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Abstract

We study the orbital stability of standing wave solutions for a nonlinear

Schrödinger equation with an attractive delta potential and a repulsive power non-

linearity in one space dimension.

1. Introduction

In this paper, we consider the following nonlinear Schrödinger equation with
a delta potential:

(1) i∂tu = −∂2
xu + γδ(x)u + α|u|p−1u, (t, x) ∈ R × R,

where γ ∈ R, α = ±1, 1 < p < ∞, and δ(x) is the delta measure at the origin.
The equations of the form (1) arise in a wide variety of physical models with a
point defect on the line (see, e.g., [5, 8, 9, 10, 11] and references therein). The
formal expression −∂2

x + γδ(x) in (1) is formulated as a linear operator Aγ or Hγ

associated with a quadratic form aγ on H1(R):

aγ(u, v) = �
{∫

R

∂xu(x)∂xv(x) dx + γu(0)v(0)
}

, u, v ∈ H1(R).

Remark that H1(R) ↪→ Cb(R). The linear operator Aγ : H1(R) → H−1(R) is
defined by

〈Aγu, v〉 = aγ(u, v), u, v ∈ H1(R).

Moreover, we define a linear operator Hγ in L2(R) by Hγv = −∂2
xv for v ∈ D(Hγ)

with the domain

D(Hγ) = {v ∈ H2(R \ {0}) ∩ H1(R) : ∂xv(+0) − ∂xv(−0) = γv(0)}.
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Then, Hγ is a self-adjoint operator in L2(R), and satisfies

(Hγu, v)L2 = aγ(u, v), u, v ∈ D(Hγ).

The following spectral properties of Hγ are known: σess(Hγ) = σac(Hγ) = [0,∞),
σsc(Hγ) = ∅. If γ ≥ 0, σp(Hγ) = ∅. If γ < 0, σp(Hγ) = {−γ2/4} with its positive
normalized eigenfuction (|γ|/2)1/2e−|γ||x|/2 (see [1, Chapter I.3] for details).

In this paper, we consider the case where γ < 0 and α = 1 (attractive poten-
tial and repulsive nonlinearity), and study the structure and the orbital stability
of standing wave solutions eiωtϕω(x) for (1), where ω ∈ R and ϕω ∈ H1(R) is a
positive solution of the stationary problem:

(2) Aγϕ + ωϕ + α|ϕ|p−1ϕ = 0 in H−1(R).

The well-posedness of the Cauchy problem for (1) in the energy space H1(R)
follows from an abstract result in Cazenave [3] (see Theorem 3.7.1 and Corollary
3.3.11 in [3], and also Section 2 of [7]).

Proposition 1. For any u0 ∈ H1(R) there exist T ∗ = T ∗(u0) ∈ (0,∞]
and a unique solution u ∈ C([0, T ∗), H1(R)) of (1) with u(0) = u0 such that
limt→T∗ ‖u(t)‖H1 = ∞ if T ∗ < ∞. Moreover, u(t) satisfies the conservation of
charge and energy:

‖u(t)‖L2 = ‖u0‖L2 , E(u(t)) = E(u0)

for all t ∈ [0, T ∗), where the energy E is defined by

E(v) =
1
2
‖∂xv‖2

L2 +
γ

2
|v(0)|2 +

α

p + 1
‖v‖p+1

Lp+1

for v ∈ H1(R).

The stability of standing waves is defined as follows.

Definition. We say that a standing wave solution eiωtϕω of (1) is stable in H1(R)
if for any ε > 0 there exists η > 0 such that if u0 ∈ H1(R) and ‖u0 −ϕω‖H1 < η,
then the solution u(t) of (1) with u(0) = u0 exists for all t ≥ 0 and satisfies

sup
t≥0

inf
θ∈R

‖u(t) − eiθϕω‖H1 < ε.

Otherwise, eiωtϕω is said to be unstable in H1(R). Moreover, eiωtϕω is said to
be stable in H1

rad(R) if the condition u0 ∈ H1(R) is replaced by u0 ∈ H1
rad(R) in

the above definition of the stability in H1(R).

Before we state our main results, we recall some known results for the case
where γ ∈ R and α = −1 (attractive nonlinearity). When γ ∈ R, α = −1 and
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ω > γ2/4, the stationary problem (2) has a unique positive solution in H1(R).
The positive solution ϕω of (2) is given by

ϕω(x) =
(

(p + 1)ω
2

)1/(p−1) {
cosh

(
(p − 1)

√
ω

2
|x| + bγ(ω)

)}−2/(p−1)

for x ∈ R, where bγ(ω) = tanh−1(− γ
2
√

ω
) (see [5, 6, 7]).

For the stability of standing wave solutions eiωtϕω of (1), the case where
γ < 0 and α = −1 (attractive potential and attractive nonlinearity) was first
studied by Goodman, Holmes and Weinstein [8] for the special case p = 3, and
then by Fukuizumi, Ohta and Ozawa [7] for general case 1 < p < ∞. The follow-
ing is proved in [7]. If 1 < p ≤ 5, the standing wave solution eiωtϕω of (1) is stable
in H1(R) for any ω ∈ (γ2/4,∞). If p > 5, there exists ω∗

1 = ω∗
1(γ, p) ∈ (γ2/4,∞)

such that eiωtϕω is stable in H1(R) for any ω ∈ (γ2/4, ω∗
1), and is unstable in

H1(R) for any ω ∈ (ω∗
1 ,∞).

The case where γ > 0 and α = −1 (repulsive potential and attractive non-
linearity) was studied by Fukuizumi and Jeanjean [6] for radial case, and by
Le Coz, Fukuizumi, Fibich, Ksherim and Sivan [12] for general case. The fol-
lowing is proved in [6]. If 1 < p ≤ 3, the standing wave solution eiωtϕω of
(1) is stable in H1

rad(R) for any ω ∈ (γ2/4,∞). If 3 < p < 5, there ex-
ists ω∗

2 = ω∗
2(γ, p) ∈ (γ2/4,∞) such that eiωtϕω is stable in H1

rad(R) for any
ω ∈ (ω∗

2 ,∞), and is unstable for any ω ∈ (γ2/4, ω∗
2). If p ≥ 5, eiωtϕω is unsta-

ble for any ω ∈ (γ2/4,∞). While, it is proved in [12] that if 1 < p ≤ 3 and
ω ∈ (γ2/4,∞) or if 3 < p < 5 and ω ∈ (ω∗

2 ,∞), then the standing wave solution
eiωtϕω of (1) is unstable in H1(R).

Remark that for the case where γ = 0 and α = −1 (attractive nonlinearity
without potential), it is well-known that the standing wave solution eiωtϕω is
stable for any ω ∈ (0,∞) if 1 < p < 5, and it is unstable for any ω ∈ (0,∞) if
p ≥ 5 (see [2, 4, 3]).

We now state our main results for the case γ < 0 and α = 1 (attractive
potential and repulsive nonlinearity).

Theorem 1. Let γ < 0, α = 1, 1 < p < ∞ and 0 < ω < γ2/4. Then, the
stationary problem (2) has a unique positive solution ϕω ∈ H1(R) given by

(3) ϕω(x) =
(

(p + 1)ω
2

)1/(p−1) {
sinh

(
(p − 1)

√
ω

2
|x| + cγ(ω)

)}−2/(p−1)

for x ∈ R, where cγ(ω) = tanh−1(2
√

ω/|γ|). Moreover, the standing wave solu-
tion eiωtϕω of (1) is stable in H1(R).

Theorem 2. Let γ < 0, α = 1, ω = 0 and 1 < p < 5. Then, the stationary
problem (2) has a unique positive solution ϕ0 ∈ H1(R) given by
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(4) ϕ0(x) =
(

2(p + 1)γ2

{4 + (p − 1)|γ||x|}2

)1/(p−1)

for x ∈ R. Moreover, the stationary solution ϕ0 of (1) is stable in H1(R).

Remark. We do not consider the case ω /∈ (0, γ2/4) or ω = 0 and p ≥ 5 in
Theorems 1 and 2. In Section 2, we prove that there are no nontrivial solutions
of (2) in H1(R) for these cases (see Propositions 2, 3 and 5).

The plan of this paper is as follows. In Section 2, we study the structure of
solutions of the stationary problem (2). In Section 3, we prove Theorem 1 by the
method of Cazenave and Lions [4] (see Section III of [4] in particular). In Section
4, we prove Theorem 2 by modifying the argument in Section 3.

2. Stationary problem

First, we define the action Sω and the set Aω of the nontrivial solutions for
the stationary problem (2) as follows.

Sω(v) =
1
2
‖∂xv‖2

L2 +
ω

2
‖v‖2

L2 +
γ

2
|v(0)|2 +

α

p + 1
‖v‖p+1

Lp+1 ,

Aω = {u ∈ H1(R) : S′
ω(u) = 0, u �= 0}.

The following regularity result for solutions of (2) is known.

Lemma 1. Let γ ∈ R \ {0}, α ∈ R, ω ∈ R and ϕ ∈ Aω. Then, ϕ satisfies the
following.

ϕ ∈ C(R) ∩ C2(R \ {0}),(5)

−ϕ′′(x) + ωϕ(x) + α|ϕ(x)|p−1ϕ(x) = 0, x ∈ R \ {0},(6)

ϕ′(+0) − ϕ′(−0) = γϕ(0),(7)

lim
x→±∞ϕ(x) = 0, lim

x→±∞ϕ′(x) = 0,(8)

|ϕ′(x)|2 = ω|ϕ(x)|2 +
2α

p + 1
|ϕ(x)|p+1, x ∈ R \ {0}.(9)

For the proof of Lemma 1, see those of Lemma 3.2 in [7] and of Lemma 25
in [6].

Proposition 2. Let 1 < p < ∞, γ < 0 and α > 0. If ω ≥ γ2/4, then Aω is
empty.

Proof. Suppose that there exists ϕ ∈ Aω. Then, we have

‖∂xϕ‖2
L2 + ω‖ϕ‖2

L2 − |γ||ϕ(0)|2 + α‖ϕ‖p+1
Lp+1 =

d

dλ
S(λϕ)|λ=1 = 0.
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Moreover, since the first eigenvalue of Hγ is −γ2/4, i.e.,

inf{‖∂xv‖2
L2 − |γ||v(0)|2 : v ∈ H1(R), ‖v‖L2 = 1} = −γ2

4
,

we have

0 = ‖∂xϕ‖2
L2 + ω‖ϕ‖2

L2 − |γ||ϕ(0)|2 + α‖ϕ‖p+1
Lp+1

≥ (ω − γ2/4)‖ϕ‖2
L2 + α‖ϕ‖p+1

Lp+1 ≥ α‖ϕ‖p+1
Lp+1 > 0.

This is a contradiction. Hence, Aω is empty.

Lemma 2. Let γ ∈ R \ {0}, α ∈ R and ω ∈ R. Let ϕ be a nontrivial solution of
(5)–(9). Then, ϕ(x) �= 0 for all x ∈ R.

Proof. Suppose that there exists x0 ∈ R such that ϕ(x0) = 0. If x0 > 0, then by
(9) we have ϕ′(x0) = 0. By the uniqueness of solutions of the Cauchy problem for
(6), we see that ϕ(x) = 0 for all x ∈ (0,∞), and by (7) we have ϕ(0) = ϕ′(0) = 0.
For the case x0 ≤ 0, we see that ϕ(0) = ϕ′(0) = 0 in the same way. Thus, by the
uniqueness of solutions of the Cauchy problem for (6), we see that ϕ(x) = 0 for
all x ∈ R. Since ϕ is a nontrivial solution, this is a contradition. Hence, ϕ(x) �= 0
for all x ∈ R.

Lemma 3. Let γ ∈ R \ {0}, α ∈ R and ω ∈ R. Let ϕ be a nontrivial solution of
(5)–(9). Then we have either (i) or (ii):
(i) �ϕ(x) = 0 for all x ∈ R,
(ii) there exists c ∈ R such that �ϕ(x) = c�ϕ(x) for all x ∈ R.

Proof. We put u = �ϕ and v = �ϕ. Then, (u, v) satisfies
{ −u′′(x) + ωu(x) + α|ϕ(x)|p−1u(x) = 0,

−v′′(x) + ωv(x) + α|ϕ(x)|p−1v(x) = 0

for all x ∈ R \ {0}. Thus, we have (u′(x)v(x) − u(x)v′(x))′ = 0 for x ∈ R \ {0}.
Moreover, by (8), we have

(10) u′(x)v(x) = u(x)v′(x) for all x ∈ R \ {0}.

If there exists x0 ∈ R such that v(x0) = 0, then by (10) and Lemma 2, we have
v′(x0) = 0. Then, as in the proof of Lemma 2, we see that v(x) = 0 for all x ∈ R.
That is, we have the case (i). Otherwise, v(x) �= 0 for all x ∈ R. Then, by (10),
we have

d

dx

(
u(x)
v(x)

)
=

u′(x)v(x) − u(x)v′(x)
v(x)2

= 0

for all x ∈ R \ {0}, which implies (ii).
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Proposition 3. Let 1 < p < ∞, γ < 0 and α > 0. If ω < 0, then Aω is empty.

Proof. Suppose that there exists ϕ ∈ Aω. Then, by (8) in Lemma 1, there exists
L > 0 such that

α

p + 1
|ϕ(x)|p−1 ≤ |ω|

4

for all |x| ≥ L. Moreover, by (9) in Lemma 1 and by Lemma 2, we have

|ϕ′(x)|2 = |ϕ(x)|2
(

ω +
2α

p + 1
|ϕ(x)|p−1

)
≤ −|ω|

2
|ϕ(x)|2 < 0

for |x| ≥ L. This is a contradiction. Hence, Aω is empty.

Proposition 4. Let 1 < p < ∞, γ < 0, α = 1 and 0 < ω < γ2/4. Then,
Aω = {eiθϕω : θ ∈ R}, where ϕω is defined by (3).

Proof. By direct computations, we see that ϕω ∈ Aω, and we have {eiθϕω :
θ ∈ R} ⊂ Aω. Next, let ϕ ∈ Aω. Then, by Lemma 3, there exist θ ∈ R and
a real-valued function w such that ϕ(x) = eiθw(x) for all x ∈ R. Moreover, w

satisfies (5)–(9). By the phase plane analysis on the (w, w′)-plane, we see that
either w = ϕω or w = −ϕω. This proves Aω ⊂ {eiθϕω : θ ∈ R}.
Proposition 5. Let γ < 0 and α = 1. If 1 < p < 5, then A0 = {eiθϕ0 : θ ∈ R},
where ϕ0 is defined by (3). If p ≥ 5, then the set A0 is empty.

Proof. By direct computations, we see that ϕ0 satisfies (5)–(9) with ω = 0
for any 1 < p < ∞. If 1 < p < 5, then ϕ0 ∈ H1(R) and we see that
A0 = {eiθϕ0 : θ ∈ R} in the same way as in the proof of Proposition 4. While, if
p ≥ 5, then ϕ0 �∈ L2(R) and we see that A0 is empty.

3. Proof of Theorem 1

In this section, we always assume 1 < p < ∞, γ < 0, α = 1 and 0 < ω < γ2/4.
We put

dω = inf{Sω(v) : v ∈ H1(R)},
Mω = {u ∈ H1(R) : Sω(u) = dω}.

Lemma 4. −∞ < dω < 0 and Mω ⊂ Aω.

Proof. We first prove dω > −∞. By the Sobolev and Hölder inequalities, there
exist positive constants C1 and C2 such that

|γ||v(0)|2 ≤ 1
2
‖∂xv‖2

L2 + C1‖v‖2
L2(−1,1) ≤

1
2
‖∂xv‖2

L2 +
1

p + 1
‖v‖p+1

Lp+1 + C2
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for any v ∈ H1(R). Thus, we have

(11) E(v) ≥ 1
4
‖∂xv‖2

L2 +
1

2(p + 1)
‖v‖p+1

Lp+1 − C2

2

for v ∈ H1(R), which implies d ≥ −C2/2. Thus, dω > −∞.
Next, we prove dω < 0. We put Φ(x) = e−|γ||x|/2. Since Φ is an eigenfunction

of Hω corresponding to the first eigenvalue −γ2/4, we have

dω ≤ Sω(λΦ) =
λ2

2
(‖∂xΦ‖2

L2 + γ|Φ(0)|2 + ω‖Φ‖2
L2) +

λp+1

p + 1
‖Φ‖p+1

Lp+1

=
λ2

2

(
ω − γ2

4

)
‖Φ‖2

L2 +
λp+1

p + 1
‖Φ‖p+1

Lp+1 < 0

for sufficiently small λ > 0. Thus, dω < 0.
Finally, we prove Mω ⊂ Aω. Let w ∈ Mω. Then, we have S′

ω(w) = 0.
Moreover, since Sω(w) = dω < 0, we have w �= 0. Thus, we see that w ∈ Aω.
This proves Mω ⊂ Aω.

Lemma 5. Let {vn} ⊂ H1(R) and Sω(vn) → dω. Then, there exist a subsequence
{vn′} and w ∈ Mω such that vn′ → w in H1(R).

Proof. By (11), we see that {vn} is bounded in H1(R). Thus, there exist a
subsequence of {vn} (we denote it by the same letter) and w ∈ H1(R) such that
vn ⇀ w weakly in H1(R). Moreover, since the embedding H1(−1, 1) ↪→ C[−1, 1]
is compact, we see that vn(0) → w(0). Thus, we have

dω ≤ Sω(w) ≤ lim inf
n→∞ Sω(vn) = dω,

which implies that w ∈ Mω and vn → w in H1(R).

Lemma 6. Mω = Aω = {eiθϕω : θ ∈ R}.
Proof. By Lemmas 4 and 5, we have ∅ �= Mω ⊂ Aω. Moreover, by Proposition
4, we have Aω = {eiθϕω : θ ∈ R}, which implies Mω = Aω.

Now we give the proof of Theorem 1.

Proof of Theorem 1. We prove this by contradiction. Suppose that eiωtϕω is
not stable in H1(R). Then, there exist a constant ε0 > 0, a sequence {un(t)} of
solutions of (1) and a sequence {tn} in (0,∞) such that

‖un(0) − ϕω‖H1 → 0,(12)

inf
θ∈R

‖un(tn) − eiθϕω‖H1 = ε0(13)

By (12) and the conservation of charge and energy, we have
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Sω(un(tn)) = Sω(un(0)) → Sω(ϕω) = dω.

By Lemmas 5 and 6, there exist a subsequence {un′(tn′)} and θ0 ∈ R such that
un′(tn′) → eiθ0ϕω in H1(R). This contradicts (13). Hence, eiωtϕω is stable in
H1(R).

4. Proof of Theorem 2

In this section, we always assume 1 < p < 5, γ < 0 and α = 1. We put

X = {v ∈ Lp+1(R) : ∂xv ∈ L2(R)},
d = inf{E(v) : v ∈ X},
M = {ϕ ∈ X : E(ϕ) = d},
A = {ϕ ∈ X : E′(ϕ) = 0, ϕ �= 0}.

Lemma 7. −∞ < d < 0 and M ⊂ A = {eiθϕ0 : θ ∈ R}.
Proof. The facts −∞ < d < 0 and M ⊂ A can be proved in the same way as in
the proof of Lemma 4. Remark that the inequality (11) holds true for v ∈ X. If
ϕ ∈ A, then we see that ϕ satisfies (5)–(9) with ω = 0. Then, as in the proof of
Proposition 5, we have A = {eiθϕ0 : θ ∈ R}.
Lemma 8. Let {vn} ⊂ X and E(vn) → d. Then, there exist a subsequence {vn′}
and w ∈ M such that vn′ → w in X.

Proof. By (11), we see that {vn} is bounded in X. Since X is reflexive, there
exist a subsequence of {vn} (we denote it by the same letter) and w ∈ X such
that vn ⇀ w weakly in X. Then, we have vn(0) → w(0), vn ⇀ w weakly in
Lp+1(R), and ∂xvn ⇀ ∂xw weakly in L2(R). Thus, we have

d ≤ E(w) ≤ lim inf
n→∞ E(vn) = d,

which implies that w ∈ M, ‖vn‖Lp+1 → ‖w‖Lp+1 and ‖∂xvn‖L2 → ‖∂xw‖L2 .
Hence, vn → w in X.

Lemma 9. Let {vn} ⊂ H1(R), E(vn) → E(ϕ0) and ‖vn‖L2 → ‖ϕ0‖L2 . Then,
there exist a subsequence {vn′} and θ0 ∈ R such that vn′ → eiθ0ϕ0 in H1(R).

Proof. By Lemmas 7 and 8, we see that M = A = {eiθϕ0 : θ ∈ R} and
d = E(ϕ0). Thus, by Lemma 8, there exist a subsequence of {vn} (we denote it
by the same letter) and θ0 ∈ R such that vn → eiθ0ϕ0 in X, vn ⇀ eiθ0ϕ0 weakly
in L2(R). By the weakly lower semicontinuity of norm and by our assumption,
we have
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‖eiθ0ϕ0‖L2 ≤ lim inf
n→∞ ‖vn‖L2 = ‖ϕ0‖L2 = ‖eiθ0ϕ0‖L2 ,

which implies that vn → eiθ0ϕ0 in L2(R). Hence, vn → eiθ0ϕ0 in H1(R).

Now we give the proof of Theorem 2.

Proof of Theorem 2. We prove this by contradiction. Suppose that ϕ0 is not
stable in H1(R). Then, there exist a constant ε0 > 0, a sequence {un(t)} of
solutions of (1) and a sequence {tn} in (0,∞) such that

‖un(0) − ϕ0‖H1 → 0,(14)

inf
θ∈R

‖un(tn) − eiθϕ0‖H1 = ε0(15)

By (14) and the conservation of charge and energy, we have

‖un(tn)‖L2 = ‖un(0)‖L2 → ‖ϕ0‖L2 ,

E(un(tn)) = E(un(0)) → E(ϕ0).

By Lemma 9, there exist a subsequence {un′(tn′)} and θ0 ∈ R such that
un′(tn′) → eiθ0ϕ0 in H1(R). This contradicts (15). Hence, ϕ0 is stable in
H1(R).
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