(0) = 0$. For the case $x_0 \leq 0$, we see that $\varphi(0) = \varphi'(0) = 0$ in the same way. Thus, by the uniqueness of solutions of the Cauchy problem for (6), we see that $\varphi(x) = 0$ for all $x \in \mathbb{R}$. Since φ is a nontrivial solution, this is a contradition. Hence, $\varphi(x) \neq 0$ for all $x \in \mathbb{R}$.

Lemma 3. Let $\gamma \in \mathbb{R} \setminus \{0\}$, $\alpha \in \mathbb{R}$ and $\omega \in \mathbb{R}$. Let φ be a nontrivial solution of (5)–(9). Then we have either (i) or (ii):

(i) $\Im \varphi(x) = 0$ for all $x \in \mathbb{R}$,

(ii) there exists $c \in \mathbb{R}$ such that $\Re \varphi(x) = c \Im \varphi(x)$ for all $x \in \mathbb{R}$.

Proof. We put $u = \Re \varphi$ and $v = \Im \varphi$. Then, (u, v) satisfies

$$\begin{cases} -u''(x) + \omega u(x) + \alpha |\varphi(x)|^{p-1} u(x) = 0, \\ -v''(x) + \omega v(x) + \alpha |\varphi(x)|^{p-1} v(x) = 0 \end{cases}$$

for all $x \in \mathbb{R} \setminus \{0\}$. Thus, we have (u'(x)v(x) - u(x)v'(x))' = 0 for $x \in \mathbb{R} \setminus \{0\}$. Moreover, by (8), we have

(10)
$$u'(x)v(x) = u(x)v'(x) \quad \text{for all} \quad x \in \mathbb{R} \setminus \{0\}.$$

If there exists $x_0 \in \mathbb{R}$ such that $v(x_0) = 0$, then by (10) and Lemma 2, we have $v'(x_0) = 0$. Then, as in the proof of Lemma 2, we see that v(x) = 0 for all $x \in \mathbb{R}$. That is, we have the case (i). Otherwise, $v(x) \neq 0$ for all $x \in \mathbb{R}$. Then, by (10), we have

$$\frac{d}{dx}\left(\frac{u(x)}{v(x)}\right) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = 0$$

for all $x \in \mathbb{R} \setminus \{0\}$, which implies (ii).

Proposition 3. Let $1 , <math>\gamma < 0$ and $\alpha > 0$. If $\omega < 0$, then \mathcal{A}_{ω} is empty.

Proof. Suppose that there exists $\varphi \in \mathcal{A}_{\omega}$. Then, by (8) in Lemma 1, there exists L > 0 such that

$$\frac{\alpha}{p+1}|\varphi(x)|^{p-1} \le \frac{|\omega|}{4}$$

for all $|x| \ge L$. Moreover, by (9) in Lemma 1 and by Lemma 2, we have

$$|\varphi'(x)|^{2} = |\varphi(x)|^{2} \left(\omega + \frac{2\alpha}{p+1} |\varphi(x)|^{p-1}\right) \le -\frac{|\omega|}{2} |\varphi(x)|^{2} < 0$$

for $|x| \geq L$. This is a contradiction. Hence, \mathcal{A}_{ω} is empty.

Proposition 4. Let $1 , <math>\gamma < 0$, $\alpha = 1$ and $0 < \omega < \gamma^2/4$. Then, $\mathcal{A}_{\omega} = \{e^{i\theta}\varphi_{\omega} : \theta \in \mathbb{R}\}, \text{ where } \varphi_{\omega} \text{ is defined by } (3).$

Proof. By direct computations, we see that $\varphi_{\omega} \in \mathcal{A}_{\omega}$, and we have $\{e^{i\theta}\varphi_{\omega} : \theta \in \mathbb{R}\} \subset \mathcal{A}_{\omega}$. Next, let $\varphi \in \mathcal{A}_{\omega}$. Then, by Lemma 3, there exist $\theta \in \mathbb{R}$ and a real-valued function w such that $\varphi(x) = e^{i\theta}w(x)$ for all $x \in \mathbb{R}$. Moreover, w satisfies (5)–(9). By the phase plane analysis on the (w, w')-plane, we see that either $w = \varphi_{\omega}$ or $w = -\varphi_{\omega}$. This proves $\mathcal{A}_{\omega} \subset \{e^{i\theta}\varphi_{\omega} : \theta \in \mathbb{R}\}$.

Proposition 5. Let $\gamma < 0$ and $\alpha = 1$. If $1 , then <math>\mathcal{A}_0 = \{e^{i\theta}\varphi_0 : \theta \in \mathbb{R}\}$, where φ_0 is defined by (3). If $p \ge 5$, then the set \mathcal{A}_0 is empty.

Proof. By direct computations, we see that φ_0 satisfies (5)–(9) with $\omega = 0$ for any $1 . If <math>1 , then <math>\varphi_0 \in H^1(\mathbb{R})$ and we see that $\mathcal{A}_0 = \{e^{i\theta}\varphi_0 : \theta \in \mathbb{R}\}$ in the same way as in the proof of Proposition 4. While, if $p \geq 5$, then $\varphi_0 \notin L^2(\mathbb{R})$ and we see that \mathcal{A}_0 is empty.

3. Proof of Theorem 1

In this section, we always assume $1 , <math>\gamma < 0$, $\alpha = 1$ and $0 < \omega < \gamma^2/4$. We put

$$d_{\omega} = \inf\{S_{\omega}(v) : v \in H^{1}(\mathbb{R})\},\$$

$$\mathcal{M}_{\omega} = \{u \in H^{1}(\mathbb{R}) : S_{\omega}(u) = d_{\omega}\}.$$

Lemma 4. $-\infty < d_{\omega} < 0$ and $\mathcal{M}_{\omega} \subset \mathcal{A}_{\omega}$.

Proof. We first prove $d_{\omega} > -\infty$. By the Sobolev and Hölder inequalities, there exist positive constants C_1 and C_2 such that

$$|\gamma||v(0)|^{2} \leq \frac{1}{2} \|\partial_{x}v\|_{L^{2}}^{2} + C_{1}\|v\|_{L^{2}(-1,1)}^{2} \leq \frac{1}{2} \|\partial_{x}v\|_{L^{2}}^{2} + \frac{1}{p+1} \|v\|_{L^{p+1}}^{p+1} + C_{2}$$

for any $v \in H^1(\mathbb{R})$. Thus, we have

(11)
$$E(v) \ge \frac{1}{4} \|\partial_x v\|_{L^2}^2 + \frac{1}{2(p+1)} \|v\|_{L^{p+1}}^{p+1} - \frac{C_2}{2}$$

for $v \in H^1(\mathbb{R})$, which implies $d \geq -C_2/2$. Thus, $d_{\omega} > -\infty$.

Next, we prove $d_{\omega} < 0$. We put $\Phi(x) = e^{-|\gamma||x|/2}$. Since Φ is an eigenfunction of H_{ω} corresponding to the first eigenvalue $-\gamma^2/4$, we have

$$d_{\omega} \leq S_{\omega}(\lambda \Phi) = \frac{\lambda^2}{2} (\|\partial_x \Phi\|_{L^2}^2 + \gamma |\Phi(0)|^2 + \omega \|\Phi\|_{L^2}^2) + \frac{\lambda^{p+1}}{p+1} \|\Phi\|_{L^{p+1}}^{p+1}$$
$$= \frac{\lambda^2}{2} \left(\omega - \frac{\gamma^2}{4}\right) \|\Phi\|_{L^2}^2 + \frac{\lambda^{p+1}}{p+1} \|\Phi\|_{L^{p+1}}^{p+1} < 0$$

for sufficiently small $\lambda > 0$. Thus, $d_{\omega} < 0$.

Finally, we prove $\mathcal{M}_{\omega} \subset \mathcal{A}_{\omega}$. Let $w \in \mathcal{M}_{\omega}$. Then, we have $S'_{\omega}(w) = 0$. Moreover, since $S_{\omega}(w) = d_{\omega} < 0$, we have $w \neq 0$. Thus, we see that $w \in \mathcal{A}_{\omega}$. This proves $\mathcal{M}_{\omega} \subset \mathcal{A}_{\omega}$.

Lemma 5. Let $\{v_n\} \subset H^1(\mathbb{R})$ and $S_{\omega}(v_n) \to d_{\omega}$. Then, there exist a subsequence $\{v_{n'}\}$ and $w \in \mathcal{M}_{\omega}$ such that $v_{n'} \to w$ in $H^1(\mathbb{R})$.

Proof. By (11), we see that $\{v_n\}$ is bounded in $H^1(\mathbb{R})$. Thus, there exist a subsequence of $\{v_n\}$ (we denote it by the same letter) and $w \in H^1(\mathbb{R})$ such that $v_n \rightharpoonup w$ weakly in $H^1(\mathbb{R})$. Moreover, since the embedding $H^1(-1,1) \hookrightarrow C[-1,1]$ is compact, we see that $v_n(0) \rightarrow w(0)$. Thus, we have

$$d_{\omega} \le S_{\omega}(w) \le \liminf_{n \to \infty} S_{\omega}(v_n) = d_{\omega},$$

which implies that $w \in \mathcal{M}_{\omega}$ and $v_n \to w$ in $H^1(\mathbb{R})$.

Lemma 6. $\mathcal{M}_{\omega} = \mathcal{A}_{\omega} = \{e^{i\theta}\varphi_{\omega} : \theta \in \mathbb{R}\}.$

Proof. By Lemmas 4 and 5, we have $\emptyset \neq \mathcal{M}_{\omega} \subset \mathcal{A}_{\omega}$. Moreover, by Proposition 4, we have $\mathcal{A}_{\omega} = \{e^{i\theta}\varphi_{\omega} : \theta \in \mathbb{R}\}$, which implies $\mathcal{M}_{\omega} = \mathcal{A}_{\omega}$.

Now we give the proof of Theorem 1.

Proof of Theorem 1. We prove this by contradiction. Suppose that $e^{i\omega t}\varphi_{\omega}$ is not stable in $H^1(\mathbb{R})$. Then, there exist a constant $\varepsilon_0 > 0$, a sequence $\{u_n(t)\}$ of solutions of (1) and a sequence $\{t_n\}$ in $(0, \infty)$ such that

(12)
$$\|u_n(0) - \varphi_\omega\|_{H^1} \to 0,$$

(13)
$$\inf_{\theta \in \mathbb{R}} \|u_n(t_n) - e^{i\theta}\varphi_{\omega}\|_{H^1} = \varepsilon_0$$

By (12) and the conservation of charge and energy, we have

$$S_{\omega}(u_n(t_n)) = S_{\omega}(u_n(0)) \to S_{\omega}(\varphi_{\omega}) = d_{\omega}.$$

By Lemmas 5 and 6, there exist a subsequence $\{u_{n'}(t_{n'})\}$ and $\theta_0 \in \mathbb{R}$ such that $u_{n'}(t_{n'}) \to e^{i\theta_0}\varphi_{\omega}$ in $H^1(\mathbb{R})$. This contradicts (13). Hence, $e^{i\omega t}\varphi_{\omega}$ is stable in $H^1(\mathbb{R})$.

4. Proof of Theorem 2

In this section, we always assume $1 , <math>\gamma < 0$ and $\alpha = 1$. We put

$$X = \{ v \in L^{p+1}(\mathbb{R}) : \partial_x v \in L^2(\mathbb{R}) \},\$$

$$d = \inf\{ E(v) : v \in X \},\$$

$$\mathcal{M} = \{ \varphi \in X : E(\varphi) = d \},\$$

$$\mathcal{A} = \{ \varphi \in X : E'(\varphi) = 0, \ \varphi \neq 0 \}.$$

Lemma 7. $-\infty < d < 0$ and $\mathcal{M} \subset \mathcal{A} = \{e^{i\theta}\varphi_0 : \theta \in \mathbb{R}\}.$

Proof. The facts $-\infty < d < 0$ and $\mathcal{M} \subset \mathcal{A}$ can be proved in the same way as in the proof of Lemma 4. Remark that the inequality (11) holds true for $v \in X$. If $\varphi \in \mathcal{A}$, then we see that φ satisfies (5)–(9) with $\omega = 0$. Then, as in the proof of Proposition 5, we have $\mathcal{A} = \{e^{i\theta}\varphi_0 : \theta \in \mathbb{R}\}.$

Lemma 8. Let $\{v_n\} \subset X$ and $E(v_n) \to d$. Then, there exist a subsequence $\{v_{n'}\}$ and $w \in \mathcal{M}$ such that $v_{n'} \to w$ in X.

Proof. By (11), we see that $\{v_n\}$ is bounded in X. Since X is reflexive, there exist a subsequence of $\{v_n\}$ (we denote it by the same letter) and $w \in X$ such that $v_n \rightharpoonup w$ weakly in X. Then, we have $v_n(0) \rightarrow w(0), v_n \rightharpoonup w$ weakly in $L^{p+1}(\mathbb{R})$, and $\partial_x v_n \rightharpoonup \partial_x w$ weakly in $L^2(\mathbb{R})$. Thus, we have

$$d \le E(w) \le \liminf_{n \to \infty} E(v_n) = d,$$

which implies that $w \in \mathcal{M}$, $||v_n||_{L^{p+1}} \to ||w||_{L^{p+1}}$ and $||\partial_x v_n||_{L^2} \to ||\partial_x w||_{L^2}$. Hence, $v_n \to w$ in X.

Lemma 9. Let $\{v_n\} \subset H^1(\mathbb{R}), E(v_n) \to E(\varphi_0) \text{ and } \|v_n\|_{L^2} \to \|\varphi_0\|_{L^2}$. Then, there exist a subsequence $\{v_{n'}\}$ and $\theta_0 \in \mathbb{R}$ such that $v_{n'} \to e^{i\theta_0}\varphi_0$ in $H^1(\mathbb{R})$.

Proof. By Lemmas 7 and 8, we see that $\mathcal{M} = \mathcal{A} = \{e^{i\theta}\varphi_0 : \theta \in \mathbb{R}\}$ and $d = E(\varphi_0)$. Thus, by Lemma 8, there exist a subsequence of $\{v_n\}$ (we denote it by the same letter) and $\theta_0 \in \mathbb{R}$ such that $v_n \to e^{i\theta_0}\varphi_0$ in $X, v_n \to e^{i\theta_0}\varphi_0$ weakly in $L^2(\mathbb{R})$. By the weakly lower semicontinuity of norm and by our assumption, we have

$$\|e^{i\theta_0}\varphi_0\|_{L^2} \le \liminf_{n \to \infty} \|v_n\|_{L^2} = \|\varphi_0\|_{L^2} = \|e^{i\theta_0}\varphi_0\|_{L^2},$$

which implies that $v_n \to e^{i\theta_0}\varphi_0$ in $L^2(\mathbb{R})$. Hence, $v_n \to e^{i\theta_0}\varphi_0$ in $H^1(\mathbb{R})$.

Now we give the proof of Theorem 2.

Proof of Theorem 2. We prove this by contradiction. Suppose that φ_0 is not stable in $H^1(\mathbb{R})$. Then, there exist a constant $\varepsilon_0 > 0$, a sequence $\{u_n(t)\}$ of solutions of (1) and a sequence $\{t_n\}$ in $(0, \infty)$ such that

(14)
$$||u_n(0) - \varphi_0||_{H^1} \to 0,$$

(15)
$$\inf_{\theta \in \mathbb{R}} \|u_n(t_n) - e^{i\theta}\varphi_0\|_{H^1} = \varepsilon_0$$

By (14) and the conservation of charge and energy, we have

$$\|u_n(t_n)\|_{L^2} = \|u_n(0)\|_{L^2} \to \|\varphi_0\|_{L^2},$$

$$E(u_n(t_n)) = E(u_n(0)) \to E(\varphi_0).$$

By Lemma 9, there exist a subsequence $\{u_{n'}(t_{n'})\}$ and $\theta_0 \in \mathbb{R}$ such that $u_{n'}(t_{n'}) \to e^{i\theta_0}\varphi_0$ in $H^1(\mathbb{R})$. This contradicts (15). Hence, φ_0 is stable in $H^1(\mathbb{R})$.

Acknowledgements

The authors would like to thank the referee for his valuable comments. The research of the second author was partly supported by KAKENHI (18540161).

References

- S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable models in quantum mechanics, 2nd ed., with an appendix by Pavel Exner, AMS Chelsea Publishing, American Mathematical Society, Providence, RI, 2005.
- [2] H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C.R. Acad. Sci. Paris sér. I Math. 293 (1981), 489–492.
- [3] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
- [4] T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), 549–561.
- [5] F.F.G. Della Casa and A. Sacchetti, Stationary states for non linear one-dimensional Schrödinger equations with singular potential, Phys. D 219 (2006), 60–68.
- [6] R. Fukuizumi and L. Jeanjean, Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential, Discrete Contin. Dyn. Syst. 21 (2008), 121–136.
- [7] R. Fukuizumi, M. Ohta and T. Ozawa, Nonlinear Schrödinger equation with a point

defect, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), 837-845.

- [8] R.H. Goodman, P.J. Holmes, and M.I. Weinstein, Strong NLS soliton-defect interactions, Phys. D 192 (2004), 215–248.
- [9] J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys. 274 (2007), 187–216.
- [10] J. Holmer, J. Marzuola and M. Zworski, Soliton splitting by external delta potentials, J. Nonlinear Sci. 17 (2007), 349–367.
- J. Holmer and M. Zworski, Slow soliton interaction with delta impurities, J. Mod. Dyn. 1 (2007), 689–718.
- [12] S. Le Coz, R. Fukuizumi, G. Fibich, B. Ksherim and Y. Sivan, Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential, Phys. D 237 (2008), 1103–1128.

Masahiro Kaminaga Department of Electrical Engineering and Information Technology, Tohoku Gakuin University, Tagajo, 985–8537, Japan e-mail: kaminaga@tjcc.tohoku-gakuin.ac.jp

Masahito Ohta Department of Mathematics, Faculty of Science, Saitama University, Saitama, 338–8570, Japan e-mail: mohta@mail.saitama-u.ac.jp