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2-Weierstrass points of certain plane curves of genus three
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Abstract

In this paper, we completely determine the 2-gap sequences of the 2-Weierstrass
points on cyclic coverings of genus 3 with four branch points in the projective line.

1. Introduction

Let Ch my,mas,ms,n be the algebraic curves of genus g = 3 defined by the
equation:

Crimymamsx 1Y =™ (x — 1) (z — A)™3, n >4, e C\{0,1},

such that 1 < m; <n—1, ¥;m; and n are relatively prime. Then, Cy, m, mo,ms,x
is isomorphic to one of the following plane curves [6]:

Cra:yt=a(x—1)(z—a),
Coa : y° =2 (x —1)%(z — a)?,
Oz y* =2%(x —1)(z — a),
Cug Yy’ =23z —1)*(x — a).

The 1-Weierstrass points of C1 , and Cs 4 are classified as follows ([9] and [6]).

Proposition 1. We can classify the 1-Weierstrass points of C1 4 as follows:

ordinary flex | hyperflex
a=-1,21/2 0 12
otherwise 16 4

Proposition 2. We can classify the 1-Weierstrass points of Ca 4 as follows:

ordinary flex | hyperflex
a=-1 16 4
P(a)=0 10 7
otherwise 22 1
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where P(a) = 11a* — 1036a® + 17944 — 1036a + 11.

Remark 1. The curves Cs , and Cy , are hyperelliptic (see subsection 2.3 below).
So they have eight 1-Weierstrass points whose 1-gap sequences are {1,3,5}.

In this paper, we compute the 2-gap sequences of the 2-Weierstrass points on
Ciq, t=1,---,4. We note that (' 4 is a smooth plane quartic and Cy , is iso-
morphic to the smooth plane quartic curve C’é’b which is defined by the equation
(see subsection 2.3 below)

Chpiy® =a" —ba? -1, b2 +4 #£0.
Our main results on C1 , and Cy, are stated as follows:

Theorem 1. We can classify the 2- Weierstrass points of C} 4 as follows:

ordinary flex | hyperflex | 1-sextactic | 2-sextactic | 3-sextactic
a=-1,2,1/2 0 12 48 0 0
P(a)=0 16 4 40 16 0
Q(a) =0 16 4 48 0 8
otherwise 16 4 72 0

where P(a) = (a® +a+1)(a® — 3a + 3)(3a® — 3a + 1) and
Q(a) = (a? — 6a + 1)(a? + 4a — 4)(4a® — 4a — 1).

Theorem 2. We can classify the 2-Weierstrass points of Cé)b as follows:

ordinary flex | hyperflex | 1-sextactic | 2-sextactic | 3-sextactic
b=20 16 4 72 0 0
Pb)=0 10 7 63 0 0
Q) =0 22 1 69 6 0
R(b) =0 22 1 72 0 3
otherwise 22 1 81 0 0

where P(b) = 11b* + 108062 4 3888, R(b) = b* + 18b + 54 and
Q(b) = 119532070599915% — 1170934255940539104b%6 +- - .-
+ 8494372341823291115301085441425408000000000000.

Our main results on C , and Cy , are stated as follows:

Theorem 3. We can classify the 2- Weierstrass points of Cs, as follows:

2-gap sequence | {1,2,3,4,5,7} | {1,2,3,4,5,8} | {1,2,3,4,5,9} | {1,2,3,5,7,9}
a=23/4,4/3 24 0 12 8
P(a) =0 16 16 4 8
otherwise 48 0 4 8
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where P(a) = 16a® — 17a + 16.

Theorem 4. We can classify the 2- Weierstrass points of Cyq as follows:

2-gap sequence | {1,2,3,4,5,7} | {1,2,3,4,5,9} | {1,2,3,5,7,9}
a=1/9,8/9 24 12 8
P(a) =0 12 6 8
otherwise 60 0 8

where P(a) = 5103a* — 102064 + 33183a? — 28080a — 64.

2. Preliminaries

Let C be a non-singular projective curve of genus g > 2. Let f(z,y) = 0 be
the defining equation of C. Take a divisor K, where K is a canonical divisor and
g = 1,2. Let dim |¢K| = r > 0. We denote by L(¢K) the C-vector space of all
meromorphic functions f such that div(f)+¢K > 0 and by ¢(¢K) the dimension
of L(¢qK) over C.

For a point P on C, if n is a positive integer such that £(¢K — (n — 1)P) >
(qgK —nP), we call this integer n a “q-gap” at P. There are exactly r+1 ¢g-gaps
and the sequence of g-gaps {ni,na, -+ ,nr41} such that ny <ng < -+ < npyq is
called the q-gap sequence at P. Assume that {f1, -, fr41} is a basis for L(¢K).
The Wronskian W(f1, -, fr41) of {f1,---, fr+1} is given by

f}(:c) f?(x) f@+1(5”)
W (L, fra1) = f1(=’5) fa(z) frH(x)

W@ 5@ - 1@
here all the derivatives have taken with respect to x. Consider the divisor F :

r(r+1)
2

E=(r+1)gK+divOW(f1, -, fr+1)) + div(dx).
Then the multiplicity of E at a point P can be computed as Z::ll (n; —1) (see
Miranda [10]). This integer is called g-weight at P and denoted by w(®(P). If
w(@(P) > 0, we call the point P a ¢-Weierstrass point.

Let Q@ (C) be the C-vector space of holomorphic g-differentials of C. It is
known that Q9 (C) = L(¢K), therefore we have
q=1

dime@ (€)= { 9,

3g—3, qg=2

and the number of ¢-Weierstrass points N (Q)(C’) counted according to their ¢-
weight is given by
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O J 9@®—=1), q=1
N()(C)_{9g(gl)2, q=2

Lemma 1. An integer n is contained in q-gap sequence at P if and only if there
is a holomorphic q-differential w € Q9 (C) such that ordp(w) =n — 1.

Lemma 2. Let P be a point in a plane curve C' of genus 3. Then we can choose
a basis {w1,--- ,we} of Q) (C) in such a way that:

0=ordp(w1) < ordp(wz) < -+ < ordp(wg) <9.
Therefore we see that the 2-gap sequence at P is
{1,ordp(we) + 1,0rdp(w3) + 1, -+ ,ordp(we) + 1}.

Lemma 3 (Duma [3]). Let o be an involution of C. If the number of fixed points
of o is > 3, then every fized point is a q- Weierstrass point (q > 2).

Let W,(C) be the set of all g-Weierstrass points on a curve C. We denote by
G(9(P) the g-gap sequence at the point P € C.

Lemma 4. Let ® : C — C’ be a birational transformation between the non-
singular algebraic curves C and C'. Then we have

B(Wy(C)) = W,(C') and G'9(®(P)) = GV (P).
Remark 2. We have the following facts:

(i) Let C be a plane curve of genus 3. Then for any P € C we have w® (P) < 6.
Furthermore, equality occurs if and only if C' is hyperelliptic and P is a
1-Weierstrass point [5].

(ii) Let C be a plane curve of genus 3. Let P be a point on C such that P
is a 2-Weierstrss point and P is not a 1-Weierstrss point. Then we obtain
w®(P) <4 3].

Using Remark 2, we obtain the following lemma.

Lemma 5. The 2-gap sequences of the 2-Weierstrass points of a plane curve of
genus three are as follows:

‘ 2-weight ‘ 2-gap sequence ‘
|1 [{1,2,3,4,57)

2 {1,2,3,4,5,8}
{]‘7 2’ 3’ 4? 67 7}
3 {172’ 3’4? 57 9}
{1,2,3,5,6,7}

| 4 [{1,2,3,4,6,9} |
| 6 [{1,2,3,579} ]
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We use the following notation to describe the repeated roots of a polynomial.

Notation. Let f(x) be a polynomial. We write T'(f) = (na,mg, -+ ), n,m € Z™,
if f(z) has « roots of multiplicities n, § roots of multiplicities m, and so on.
For instance the polynomial f(x) = z3(x — 1)%(x + 1)%(2® — 2) is of type
T(f) = (3,22,13).

2.1 Subresultant Method

To determine the multiplicities of the repeated roots of a polynomial with a
parameter, we use the subresultant method [6].

We denote by R¥)(f(z), g(x); z) to the subresultant of degree k for the poly-
nomials f(z) and g(z).

Lemma 6. The polynomials f(x) and g(x) have a non-constant common factor
of multiplicity at least k if and only if

RO(f(x),g(z);x) =0, =12k

Definition. For a polynomial f(z), we define s := s(f), if the subresultant of de-
gree i, RO (f(z), f'(z);z) =0, foralli = 1,--- ;s and RCTV(f(z), f'(2);x) # 0.

Lemma 7. Take a polynomial f (x) = CHle (x —a;)"", where a; # a; ifi # j

and ¢ is a complex number. Then s (f) = Zle (n;—1).

2.2 Smooth Plane Quartics

Let P be a point on a smooth plane curve C' of degree d > 3. Then there is
an unique irreducible conic Dp with Ip(C, Dp) > 5 unless P is a flex. Such the
unique irreducible conic Dp is called the osculating conic of C at P.

Definition ([2]). A point P on a smooth plane curve C' is said to be a sextactic
point if the osculating conic Dp meets C at P with contact order at least six. A
sextactic point P is called i-sextactic, if i = Ip(C, Dp) — 5.

In particular, let C be a smooth plane quartic curve and P be a point on C.
It is well known that the 1-Weierstrass points on C' are nothing but flexes [12]
and divided into two types ordinary flex and hyperflex.

wM (P) | 1-gap sequence | Geometry
1 {1,2,4} ordinary flex
2 {1,2,5} hyperflex

A flex P on C is called a hyperflex if the contact order with the tangent line Lp
at P is equal to four, i.e., I(C, L,) = 4. It is well known that the 2-Weierstrass
points on C are divided into two types flexes and sextactic points. F. Sakai in
[2] gave the following classification of the 2-Weierstrass points on a smooth plane



54 K. Alwaleed and M. Kawasaki

quartic C.

Proposition 3 ([2]). The 2-Weierstrass points on a smooth plane quartic can be
classified as follows:

w® (P) | 2-gap sequence | geometry
{1,2,3,4,5,7} | ordinary flex
{1,2,3,5,6,9} hyperflex
{1,2,3,4,5,7} | I-sextactic
{1,2,3,4,5,8} | 2-sextactic
{1,2,3,4,5,9} | 3-sextactic

WIN | =] O] =

2.3 Isomorphisms
In this section, we summarize some isomorphisms on the curves C;, (i =
1,-++,4). On C} 4, we have the following proposition [6].

Proposition 4. (i) The curve C1 4 is isomorphic to the curve C1 o if and only
if @’ is equal to one of the following [11]:

a, 1/a, 1—a, 1/(1—a), (a—1)/a, a/(a—1).
(ii) The curve Cy, is isomorphic to the Fermat curve Fy : x* +y* = 1 if and
only if a =2,1/2 or —1.
(iii) If a is a root of the polynomial a®> — a + 1 then the curve Cy , is isomorphic
to the curve Cj .
On Cy 4, we have the following proposition [6].

Proposition 5. (i) If a = da' or 1/a’ then the curve Cs 4 is isomorphic to the
curve C .

(i) If b= —i(a+1)/\/a then the curve Cy, is isomorphic to the curve Cs 4.

(iii) Let P,y be the curve defined by the equation y* = z(z — 1)(x — a)(z — b)L. If
a = (2¢ — 1)? then the curve Co, is isomorphic to the curve P.1_.

On Cj 4, we have the following proposition [6].
Proposition 6. (i) Ifa =a' or1/d, then the curve Cs, is isomorphic to the
curve C'3 4.

(i) Let Hy 4 be the curve defined by the equation y? = 28 +2(a+ 1)z + (a — 1)%
The curve Cs 4 is isomorphic to the curve Hj 4.

1The curve P, is called a Picard curve. M. Kawasaki and F. Sakai completely determine
the 1-gap sequences of the 1-Weierstrass points on P 3. ( [7], see also [8]).
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Proof of (#i). Applying the birational transformation

x=ua
¢ { ol
y=xry
to the curve Cs, : y* = 23(z — 1)(z — a), we obtain the curve ¢;(C3,,) defined
by the equation

2
(22" — (a+1+ y’4)) =y®+2(a+ 1)y + (a—1)%
Now, applying the birational transformation

b =Y +a+1+X4%/2
2 . y/ — X
to the curve ¢1(Cs ), we obtain the curve Hy 4. O

On Cjy 4, we have the following proposition [6].

Proposition 7. (i) Ifa=a" or1—da’, then the curve Cy 4 is isomorphic to the
curve Cy q.

(i) Let Hy , be the curve defined by the equation y* = x(x3+a)(x®+a—1). The
curve Cy o 15 isomorphic to the curve Hy 4.

Remark 3. (1) The curve Hy , has the following automorphisms:

o: (x’y)—> (i.’IJ,y), T ($7y)—>(x,—y).

If the point P = (z,y) € Hy 4 is ¢-Welerstrass points, then all the points
(£, ty), (Liz, £y) in the orbit of P are g-Weierstrass points of the same
g-gap sequences.

(2) The curve H; , has the following automorphisms:

o (x,y) — (wz,ny), T:(z,y) = (z,—y),

where w = exp(2mi/3) = n*. If the point P = (z,y) € Ha, is ¢-Weierstrass
points, then all the points (z, +y), (wz, £ny) and (w?x, +n%y) in the orbit of
P are ¢-Weierstrass points of the same ¢-gap sequences.

(3) The curve H; , is not isomorphic to the curve Hy , for any a and o',

2.4 Matrix Rank Method

Suppose that C' is a plane curve of genus 3 which is defined by the equation
f(z,y) = 0. Let P be a point on C. Let {wi,--- ,ws} be a basis of Q) (C). Let
t be a local parameter around P. Then, locally, we can write w; as the following
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power series:

l
wi =) _ajit! + o[t dt*  (i=1,---,6, and | € Zxo).
j=0

Consider the 6 x (I 4+ 1) matrix

ap,1 ail v a
Qo2 air2 - Q12
Ml — ] ) ]
ape aie - Al6

By using the rank of the matrix M;, we can determine the 2-gap sequence G (P)
at P.

Lemma 8. (i) Suppose that w® (P) = 2. Then we obtain

GO (P) = {1,2,3,4,5,8}, if rank My =75
B {17 2a 3; 4767 7}7 Zf mnk M4 =4

(ii) Suppose that w® (P) = 3. Then we obtain

G(z)(P) [ {1,2,3,4,5,9}, if rank My =4
B {]—7 27 37 5767 7}7 Zf rank M3 =3

3. Proof of Theorems
Now, let us prove our main results.

3.1 Proof of Theorem 1
Let C; , be a smooth plane quartic curve defined by the equation

Cra:y*=ax(xz—1)(z —a), a#0,1.
Then
wy =dz/y?, wy =dx/y?, ws=xdz/y?

is a basis of the holomorphic 1-differential space Q) (C1,4). We can prove Propo-
sition 1 as follows:

Proof. We can use the Wronskian of holomorphic 1-differentials or the Hessian
method. Let fi(x,y) be the defining equation of Cy ,. Let Hy, be its associated
Hessian curve. We compute the resultant

Res(fi,Hyy) = const.xQ(x - 1)2(:C - a)Qh(x, a),
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where
(1) h(z,a) =32* —4(1 +a)z® + 2(2 + a + 2a?)2* — 4a(1 + a)z + 3a>.

The discriminant of h(x,a) shows that h(x,a) has repeated roots if and only if
= —1,2,1/2. Tt is easy to describe the repeated roots of h(z,a) as follows:

(22, ifa=-1,2,1/2
T(h) = { (14),  otherwise.

This means that h(x,a) has two repeated roots of multiplicities two if a =
2,1/2, otherwise h(z,a) has four distinct complex roots. Now the result
is clear. O

We now pass to study the 2-Weierstrass points on C;,. The Wronskian
W(z,a) of {1,x,y,ry, 2% y*} can be written as
W(x,a) = const.f(z,a) - h(z,a) - g(z,a)/y*°,
where h(z,a) is as in (1),
f(z,a) = (2 — a)(2® — 2az + a)(z* — 22 + a),
g(z,a) = —Ta* (522* — 2ax(2 + 152) + o (1 — 4z + 5227%))
+5a%z® (a*(220 — 1173z) + a(96 — 528z) + 48z + 48a*(2 + )
—44a®(—5 4+ 122)) + - - - + 142" (=26 + 15a — 26a® + 2z + 2az) — Tz'>.

The polynomial f(z,a) has six distinct roots for any a # 0, 1. The resultants

of f(x,a), h(z,a) and g(x,a) are given by

Res (f,h;x) = const.a®(a —1)%(a —2)*(a +1)%(2a — 1),

Res (f,g;x) = const.a'®(a —1)¥(a — 2)%*(a +1)%(2a — 1)2Q(a),

Res (g, h;x) = const.a**(a —1)*2(a — 2)*(a +1)*(2a — 1)™.
where

Q(a) = (a® — 6a + 1)(a® + 4a — 4)(4a* — 4a — 1).
At a = —1,2,1/2, we have very special cases.
W(x,—1) = const. (1 + 332)5 (=1 =2z +2%) (=1 + 2z + 2?)
x (14 1322% — 2502" + 1322° + 2®) /y*°,

W(z,2) = const. (—2+ %) (2 — 4z +2°) (2 -2z + $2)5 (16 — 64z+
64022 — 16962° 4 1800z* — 848z° + 1602° — 82" + 2®) /y*°,
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W(x,1/2) = const. (—1 + 22%) (1 — 4z + 22°) (1 — 2z + 22%)° (1 — 8z+
1602 — 8482° + 1800z* — 16962° + 6402° — 642" + 162%) /y*°.

In these cases, the polynomial f(z,a) - h(z,a) - g(z,a) has two repeated roots of
multiplicities five and the other roots are distinct. Therefore, if a = —1,2,1/2,
then we have 12 hyperflexes and 48 ordinary sextactic points.

Now, if a # —1,2,1/2, then the number of sextactic points counted according
to their 2-weight is equal to 72 and the repeated roots of the polynomial g(z,a)
have multiplicities < 3. Moreover, the discriminant of g(z,a) shows that g(z,a)
has repeated roots if and only if P(a)Q(a) =0, where

P(a) = (a* + a+1)(a® — 3a + 3)(3a*> — 3a + 1).

The resultants of g(x,a), g.(z,a) and g..(z,a) show that g(x,a) does not have
repeated roots of multiplicity 3 for any a # 0,1. By using subresultant method
(Lemma 7), we find

(1) If P(a) =0, then s(g) = 4. Therefore T'(g) = (24, 14).

(2) If Q(a) = 0, then s(g) = 2. Therefore T'(g) = (22, 1s). Here the two repeated
roots of multiplicity 2 will be common roots with f(x,a).

(3) Otherwise, then s(g) = 0. Therefore T'(g) = (112).

Now, we can describe the repeated roots of the polynomial h(z,a) - f(x,a) -
g(z,a) as follows:

(1) If P(a) = 0, then we have
T(h) = (14), T(f) = (16), T(g) = (24,14).
Hence we have
T(h-f-g)=(24,114)
(2) If Q(a) = 0, then we have
T(h) = (14), T(f) = (16), T(g) = (22,1s).

Here note that the two repeated roots of g are common roots with f. Hence
we have

T(h-f-g)= (32 1)
(3)" Otherwise, then we have

Hence we have
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T(h-f-g)=(12).
Summarizing above, we can prove Theorem 1 as follows:

Proof. Let Py be the point on C , lying over co. Consider the divisor
E =6Dp,_ + div(W(z,a)) + 15div(dz),

where Dp_ = 8P,. Then w®(P) = the multiplicity of P in the divisor E.
Note that Cy , can be express as 4-sheeted covering of P*(C). Putting everything
together and consider the discussion before the theorem yield to the result. O

Example 1. Consider the curve:
Crcapavay v =@ —1) (2 - (-2+2v2)).

Note that a = —242/2is aroot of Q(a). At the points P = <2 —V2,V/3V2 - 4)

and P = (\/5, V2 — \/5) there exists a conic D (resp. D’) which meets C' only
at P (resp. P’). The equations of D and D’ are the following

- 2(10-7v8) -4 (3-2v8) 22+ ) (-4+9v8) s
(2_\/5)”32—4(4—3x/§)y2+2(1+ﬁ) (—4+3\/§)3/2xy:0

2

D 2(2—\/§)+4(1—\/§)x+2\/§(2—\/§)3/ y+
(2—ﬁ)x2+4(2—\/§>y2—2(2—\/§)3/2(1+\/5)xy=0

3.2 Proof of Theorem 2
Using Kawasaki [6] and Proposition 5, we have the following proposition:

Proposition 8. We can classify the 1-Weierstrass points of C’§7b as follows:

ordinary flex | hyperflex
b=0 16 4
P(b)=0 10 7
otherwise 22 1

where P(b) = 11b* + 108067 + 3888.

Remark 4. Let QEO) (i = 1,2, 3) be the points on C’é’b lying over 0. These points
are sextactic points for any b # 0. Since they are the fixed points of the involu-
tion o € Aut(Cy,) which assigns (z,y) — (—,y), then either they are flexes or
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sextactic points (Lemma 3). Using Proposition 8, the points QEO) are hyperflexes
only if b= 0.

In a similar manner as in the proof of Theorem 1, we can prove Theorem 2
(for more details, see Alwaleed [1]).

Example 2. Take b = iy/3 (3 +/3) as a root of R(b) = 0. Then at the point

ng) = (0, 1), there is a conic D; such that C;, N Dy = {Q1}. The equation of
D, is given by

Dy 622 +i\/3+V3(1+y) (3—2\/§+\/§y) —0.

3.3 Proof of Theorem 3

As we have seen in Proposition 6, the curve C , is isomorphic to the hyperel-
liptic curve Hj , defined by the equation f3(z,y) = y?—28—2(a+1)z*—(a—1)? =
0. The curve H; , has eight 1-Weierstrass points which are the ramification points
of Hy , whose 1-gap sequences are {1,3,5}. Therefore using Remark 2 (i), Hy 4
has eight 2-Weierstrass points whose 2-gap sequences are {1,2,3,5,7,9}. Let P,
P? (i =1,2) be the points on H; , lying over co and 0, respectively. Then

7
w1 = dw2/y, w2 = d:c2/y2, w3 = 1’dﬂ§2/y2,
wy = 22d2? [y, ws = 23da? [y?, we = xida? y?

is a basis of Q) (H, ,) = L(D), where D = div(dz?/y?) = 4(P{® + Ps°). The
Wronskian W (z, a) of {z*, 23,22, z,y,1} can be written as

W(zx,a) = const.z® - h(x,a) - g(x,a)/y’,

where

h(z,a)= (1 —a+z*) (-1 +a+2*),

g(x,a) = 7 —28a + 42a® — 28a> + 7a* — 3627
+36az* + 36a’z* — 36a°x* — 862®
+220ax® — 86ax® — 362'% — 36ax'? + T2'°.
Now, consider the divisor
E = 6D + div(W) + 15div(dx).

Then w® (P) = the multiplicity of P in the divisor E. The discriminant of the
polynomial h(z,a) with respect to « shows that h(z,a) does not have repeated
roots for any a # 0, 1. The discriminant of the polynomial g(z, a) with respect to
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x shows that g(x, a) has repeated roots if and only if (—4+3a)(—3+4a)P(a) = 0,
where
P(a) = 16 — 17a + 16a°.

Moreover, we have

Res (z,h(z,a);z) = (a—1)2,

Res (2, g(x,a);x) = T(a—1)*,

Res (g(z,a), h(z,a);x) = const.a*(a — 1)'(—4 4 3a)*(—3 + 4a)™.

At a = 3/4,4/3, we have very special cases

W(z,3/4)= const.z® (-1 + 2x2)3 (1+ 21‘2)3 (1 -4z +227)

x (1= 2z + 22%) (14 2z 4 22%) (1 + 4z + 227) (1 + 122° + 4a*) /y°,
W(z,4/3)= const.z® (—1 + 3:E4)3 (14 32%) (1 —1022* + 92%) /y°.
Hence, if a = 3/4,4/3 we have twelve 2-Weierstrass points of 2-weight 3 and
twenty-four 2-Weierstrass points of 2-weight 1. Now, let a # 3/4,4/3. The re-
sultants with respect to x of g(x,a), g.(x,a) and g,.(z,a) show that there is
no common factors of g(x,a), g.(x,a) and g, (x,a). Thus g(z,a) has repeated

roots of multiplicities < 3. Using Lemma 7, we can describe the repeated roots
of g(z,a) as follows:

(1) If P(a) =0, then s(g) = 8. Therefore T'(g) = (2s).
(2) Otherwise, s(g) = 0. Therefore T'(g) = (116)-

So, we have the following table:

| 2weight | 1] 2|36 N®(HL,)]

a=3/4,4/3 24| 0 |12 |8 44
P(a) =0 16|16 | 4 | 8 44
Otherwise |48 0 | 4 |8 60

Now, we compute the 2-gap sequences of the 2-Weierstrass points on H; 4. Firstly,
note that H; , has four 2-Weierstrass points of 2-weight 3 for any a # 0,1. We
shall see that these points are nothing but the ramification points of C3,. Let
Ps, A, B and C be the points on Cj, lying over oo, 0, 1 and a, respectively.
Then we have
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Wi = dx? Jy?, div(w]) = 4(B+ C),

wh = wda?[y3, div(wy) =3(B+ C)+ A+ P,
wh = z2dx? [yt div(wj) =2(A+ B+ C + Py),
Wi = z3dx?/y°, div(wy) =3(A+ Px) + B+ C,
wi = x3dx? [y, div(wg) = 8Pxo,

wg = wtdx?/y°, div(wg) = 4(A + Py),

wh = a5dx? /4y, div(w}) = 84,

wh = 2%(z — 1)%d2? /5, div(w}) = 8B,

wh = 2%(x — a)?dz?/yb, div(wh) = 8C.

Using Lemma 2, we obtain
G (P)=1{1,2,3,4,5,9}, P € {A B,C, Py}
Putting ¢ := ¢2 o ¢1 (here ¢1, ¢2 are as in the proof of Proposition 6), we find
¢({A, Pxc}) = {P°, P5°},  ¢({B,C}) = {P, P}}.
Therefore, we have (by Lemma 4)
G (P)={1,2,3,4,5,9}, Pe{P’ P) P>* P}

Now, we consider the cases in which a = 3/4,4/3 and P(a) = 0.

3.3.1 The case a =3/4,4/3

Using Proposition 6 (i), it is enough to consider a = 3/4. In this case, the
remainder of 2-Weierstrass points of 2-weight 3 are the 8 points (£1/v/2, +1),
(#i/+/2,41). Moreover, these points are conjugate under Aut(Hy 3/4) (Remark
3, (1)).

Let t := 2 — 1/4/2 be the local parameter around the point P = (1/4/2,1).

Then we can write wq, - - ,wg as follows:
wy = (1 —2v2t + 5t% — 523 + o[t]*)dt?,
wo = (1 —4V/2t 4 18t2 — 30v/2t3 + o[t]*)dt?,
ws = (1/V2 = 3t +5V2t% — 123 + ot]")dt?,
wy = (1/2 = V2t + 262 — V213 4 o[t]*)dt?,
ws = (1/2v2 — (1/2)t + t* + o[t]*)dt?,
we = (1/4— (1/2) 82 + (1/V2)t® + o[t]*)dt>.

Consider the matrix
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1 -2V/2 5 —5v2
1 —4v/2 18 —30V2
1/vV2 -3 5/2  —12
/2 —V2 2 -2
1/2v2 —1/2 0 1
1/4 0 —1/2 1/V2

M3 =

Then we see that the rank of Mjs is 4. Using Lemma 8 (ii), we obtain
G (P)=1{1,2,3,4,5,9}.

3.3.2 The case P(a) =0

The polynomial P(a) has two roots a = (17 + 7iv/15)/32 and a. We
here consider the root a. The polynomial g(x,a) has 8 distinct repeated roots
{a1, @, ,ag}. For o; the polynomial f3(cy,y) has two roots {+03;}. Take

.63 TV6 3.
= =4+ =+ = 24
- = e+ i 5(59+ \/6),

C4/63  TV6 3.
o Z\/?QS?)Q“/5(5924\/6)'

Then, we see that there are sixteen 2-Weierstrass points whose 2-weight are 2:
(£aj,£06;), (£ia;, £6;) (7 = 1,2). For each j = 1,2, these 8 points are conjugate
to each other (Remark 3, (1)).

Let t := 2 — a1 be the local parameter around the point P = (aq, 81). Then
we can write wy, - - ,wg as follows:

w; = ((0.142705 — 0.0789567) — (0.28827 — 0.210933:)t
+(0.331175 — 0.3135337)t> — (0.288179 — 0.3517264)t>
+(0.231468 — 0.3691364)t* + o[t]®)dt?,

wo = ((0.0141305 — 0.02253481) — (0.0489658 — 0.1057244 )¢
+(0.0836161 — 0.2633934)t> — (0.0853732 — 0.466369:)t>
+(0.0369109 — 0.6739324)t* + o[t]®)dt?,

ws = ((0.02482 — 0.03029327) — (0.0770041 — 0.122803i)t
+(0.122031 — 0.263481i)t* — (0.127604 — 0.401956i)t>
+(0.0935695 — 0.511142i)t* + o[t])dt?,

wy = ((0.0418728 — 0.0396422i) — (0.110437 — 0.134789i)¢
+(0.150119 — 0.2394034)t> — (0.138922 — 0.29995i)t3
+(0.103894 — 0.32727i)t* + o[t]®)dt?,
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ws = ((0.0685147 — 0.05013384) — (0.14444 — 0.136745i)¢
4(0.153245 — 0.1870374)t* — (0.108441 — 0.1729374)t>
+(0.0735446 — 0.158792i)t* + o[t])dt?,
we = ((0.109375 — 0.06051544) — (0.167826 — 0.122802i)¢
+(0.114093 — 0.1080157)t> — (0.0372301 — 0.04543984)t>
+(0.0284395 — 0.04535414)t* + o[t]®)dt>.
Consider the matrix My. Then we find the rank of My is 5 (See Appendix). Using
Lemma 8 (i), we have G®(P) = {1,2,3,4,5,8}. In a similar manner, we can
conclude that the 2-gap sequence at the point (ag,02) is {1,2,3,4,5,8}.

In a similar manner to that in the proof of Theorem 3, we can prove Theorem
4 (for more details, see Alwaleed [1]).

4. Appendix

To compute the rank of the matrix M;, one can use Mathematica. For exam-
ple, we consider the curve Hy o,. Around the point P = (c, $1), we can compute
the rank of M, as follows:

In[1] := f:=2® + 2(a + 1)z + (a — 1)%;
In[2] := f1:= f/. {a — (17 + 7iV15) /32} ;

In[3] :=al:= \/32 + 6 4 340 /5(59 + 241/6)

In[4] .=y, = (f1/{z >t + oq})l/2
In[5] := s1 := Series[1/y1,{t,0,4}];
In[6] := sy := Series[1/y3, {t,0,4}];
In[7] := s3 := Series|(t + a1)/y?, {t,0,4}];
In[8] := s4 := Series[(t + a1)? /vy, {t,0,4}];
In[9] := s5 := Series|(t + a1)3/y?,{t,0,4}];
In[10] := sg := Series[(t + a1)*/y?, {t,0,4}];
In[11] := ¢; = CoefficientList[s1,t];
In[12] := ¢y = CoefficientList[sa, t];
In[13] := ¢3 = CoefficientList[ss, t];
In[14] := ¢4 = CoefficientList[s4, t];
In[15] := ¢5 = CoefficientList[ss, t];
In[16] := ¢¢ = CoefficientList[sg, t];
In[17] := M4 = {c1,ca,¢3,¢4,C5,C6};

'

In[18] := MatrizRank[M,]
Out[18] := 5
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