2-Weierstrass points of certain plane curves of genus three

Kamel Alwaleed and Masumi Kawasaki

(Received October 28, 2009; Revised November 30, 2009)

Abstract

In this paper, we completely determine the 2-gap sequences of the 2-Weierstrass points on cyclic coverings of genus 3 with four branch points in the projective line.

1. Introduction

Let $C_{n,m_1,m_2,m_3,\lambda}$ be the algebraic curves of genus g = 3 defined by the equation:

 $C_{n,m_1,m_2,m_3,\lambda}: y^n = x^{m_1}(x-1)^{m_2}(x-\lambda)^{m_3}, \qquad n \ge 4, \ \lambda \in \mathbb{C} \setminus \{0,1\},$

such that $1 \leq m_i \leq n-1$, $\Sigma_i m_i$ and n are relatively prime. Then, $C_{n,m_1,m_2,m_3,\lambda}$ is isomorphic to one of the following plane curves [6]:

$$\begin{split} &C_{1,a} \,:\, y^4 = x(x-1)(x-a),\\ &C_{2,a} \,:\, y^6 = x^3(x-1)^2(x-a)^2,\\ &C_{3,a} \,:\, y^4 = x^3(x-1)(x-a),\\ &C_{4,a} \,:\, y^6 = x^3(x-1)^3(x-a). \end{split}$$

The 1-Weierstrass points of $C_{1,a}$ and $C_{2,a}$ are classified as follows ([9] and [6]).

Proposition 1. We can classify the 1-Weierstrass points of $C_{1,a}$ as follows:

	ordinary flex	hyperflex
a = -1, 2, 1/2	0	12
otherwise	16	4

Proposition 2	. W	'e can	classify	the	1-1	Weierstrass	points	of	$C_{2,a}$	as for a f	oll	ows:
---------------	-----	--------	----------	-----	-----	-------------	--------	----	-----------	--	-----	------

	$ordinary\ flex$	hyperflex
a = -1	16	4
P(a) = 0	10	7
otherwise	22	1

²⁰⁰⁰ Mathematics Subject Classification. Primary 14H55; Secondary 14H10 Key words and phrases. Weierstrass points, quartic curves, sextactic points.

where $P(a) = 11a^4 - 1036a^3 + 1794a^2 - 1036a + 11$.

Remark 1. The curves $C_{3,a}$ and $C_{4,a}$ are hyperelliptic (see subsection 2.3 below). So they have eight 1-Weierstrass points whose 1-gap sequences are $\{1, 3, 5\}$.

In this paper, we compute the 2-gap sequences of the 2-Weierstrass points on $C_{i,a}$, $i = 1, \dots, 4$. We note that $C_{1,a}$ is a smooth plane quartic and $C_{2,a}$ is isomorphic to the smooth plane quartic curve $C'_{2,b}$ which is defined by the equation (see subsection 2.3 below)

$$C'_{2,b}: y^3 = x^4 - bx^2 - 1, \qquad b^2 + 4 \neq 0.$$

Our main results on $C_{1,a}$ and $C'_{2,b}$ are stated as follows:

Theorem 1. We can classify the 2-Weierstrass points of $C_{1,a}$ as follows:

	ordinary flex	hyperflex	1-sextactic	2-sextactic	3-sextactic
a = -1, 2, 1/2	0	12	48	0	0
P(a) = 0	16	4	40	16	0
Q(a) = 0	16	4	48	0	8
otherwise	16	4	72	0	0

where $P(a) = (a^2 + a + 1)(a^2 - 3a + 3)(3a^2 - 3a + 1)$ and $Q(a) = (a^2 - 6a + 1)(a^2 + 4a - 4)(4a^2 - 4a - 1).$

Theorem 2. We can classify the 2-Weierstrass points of $C'_{2,b}$ as follows:

	ordinary flex	hyperflex	1-sextactic	2-sextactic	3-sextactic
b = 0	16	4	72	0	0
P(b) = 0	10	7	63	0	0
Q(b) = 0	22	1	69	6	0
R(b) = 0	22	1	72	0	3
otherwise	22	1	81	0	0

where $P(b) = 11b^4 + 1080b^2 + 3888$, $R(b) = b^4 + 18b + 54$ and $Q(b) = 11953207059991b^{48} - 1170934255940539104b^{46} + \cdots$

Our main results on $C_{3,a}$ and $C_{4,a}$ are stated as follows:

Theorem 3. We can classify the 2-Weierstrass points of $C_{3,a}$ as follows:

2-gap sequence	$\{1, 2, 3, 4, 5, 7\}$	$\{1, 2, 3, 4, 5, 8\}$	$\{1, 2, 3, 4, 5, 9\}$	$\{1, 2, 3, 5, 7, 9\}$
a = 3/4, 4/3	24	0	12	8
P(a) = 0	16	16	4	8
otherwise	48	0	4	8

where $P(a) = 16a^2 - 17a + 16$.

Theorem 4. We can classify the 2-Weierstrass points of $C_{4,a}$ as follows:

2-gap sequence	$\{1, 2, 3, 4, 5, 7\}$	$\{1, 2, 3, 4, 5, 9\}$	$\{1, 2, 3, 5, 7, 9\}$
a = 1/9, 8/9	24	12	8
P(a) = 0	42	6	8
otherwise	60	0	8

where $P(a) = 5103a^4 - 10206a^3 + 33183a^2 - 28080a - 64$.

2. Preliminaries

Let C be a non-singular projective curve of genus $g \ge 2$. Let f(x, y) = 0 be the defining equation of C. Take a divisor qK, where K is a *canonical divisor* and q = 1, 2. Let dim $|qK| = r \ge 0$. We denote by L(qK) the \mathbb{C} -vector space of all meromorphic functions f such that div $(f) + qK \ge 0$ and by $\ell(qK)$ the dimension of L(qK) over \mathbb{C} .

For a point P on C, if n is a positive integer such that $\ell(qK - (n-1)P) > \ell(qK - nP)$, we call this integer n a "q-gap" at P. There are exactly r+1 q-gaps and the sequence of q-gaps $\{n_1, n_2, \dots, n_{r+1}\}$ such that $n_1 < n_2 < \dots < n_{r+1}$ is called the q-gap sequence at P. Assume that $\{f_1, \dots, f_{r+1}\}$ is a basis for L(qK). The Wronskian $W(f_1, \dots, f_{r+1})$ of $\{f_1, \dots, f_{r+1}\}$ is given by

$$W(f_1, \cdots, f_{r+1}) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_{r+1}(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_{r+1}(x) \\ \cdots & \cdots & \cdots & \cdots \\ f_1^{(r)}(x) & f_2^{(r)}(x) & \cdots & f_{r+1}^{(r)}(x) \end{vmatrix},$$

here all the derivatives have taken with respect to x. Consider the divisor E:

$$E = (r+1)qK + \operatorname{div}(W(f_1, \cdots, f_{r+1})) + \frac{r(r+1)}{2}\operatorname{div}(dx).$$

Then the multiplicity of E at a point P can be computed as $\sum_{i=1}^{r+1} (n_i - i)$ (see Miranda [10]). This integer is called *q*-weight at P and denoted by $w^{(q)}(P)$. If $w^{(q)}(P) > 0$, we call the point P a *q*-Weierstrass point.

Let $\Omega^{(q)}(C)$ be the \mathbb{C} -vector space of holomorphic q-differentials of C. It is known that $\Omega^{(q)}(C) \cong L(qK)$, therefore we have

$$\dim_{\mathbb{C}} \Omega^{(q)}(C) = \begin{cases} g, & q = 1\\ 3g - 3, & q = 2 \end{cases}$$

and the number of q-Weierstrass points $N^{(q)}(C)$ counted according to their q-weight is given by

K. Alwaleed and M. Kawasaki

$$N^{(q)}(C) = \begin{cases} g(g^2 - 1), & q = 1\\ 9g(g - 1)^2, & q = 2 \end{cases}$$

Lemma 1. An integer n is contained in q-gap sequence at P if and only if there is a holomorphic q-differential $\omega \in \Omega^{(q)}(C)$ such that $ord_P(\omega) = n - 1$.

Lemma 2. Let P be a point in a plane curve C of genus 3. Then we can choose a basis $\{\omega_1, \dots, \omega_6\}$ of $\Omega^{(2)}(C)$ in such a way that:

 $0 = ord_P(\omega_1) < ord_P(\omega_2) < \dots < ord_P(\omega_6) < 9.$

Therefore we see that the 2-gap sequence at P is

 $\{1, ord_P(\omega_2) + 1, ord_P(\omega_3) + 1, \cdots, ord_P(\omega_6) + 1\}.$

Lemma 3 (Duma [3]). Let σ be an involution of C. If the number of fixed points of σ is ≥ 3 , then every fixed point is a q-Weierstrass point $(q \geq 2)$.

Let $W_q(C)$ be the set of all q-Weierstrass points on a curve C. We denote by $G^{(q)}(P)$ the q-gap sequence at the point $P \in C$.

Lemma 4. Let $\Phi : C \longrightarrow C'$ be a birational transformation between the nonsingular algebraic curves C and C'. Then we have

$$\Phi(W_q(C)) = W_q(C')$$
 and $G^{(q)}(\Phi(P)) = G^{(q)}(P)$.

Remark 2. We have the following facts:

- (i) Let C be a plane curve of genus 3. Then for any P ∈ C we have w⁽²⁾(P) ≤ 6. Furthermore, equality occurs if and only if C is hyperelliptic and P is a 1-Weierstrass point [5].
- (ii) Let C be a plane curve of genus 3. Let P be a point on C such that P is a 2-Weierstress point and P is not a 1-Weierstress point. Then we obtain $w^{(2)}(P) \leq 4$ [3].

Using Remark 2, we obtain the following lemma.

Lemma 5. The 2-gap sequences of the 2-Weierstrass points of a plane curve of genus three are as follows:

2-weight	2-gap sequence
1	$\{1, 2, 3, 4, 5, 7\}$
2	$ \{1, 2, 3, 4, 5, 8\} \\ \{1, 2, 3, 4, 6, 7\} $
3	$ \{ 1, 2, 3, 4, 5, 9 \} \\ \{ 1, 2, 3, 5, 6, 7 \} $
4	$\{1, 2, 3, 4, 6, 9\}$
6	$\{1, 2, 3, 5, 7, 9\}$

We use the following notation to describe the repeated roots of a polynomial.

Notation. Let f(x) be a polynomial. We write $T(f) = (n_{\alpha}, m_{\beta}, \cdots), n, m \in \mathbb{Z}^+$, if f(x) has α roots of multiplicities n, β roots of multiplicities m, and so on. For instance the polynomial $f(x) = x^3(x-1)^2(x+1)^2(x^3-2)$ is of type $T(f) = (3, 2_2, 1_3)$.

2.1 Subresultant Method

To determine the multiplicities of the repeated roots of a polynomial with a parameter, we use the subresultant method [6].

We denote by $R^{(k)}(f(x), g(x); x)$ to the subresultant of degree k for the polynomials f(x) and g(x).

Lemma 6. The polynomials f(x) and g(x) have a non-constant common factor of multiplicity at least k if and only if

$$R^{(i)}(f(x), g(x); x) = 0, \qquad i = 1, 2, \cdots, k.$$

Definition. For a polynomial f(x), we define s := s(f), if the subresultant of degree i, $R^{(i)}(f(x), f'(x); x) = 0$, for all $i = 1, \dots, s$ and $R^{(s+1)}(f(x), f'(x); x) \neq 0$.

Lemma 7. Take a polynomial $f(x) = c \prod_{i=1}^{k} (x - a_i)^{n_i}$, where $a_i \neq a_i$ if $i \neq j$ and c is a complex number. Then $s(f) = \sum_{i=1}^{k} (n_i - 1)$.

2.2 Smooth Plane Quartics

Let P be a point on a smooth plane curve C of degree $d \ge 3$. Then there is an unique irreducible conic D_P with $I_P(C, D_P) \ge 5$ unless P is a flex. Such the unique irreducible conic D_P is called the osculating conic of C at P.

Definition ([2]). A point P on a smooth plane curve C is said to be a *sextactic* point if the osculating conic D_P meets C at P with contact order at least six. A sextactic point P is called *i-sextactic*, if $i = I_P(C, D_P) - 5$.

In particular, let C be a smooth plane quartic curve and P be a point on C. It is well known that the 1-Weierstrass points on C are nothing but flexes [12] and divided into two types ordinary flex and hyperflex.

$w^{(1)}(P)$	1-gap sequence	Geometry
1	$\{1, 2, 4\}$	ordinary flex
2	$\{1, 2, 5\}$	hyperflex

A flex P on C is called a hyperflex if the contact order with the tangent line L_P at P is equal to four, i.e., $I(C, L_p) = 4$. It is well known that the 2-Weierstrass points on C are divided into two types flexes and sextactic points. F. Sakai in [2] gave the following classification of the 2-Weierstrass points on a smooth plane

quartic C.

Proposition 3 ([2]). The 2-Weierstrass points on a smooth plane quartic can be classified as follows:

$w^{(2)}\left(P\right)$	2-gap sequence	geometry
1	$\{1, 2, 3, 4, 5, 7\}$	ordinary flex
5	$\{1, 2, 3, 5, 6, 9\}$	hyperflex
1	$\{1, 2, 3, 4, 5, 7\}$	1-sextactic
2	$\{1, 2, 3, 4, 5, 8\}$	2-sextactic
3	$\{1, 2, 3, 4, 5, 9\}$	3-sextactic

2.3 Isomorphisms

In this section, we summarize some isomorphisms on the curves $C_{i,a}$ $(i = 1, \dots, 4)$. On $C_{1,a}$, we have the following proposition [6].

Proposition 4. (i) The curve $C_{1,a}$ is isomorphic to the curve $C_{1,a'}$ if and only if a' is equal to one of the following [11]:

$$a, 1/a, 1-a, 1/(1-a), (a-1)/a, a/(a-1).$$

- (ii) The curve $C_{1,a}$ is isomorphic to the Fermat curve $F_4: x^4 + y^4 = 1$ if and only if a = 2, 1/2 or -1.
- (iii) If a is a root of the polynomial $a^2 a + 1$ then the curve $C_{1,a}$ is isomorphic to the curve $C'_{2,0}$.

On $C_{2,a}$, we have the following proposition [6].

- **Proposition 5.** (i) If a = a' or 1/a' then the curve $C_{2,a}$ is isomorphic to the curve $C_{2,a'}$.
- (ii) If $b = -i(a+1)/\sqrt{a}$ then the curve $C'_{2,b}$ is isomorphic to the curve $C_{2,a}$.
- (iii) Let $P_{a,b}$ be the curve defined by the equation $y^3 = x(x-1)(x-a)(x-b)^1$. If $a = (2c-1)^2$ then the curve $C_{2,a}$ is isomorphic to the curve $P_{c,1-c}$.

On $C_{3,a}$, we have the following proposition [6].

- **Proposition 6.** (i) If a = a' or 1/a', then the curve $C_{3,a}$ is isomorphic to the curve $C_{3,a'}$.
- (ii) Let $H_{1,a}$ be the curve defined by the equation $y^2 = x^8 + 2(a+1)x^4 + (a-1)^2$. The curve $C_{3,a}$ is isomorphic to the curve $H_{1,a}$.

¹The curve $P_{a,b}$ is called a Picard curve. M. Kawasaki and F. Sakai completely determine the 1-gap sequences of the 1-Weierstrass points on $P_{a,b}$. ([7], see also [8]).

Proof of (ii). Applying the birational transformation f(ii)

$$\phi_1: \left\{ \begin{array}{c} x=x'\\ y=x'y' \end{array} \right.$$

to the curve $C_{3,a}: y^4 = x^3(x-1)(x-a)$, we obtain the curve $\phi_1(C_{3,a})$ defined by the equation

$$(2x' - (a+1+y'^4))^2 = y'^8 + 2(a+1)y'^4 + (a-1)^2.$$

Now, applying the birational transformation

$$\phi_2: \begin{cases} x' = (Y + a + 1 + X^4)/2 \\ y' = X \end{cases}$$

to the curve $\phi_1(C_{3,a})$, we obtain the curve $H_{1,a}$.

On $C_{4,a}$, we have the following proposition [6].

- **Proposition 7.** (i) If a = a' or 1 a', then the curve $C_{4,a}$ is isomorphic to the curve $C_{4,a'}$.
- (ii) Let $H_{2,a}$ be the curve defined by the equation $y^2 = x(x^3 + a)(x^3 + a 1)$. The curve $C_{4,a}$ is isomorphic to the curve $H_{2,a}$.

Remark 3. (1) The curve $H_{1,a}$ has the following automorphisms:

$$\sigma: (x, y) \to (ix, y), \qquad \tau: (x, y) \to (x, -y).$$

If the point $P = (x, y) \in H_{1,a}$ is q-Weierstrass points, then all the points $(\pm x, \pm y)$, $(\pm ix, \pm y)$ in the orbit of P are q-Weierstrass points of the same q-gap sequences.

(2) The curve $H_{2,a}$ has the following automorphisms:

$$\sigma': (x, y) \to (\omega x, \eta y), \qquad \tau: (x, y) \to (x, -y),$$

where $\omega = exp(2\pi i/3) = \eta^2$. If the point $P = (x, y) \in H_{2,a}$ is q-Weierstrass points, then all the points $(x, \pm y)$, $(\omega x, \pm \eta y)$ and $(\omega^2 x, \pm \eta^2 y)$ in the orbit of P are q-Weierstrass points of the same q-gap sequences.

(3) The curve $H_{1,a}$ is not isomorphic to the curve $H_{2,a'}$ for any a and a'.

2.4 Matrix Rank Method

Suppose that C is a plane curve of genus 3 which is defined by the equation f(x, y) = 0. Let P be a point on C. Let $\{\omega_1, \dots, \omega_6\}$ be a basis of $\Omega^{(2)}(C)$. Let t be a local parameter around P. Then, locally, we can write ω_i as the following

power series:

$$\omega_i = (\sum_{j=0}^l a_{j,i} t^j + o[t^{l+1}]) dt^2 \qquad (i = 1, \cdots, 6, \text{ and } l \in \mathbb{Z}_{\ge \mathbf{0}}).$$

Consider the $6 \times (l+1)$ matrix

$$M_l := \begin{pmatrix} a_{0,1} & a_{1,1} & \cdots & a_{l,1} \\ a_{0,2} & a_{1,2} & \cdots & a_{l,2} \\ \cdots & \cdots & \cdots & \cdots \\ a_{0,6} & a_{1,6} & \cdots & a_{l,6} \end{pmatrix}.$$

By using the rank of the matrix M_l , we can determine the 2-gap sequence $G^{(2)}(P)$ at P.

Lemma 8. (i) Suppose that $w^{(2)}(P) = 2$. Then we obtain

$$G^{(2)}(P) = \begin{cases} \{1, 2, 3, 4, 5, 8\}, & \text{if rank } M_4 = 5\\ \{1, 2, 3, 4, 6, 7\}, & \text{if rank } M_4 = 4 \end{cases}$$

(ii) Suppose that $w^{(2)}(P) = 3$. Then we obtain

$$G^{(2)}(P) = \begin{cases} \{1, 2, 3, 4, 5, 9\}, & \text{if rank } M_3 = 4\\ \{1, 2, 3, 5, 6, 7\}, & \text{if rank } M_3 = 3 \end{cases}$$

3. Proof of Theorems

Now, let us prove our main results.

3.1 Proof of Theorem 1

Let $C_{1,a}$ be a smooth plane quartic curve defined by the equation

$$C_{1,a}: y^4 = x(x-1)(x-a), \qquad a \neq 0, 1.$$

Then

$$\omega_1 = dx/y^2$$
, $\omega_2 = dx/y^3$, $\omega_3 = xdx/y^3$

is a basis of the holomorphic 1-differential space $\Omega^{(1)}(C_{1,a})$. We can prove Proposition 1 as follows:

Proof. We can use the Wronskian of holomorphic 1-differentials or the Hessian method. Let $f_1(x, y)$ be the defining equation of $C_{1,a}$. Let H_{f_1} be its associated Hessian curve. We compute the resultant

$$Res(f_1, H_{f_1}; y) = const. x^2 (x-1)^2 (x-a)^2 h(x,a),$$

where

(1)
$$h(x,a) = 3x^4 - 4(1+a)x^3 + 2(2+a+2a^2)x^2 - 4a(1+a)x + 3a^2.$$

The discriminant of h(x, a) shows that h(x, a) has repeated roots if and only if a = -1, 2, 1/2. It is easy to describe the repeated roots of h(x, a) as follows:

$$T(h) = \begin{cases} (2_2), & \text{if } a = -1, 2, 1/2\\ (1_4), & \text{otherwise.} \end{cases}$$

This means that h(x, a) has two repeated roots of multiplicities two if a = -1, 2, 1/2, otherwise h(x, a) has four distinct complex roots. Now the result is clear.

We now pass to study the 2-Weierstrass points on $C_{1,a}$. The Wronskian W(x,a) of $\{1, x, y, xy, x^2, y^2\}$ can be written as

$$W(x,a) = const. f(x,a) \cdot h(x,a) \cdot g(x,a) / y^{40},$$

where h(x, a) is as in (1),

$$f(x,a) = (x^{2} - a)(x^{2} - 2ax + a)(x^{2} - 2x + a),$$

$$g(x,a) = -7a^{4} (52x^{2} - 2ax(2 + 15x) + a^{2} (1 - 4x + 52x^{2}))$$

$$+5a^{2}x^{3} (a^{2}(220 - 1173x) + a(96 - 528x) + 48x + 48a^{4}(2 + x))$$

$$-44a^{3}(-5 + 12x)) + \dots + 14x^{10} (-26 + 15a - 26a^{2} + 2x + 2ax) - 7x^{12}.$$

The polynomial f(x, a) has six distinct roots for any $a \neq 0, 1$. The resultants of f(x, a), h(x, a) and g(x, a) are given by

$$\begin{aligned} &Res\,(f,h;x)\,=\,const.a^6(a-1)^6(a-2)^2(a+1)^2(2a-1)^2,\\ &Res\,(f,g;x)\,=\,const.a^{18}(a-1)^{18}(a-2)^2(a+1)^2(2a-1)^2Q(a),\\ &Res\,(g,h;x)\,=\,const.a^{12}(a-1)^{12}(a-2)^4(a+1)^4(2a-1)^4. \end{aligned}$$

where

$$Q(a) = (a^2 - 6a + 1)(a^2 + 4a - 4)(4a^2 - 4a - 1).$$

At a = -1, 2, 1/2, we have very special cases.

$$W(x,-1) = const. (1 + x^2)^5 (-1 - 2x + x^2) (-1 + 2x + x^2) \times (1 + 132x^2 - 250x^4 + 132x^6 + x^8) / y^{40},$$

$$W(x,2) = const. (-2+x^2) (2-4x+x^2) (2-2x+x^2)^5 (16-64x+640x^2-1696x^3+1800x^4-848x^5+160x^6-8x^7+x^8) / y^{40},$$

K. Alwaleed and M. Kawasaki

$$W(x, 1/2) = const. (-1 + 2x^2) (1 - 4x + 2x^2) (1 - 2x + 2x^2)^5 (1 - 8x + 160x^2 - 848x^3 + 1800x^4 - 1696x^5 + 640x^6 - 64x^7 + 16x^8) / y^{40}.$$

In these cases, the polynomial $f(x, a) \cdot h(x, a) \cdot g(x, a)$ has two repeated roots of multiplicities five and the other roots are distinct. Therefore, if a = -1, 2, 1/2, then we have 12 hyperflexes and 48 ordinary sextactic points.

Now, if $a \neq -1, 2, 1/2$, then the number of sextactic points counted according to their 2-weight is equal to 72 and the repeated roots of the polynomial g(x, a)have multiplicities ≤ 3 . Moreover, the discriminant of g(x, a) shows that g(x, a)has repeated roots if and only if P(a)Q(a) = 0, where

$$P(a) = (a^{2} + a + 1)(a^{2} - 3a + 3)(3a^{2} - 3a + 1).$$

The resultants of g(x, a), $g_x(x, a)$ and $g_{xx}(x, a)$ show that g(x, a) does not have repeated roots of multiplicity 3 for any $a \neq 0, 1$. By using subresultant method (Lemma 7), we find

- (1) If P(a) = 0, then s(g) = 4. Therefore $T(g) = (2_4, 1_4)$.
- (2) If Q(a) = 0, then s(g) = 2. Therefore $T(g) = (2_2, 1_8)$. Here the two repeated roots of multiplicity 2 will be common roots with f(x, a).
- (3) Otherwise, then s(g) = 0. Therefore $T(g) = (1_{12})$.

Now, we can describe the repeated roots of the polynomial $h(x, a) \cdot f(x, a) \cdot g(x, a)$ as follows:

 $(\mathbf{1})'$ If P(a) = 0, then we have

$$T(h) = (1_4), \ T(f) = (1_6), \ T(g) = (2_4, 1_4).$$

Hence we have

$$T(h \cdot f \cdot g) = (2_4, 1_{14}).$$

 $(\mathbf{2})'$ If Q(a) = 0, then we have

$$T(h) = (1_4), T(f) = (1_6), T(g) = (2_2, 1_8).$$

Here note that the two repeated roots of g are common roots with f. Hence we have

$$T(h \cdot f \cdot g) = (3_2, 1_{16}).$$

(3)' Otherwise, then we have

$$T(h) = (1_4), \ T(f) = (1_6), \ T(g) = (1_{12}).$$

Hence we have

$$T(h \cdot f \cdot g) = (1_{22}).$$

Summarizing above, we can prove Theorem 1 as follows:

Proof. Let P_{∞} be the point on $C_{1,a}$ lying over ∞ . Consider the divisor

$$E = 6D_{P_{\infty}} + \operatorname{div}(W(x, a)) + 15\operatorname{div}(dx),$$

where $D_{P_{\infty}} = 8P_{\infty}$. Then $w^{(2)}(P)$ = the multiplicity of P in the divisor E. Note that $C_{1,a}$ can be express as 4-sheeted covering of $\mathbb{P}^1(\mathbb{C})$. Putting everything together and consider the discussion before the theorem yield to the result. \Box

Example 1. Consider the curve:

$$C_{1,(-2+2\sqrt{2})}: y^4 = x(x-1)\left(x - (-2+2\sqrt{2})\right).$$

Note that $a = -2+2\sqrt{2}$ is a root of Q(a). At the points $P = \left(2 - \sqrt{2}, \sqrt{3\sqrt{2} - 4}\right)$ and $P' = \left(\sqrt{2}, \sqrt{2 - \sqrt{2}}\right)$ there exists a conic D (resp. D') which meets C only at P (resp. P'). The equations of D and D' are the following

$$D: 2\left(10-7\sqrt{2}\right) - 4\left(3-2\sqrt{2}\right)x - 2\left(2+\sqrt{2}\right)\left(-4+3\sqrt{2}\right)^{3/2}y + \left(2-\sqrt{2}\right)x^2 - 4\left(4-3\sqrt{2}\right)y^2 + 2\left(1+\sqrt{2}\right)\left(-4+3\sqrt{2}\right)^{3/2}xy = 0$$
$$D': 2\left(2-\sqrt{2}\right) + 4\left(1-\sqrt{2}\right)x + 2\sqrt{2}\left(2-\sqrt{2}\right)^{3/2}y + 0$$

$$(2 - \sqrt{2}) + 4 (1 - \sqrt{2}) x + 2\sqrt{2} (2 - \sqrt{2}) y + (1 - \sqrt{2}) x^{2} + 4 (2 - \sqrt{2}) y^{2} - 2 (2 - \sqrt{2})^{3/2} (1 + \sqrt{2}) xy = 0$$

3.2 Proof of Theorem 2

Using Kawasaki [6] and Proposition 5, we have the following proposition:

Proposition 8. We can classify the 1-Weierstrass points of $C'_{2,b}$ as follows:

	ordinary flex	hyperflex
b = 0	16	4
P(b) = 0	10	7
otherwise	22	1

where $P(b) = 11b^4 + 1080b^2 + 3888$.

Remark 4. Let $Q_i^{(0)}$ (i = 1, 2, 3) be the points on $C'_{2,b}$ lying over 0. These points are sextactic points for any $b \neq 0$. Since they are the fixed points of the involution $\sigma \in Aut(C'_{2,b})$ which assigns $(x, y) \mapsto (-x, y)$, then either they are flexes or

sextactic points (Lemma 3). Using Proposition 8, the points $Q_i^{(0)}$ are hyperflexes only if b = 0.

In a similar manner as in the proof of Theorem 1, we can prove Theorem 2 (for more details, see Alwaleed [1]).

Example 2. Take $b = i\sqrt{3(3+\sqrt{3})}$ as a root of R(b) = 0. Then at the point $Q_1^{(0)} = (0, -1)$, there is a conic D_1 such that $C'_{2,b} \cap D_1 = \{Q_1\}$. The equation of D_1 is given by

$$D_1: 6x^2 + i\sqrt{3 + \sqrt{3}}(1+y)\left(3 - 2\sqrt{3} + \sqrt{3}y\right) = 0.$$

3.3 Proof of Theorem 3

As we have seen in Proposition 6, the curve $C_{3,a}$ is isomorphic to the hyperelliptic curve $H_{1,a}$ defined by the equation $f_3(x,y) = y^2 - x^8 - 2(a+1)x^4 - (a-1)^2 = 0$. The curve $H_{1,a}$ has eight 1-Weierstrass points which are the ramification points of $H_{1,a}$ whose 1-gap sequences are $\{1,3,5\}$. Therefore using Remark 2 (i), $H_{1,a}$ has eight 2-Weierstrass points whose 2-gap sequences are $\{1,2,3,5,7,9\}$. Let P_i^{∞} , P_i^0 (i = 1, 2) be the points on $H_{1,a}$ lying over ∞ and 0, respectively. Then

$$\begin{split} \omega_1 &= dx^2/y, \ \omega_2 = dx^2/y^2, \ \omega_3 = x dx^2/y^2, \\ \omega_4 &= x^2 dx^2/y^2, \ \omega_5 = x^3 dx^2/y^2, \ \omega_6 = x^4 dx^2/y^2 \end{split}$$

is a basis of $\Omega^{(2)}(H_{1,a}) \cong L(D)$, where $D = \operatorname{div}(dx^2/y^2) = 4(P_1^{\infty} + P_2^{\infty})$. The Wronskian W(x, a) of $\{x^4, x^3, x^2, x, y, 1\}$ can be written as

$$W(x,a) = const.x^3 \cdot h(x,a) \cdot g(x,a)/y^9,$$

where

$$h(x,a) = (1 - a + x^4) (-1 + a + x^4),$$

$$g(x,a) = 7 - 28a + 42a^{2} - 28a^{3} + 7a^{4} - 36x^{4} + 36ax^{4} + 36a^{2}x^{4} - 36a^{3}x^{4} - 86x^{8} + 220ax^{8} - 86a^{2}x^{8} - 36x^{12} - 36ax^{12} + 7x^{16}$$

Now, consider the divisor

$$E = 6D + \operatorname{div}(W) + 15\operatorname{div}(dx).$$

Then $w^{(2)}(P)$ = the multiplicity of P in the divisor E. The discriminant of the polynomial h(x, a) with respect to x shows that h(x, a) does not have repeated roots for any $a \neq 0, 1$. The discriminant of the polynomial g(x, a) with respect to

x shows that g(x, a) has repeated roots if and only if (-4+3a)(-3+4a)P(a) = 0, where

$$P(a) = 16 - 17a + 16a^2.$$

Moreover, we have

$$\begin{aligned} Res \, (x, h(x, a); x) &= (a - 1)^2, \\ Res \, (x, g(x, a); x) &= 7(a - 1)^4, \\ Res \, (g(x, a), h(x, a); x) &= const.a^4(a - 1)^{16}(-4 + 3a)^4(-3 + 4a)^4. \end{aligned}$$

At a = 3/4, 4/3, we have very special cases

$$\begin{split} W(x,3/4) &= const.x^3 \left(-1+2x^2\right)^3 \left(1+2x^2\right)^3 \left(1-4x+2x^2\right) \\ &\times \left(1-2x+2x^2\right) \left(1+2x+2x^2\right) \left(1+4x+2x^2\right) \left(1+12x^2+4x^4\right) / y^9, \\ W(x,4/3) &= const.x^3 \left(-1+3x^4\right)^3 \left(1+3x^4\right) \left(1-102x^4+9x^8\right) / y^9. \end{split}$$

Hence, if a = 3/4, 4/3 we have twelve 2-Weierstrass points of 2-weight 3 and twenty-four 2-Weierstrass points of 2-weight 1. Now, let $a \neq 3/4, 4/3$. The resultants with respect to x of g(x, a), $g_x(x, a)$ and $g_{xx}(x, a)$ show that there is no common factors of g(x, a), $g_x(x, a)$ and $g_{xx}(x, a)$. Thus g(x, a) has repeated roots of multiplicities < 3. Using Lemma 7, we can describe the repeated roots of g(x, a) as follows:

- (1) If P(a) = 0, then s(g) = 8. Therefore $T(g) = (2_8)$.
- (2) Otherwise, s(g) = 0. Therefore $T(g) = (1_{16})$.

So, we have the following table:

2-weight	1	2	3	6	$N^{(2)}(H_{1,a})$
a = 3/4, 4/3	24	0	12	8	44
P(a) = 0	16	16	4	8	44
Otherwise	48	0	4	8	60

Now, we compute the 2-gap sequences of the 2-Weierstrass points on $H_{1,a}$. Firstly, note that $H_{1,a}$ has four 2-Weierstrass points of 2-weight 3 for any $a \neq 0, 1$. We shall see that these points are nothing but the ramification points of $C_{3,a}$. Let P_{∞} , A, B and C be the points on $C_{3,a}$ lying over ∞ , 0, 1 and a, respectively. Then we have

$$\begin{array}{ll} \omega_1' = dx^2/y^2, & {\rm div}(\omega_1') = 4(B+C), \\ \omega_2' = xdx^2/y^3, & {\rm div}(\omega_2') = 3(B+C) + A + P_\infty, \\ \omega_3' = x^2dx^2/y^4, & {\rm div}(\omega_3') = 2(A+B+C+P_\infty), \\ \omega_4' = x^3dx^2/y^5, & {\rm div}(\omega_3') = 2(A+B+C+P_\infty), \\ \omega_4' = x^3dx^2/y^5, & {\rm div}(\omega_3') = 3(A+P_\infty) + B + C, \\ \omega_5' = x^3dx^2/y^6, & {\rm div}(\omega_5') = 8P_\infty, \\ \omega_6' = x^4dx^2/y^6, & {\rm div}(\omega_5') = 8P_\infty, \\ \omega_7' = x^5dx^2/y^6, & {\rm div}(\omega_6') = 4(A+P_\infty), \\ \omega_7' = x^5dx^2/y^6, & {\rm div}(\omega_7') = 8A, \\ \omega_8' = x^3(x-1)^2dx^2/y^6, & {\rm div}(\omega_8') = 8B, \\ \omega_9' = x^3(x-a)^2dx^2/y^6, & {\rm div}(\omega_9') = 8C. \end{array}$$

Using Lemma 2, we obtain

$$G^{(2)}(P) = \{1, 2, 3, 4, 5, 9\}, \qquad P \in \{A, B, C, P_{\infty}\}.$$

Putting $\phi := \phi_2 \circ \phi_1$ (here ϕ_1, ϕ_2 are as in the proof of Proposition 6), we find

$$\phi(\{A, P_{\infty}\}) = \{P_1^{\infty}, P_2^{\infty}\}, \qquad \phi(\{B, C\}) = \{P_1^0, P_2^0\}.$$

Therefore, we have (by Lemma 4)

$$G^{(2)}(P) = \{1, 2, 3, 4, 5, 9\}, \qquad P \in \{P_1^0, P_2^0, P_1^\infty, P_2^\infty\}.$$

Now, we consider the cases in which a = 3/4, 4/3 and P(a) = 0.

3.3.1 The case a = 3/4, 4/3

Using Proposition 6 (i), it is enough to consider a = 3/4. In this case, the remainder of 2-Weierstrass points of 2-weight 3 are the 8 points $(\pm 1/\sqrt{2}, \pm 1)$, $(\pm i/\sqrt{2}, \pm 1)$. Moreover, these points are conjugate under $Aut(H_{1,3/4})$ (Remark 3, (1)).

Let $t := x - 1/\sqrt{2}$ be the local parameter around the point $P = (1/\sqrt{2}, 1)$. Then we can write $\omega_1, \dots, \omega_6$ as follows:

$$\begin{split} \omega_1 &= (1 - 2\sqrt{2}t + 5t^2 - 5\sqrt{2}t^3 + o[t]^4)dt^2, \\ \omega_2 &= (1 - 4\sqrt{2}t + 18t^2 - 30\sqrt{2}t^3 + o[t]^4)dt^2, \\ \omega_3 &= (1/\sqrt{2} - 3t + 5\sqrt{2}t^2 - 12t^3 + o[t]^4)dt^2, \\ \omega_4 &= (1/2 - \sqrt{2}t + 2t^2 - \sqrt{2}t^3 + o[t]^4)dt^2, \\ \omega_5 &= (1/2\sqrt{2} - (1/2)t + t^3 + o[t]^4)dt^2, \\ \omega_6 &= (1/4 - (1/2)t^2 + (1/\sqrt{2})t^3 + o[t]^4)dt^2. \end{split}$$

Consider the matrix

$$M_3 := \begin{pmatrix} 1 & -2\sqrt{2} & 5 & -5\sqrt{2} \\ 1 & -4\sqrt{2} & 18 & -30\sqrt{2} \\ 1/\sqrt{2} & -3 & 5\sqrt{2} & -12 \\ 1/2 & -\sqrt{2} & 2 & -\sqrt{2} \\ 1/2\sqrt{2} & -1/2 & 0 & 1 \\ 1/4 & 0 & -1/2 & 1/\sqrt{2} \end{pmatrix}$$

Then we see that the rank of M_3 is 4. Using Lemma 8 (ii), we obtain $G^{(2)}(P) = \{1, 2, 3, 4, 5, 9\}.$

3.3.2 The case P(a) = 0

The polynomial P(a) has two roots $a = (17 + 7i\sqrt{15})/32$ and \bar{a} . We here consider the root a. The polynomial g(x, a) has 8 distinct repeated roots $\{\alpha_1, \alpha_2, \dots, \alpha_8\}$. For α_i the polynomial $f_3(\alpha_i, y)$ has two roots $\{\pm \beta_i\}$. Take

$$\alpha_1 = \sqrt[4]{\frac{63}{32} + \frac{7\sqrt{6}}{8} + \frac{3}{32}i\sqrt{5\left(59 + 24\sqrt{6}\right)}},$$

$$\alpha_2 = i\sqrt[4]{\frac{63}{32} - \frac{7\sqrt{6}}{8} - \frac{3}{32}i\sqrt{5\left(59 - 24\sqrt{6}\right)}}.$$

Then, we see that there are sixteen 2-Weierstrass points whose 2-weight are 2: $(\pm \alpha_j, \pm \beta_j), (\pm i\alpha_j, \pm \beta_j) \ (j = 1, 2)$. For each j = 1, 2, these 8 points are conjugate to each other (Remark 3, (1)).

Let $t := x - \alpha_1$ be the local parameter around the point $P = (\alpha_1, \beta_1)$. Then we can write $\omega_1, \dots, \omega_6$ as follows:

$$\begin{split} \omega_1 &= ((0.142705 - 0.078956i) - (0.28827 - 0.210933i)t \\ &+ (0.331175 - 0.313533i)t^2 - (0.288179 - 0.351726i)t^3 \\ &+ (0.231468 - 0.369136i)t^4 + o[t]^5)dt^2, \\ \omega_2 &= ((0.0141305 - 0.0225348i) - (0.0489658 - 0.105724i)t \\ &+ (0.0836161 - 0.263393i)t^2 - (0.0853732 - 0.466369i)t^3 \\ &+ (0.0369109 - 0.673932i)t^4 + o[t]^5)dt^2, \\ \omega_3 &= ((0.02482 - 0.0302932i) - (0.0770041 - 0.122803i)t \\ &+ (0.122031 - 0.263481i)t^2 - (0.127604 - 0.401956i)t^3 \\ &+ (0.0935695 - 0.511142i)t^4 + o[t]^5)dt^2, \\ \omega_4 &= ((0.0418728 - 0.0396422i) - (0.110437 - 0.134789i)t \\ &+ (0.150119 - 0.239403i)t^2 - (0.138922 - 0.29995i)t^3 \\ &+ (0.103894 - 0.32727i)t^4 + o[t]^5)dt^2, \end{split}$$

$$\begin{split} \omega_5 &= ((0.0685147 - 0.0501338i) - (0.14444 - 0.136745i)t \\ &+ (0.153245 - 0.187037i)t^2 - (0.108441 - 0.172937i)t^3 \\ &+ (0.0735446 - 0.158792i)t^4 + o[t]^5)dt^2, \\ \omega_6 &= ((0.109375 - 0.0605154i) - (0.167826 - 0.122802i)t \\ &+ (0.114093 - 0.108015i)t^2 - (0.0372301 - 0.0454398i)t^3 \\ &+ (0.0284395 - 0.0453541i)t^4 + o[t]^5)dt^2. \end{split}$$

Consider the matrix M_4 . Then we find the rank of M_4 is 5 (See Appendix). Using Lemma 8 (i), we have $G^{(2)}(P) = \{1, 2, 3, 4, 5, 8\}$. In a similar manner, we can conclude that the 2-gap sequence at the point (α_2, β_2) is $\{1, 2, 3, 4, 5, 8\}$.

In a similar manner to that in the proof of Theorem 3, we can prove Theorem 4 (for more details, see Alwaleed [1]).

4. Appendix

To compute the rank of the matrix M_l , one can use Mathematica. For example, we consider the curve H_{1,α_1} . Around the point $P = (\alpha_1, \beta_1)$, we can compute the rank of M_4 as follows:

$$\begin{aligned} &\mathbf{In}[\mathbf{1}] := f := x^8 + 2(a+1)x^4 + (a-1)^2; \\ &\mathbf{In}[\mathbf{2}] := f_1 := f/. \left\{ a \to \left(17 + 7i\sqrt{15}\right)/32 \right\}; \\ &\mathbf{In}[\mathbf{3}] := \alpha 1 := \sqrt[4]{\frac{63}{32}} + \frac{7\sqrt{6}}{8} + \frac{3}{32}i\sqrt{5(59+24\sqrt{6})} \\ &\mathbf{In}[\mathbf{4}] := y_1 := (f_1/.\{x \to t + \alpha_1\})^{1/2} \\ &\mathbf{In}[\mathbf{5}] := s_1 := Series[1/y_1, \{t, 0, 4\}]; \\ &\mathbf{In}[\mathbf{6}] := s_2 := Series[1/y_1^2, \{t, 0, 4\}]; \\ &\mathbf{In}[\mathbf{7}] := s_3 := Series[(t + \alpha_1)/y_1^2, \{t, 0, 4\}]; \\ &\mathbf{In}[\mathbf{8}] := s_4 := Series[(t + \alpha_1)^3/y_1^2, \{t, 0, 4\}]; \\ &\mathbf{In}[\mathbf{9}] := s_5 := Series[(t + \alpha_1)^3/y_1^2, \{t, 0, 4\}]; \\ &\mathbf{In}[\mathbf{10}] := s_6 := Series[(t + \alpha_1)^4/y_1^2, \{t, 0, 4\}]; \\ &\mathbf{In}[\mathbf{11}] := c_1 = CoefficientList[s_1, t]; \\ &\mathbf{In}[\mathbf{12}] := c_2 = CoefficientList[s_2, t]; \\ &\mathbf{In}[\mathbf{13}] := c_3 = CoefficientList[s_3, t]; \\ &\mathbf{In}[\mathbf{14}] := c_4 = CoefficientList[s_4, t]; \\ &\mathbf{In}[\mathbf{15}] := c_5 = CoefficientList[s_6, t]; \\ &\mathbf{In}[\mathbf{17}] := M_4 := \{c_1, c_2, c_3, c_4, c_5, c_6\}; \\ &\mathbf{In}[\mathbf{18}] := MatrixRank[M_4] \\ &\mathbf{Out}[\mathbf{18}] := 5 \end{aligned}$$

References

- K. Alwaleed, Geometry of 2-Weierstrass points on certain plane curves, Thesis, Saitama Univ., In preparation.
- [2] K. Alwaleed and F. Sakai, Geometry and computation of 2-Weierstrass points of Kuribayashi quartic curves, preprint.
- [3] A. Duma, Holomorphe Differentiale höherer Ordnung auf kompakten Riemannschen Flächen, Schriftenreihe der Uni. Münster, 2, Serie, Heft 14, 1978.
- [4] H.M. Farkas and I. Kra, Riemann Surfaces, GTM 71, Springer Verlag, New York (1980).
- [5] M. Homma and S. Ohmori, On the weight of higher order Weierstrass points, Tsukuba J. Math, Vol.8, No.1 (1984), pp.189–198.
- [6] M. Kawasaki, Weierstrass points and gap sequences on certain cyclic branched coverings of the projective line, Thesis, Saitama Univ. (2007).
- [7] M. Kawasaki, A note on Picard curves (in Japanese), Kenkyu-Shuroku 32, Kaijo High School (2008), pp.221–235.
- [8] M. Kawasaki and F. Sakai, Weierstrass points and S_4 geometry on Picard curves, preprint.
- [9] A. Kuribayashi and K. Yoshida, On the non-hyperelliptic compact Riemann surfaces defined by $y^4 = x(x-1)(x-t)$, Bull. Facul. Sci. and Eng. Chuo univ., Vol.21 (1978), pp.13–27.
- [10] R. Miranda, Algebraic Curves and Riemann Surfaces, American Mathematical Society, USA (1995).
- [11] M. Namba, Equivalence problem and automorphism group of certain compact Riemann surfaces, Tsukuba J.Math., Vol.5, No.2 (1981), pp.319–338.
- [12] A. Vermeulen, Weierstrass points of weight two on curves of genus three, University of Amsterdam, Thesis (1983).

Kamel Alwaleed Department of Mathematics Graduate School of Science and Engineering Saitama University Shimo-Okubo 255 Sakura-ku, Saitama 338–8570, Japan e-mail: wld_kamel@yahoo.com

Masumi Kawasaki Kaijo High School Okubo 3–6–1 Shinjuku-ku, Tokyo 169–0072, Japan e-mail: k209318@aol.com