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Abstract

In this paper, we study the geometry of the 2-Weierstrass points on the Kurib-

ayashi quartic curves:

Ca : x4 + y4 + z4 + a(x2y2 + y2z2 + x2z2) = 0 (a �= 1,±2).

The 2-Weierstrass points on Ca are divided into flexes and sextactic points. It is

known that the symmetric group S4 acts on Ca (See [8]). Using the S4-action, we

classify the 2-Weierstrass points on Ca.

1. Introduction

We consider a 1-parameter family of smooth quartic curves Ca ⊂ P2(C)
(non-hyperelliptic curves of genus 3):

Ca : x4 + y4 + z4 + a(x2y2 + y2z2 + x2z2) = 0 (a �= 1,±2).

We call these quartic curves Ca Kuribayashi quartic curves. It is known that the
Weierstrass points on a smooth quartic curve are nothing but flexes. In [8], it
was shown that Ca has 12 hyperflexes (resp. 24 ordinary flexes) if a = 0, 3 (resp.
otherwise). The symmetric group S4 acts on the Kuribayashi curves Ca.

Definition 1. Define the projective transformation group G to be the group
generated by the three elements

σ =

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ , τ =

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ , ρ =

⎛
⎝ 1 0 0

0 0 −1
0 −1 0

⎞
⎠ .

The group G is isomorphic to the symmetric group S4. Indeed, G acts on the
set of four points O1 = (−1 : 1 : 1), O2 = (1 : −1 : 1), O3 = (−1 : −1 : 1),
O4 = (1 : 1 : 1), as the permutations σ → (12), τ → (13), ρ → (14). It turns out
that G also acts on Ca. Thus we can regard as G ⊂ Aut(Ca).
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It was proved by Kuribayashi-Sekita [8] that Ga
∼= Ca′ if and only if a′ = a

except if a = (−3 ± 3
√−7)/2. The group G acts on Weierstrass points and on

2-Weierstrass points on Ca. So we can discuss the structure of G-orbits of the
2-Weierstrass points on Ca (See [2], for Weierstrass points).

Definition 2. A smooth, but not a flex point P on a plane curve C is called a
sextactic point if there exists an irreducible conic D which meets C with contact
order m ≥ 6. Such a conic D (unique, if exists) is called the sextactic conic.

Furthermore, for a sextactic point P , the positive integer m− 5 is called the
sextactic order. We say that P is s-sextactic if s = m− 5 ≥ 1.

Geometrically, a 2-Weierstrass point on a smooth quartic curve is either a
flex or a sextactic point (See Section 2). The purpose of this paper is to prove
the following

Theorem. The G-orbits of the 2-Weierstrass points on Kuribayashi curves Ca

are classified as follows. We divide the set of 2-Weierstrass points on Ca into the
subset of flexes and the subset of sextactic points.

Table 1 G-orbits of flexes

a ordinary flexes hyperflexes

0, 3 1 orb. of 12 pts

otherwise 1 orb. of 24 pts

Table 2 G-orbits of sextactic points

a 1-sextactic pts 2-sextactic pts 3-sextactic pts

0, 3
2 orb. of 12 pts

1 orb. of 24 pts

14
3 orb. of 12 pts

1 orb. of 8 pts
1 orb. of 24 pts

P(a)=0
2 orb. of 12 pts

1 orb. of 12 pts
1 orb. of 24 pts

Q(a)=0 3 orb. of 12 pts 1 orb. of 24 pts

otherwise
3 orb. of 12 pts
2 orb. of 24 pts

Here, we set

P (a) = a3 + 68a2 − 91a+ 98,

Q(a) = 33a4 − 186a3 + 205a2 + 364a+ 196.

We refer to Section 4, for the location and the detailed structure of the 2-
Weierstrass points. We list the numbers of the 2-Weierstrass points.
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Corollary. The numbers of 2-Weierstrass points on Ca with respect to their types
are given in the following table.

Table 3 Number of 2-Weierstrass points

a
ordinary hyper- 1-sextac. 2-sextac. 3-sextac.
flexes flexes pts pts pts

0,3 0 12 48 0 0
14 24 0 60 0 8

P(a)=0 24 0 48 0 12
Q(a)=0 24 0 36 24 0

otherwise 24 0 84 0 0

In Section 2, we recall basic facts on 2-Weierstrass points, Wronskian forms
of quadratic differentials on a smooth quartic curve and the multiplicities of zeros
of polynomials. In Section 3, we discuss the G-action on the Kuribayashi curves
Ca. In Section 4, we complete the proof of Theorem. In Section 5, we numerically
compute some of the 2-Weierstrass points for the cases in which P (a) = 0 and
Q(a) = 0. We use the computer softwares Mathematica and Maple to perform
the computations. We refer to Alwaleed [1] for detailed computations and further
discussions.

2. Preliminaries

2.1 2-Weierstrass points
Let C be a smooth quartic curve. The 2-Weierstrass points on C are de-

fined by the orders of quadratic differential forms ω ∈ H0(C, (Ω1)2). Since
(Ω1)2 ∼= OC(2), we have dimH0(C, (Ω1)2) = 6. Take a point P ∈ C. Let
{ω1, . . . , ω6} be a basis of H0(C, (Ω1)2) so that ordP (ω1) < . . . < ordP (ω6). Let-
ting ni = ordP (ωi) + 1, the sequence {n1, . . . , n6} is called the 2-gap sequence of
P . The quantity

w(2)(P ) =
6∑

i=1

(ni − i)

is called the 2-weight of P . We say that P is a 2-Weierstrass point if w(2)(P ) > 0.
Geometrically, P is a 2-Weierstrass point if and only if there is a unique conic D
with IP (C,D) = n6 − 1 ≥ 6. We infer that either D = 2L (P is a flex and L is
the tangent line at P ) or D is an irreducible conic (P is not a flex). In the latter
case, the point P is a sextactic point. We denote by W2(C) (resp. W1(C)) the
set of 2-Weierstrass points (resp. Weierstrass points) on C.

Lemma 1. Let C be a smooth quartic curve. Then we have

(i) W1(C) = {flexes}, W2(C) = {flexes} ∪ {sextactic points}.
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(ii) The possible 2-gap sequences of P ∈W2(C) are listed in the following table.

w(2)(P ) 2-gap sequence geometry

1 {1, 2, 3, 4, 5, 7} ordinary flex
5 {1, 2, 3, 5, 6, 9} hyperflex

1 {1, 2, 3, 4, 5, 7} 1-sextactic pt
2 {1, 2, 3, 4, 5, 8} 2-sextactic pt
3 {1, 2, 3, 4, 5, 9} 3-sextactic pt

(iii) We have ∑
P∈C

w(2)(P ) = 108.

Proof. For (iii), we refer to [6, 9].

2.2 Wronskians
In order to compute 2-Weierstrass points, one can use the Wronskian form.

For a basis {ω1, . . . , ω6} of the space H0(C, (Ω1)2), one can define the Wronskian
form Ω = W (ω1, . . . , ω6) ∈ H0(C, (Ω1)27). Then the order of zeros of Ω at P gives
us the 2-weight w(2)(P ). Cf. [6, 9]. Letting f(x, y) = 0 be the affine equation of
C, we can use the basis:

{ 1
f2

y

(dx)2,
x

f2
y

(dx)2,
y

f2
y

(dx)2,
x2

f2
y

(dx)2,
xy

f2
y

(dx)2,
y2

f2
y

(dx)2}.

By computation, we have

Lemma 2. (i) Ω = W (1, x, y, x2, xy, y2)(dx)27/f12
y ,

(ii) W (1, x, y, x2, xy, y2) = 4y′′
[
45y(4)y(3)y′′ − 9y(5)(y′′)2 − 40(y(3))3

]
.

Remark 1. One can compute the term y(k) by the implicit differentiation. For
instance, as is well known, we have

y′′ = (fx2f2
y − 2fxyfxfy + fy2f2

x)/f3
y .

2.3 Multiplicities of zeros
Definition 3. Let p(x) be a polynomial. Write p(x) = c

∏k
i=1(x − αi)mi with

αi �= αj for i �= j. We may arrange as m1 ≥ m2 ≥ . . . ≥ mk. We set

(i) T (p) = (m1, . . . ,mk),

(ii) r(p) = max{mi},
(iii) s(p) =

∑k
i=1(mi − 1).

We call T (p) the type of p. We use abbreviations such as 1n =

n︷ ︸︸ ︷
1, . . . , 1 and

2n =

n︷ ︸︸ ︷
2, . . . , 2.



2-WEIERSTRASS POINTS ON KURIBAYASHI QUARTIC CURVES 71

As for the invariants r(p), s(p), we use the following well known facts.

Lemma 3. Let p(x) be a polynomial.

(i) If V (p, p′, . . . , p(r−1)) �= ∅ and V (p, p′, . . . , p(r)) = ∅, then r = r(p).

(ii) Let R(i) be the i-th subresultant of p(x) and p′(x). If R(1) = . . . = R(s) =
0, R(s+1) �= 0. Then we have s = s(p).

We regard a polynomial p(x, a) ∈ C[x, a] as a 1-parameter family of polyno-
mials depending on the value a. We sometimes write as pa(x) = p(x, a). Consider
the ideal Ik = (p, p′, . . . , p(k)), where the p(i) denotes the i-th differentiation by
the variable x. By using the Groebner basis methods (Cf. [3], Chap. 3), we can
compute the ideal Jk = Ik ∩ C[a] in C[a]. If a0 ∈ V (Jr−1), a0 �∈ V (Jr), then we
infer that r(pa0) = r. Also if R(1)(a0) = . . . = R(s)(a0) = 0, R(s+1)(a0) �= 0, then
we conclude that s(pa0) = s.

3. G-action on 2-Weierstrass points

We now study the G-action on the Kuribasyashi curves Ca. We use the affine
equation of Ca:

f(x, y) = x4 + y4 + 1 + a(x2y2 + x2 + y2) = 0.

As we have seen in Section 1, a projective transformation group G ∼= S4 acts
on Ca. For a point P on Ca, let GP denote the stabilizer of P in G. It is well
known that GP is a cyclic group. Let Orb(P ) be the orbit of the point P . We
denote by X(Ca) the set of the points P ∈ Ca such that |GP | > 1. We also write
Xi(Ca) = {P ∈ Ca | |GP | = i}.
Lemma 4. We have X(Ca) = X2(Ca) ∪X3(Ca).

Proof. Since G ∼= S4, the orders of elements in G are 1,2,3 and 4. It suffices to
see that X4(Ca) = ∅. We show that the group GP does not contain elements of
order four for any point P ∈ Ca. The element

ϕ = ρτσ =

⎛
⎝ 0 0 1

0 −1 0
−1 0 0

⎞
⎠

has order four. We denote by Fix(ϕ,P2) the set of fixed points of ϕ in P2. We
see that Fix(ϕ,P2) consists of three points {(0 : 1 : 0), (1 : 0 : ±i)}, which are
disjoint from Ca for a �= 2. Since G ∼= S4, all elements of order 4 are conjugate
with each other in G, we conclude that GP for P ∈ Ca cannot contain elements
of order four.
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In the symmetric group S4, there exist 9 elements of order two, which are
divided into two conjugacy classes:

{(12), (13), (14), (23), (24), (34)}, {(12)(34), (13)(24), (14)(23)}.
Using the isomorphism G ∼= S4 given in Section 1, we have the correspondences:
σ ↔ (12) and ψ = (στρ)2 ↔ (13)(24).

For σ, we have Fix(σ,P2) = {(−1 : 1 : 0)} ∪ {the line x = y}. Thus
Fix(σ,P2) ∩ Ca consists of four points {(α : α : 1)}, where the α are the four
distinct roots of the equation: (2 + a)x4 + 2ax2 + 1 = 0. Note that α �= ±1, since
a �= −1. Note also that

Disc((2 + a)x4 + 2ax2 + 1;x) = 256(a+ 1)2(a− 2)2(a+ 2) �= 0.

We have

Orb((α : α : 1)) =⎧⎨
⎩

(α : α : 1), (α : −α : 1), (−α : −α : 1), (−α : α : 1)
(1 : 1/α : 1), (1 : −1/α : 1), (−1 : 1/α : 1), (−1 : −1/α : 1)
(1/α : 1 : 1), (1/α : −1 : 1), (−1/α : 1 : 1), (−1/α : −1 : 1)

⎫⎬
⎭ .

We see that G(α:α:1) = {1, σ}. For the element

ψ = (στρ)2 =

⎛
⎝ −1 0 0

0 1 0
0 0 −1

⎞
⎠ ,

we have Fix(ψ,P2) = {(0 : 1 : 0)} ∪ {the line y = 0}. So it follows that
Fix(ψ,P2) ∩ Ca = {(β : 0 : 1)}, where the β are the four distinct roots of
the equation: x4 + ax2 + 1 = 0. Note that β �= 0,±1, since a �= −2. We have

Orb((β : 0 : 1)) =⎧⎨
⎩

(β : 0 : 1), (1/β : 0 : 1), (−β : 0 : 1), (−1/β : 0 : 1)
(0 : β : 1), (0 : 1/β : 1), (0 : −β : 1), (0 : −1/β : 1)
(β : 1 : 0), (1 : β : 0), (β : −1 : 0) (−1 : β : 0)

⎫⎬
⎭ .

We see that G(β:0:1) = {1, ψ}.

Summarizing, we obtain

Proposition 1. We have

(i) X2(Ca) = Orb((α1 : α1 : 1)) ∪ Orb((α2 : α2 : 1)) ∪ Orb((β : 0 : 1)),

where the α1 and the α2 are two distinct roots (α1 �= −α2) of the equa-
tion: u(x) = (2 + a)x4 + 2ax2 + 1 = 0. The β is a root of the equation:
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e(x) = x4 + ax2 + 1 = 0.

(ii) X2(Ca) ⊂W2(Ca),

(iii) X2(Ca) ∩W1(Ca) =

⎧⎪⎨
⎪⎩

Orb((β : 0 : 1)) if a = 0,
Orb((i : i : 1)) if a = 3,
∅ otherwise,

where β = (1 + i)/
√

2.

Proof. (ii) We can apply Duma’s criterion in [5], Satz 6.3. (iii) Let H(x, y, z) be
the Hessian of the curve Ca. By computation, we obatin

Res(H(x, y, 1), f(x, y); y) = Const.(a− 2)6(a+ 2)4h(x)2,

where

h(x) = a2(x12+1)+6a(x10+x2)−3(a3−a2−3a−6)(x8+x4)−2a(3a2−2a−15)x6.

We have

h(1) = −12(a− 3)(a+ 1)2, h(0) = a2.

Thus, if a �= 0, 3, then we have h(0)h(1) �= 0. If X2(Ca) ∩W1(Ca) �= ∅, then by
(i), we must have (1 : 1/α : 1) ∈ W1(Ca) or (0 : β : 1) ∈ W1(Ca), which is not
the case.

Proposition 2. We have

X3(Ca) = Orb((ω : ω2 : 1))

=
{

(ω : ω2 : 1), (−ω : −ω2 : 1), (−ω : ω2 : 1), (ω : −ω2 : 1)
(ω2 : ω : 1), (−ω2 : −ω : 1), (ω2 : −ω : 1), (−ω2 : ω : 1)

}
.

Proof. There are 8 elements of order three in G ∼= S4, which are conjugate with
each other. For instance, the element

στ =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠

has order three. We have Fix(στ,P2) =
{
(1 : 1 : 1), (ω : ω2 : 1), (ω2 : ω : 1)

}
,

where the ω is the third root of unity. Thus, we obtain

Fix(στ,P2) ∩ Ca = {(ω : ω2 : 1), (ω2 : ω : 1)}.
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Remark 2. If (γ : δ : 1) �∈ X(Ca), then Orb(γ : δ : 1) consists of the following
24 points.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(γ : δ : 1), (γ : −δ : 1), (−γ : −δ : 1), (−γ : δ : 1)

(δ : γ : 1), (δ : −γ : 1), (−δ : −γ : 1), (−δ : γ : 1)

(1/γ : δ/γ : 1), (1/γ : −δ/γ : 1), (−1/γ : −δ/γ : 1), (−1/γ : δ/γ : 1)

(δ/γ : 1/γ : 1), (δ/γ : −1/γ : 1), (−δ/γ : −1/γ : 1), (−δ/γ : 1/γ : 1)

(1/δ : γ/δ : 1), (1/δ : −γ/δ : 1), (−1/δ : −γ/δ : 1), (−1/δ : γ/δ : 1)

(γ/δ : 1/δ : 1), (γ/δ : −1/δ : 1), (−γ/δ : −1/δ : 1), (−γ/δ : 1/δ : 1)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

4. Proof of Theorem

Using Lemma 2 and implicit differentiation, we can write the Wronskian form
Ω of quadratic differentials on Ca as:

Ω = Φ(x, y)
(
dx/fy

)27
.

We have

Φ(x, y) = Const · (a+ 1)(a− 2)2(a2 − 4)xy(x2 − y2)Φ1(x, y)Φ2(x, y),

where deg(Φ1(x, y)) = 8 and deg(Φ2(x, y)) = 18.

We first determine the 2-Weierstrass points on C0.

Lemma 5. For the case in which a = 0, we have{
W1(C0) = Orb((β : 0 : 1)),

W2(C0) \W1(C0) = Orb((α : α : 1)) ∪ Orb((α : α : 1)) ∪ Orb((α : α : 1)),

where β = (1 + i)/
√

2, α = 4
√

2(1 + i)/2. Note that Orb((α : α : 1)) consists of
24 points.

Proof. By Proposition 1, we obtain

X2(C0) = Orb((β : 0 : 1)) ∪ Orb((α : α : 1)) ∪ Orb((α : α : 1)) ⊂W2(C0).

We have Φ(x, y) = Const · (xy)5(x4 − y4)(2x4 + y4)(x4 + 2y4). It follows that
Orb(α : α : 1) ⊂W2(C0).

In what follows, we assume that a �= 0. We compute the resultant of Φ (or
Φi) and f with respect to y. Set

φ(x) = Res(Φ, f ; y), φi(x) = Res(Φi, f ; y).

It turns out that φ1(x) coincides with the polynomial h(x) up to constant, which
appeared in Lemma 1 as the resultant of the Hessian with respect to y. This is



2-WEIERSTRASS POINTS ON KURIBAYASHI QUARTIC CURVES 75

a consequence of Lemma 2, (ii) and Remark 1.

Lemma 6. We obtain

(i) φ2(x) = (a+ 2)8(a− 2)14(x2 − 1)4v(x)2g(x)2,

(ii) φ(x) = Const.(a+ 2)16(a− 2)32(a+ 1)4

×x4(x2 − 1)4u(x)2v(x)2h(x)2g(x)2.

where u(x) = (2 + a)x4 + 2ax2 + 1, v(x) = x4 + 2ax2 + a+ 2 and

g(x) = 9a2(a − 2)(a + 2)2 (x24 + 1)

+ 6a(a − 1)(a − 2)(a + 2)(15a + 14) (x22 + x2)

+ (36 a6 + 294 a5 − 720 a4 − 768 a3 + 956 a2 − 112 a − 784)(x20 + x4)

+ (186 a6 + 276 a5 − 1920 a4 − 662 a3 + 1216 a2 − 1848 a − 1568) (x18 + x6)

+ (3 a7 + 450 a6 − 255 a5 − 2990 a4 − 277 a3 + 34 a2 − 4172 a − 3528) (x16 + x8)

+ (12 a7 + 642 a6 − 790 a5 − 3346 a4 − 2098 a3 + 980 a2 − 7224a − 5488) (x14 + x10)

+ (18 a7 + 684 a6 − 688 a5 − 5208 a4 + 1130 a3 − 2004a2 − 8904a − 5488)x12.

Remark 3. Note that g(−x) = g(x) and x24g(1/x) = g(x). Note also that
v(x) = x4u(1/x). Thus, if we write u(x) = (a + 2)(x2 − α2

1)(x
2 − α2

2) as in
Proposition 1, then we have v(x) = (x2 − (1/α1)2)(x2 − (1/α2)2).

Lemma 7. We have

Disc(g;x) = Const. (a− 2)16(a+ 2)18(a+ 1)20

× a16(a− 3)18(a− 14)8P (a)6Q(a)12η(a)8,

where

P (a) = a3 + 68a2 − 91a+ 98,

Q(a) = 33a4 − 186a3 + 205a2 + 364a+ 196,

η(a) = (3a3 − 6a2 + 9a− 14)(9a12 − 162a11 + 1683a10 + · · · ).

Proof. This follows from a direct computation.

Lemma 8. For the case in which a = 3, we have{
W1(C3) = Orb((i : i : 1)),

W2(C3) \W1(C3) = Orb((β : 0 : 1)) ∪ Orb((α : α : 1)) ∪ Orb((γ : δ : 1)),

where β = (1 +
√

5)i/2, α = i/
√

5 and g(γ) = 0. Note that Orb((γ : δ : 1))
consists of 24 points.

Proof. Letting a = 3, we have g(x) = (x2 + 1)4(x2 − 1)2g12(x), where g12(x) =
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2025x12 + 6570x10 + . . .+ 2025. We have Disc(g12;x) �= 0. Now, it follows from
Proposition 1 that the points

X2(C3) = Orb((i : i : 1)) ∪ Orb((β : 0 : 1)) ∪ Orb((i/
√

5 : i/
√

5 : 1))

are contained in W2(C3). Take a root γ of g12(x), Then, there exists a 2-
Weierstrass point (γ : δ : 1) ∈ C3. Since g12 has no multiple roots, we have
w(2)((γ : δ : 1)) = 1.

Lemma 9. If a �= 0, 3, then there exists an ordinary flex (γ0 : δ0 : 1) �∈ X(Ca)
so that W1(Ca) = Orb((γ0 : δ0 : 1)).

Proof. See Proposition 1, (iii).

Lemma 10. For the case in which a = 14, we have

W2(C14) \W1(C14) = Orb((ω : ω2 : 1)) ∪X2(C14) ∪ Orb((γ : δ : 1)),

where g(γ) = 0 and

X2(C14) = Orb(((β : 0 : 1)) ∪ Orb((α1 : α1 : 1)) ∪ Orb((α2 : α2 : 1)),

where β = 2 +
√

3i, α1 = (
√

5 + 3)i/4, α2 = (
√

5 − 3)i/4. Furthermore, we have
w(2)((ω : ω2 : 1)) = 3 and X3(C14) = Orb((ω : ω2 : 1)). Note that Orb((γ : δ : 1))
consists of 24 points.

Proof. Letting a = 14, we have g(x) = 200704 (x2 + x+ 1)3(x2 − x+ 1)3g12(x),
where g12(x) = 27x12 + . . .+ 27. We have Disc(g12;x) �= 0. Now, it follows from
Proposition 1 that X2(C14) ⊂ W2(C14). By a direct computation, we see that
(ω : ω2 : 1) ∈ C14 and w(2)(ω : ω2 : 1) = 3 (See Remark 4 below). Finally, take
a root γ of g12(x), Then there exists a 2-Weierstrass point (γ : δ : 1) ∈ C3. Since
g12 has no multiple roots, we have w(2)((γ : δ : 1)) = 1.

Lemma 11. Suppose a �= 0, 3, 14. The type of the multiplicities of the roots of
the polynomial g(x) is given in the following table:

a T (g)

P (a) = 0 (26, 112)

Q(a) = 0 (212)

η(a) = 0 (24, 116)

otherwise (124)

Proof. By using the Groebner basis method, we obtain

(g, g′, g′′) ∩ C[a] = ((a− 2)(a+ 2)2(a+ 1)2a2(a− 3)2(a− 14)).
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Thus, we infer that r(g) = 2 (resp. r(g) = 1) if P (a)Q(a)η(a) = 0 (resp. other-
wise) (See Definition 3). So if P (a)Q(a)η(a) �= 0, then g has no multiple roots.
Let R(k) denote the k-th subresultant of g and g′ with respect to x.

Case P (a) = 0. By computation, we have P (a) |R(k) for k = 1, . . . , 6 but
Res(P (a), R(7); a) �= 0. It follows that (r(g), s(g)) = (2, 6). We can easily con-
clude that T (g) = (26, 112).

Case Q(a) = 0. In this case, we have Q(a) |R(k) for k = 1, . . . , 12 but
Res(Q(a), R(13); a) �= 0. It follows that (r(g), s(g)) = (2, 12). We conclude that
T (g) = (212).

Case η(a) = 0. In this case, we have η(a) |R(k) for k = 1, . . . , 4, but we obtain
Res(η(a), R(5); a) �= 0. It follows that (r(g), s(g)) = (2, 4). We conclude that
T (g) = (24, 116).

Now we pass to coordinates change. We use the affine coordinates: (X,Y ) =
(x+ 2y, y). Write f(X,Y ) = f(X − 2Y, Y ) and

Ω = Φ(X,Y )
(
dX/ fY

)27

so that Φ(X,Y ) = Φ(X − 2Y, Y ). Set also Φ2(X,Y ) = Φ2(X − 2Y, Y ). Letting
φ(X) = Res(Φ, f ;Y ), φ2(X) = Res(Φ2, f ;Y ), by computation, we have

Lemma 12.

(i) T (φ2) = (224, 116), if Q(a) = 0,

(ii) Res(η,Disc(φ;X); a) �= 0.

Lemma 13. Suppose a �= 3. Let α1, α2 be as in Proposition 1, (i). Let mi denote
the 2-weight of the 2-Weierstrass point (αi : αi : 1) ∈ X2(Ca). We may assume
m1 ≤ m2. Then we have

(m1,m2) =
{

(1, 3) if P (a) = 0,
(1, 1) otherwise.

Proof. We recall that the point (1 : 1/αi : 1) belongs to the orbit of the point
(αi : αi : 1). By computation, we obtain

g(1) = Const.(a− 3)(a+ 2)(a+ 1)2P (a),

g′(1) = Const.(a− 3)(a+ 2)(a+ 1)2P (a),

Res(P (a), g′′(1); a) �= 0.

In case P (a) = 0, we infer that the multiplicity of (x − 1) in φ(x) is equal to
8. Hence m1 + m2 = 4. It follows that (m1,m2) is either (2, 2) or (1, 3). By
computation, we also have r(ug) = 3. Since T (g) = (26, 112), the multiplicity
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of (x − α2) in g(x) must be equal to 2. Hence we have (m1,m2) = (1, 3). In
case P (a) �= 0, the multiplicity of (x − 1) in φ(x) is equal to 4. It follows that
m1 +m2 = 2 and hence we have (m1,m2) = (1, 1).

Lemma 14. If Q(a) = 0, then there exists a 2-Weierstrass point P �∈ X(Ca)
with w(2)(P ) = 2.

Proof. Let γ be a root of g(x). Since T (g) = (212), there exists a 2-Weierstrass
point P = (γ : δ : 1) ∈ Ca. We have two possible cases:

(i) w(2)(P ) = 2.

(ii) w(2)(P ) = 1. In this case, we can find another 2-Weierstrass point P̃ = (γ :
δ̃ : 1) ∈ Ca with δ̃ �= ±δ.

The case (ii) does not occur. In fact, we use the affine coordinates (X,Y ) in
Lemma 12. We see that the X-coordinate of all points in Orb(P ) and Orb(P̃ )
are different. For a proof of this fact, see Lemma 16 in Section 5. It follows
that the number of the different roots of φ2 is greater than or equal to 48. But,
we infer from Lemma 12 that if Q(a) = 0, then T (φ2) = (224, 116), which is a
contradiction.

Proof of Thoeorem. For the cases in which a = 0, 3, 14, we refer to Lemmata 5,
8, 10.

Case (1). P (a) = 0. By Lemma 13, we can find two 2-Weierstrass points
(α1 : α1 : 1), (α2 : α2 : 1) ∈ X2(Ca) such that w(2)((α1 : α1 : 1)) = 1 and
w(2)((α2 : α2 : 1)) = 3. Since T (g) = (26, 112), we can also find a 2-Weierstrass
point (γ : δ : 1) �∈ X(Ca) with w(2)((γ : δ : 1)) = 1. We have

W2(Ca) \W1(Ca) = Orb((β : 0 : 1)) ∪ Orb((α1 : α1 : 1)) ∪ Orb((α2 : α2 : 1))

∪Orb((γ : δ : 1)).

Case (2). Q(a) = 0. By Lemma 14, there is a 2-Weierstrass point (γ : δ : 1) �∈
X2(Ca) with w(2)((γ : δ : 1)) = 2. In this case, we have

W2(Ca) \W1(Ca) = X2(Ca) ∪ Orb((γ : δ : 1)).

Case (3). P (a)Q(a) �= 0. We can find two 2-Weierstrass points (γ1 : δ1 : 1) and
(γ2 : δ2 : 1) with g(γi) = 0 and w(2)((γi : δi : 1)) = 1 for i = 1, 2 such that

W2(Ca) \W1(Ca) = X2(Ca) ∪ Orb((γ1 : δ1 : 1)) ∪ Orb((γ2 : δ2 : 1)).

The assertion follows from Lemma 11 (resp. Lemma 12, (ii)) for the case in which
η(a) �= 0 (resp. η(a) = 0). We here sketch a proof for the case in which η(a) �= 0.
Set S = {γ | g(γ) = 0, u(γ)v(γ) �= 0}. By Lemma 11, we have #(S) ≥ 16.
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For any γ1 ∈ S, there is a 2-Weierstrass point (γ1 : δ1 : 1) �∈ X2(Ca). Choose
γ2 ∈ S so that γ2 �∈ {±γ1,±δ1,±1/γ1,±1/δ1,±γ1/δ1,±δ1/γ1}. Then there is a
2-Weierstrass point (γ2 : δ2 : 1). Since g(x) has no multiple roots, we infer that
w(2)((γi : δi : 1)) = 1 for i = 1, 2. �

Remark 4. A 3-sextactic point P on a smooth quartic curve C is a total sextac-

tic point, i.e., the sextactic conic D at P meets C only at P . Among Kuribayashi
quartic curves Ca, there exist total sextactic points if a = 14 or if P (a) = 0.
In case a = 14, the 2-Weierstrass points in Orb(ω : ω2 : 1) are all total sex-
tactic points. We remark that they lie on bitangent lines. Namely, the total
sextactic points P1 = (ω : ω2 : 1) and P2 = (ω2 : ω : 1) lie on a bitangent line
L : x+ y + z = 0. The sextactic conics at these points are the following:

D1 : Δ2(x, y, z) = (x2 + 5yz) + ω2(y2 + 5xz) + ω(z2 + 5xy) = 0,

D2 : Δ1(x, y, z) = (x2 + 5yz) + ω(y2 + 5xz) + ω2(z2 + 5xy) = 0.

Note that we can write the defining equation of C14 as

5
9
(x+ y + z)4 +

4
9
Δ1(x, y, z)Δ2(x, y, z) = 0.

5. Computational aspects

We now discuss the computational aspects. By a numerical method, we de-
termine the coordinates of 2-Weierstrass points on the Kuribayashi curves Ca for
the cases in which P (a) = 0 and Q(a) = 0. We use the following tool.

Lemma 15. Let C : f(x, y) = 0 a smooth quartic curve. Take a non-flex point
P = (α, β) ∈ C. We can compute the osculating conic D at P (i.e., the irreducible
conic having the contact order ≥ 5 to C at P ) in the following way.

(1) Compute the defining equation l(x, y) = y− β −m(x−α) = 0 of the tangent
line L of C at P .

(2) Parametrize those irreducible conics passing through the point P with the
tangent line L:

l(x, y) +A(x− α)2 +B(x− α) l(x, y) + C l(x, y)2 = 0 (A �= 0)

as ⎧⎨
⎩

x(t) = α− t/(A+Bt+ Ct2),

y(t) = β − t(t+m)/(A+Bt+ Ct2).

(3) Write
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f(x(t), y(t)) =
s2t

2 + s3t
3 + s4t

4 + s5t
5 + s6t

6 + s7t
7 + s8t

8

(A+Bt+ Ct2)4
,

where si ∈ C[A,B,C] for i = 2, . . . , 8.

(4) Determine A,B,C by solving the equations: s2 = s3 = s4 = 0.

Proof. For the assertion (2), it suffices to parametrize the intersection points of
the conic with the pencil of lines l(x, y) − t(x− α) = 0.

5.1 The case P (a) = 0
We consider the case in which P (a) = 0. The cubic equation P (a) = 0 has

three roots:

a1 = −69.3328950 . . . , a2 = 0.6664475 . . . − (0.9845395 . . . )i, a3 = a2.

We here consider the real root a1. The equation: u(x) = 0 has 4 distinct roots
{α1,−α1, α2,−α2}, where

α1 = 0.0847732623 . . . , α2 = (1.43756489 . . . )i.

Proposition 3. Suppose a = a1. The point P1 = (α1 : α1 : 1) is a 1-sextactic
point and the point P2 = (α2 : α2 : 1) is a 3-sextactic point.

Proof. Case (i). We first check the point P1. Using the method in Lemma 15,
we have the following approximate solutions for the equations s2 = s3 = s4 = 0:

A = 11.62294385 . . . , B = −11.62294386 . . . , C = 6.03059824 . . . .

In fact, we have

s2 = A2{−137.5830294 + 11.83719298A− (8.881 . . .× 10−16)B2

+ (8.881 . . .× 10−16)AC}.

So if we put A = −137.5830294/11.83719298 = 11.6229438 . . ., then s2 is very
close to zero. Solving the equations s3 = 0, s4 = 0, we can find the ap-
proximate solutions B,C. In this case, we have s5 = −8.367 . . . × 10−11, but
s6 = 146.955 . . . �= 0. Thus we infer that P1 is a 1-sextactic point.

Case (ii). We now check the point P2. In a similar manner as in Case (i),
we have the following approximate solutions for the equations s2 = s3 = s4 = 0:

A = (2.2419441 . . .)i, B = −(2.2419441 . . .)i, C = (0.1079171 . . .)i.

In this case, we have s5 = −3.637 . . . × 10−12, s6 = 3.069 . . . × 10−12 and
s7 = −6.430 . . .×10−13. We therefore conclude that P2 is a 3-sextactic point.
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5.2 The case Q(a) = 0
We now pass to the case in which Q(a) = 0. The quartic equation Q(a) = 0

has four roots:

a1 = 3.359188060 . . .+ (1.319606687 . . .)i, a1,

a2 = −0.5410062419 . . .+ (0.4040965957 . . .)i, a2

We first prove the following fact which was used in Lemma 14.

Lemma 16. Let a be a root of the equation Q(a) = 0. Let γ be a root of the
equation g(x) = 0. Let δ, δ̃ be two roots of the equation: f(γ, y) = 0 with δ̃ �= −δ.
Put P = (γ : δ : 1) and P̃ = (γ : δ̃ : 1). Let (X,Y ) be the affine coordinates used
in Lemma 12. Then the X-coordinates of the points in Orb(P ) and in Orb(P̃ )
are all different.

Proof. We here consider the root a1. We can similarly deal with the other cases.
Assume a = a1. Since T (g) = (212) (See Lemma 11), the equation g(x) = 0
has 12 distinct multiple roots. Let γ = −1.0207 . . .+ (0.8732 . . .)i be one of such
roots. The equation: f(γ, y) = 0 has four roots {±δ,±δ̃}, where

δ = 0.4070 . . .+ (0.8911 . . .)i,

δ̃ = 0.7003 . . .+ (2.5518 . . . )i.

Using Remark 2, we can list the X-coordinates of 48 points in Orb(P ) and in
Orb(P̃ ), from which follows the assertion. We omit the details.

We can numerically determine which of the points P and P̃ is a sextactic
point.

Proposition 4. Let P, P̃ have the same meaning as in the proof of Lemma 16.
Then, P is a 2-sextactic point and P̃ is not a sextactic point.

Proof. Using the method in Lemma 15, we can find the osculating conic D at
P . The tangent line of Ca1 at P is given by l(x, y) = y− δ−m(x−γ) = 0, where
m = −(0.10111 . . . + (0.21625 . . .)i. The coefficients A,B,C have the following
numerical solutions for s2 = s3 = s4 = 0:

A = −0.1604 . . .− (0.2374 . . .)i,

B = −0.9787 . . .+ (0.3595 . . .)i,

C = −0.4780 . . .+ (0.1791 . . .)i.

In this case, we have

s5 = 1.243 · · · × 10−14 − (5.329 . . .× 10−15)i,

s6 = 8.751 . . .× 10−9 − (1.681 . . .× 10−8)i,
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s7 = 5.175 . . .− (2.620 . . .)i �= 0.

Therefore, we conclude that P is a sextactic point with contact order 7. Sim-
ilarly, we can compute the osculating conic D̃ at P̃ and we find that s5 =
0.75 · · · − (0.54 . . .)i �= 0. So P̃ is not a sextactic point.

Added in proof : It came to our attention that Egde (Edinburgh Math. Notes
35 (1945), 10–13) discussed the curves Ca and found the 12 hyperflexes (undu-
lations) on C3. He cited Ciani (Palermo Rendiconti, 13 (1899), 347–373) as a
predecessor.
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