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2-Weierstrass points of certain plane curves of genus three
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Abstract

In this paper, we completely determine the 2-gap sequences of the 2-Weierstrass

points on cyclic coverings of genus 3 with four branch points in the projective line.

1. Introduction

Let Cn,m1,m2,m3,λ be the algebraic curves of genus g = 3 defined by the
equation:

Cn,m1,m2,m3,λ : yn = xm1(x − 1)m2(x − λ)m3 , n ≥ 4, λ ∈ C\{0, 1},
such that 1 ≤ mi ≤ n− 1, Σimi and n are relatively prime. Then, Cn,m1,m2,m3,λ

is isomorphic to one of the following plane curves [6]:

C1,a : y4 = x(x − 1)(x − a),

C2,a : y6 = x3(x − 1)2(x − a)2,

C3,a : y4 = x3(x − 1)(x − a),

C4,a : y6 = x3(x − 1)3(x − a).

The 1-Weierstrass points of C1,a and C2,a are classified as follows ([9] and [6]).

Proposition 1. We can classify the 1-Weierstrass points of C1,a as follows:

ordinary flex hyperflex
a = −1, 2, 1/2 0 12

otherwise 16 4

Proposition 2. We can classify the 1-Weierstrass points of C2,a as follows:

ordinary flex hyperflex
a = −1 16 4

P (a) = 0 10 7
otherwise 22 1
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where P (a) = 11a4 − 1036a3 + 1794a2 − 1036a + 11.

Remark 1. The curves C3,a and C4,a are hyperelliptic (see subsection 2.3 below).
So they have eight 1-Weierstrass points whose 1-gap sequences are {1, 3, 5}.

In this paper, we compute the 2-gap sequences of the 2-Weierstrass points on
Ci,a, i = 1, · · · , 4. We note that C1,a is a smooth plane quartic and C2,a is iso-
morphic to the smooth plane quartic curve C ′

2,b which is defined by the equation
(see subsection 2.3 below)

C ′
2,b : y3 = x4 − bx2 − 1, b2 + 4 �= 0.

Our main results on C1,a and C ′
2,b are stated as follows:

Theorem 1. We can classify the 2-Weierstrass points of C1,a as follows:

ordinary flex hyperflex 1-sextactic 2-sextactic 3-sextactic
a = −1, 2, 1/2 0 12 48 0 0

P (a) = 0 16 4 40 16 0
Q(a) = 0 16 4 48 0 8
otherwise 16 4 72 0 0

where P (a) = (a2 + a + 1)(a2 − 3a + 3)(3a2 − 3a + 1) and
Q(a) = (a2 − 6a + 1)(a2 + 4a − 4)(4a2 − 4a − 1).

Theorem 2. We can classify the 2-Weierstrass points of C ′
2,b as follows:

ordinary flex hyperflex 1-sextactic 2-sextactic 3-sextactic
b = 0 16 4 72 0 0

P (b) = 0 10 7 63 0 0
Q(b) = 0 22 1 69 6 0
R(b) = 0 22 1 72 0 3
otherwise 22 1 81 0 0

where P (b) = 11b4 + 1080b2 + 3888, R(b) = b4 + 18b + 54 and
Q(b) = 11953207059991b48 − 1170934255940539104b46 + · · ·

+ 8494372341823291115301085441425408000000000000.

Our main results on C3,a and C4,a are stated as follows:

Theorem 3. We can classify the 2-Weierstrass points of C3,a as follows:

2-gap sequence {1, 2, 3, 4, 5, 7} {1, 2, 3, 4, 5, 8} {1, 2, 3, 4, 5, 9} {1, 2, 3, 5, 7, 9}
a = 3/4, 4/3 24 0 12 8

P (a) = 0 16 16 4 8
otherwise 48 0 4 8
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where P (a) = 16a2 − 17a + 16.

Theorem 4. We can classify the 2-Weierstrass points of C4,a as follows:

2-gap sequence {1, 2, 3, 4, 5, 7} {1, 2, 3, 4, 5, 9} {1, 2, 3, 5, 7, 9}
a = 1/9, 8/9 24 12 8

P (a) = 0 42 6 8
otherwise 60 0 8

where P (a) = 5103a4 − 10206a3 + 33183a2 − 28080a − 64.

2. Preliminaries

Let C be a non-singular projective curve of genus g ≥ 2. Let f(x, y) = 0 be
the defining equation of C. Take a divisor qK, where K is a canonical divisor and
q = 1, 2. Let dim |qK| = r ≥ 0. We denote by L(qK) the C-vector space of all
meromorphic functions f such that div(f)+ qK ≥ 0 and by �(qK) the dimension
of L(qK) over C.

For a point P on C, if n is a positive integer such that �(qK − (n − 1)P ) >

�(qK−nP ), we call this integer n a “ q-gap” at P . There are exactly r+1 q-gaps
and the sequence of q-gaps {n1, n2, · · · , nr+1} such that n1 < n2 < · · · < nr+1 is
called the q-gap sequence at P . Assume that {f1, · · · , fr+1} is a basis for L(qK).
The Wronskian W (f1, · · · , fr+1) of {f1, · · · , fr+1} is given by

W (f1, · · · , fr+1) =

∣∣∣∣∣∣∣∣∣

f1(x) f2(x) · · · fr+1(x)
f

′
1(x) f

′
2(x) · · · f

′
r+1(x)

· · · · · · · · · · · ·
f

(r)
1 (x) f

(r)
2 (x) · · · f

(r)
r+1(x)

∣∣∣∣∣∣∣∣∣
,

here all the derivatives have taken with respect to x. Consider the divisor E :

E = (r + 1)qK + div(W (f1, · · · , fr+1)) +
r(r + 1)

2
div(dx).

Then the multiplicity of E at a point P can be computed as
∑r+1

i=1 (ni − i) (see
Miranda [10]). This integer is called q-weight at P and denoted by w(q)(P ). If
w(q)(P ) > 0, we call the point P a q-Weierstrass point.

Let Ω(q) (C) be the C-vector space of holomorphic q-differentials of C. It is
known that Ω(q) (C) ∼= L(qK), therefore we have

dimCΩ(q) (C) =
{

g, q = 1
3g − 3, q = 2

and the number of q-Weierstrass points N (q)(C) counted according to their q-
weight is given by



52 K. Alwaleed and M. Kawasaki

N (q)(C) =
{

g(g2 − 1), q = 1
9g(g − 1)2, q = 2

Lemma 1. An integer n is contained in q-gap sequence at P if and only if there
is a holomorphic q-differential ω ∈ Ω(q) (C) such that ordP (ω) = n − 1.

Lemma 2. Let P be a point in a plane curve C of genus 3. Then we can choose
a basis {ω1, · · · , ω6} of Ω(2)(C) in such a way that:

0 = ordP (ω1) < ordP (ω2) < · · · < ordP (ω6) < 9.

Therefore we see that the 2-gap sequence at P is

{1, ordP (ω2) + 1, ordP (ω3) + 1, · · · , ordP (ω6) + 1}.
Lemma 3 (Duma [3]). Let σ be an involution of C. If the number of fixed points
of σ is ≥ 3, then every fixed point is a q-Weierstrass point (q ≥ 2).

Let Wq(C) be the set of all q-Weierstrass points on a curve C. We denote by
G(q)(P ) the q-gap sequence at the point P ∈ C.

Lemma 4. Let Φ : C −→ C ′ be a birational transformation between the non-
singular algebraic curves C and C ′. Then we have

Φ(Wq(C)) = Wq(C ′) and G(q)(Φ(P )) = G(q)(P ).

Remark 2. We have the following facts:

(i) Let C be a plane curve of genus 3. Then for any P ∈ C we have w(2)(P ) ≤ 6.

Furthermore, equality occurs if and only if C is hyperelliptic and P is a
1-Weierstrass point [5].

(ii) Let C be a plane curve of genus 3. Let P be a point on C such that P

is a 2-Weierstrss point and P is not a 1-Weierstrss point. Then we obtain
w(2)(P ) ≤ 4 [3].

Using Remark 2, we obtain the following lemma.

Lemma 5. The 2-gap sequences of the 2-Weierstrass points of a plane curve of
genus three are as follows:

2-weight 2-gap sequence

1 {1, 2, 3, 4, 5, 7}
2 {1, 2, 3, 4, 5, 8}

{1, 2, 3, 4, 6, 7}
3 {1, 2, 3, 4, 5, 9}

{1, 2, 3, 5, 6, 7}
4 {1, 2, 3, 4, 6, 9}
6 {1, 2, 3, 5, 7, 9}



2-WEIERSTRASS POINTS OF CERTAIN PLANE CURVES 53

We use the following notation to describe the repeated roots of a polynomial.

Notation. Let f(x) be a polynomial. We write T (f) = (nα, mβ, · · · ), n, m ∈ Z+,

if f(x) has α roots of multiplicities n, β roots of multiplicities m, and so on.
For instance the polynomial f(x) = x3(x − 1)2(x + 1)2(x3 − 2) is of type
T (f) = (3, 22, 13).

2.1 Subresultant Method
To determine the multiplicities of the repeated roots of a polynomial with a

parameter, we use the subresultant method [6].
We denote by R(k)(f(x), g(x); x) to the subresultant of degree k for the poly-

nomials f(x) and g(x).

Lemma 6. The polynomials f(x) and g(x) have a non-constant common factor
of multiplicity at least k if and only if

R(i)(f(x), g(x); x) = 0, i = 1, 2, · · · , k.

Definition. For a polynomial f(x), we define s := s(f), if the subresultant of de-
gree i, R(i)(f(x), f ′(x); x) = 0, for all i = 1, · · · , s and R(s+1)(f(x), f ′(x); x) �= 0.

Lemma 7. Take a polynomial f (x) = c
∏k

i=1 (x − ai)
ni , where ai �= ai if i �= j

and c is a complex number. Then s (f) =
∑k

i=1 (ni − 1) .

2.2 Smooth Plane Quartics
Let P be a point on a smooth plane curve C of degree d ≥ 3. Then there is

an unique irreducible conic DP with IP (C, DP ) ≥ 5 unless P is a flex. Such the
unique irreducible conic DP is called the osculating conic of C at P.

Definition ([2]). A point P on a smooth plane curve C is said to be a sextactic
point if the osculating conic DP meets C at P with contact order at least six. A
sextactic point P is called i -sextactic, if i = IP (C, DP ) − 5.

In particular, let C be a smooth plane quartic curve and P be a point on C.
It is well known that the 1-Weierstrass points on C are nothing but flexes [12]
and divided into two types ordinary flex and hyperflex.

w(1)(P ) 1-gap sequence Geometry
1 {1, 2, 4} ordinary flex
2 {1, 2, 5} hyperflex

A flex P on C is called a hyperflex if the contact order with the tangent line LP

at P is equal to four, i.e., I(C, Lp) = 4. It is well known that the 2-Weierstrass
points on C are divided into two types flexes and sextactic points. F. Sakai in
[2] gave the following classification of the 2-Weierstrass points on a smooth plane
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quartic C.

Proposition 3 ([2]). The 2-Weierstrass points on a smooth plane quartic can be
classified as follows:

w(2) (P ) 2-gap sequence geometry
1 {1, 2, 3, 4, 5, 7} ordinary flex
5 {1, 2, 3, 5, 6, 9} hyperflex

1 {1, 2, 3, 4, 5, 7} 1-sextactic
2 {1, 2, 3, 4, 5, 8} 2-sextactic
3 {1, 2, 3, 4, 5, 9} 3-sextactic

2.3 Isomorphisms
In this section, we summarize some isomorphisms on the curves Ci,a (i =

1, · · · , 4). On C1,a, we have the following proposition [6].

Proposition 4. (i) The curve C1,a is isomorphic to the curve C1,a′ if and only
if a′ is equal to one of the following [11]:

a, 1/a, 1 − a, 1/ (1 − a) , (a − 1) /a, a/ (a − 1) .

(ii) The curve C1,a is isomorphic to the Fermat curve F4 : x4 + y4 = 1 if and
only if a = 2, 1/2 or −1.

(iii) If a is a root of the polynomial a2 − a + 1 then the curve C1,a is isomorphic
to the curve C ′

2,0.

On C2,a, we have the following proposition [6].

Proposition 5. (i) If a = a′ or 1/a′ then the curve C2,a is isomorphic to the
curve C2,a′ .

(ii) If b = −i(a + 1)/
√

a then the curve C ′
2,b is isomorphic to the curve C2,a.

(iii) Let Pa,b be the curve defined by the equation y3 = x(x− 1)(x− a)(x− b)1. If
a = (2c − 1)2 then the curve C2,a is isomorphic to the curve Pc,1−c.

On C3,a, we have the following proposition [6].

Proposition 6. (i) If a = a′ or 1/a′, then the curve C3,a is isomorphic to the
curve C3,a′ .

(ii) Let H1,a be the curve defined by the equation y2 = x8 +2(a+1)x4 +(a− 1)2.
The curve C3,a is isomorphic to the curve H1,a.

1The curve Pa,b is called a Picard curve. M. Kawasaki and F. Sakai completely determine
the 1-gap sequences of the 1-Weierstrass points on Pa,b. ( [7], see also [8]).
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Proof of (ii). Applying the birational transformation

φ1 :
{

x = x′

y = x′y′

to the curve C3,a : y4 = x3(x − 1)(x − a), we obtain the curve φ1(C3,a) defined
by the equation(

2x′ − (a + 1 + y′4)
)2

= y′8 + 2(a + 1)y′4 + (a − 1)2.

Now, applying the birational transformation

φ2 :
{

x′ = (Y + a + 1 + X4)/2
y′ = X

to the curve φ1(C3,a), we obtain the curve H1,a.

On C4,a, we have the following proposition [6].

Proposition 7. (i) If a = a′ or 1− a′, then the curve C4,a is isomorphic to the
curve C4,a′ .

(ii) Let H2,a be the curve defined by the equation y2 = x(x3 +a)(x3 +a−1). The
curve C4,a is isomorphic to the curve H2,a.

Remark 3. (1) The curve H1,a has the following automorphisms:

σ : (x, y) → (ix, y), τ : (x, y) → (x,−y).

If the point P = (x, y) ∈ H1,a is q-Weierstrass points, then all the points
(±x,±y), (±ix,±y) in the orbit of P are q-Weierstrass points of the same
q-gap sequences.

(2) The curve H2,a has the following automorphisms:

σ′ : (x, y) → (ωx, ηy), τ : (x, y) → (x,−y),

where ω = exp(2πi/3) = η2. If the point P = (x, y) ∈ H2,a is q-Weierstrass
points, then all the points (x,±y), (ωx,±ηy) and (ω2x,±η2y) in the orbit of
P are q-Weierstrass points of the same q-gap sequences.

(3) The curve H1,a is not isomorphic to the curve H2,a′ for any a and a′.

2.4 Matrix Rank Method
Suppose that C is a plane curve of genus 3 which is defined by the equation

f(x, y) = 0. Let P be a point on C. Let {ω1, · · · , ω6} be a basis of Ω(2) (C). Let
t be a local parameter around P. Then, locally, we can write ωi as the following
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power series:

ωi = (
l∑

j=0

aj,it
j + o[tl+1])dt2 (i = 1, · · · , 6, and l ∈ Z≥0).

Consider the 6 × (l + 1) matrix

Ml :=

⎛
⎜⎜⎝

a0,1 a1,1 · · · al,1

a0,2 a1,2 · · · al,2

· · · · · · · · · · · ·
a0,6 a1,6 · · · al,6

⎞
⎟⎟⎠ .

By using the rank of the matrix Ml, we can determine the 2-gap sequence G(2)(P )
at P .

Lemma 8. (i) Suppose that w(2)(P ) = 2. Then we obtain

G(2)(P ) =
{ {1, 2, 3, 4, 5, 8}, if rank M4 = 5

{1, 2, 3, 4, 6, 7}, if rank M4 = 4

(ii) Suppose that w(2)(P ) = 3. Then we obtain

G(2)(P ) =
{ {1, 2, 3, 4, 5, 9}, if rank M3 = 4

{1, 2, 3, 5, 6, 7}, if rank M3 = 3

3. Proof of Theorems

Now, let us prove our main results.

3.1 Proof of Theorem 1
Let C1,a be a smooth plane quartic curve defined by the equation

C1,a : y4 = x(x − 1)(x − a), a �= 0, 1.

Then

ω1 = dx/y2, ω2 = dx/y3, ω3 = xdx/y3

is a basis of the holomorphic 1-differential space Ω(1)(C1,a). We can prove Propo-
sition 1 as follows:

Proof. We can use the Wronskian of holomorphic 1-differentials or the Hessian
method. Let f1(x, y) be the defining equation of C1,a. Let Hf1 be its associated
Hessian curve. We compute the resultant

Res (f1, Hf1 ; y) = const.x2(x − 1)2(x − a)2h(x, a),
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where

(1) h(x, a) = 3x4 − 4(1 + a)x3 + 2(2 + a + 2a2)x2 − 4a(1 + a)x + 3a2.

The discriminant of h(x, a) shows that h(x, a) has repeated roots if and only if
a = −1, 2, 1/2. It is easy to describe the repeated roots of h(x, a) as follows:

T (h) =
{

(22), if a = −1, 2, 1/2
(14), otherwise.

This means that h(x, a) has two repeated roots of multiplicities two if a =
−1, 2, 1/2, otherwise h(x, a) has four distinct complex roots. Now the result
is clear.

We now pass to study the 2-Weierstrass points on C1,a. The Wronskian
W (x, a) of {1, x, y, xy, x2, y2} can be written as

W (x, a) = const.f(x, a) · h(x, a) · g(x, a)/y40,

where h(x, a) is as in (1),

f(x, a) = (x2 − a)(x2 − 2ax + a)(x2 − 2x + a),

g(x, a) = −7a4
(
52x2 − 2ax(2 + 15x) + a2

(
1 − 4x + 52x2

))
+5a2x3

(
a2(220 − 1173x) + a(96 − 528x) + 48x + 48a4(2 + x)

−44a3(−5 + 12x)
)
+ · · · + 14x10

(−26 + 15a − 26a2 + 2x + 2ax
)− 7x12.

The polynomial f(x, a) has six distinct roots for any a �= 0, 1. The resultants
of f(x, a), h(x, a) and g(x, a) are given by

Res (f, h; x) = const.a6(a − 1)6(a − 2)2(a + 1)2(2a − 1)2,

Res (f, g; x) = const.a18(a − 1)18(a − 2)2(a + 1)2(2a − 1)2Q(a),

Res (g, h; x) = const.a12(a − 1)12(a − 2)4(a + 1)4(2a − 1)4.

where

Q(a) = (a2 − 6a + 1)(a2 + 4a − 4)(4a2 − 4a − 1).

At a = −1, 2, 1/2, we have very special cases.

W (x,−1) = const.
(
1 + x2

)5 (−1 − 2x + x2
) (−1 + 2x + x2

)
× (

1 + 132x2 − 250x4 + 132x6 + x8
)
/y40,

W (x, 2) = const.
(−2 + x2

) (
2 − 4x + x2

) (
2 − 2x + x2

)5
(16 − 64x+

640x2 − 1696x3 + 1800x4 − 848x5 + 160x6 − 8x7 + x8
)
/y40,
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W (x, 1/2) = const.
(−1 + 2x2

) (
1 − 4x + 2x2

) (
1 − 2x + 2x2

)5
(1 − 8x+

160x2 − 848x3 + 1800x4 − 1696x5 + 640x6 − 64x7 + 16x8
)
/y40.

In these cases, the polynomial f(x, a) · h(x, a) · g(x, a) has two repeated roots of
multiplicities five and the other roots are distinct. Therefore, if a = −1, 2, 1/2,

then we have 12 hyperflexes and 48 ordinary sextactic points.
Now, if a �= −1, 2, 1/2, then the number of sextactic points counted according

to their 2-weight is equal to 72 and the repeated roots of the polynomial g(x, a)
have multiplicities ≤ 3. Moreover, the discriminant of g(x, a) shows that g(x, a)
has repeated roots if and only if P (a)Q(a) = 0, where

P (a) = (a2 + a + 1)(a2 − 3a + 3)(3a2 − 3a + 1).

The resultants of g(x, a), gx(x, a) and gxx(x, a) show that g(x, a) does not have
repeated roots of multiplicity 3 for any a �= 0, 1. By using subresultant method
(Lemma 7), we find

(1) If P (a) = 0, then s(g) = 4. Therefore T (g) = (24, 14).

(2) If Q(a) = 0, then s(g) = 2. Therefore T (g) = (22, 18). Here the two repeated
roots of multiplicity 2 will be common roots with f(x, a).

(3) Otherwise, then s(g) = 0. Therefore T (g) = (112).

Now, we can describe the repeated roots of the polynomial h(x, a) · f(x, a) ·
g(x, a) as follows:

(1)′ If P (a) = 0, then we have

T (h) = (14), T (f) = (16), T (g) = (24, 14).

Hence we have

T (h · f · g) = (24, 114).

(2)′ If Q(a) = 0, then we have

T (h) = (14), T (f) = (16), T (g) = (22, 18).

Here note that the two repeated roots of g are common roots with f . Hence
we have

T (h · f · g) = (32, 116).

(3)′ Otherwise, then we have

T (h) = (14), T (f) = (16), T (g) = (112).

Hence we have
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T (h · f · g) = (122).

Summarizing above, we can prove Theorem 1 as follows:

Proof. Let P∞ be the point on C1,a lying over ∞. Consider the divisor

E = 6DP∞ + div(W (x, a)) + 15 div(dx),

where DP∞ = 8P∞. Then w(2)(P ) = the multiplicity of P in the divisor E.

Note that C1,a can be express as 4-sheeted covering of P1(C). Putting everything
together and consider the discussion before the theorem yield to the result.

Example 1. Consider the curve:

C1,(−2+2
√

2) : y4 = x (x − 1)
(
x − (−2 + 2

√
2)

)
.

Note that a = −2+2
√

2 is a root of Q(a). At the points P =
(
2 −√

2,
√

3
√

2 − 4
)

and P ′ =
(√

2,
√

2 −√
2
)

there exists a conic D (resp. D′) which meets C only
at P (resp. P ′). The equations of D and D′ are the following

D : 2
(
10 − 7

√
2
)
− 4

(
3 − 2

√
2
)

x − 2
(
2 +

√
2
) (

−4 + 3
√

2
)3/2

y+(
2 −

√
2
)

x2 − 4
(
4 − 3

√
2
)

y2 + 2
(
1 +

√
2
) (

−4 + 3
√

2
)3/2

xy = 0

D′ : 2
(
2 −

√
2
)

+ 4
(
1 −

√
2
)

x + 2
√

2
(
2 −

√
2
)3/2

y+(
2 −

√
2
)

x2 + 4
(
2 −

√
2
)

y2 − 2
(
2 −

√
2
)3/2 (

1 +
√

2
)

xy = 0

3.2 Proof of Theorem 2
Using Kawasaki [6] and Proposition 5, we have the following proposition:

Proposition 8. We can classify the 1-Weierstrass points of C ′
2,b as follows:

ordinary flex hyperflex
b = 0 16 4

P (b) = 0 10 7
otherwise 22 1

where P (b) = 11b4 + 1080b2 + 3888.

Remark 4. Let Q
(0)
i (i = 1, 2, 3) be the points on C ′

2,b lying over 0. These points
are sextactic points for any b �= 0. Since they are the fixed points of the involu-
tion σ ∈ Aut(C ′

2,b) which assigns (x, y) 
→ (−x, y), then either they are flexes or
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sextactic points (Lemma 3). Using Proposition 8, the points Q
(0)
i are hyperflexes

only if b = 0.

In a similar manner as in the proof of Theorem 1, we can prove Theorem 2
(for more details, see Alwaleed [1]).

Example 2. Take b = i
√

3
(
3 +

√
3
)

as a root of R(b) = 0. Then at the point

Q
(0)
1 = (0,−1) , there is a conic D1 such that C ′

2,b ∩D1 = {Q1}. The equation of
D1 is given by

D1 : 6x2 + i

√
3 +

√
3(1 + y)

(
3 − 2

√
3 +

√
3y

)
= 0.

3.3 Proof of Theorem 3
As we have seen in Proposition 6, the curve C3,a is isomorphic to the hyperel-

liptic curve H1,a defined by the equation f3(x, y) = y2−x8−2(a+1)x4−(a−1)2 =
0. The curve H1,a has eight 1-Weierstrass points which are the ramification points
of H1,a whose 1-gap sequences are {1, 3, 5}. Therefore using Remark 2 (i), H1,a

has eight 2-Weierstrass points whose 2-gap sequences are {1, 2, 3, 5, 7, 9}. Let P∞
i ,

P 0
i (i = 1, 2) be the points on H1,a lying over ∞ and 0, respectively. Then

ω1 = dx2/y, ω2 = dx2/y2, ω3 = xdx2/y2,

ω4 = x2dx2/y2, ω5 = x3dx2/y2, ω6 = x4dx2/y2

is a basis of Ω(2)(H1,a) ∼= L(D), where D = div(dx2/y2) = 4(P∞
1 + P∞

2 ). The
Wronskian W (x, a) of {x4, x3, x2, x, y, 1} can be written as

W (x, a) = const.x3 · h(x, a) · g(x, a)/y9,

where

h(x, a) =
(
1 − a + x4

) (−1 + a + x4
)
,

g(x, a) = 7 − 28a + 42a2 − 28a3 + 7a4 − 36x4

+36ax4 + 36a2x4 − 36a3x4 − 86x8

+220ax8 − 86a2x8 − 36x12 − 36ax12 + 7x16.

Now, consider the divisor

E = 6D + div(W ) + 15 div(dx).

Then w(2)(P ) = the multiplicity of P in the divisor E. The discriminant of the
polynomial h(x, a) with respect to x shows that h(x, a) does not have repeated
roots for any a �= 0, 1. The discriminant of the polynomial g(x, a) with respect to
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x shows that g(x, a) has repeated roots if and only if (−4+3a)(−3+4a)P (a) = 0,

where

P (a) = 16 − 17a + 16a2.

Moreover, we have

Res (x, h(x, a); x) = (a − 1)2,

Res (x, g(x, a); x) = 7(a − 1)4,

Res (g(x, a), h(x, a); x) = const.a4(a − 1)16(−4 + 3a)4(−3 + 4a)4.

At a = 3/4, 4/3, we have very special cases

W (x, 3/4)= const.x3
(−1 + 2x2

)3 (
1 + 2x2

)3 (
1 − 4x + 2x2

)
×(

1 − 2x + 2x2
)(

1 + 2x + 2x2
)(

1 + 4x + 2x2
)(

1 + 12x2 + 4x4
)
/y9,

W (x, 4/3)= const.x3
(−1 + 3x4

)3 (
1 + 3x4

) (
1 − 102x4 + 9x8

)
/y9.

Hence, if a = 3/4, 4/3 we have twelve 2-Weierstrass points of 2-weight 3 and
twenty-four 2-Weierstrass points of 2-weight 1. Now, let a �= 3/4, 4/3. The re-
sultants with respect to x of g(x, a), gx(x, a) and gxx(x, a) show that there is
no common factors of g(x, a), gx(x, a) and gxx(x, a). Thus g(x, a) has repeated
roots of multiplicities < 3. Using Lemma 7, we can describe the repeated roots
of g(x, a) as follows:

(1) If P (a) = 0, then s(g) = 8. Therefore T (g) = (28).

(2) Otherwise, s(g) = 0. Therefore T (g) = (116).

So, we have the following table:

2-weight 1 2 3 6 N (2)(H1,a)

a = 3/4, 4/3 24 0 12 8 44
P (a) = 0 16 16 4 8 44
Otherwise 48 0 4 8 60

Now, we compute the 2-gap sequences of the 2-Weierstrass points on H1,a. Firstly,
note that H1,a has four 2-Weierstrass points of 2-weight 3 for any a �= 0, 1. We
shall see that these points are nothing but the ramification points of C3,a. Let
P∞, A, B and C be the points on C3,a lying over ∞, 0, 1 and a, respectively.
Then we have
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ω′
1 = dx2/y2, div(ω′

1) = 4(B + C),
ω′

2 = xdx2/y3, div(ω′
2) = 3(B + C) + A + P∞,

ω′
3 = x2dx2/y4, div(ω′

3) = 2(A + B + C + P∞),
ω′

4 = x3dx2/y5, div(ω′
4) = 3(A + P∞) + B + C,

ω′
5 = x3dx2/y6, div(ω′

5) = 8P∞,

ω′
6 = x4dx2/y6, div(ω′

6) = 4(A + P∞),
ω′

7 = x5dx2/y6, div(ω′
7) = 8A,

ω′
8 = x3(x − 1)2dx2/y6, div(ω′

8) = 8B,

ω′
9 = x3(x − a)2dx2/y6, div(ω′

9) = 8C.

Using Lemma 2, we obtain

G(2)(P ) = {1, 2, 3, 4, 5, 9}, P ∈ {A, B, C, P∞}.

Putting φ := φ2 ◦ φ1 (here φ1, φ2 are as in the proof of Proposition 6), we find

φ({A, P∞}) = {P∞
1 , P∞

2 }, φ({B, C}) = {P 0
1 , P 0

2 }.

Therefore, we have (by Lemma 4)

G(2)(P ) = {1, 2, 3, 4, 5, 9}, P ∈ {P 0
1 , P 0

2 , P∞
1 , P∞

2 }.

Now, we consider the cases in which a = 3/4, 4/3 and P (a) = 0.

3.3.1 The case a = 3/4, 4/3

Using Proposition 6 (i), it is enough to consider a = 3/4. In this case, the
remainder of 2-Weierstrass points of 2-weight 3 are the 8 points (±1/

√
2,±1),

(±i/
√

2,±1). Moreover, these points are conjugate under Aut(H1,3/4) (Remark
3, (1)).

Let t := x − 1/
√

2 be the local parameter around the point P = (1/
√

2, 1).
Then we can write ω1, · · · , ω6 as follows:

ω1 = (1 − 2
√

2t + 5t2 − 5
√

2t3 + o[t]4)dt2,

ω2 = (1 − 4
√

2t + 18t2 − 30
√

2t3 + o[t]4)dt2,

ω3 = (1/
√

2 − 3t + 5
√

2t2 − 12t3 + o[t]4)dt2,

ω4 = (1/2 −
√

2t + 2t2 −
√

2t3 + o[t]4)dt2,

ω5 = (1/2
√

2 − (1/2) t + t3 + o[t]4)dt2,

ω6 = (1/4 − (1/2) t2 + (1/
√

2)t3 + o[t]4)dt2.

Consider the matrix
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M3 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −2
√

2 5 −5
√

2
1 −4

√
2 18 −30

√
2

1/
√

2 −3 5
√

2 −12
1/2 −√

2 2 −√
2

1/2
√

2 −1/2 0 1
1/4 0 −1/2 1/

√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Then we see that the rank of M3 is 4. Using Lemma 8 (ii), we obtain
G(2)(P ) = {1, 2, 3, 4, 5, 9}.

3.3.2 The case P (a) = 0

The polynomial P (a) has two roots a = (17 + 7i
√

15)/32 and ā. We
here consider the root a. The polynomial g(x, a) has 8 distinct repeated roots
{α1, α2, · · · , α8}. For αi the polynomial f3(αi, y) has two roots {±βi}. Take

α1 = 4

√
63
32

+
7
√

6
8

+
3
32

i

√
5

(
59 + 24

√
6
)
,

α2 = i
4

√
63
32

− 7
√

6
8

− 3
32

i

√
5

(
59 − 24

√
6
)
.

Then, we see that there are sixteen 2-Weierstrass points whose 2-weight are 2:
(±αj ,±βj), (±iαj ,±βj) (j = 1, 2). For each j = 1, 2, these 8 points are conjugate
to each other (Remark 3, (1)).

Let t := x − α1 be the local parameter around the point P = (α1, β1). Then
we can write ω1, · · · , ω6 as follows:

ω1 = ((0.142705 − 0.078956i) − (0.28827 − 0.210933i)t

+(0.331175 − 0.313533i)t2 − (0.288179 − 0.351726i)t3

+(0.231468 − 0.369136i)t4 + o[t]5)dt2,

ω2 = ((0.0141305 − 0.0225348i) − (0.0489658 − 0.105724i)t

+(0.0836161 − 0.263393i)t2 − (0.0853732 − 0.466369i)t3

+(0.0369109 − 0.673932i)t4 + o[t]5)dt2,

ω3 = ((0.02482 − 0.0302932i) − (0.0770041 − 0.122803i)t

+(0.122031 − 0.263481i)t2 − (0.127604 − 0.401956i)t3

+(0.0935695 − 0.511142i)t4 + o[t]5)dt2,

ω4 = ((0.0418728 − 0.0396422i) − (0.110437 − 0.134789i)t

+(0.150119 − 0.239403i)t2 − (0.138922 − 0.29995i)t3

+(0.103894 − 0.32727i)t4 + o[t]5)dt2,
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ω5 = ((0.0685147 − 0.0501338i) − (0.14444 − 0.136745i)t

+(0.153245 − 0.187037i)t2 − (0.108441 − 0.172937i)t3

+(0.0735446 − 0.158792i)t4 + o[t]5)dt2,

ω6 = ((0.109375 − 0.0605154i) − (0.167826 − 0.122802i)t

+(0.114093 − 0.108015i)t2 − (0.0372301 − 0.0454398i)t3

+(0.0284395 − 0.0453541i)t4 + o[t]5)dt2.

Consider the matrix M4. Then we find the rank of M4 is 5 (See Appendix). Using
Lemma 8 (i), we have G(2)(P ) = {1, 2, 3, 4, 5, 8}. In a similar manner, we can
conclude that the 2-gap sequence at the point (α2, β2) is {1, 2, 3, 4, 5, 8}.

In a similar manner to that in the proof of Theorem 3, we can prove Theorem
4 (for more details, see Alwaleed [1]).

4. Appendix

To compute the rank of the matrix Ml, one can use Mathematica. For exam-
ple, we consider the curve H1,α1 . Around the point P = (α1, β1), we can compute
the rank of M4 as follows:
In[1] := f := x8 + 2(a + 1)x4 + (a − 1)2;
In[2] := f1 := f/.

{
a → (

17 + 7i
√

15
)
/32

}
;

In[3] :=α1:= 4

√
63
32 + 7

√
6

8 + 3
32 i

√
5(59 + 24

√
6)

In[4] := y1 := (f1/.{x → t + α1})1/2

In[5] := s1 := Series [1/y1, {t, 0, 4}];
In[6] := s2 := Series [1/y2

1 , {t, 0, 4}];
In[7] := s3 := Series [(t + α1)/y2

1 , {t, 0, 4}];
In[8] := s4 := Series [(t + α1)2/y2

1 , {t, 0, 4}];
In[9] := s5 := Series [(t + α1)3/y2

1 , {t, 0, 4}];
In[10] := s6 := Series [(t + α1)4/y2

1 , {t, 0, 4}];
In[11] := c1 = CoefficientList [s1, t];
In[12] := c2 = CoefficientList [s2, t];
In[13] := c3 = CoefficientList [s3, t];
In[14] := c4 = CoefficientList [s4, t];
In[15] := c5 = CoefficientList [s5, t];
In[16] := c6 = CoefficientList [s6, t];
In[17] := M4 := {c1, c2, c3, c4, c5, c6};
In[18] := MatrixRank [M4]
Out[18] := 5
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