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Abstract

Hill’s equation with periodic and integrable potential is considered. In partic-

ular asymptotic distribution of eigenvalues is proved, which improves Borg’s result.

1. Introduction

In this short note we deal with Hill’s equation

y′′ + (λ + Q(x)) y = 0,(1.1)

where the potential Q is a periodic, integrable and real-valued function with
period π and λ is a parameter. We consider the asymptotic distribution of eigen-
values {λj} for (1.1) under the periodic condition

y(0) = y(π), y′(0) = y′(π).

It is well-known that the 2n− 1-st and 2n-th eigenvalues, denoted by λ2n−1 and
λ2n, are near 2n for large n ∈ N (see Theorem 2.1 below). Borg [1, 2] showed a
more precise asymptotics (see also [6, Theorem 2.11]).

Theorem 1.1 Let Q be a real-valued L2(R/πZ)-function and
∫ π

0

Q(x) dx = 0.

Then it holds for any integer n greater than ‖Q‖L1/(2π) (not ‖Q‖L2/(2π)) that

∣∣∣√λ2n−1 − 2n
∣∣∣ � ‖Q‖L1

4nπ
,

∣∣∣√λ2n − 2n
∣∣∣ � ‖Q‖L1

4nπ
.
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We improve this result as follows.

Theorem 1.2 Let Q be a real valued L1(R/πZ)-function and
∫ π

0

Q(x) dx = 0.

Then it holds that∣∣∣√λ2n−1 − 2n
∣∣∣ = o(n−1),

∣∣∣√λ2n − 2n
∣∣∣ = o(n−1) as n → ∞.

Indeed, we can show the following, from which Theorem 1.2 is easily derived.

Theorem 1.3 Let λ be λ2n−1 or λ2n, and put
√

λ − 2n = d. Under the same
assumption as in Theorem 1.2, it holds that

4nd + d2 = o(1), (4nd + d2)2 − |Q̄4n|2 = O(n−1) as n → ∞,

where

Q̄n =
1
π

∫ π

0

Q(x)e−inxdx.

Remark 1.1 The advantage of our theorem is appeared in the case∫ π

0

Q(x) dx �= 0. Put

Q̄(= Q̄0) =
1
π

∫ π

0

Q(x) dx, Q̃(x) = Q(x) − Q̄.

Since our equation is

y′′ + (λ + Q̄ + Q̃(x))y = 0 with
∫ π

0

Q̃(x) dx = 0,

Theorem 1.1 implies that the eigenvalue near 2n behaves like
√

λ + Q̄ − 2n = O(n−1) as n → ∞.

Combining this with
√

λ + Q̄ =
√

λ

(
1 +

Q̄

2λ
+ O(λ−2)

)
,

we get
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√
λ − 2n = − Q̄

2
√

λ
+ O(n−1).

Both terms in the right hand side are O(n−1), and therefore we know only√
λ = 2n + O(n−1). By using Theorem 1.2, we can determine the next term

to 2n as
√

λ = 2n − Q̄

4n
+ o(n−1).

Remark 1.2 Under higher regularity of Q, the more precise asymptotics have
been already known. For example, see [6, Theorems 2.12 and 2.13]. The read-
ers can refer [4, 5, 7] and references cited therein for asymptotic formulae of
eigenvalues for Hill’s equation with discontinuous coefficient.

2. On
√

λ2n−1,
√

λ2n ∼ 2n

In this section we comment on the fact
√

λ2n−1 = 2n + o(1),
√

λ2n = 2n + o(1) as n → ∞.(2.1)

This was shown in [6] under the assumption

Q ∈ L∞(R/πZ),
∫ π

0

Q(x) dx = 0.

Borg [2, pp.88ff.] had investigated the problem under Q ∈ L2(R/πZ). Here we
assert that

Theorem 2.1 The asymptotics (2.1) holds under

Q ∈ L1(R/πZ),
∫ π

0

Q(x) dx = 0.

Since Hill’s equation has very long history, we find about 600 papers on
MathSciNet, some of them are not easy to access now. The authors could not
study all of them, and are not sure whether the above theorem has been already
known or not. Even if it is not new, they would like to give the proof here for
the sake of completeness. Since it is almost parallel with that in [6], we mention
only its outline.

Proof. Let y1(·, λ) and y2(·, λ) be solutions of (1.1) satisfying

y1(0, λ) = 1, y′
1(0, λ) = 0,(2.2)
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y2(0, λ) = 0, y′
2(0, λ) = 1.(2.3)

Put

Δ(λ) = y1(π, λ) + y′
2(π, λ),

then λ is an eigenvalue if and only if Δ(λ) = 2 ([6, 3]). Put

θ(λ) =
−Δ(λ) + 2

2(1 − cos π
√

λ)
.

Since both numerator and denominator are analytic in λ, in order to show (2.1)
we show

1
2πi

∫
Cn

d

dλ
log θ(λ) dλ = 0(2.4)

for a closed curve Cn ⊂ C containing

{λ ∈ C | |λ| � (2n + 1)2, λ ∈ R}

in its interior, provided n is sufficient large. It is easy to see

θ(λ) − 1 =
1

2(1 − cos π
√

λ)

∫ π

0

Y (x, λ)Q(x) dx,

where

Y (x, λ) =
sin

√
λ(π − x)√

λ
y1(x, λ) +

{
cos

√
λ(π − x)

}
y2(x, λ).

Take

Cn =
{
λ ∈ C

∣∣∣√λ ∈ C1,n ∪ C2,n ∪ C3,n

}
,

where

C1,n={ξ − i(2n + 1) ∈ C | 0 � ξ � 2n + 1},
C2,n={2n + 1 + iη ∈ C | |η| � 2n + 1},
C3,n={ξ + i(2n + 1) ∈ C | 2n + 1 � ξ � 0}.

From now on λ is on Cn. Then we have

2e−π|�√
λ| (1 − cos π

√
λ
)

= 1 + o(1) as n → ∞.

Therefore we know

θ(λ) − 1 = o(1) as n → ∞(2.5)

provided
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∫ π

0

Y (x, λ)Q(x) dx = o
(
eπ|�√

λ|
)

as n → ∞(2.6)

holds. (2.5) implies (2.4) for large n. Thus what we should show is (2.6).
By successive approximation, the functions yi are given by

yi(x, λ) =
∞∑

j=0

yi,j(x, λ), y1,0(x, λ) = cos
√

λx, y2,0(x, λ) =
sin

√
λx√

λ
,

yi,j(x, λ) = − 1√
λ

∫ x

0

{
sin

√
λ(x − x1)

}
Q(x1)yi,j−1(x1, λ) dx1 (j � 1).

We can prove by induction

|yi,j(x, λ)| � e|�
√

λ|x

j!
∣∣∣√λ

∣∣∣i+j−1

(∫ x

0

|Q(x1)| dx1

)j

for x � 0. It follows from this that
∞∑

j=0

yi,j(x, λ) converges uniformly in x ∈ [0, π]

for every λ ∈ Cn. Therefore
∫ π

0

Y (x, λ)Q(x) dx =
∞∑

j=0

∫ π

0

Yj(x, λ)Q(x) dx

holds, where

Yj(x, λ) =
sin

√
λ(π − x)√

λ
y1,j(x, λ) +

{
cos

√
λ(π − x)

}
y2,j(x, λ).

Since Y0 is independent of x,∫ π

0

Y0(x, λ)Q(x) dx = 0.

From above estimates we get
∣∣∣∣
∫ π

0

Yj(x, λ)Q(x) dx

∣∣∣∣ � 2eπ|�√
λ|‖Q‖j+1

L1

(j + 1)!
∣∣∣√λ

∣∣∣j+1

for j � 1. Hereafter Lp means Lp(0, π). Consequently

∣∣∣∣
∫ π

0

Y (x, λ)Q(x) dx

∣∣∣∣ � 2eπ|�√
λ|

⎧⎨
⎩exp

⎛
⎝‖Q‖L1∣∣∣√λ

∣∣∣

⎞
⎠ − 1 − ‖Q‖L1∣∣∣√λ

∣∣∣

⎫⎬
⎭ ,

and (2.6) follows. �



6 T. Nagasawa and H. Ohrui

3. Proof of Theorem 1.3

In this section λ is λ2n−1 or λ2n, and put
√

λ − 2n = d.

The functions yi satisfy

y′′
i + (2n)2yi = −(4nd + d2 + Q(x))yi.

Taking their initial conditions into account, we have

y1 = cos 2nx + Ky1, y2 =
sin 2nx

2n
+ Ky2,(3.1)

where K is a bounded operator from L∞(0, π) into itself defined by

(Ky)(x) = − 1
2n

∫ x

0

{sin 2n(x − x1)}(4nd + d2 + Q(x1))y(x1) dx1.

Since d = o(1) as n → ∞, it is easy to see

‖K‖L∞→L∞ � 1
2n

{
π|4nd + d2| + ‖Q‖L1

}
= o(1).

For n so large that ‖K‖L∞→L∞ < 1, we have

‖y1‖L∞ � 1
1 − ‖K‖L∞→L∞

, ‖y2‖L∞ � 1
2n(1 − ‖K‖L∞→L∞)

.

The derivative of y2 is

y′
2 = cos 2nx −

∫ x

0

{cos 2n(x − x1)} (4nd + d2 + Q(x1))y2(x1) dx1.

Therefore the condition Δ(λ) = 2 is equivalent to∫ π

0

Un(x)(4nd + d2 + Q(x)) dx = 0,

where

Un(x) =
sin 2nx

2n
y1(x) − (cos 2nx) y2(x).

Putting (3.1) into this twice, we have

Un(x) =
sin 2nx

2n
(Ky1)(x) − (cos 2nx) (Ky2)(x)

= − 1
4n2

∫ x

0

{
sin2 2n(x − x1)

}
(4nd + d2 + Q(x1)) dx1

+
sin 2nx

2n
(K2y1)(x) − (cos 2nx) (K2y2)(x).
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Therefore it holds that

0 =
∫ π

0

Un(x)(4nd + d2 + Q(x)) dx

= − 1
4n2

∫ π

0

∫ x

0

{
sin2 2n(x − x1)

}
(4nd + d2 + Q(x))(4nd + d2 + Q(x1)) dx1dx

+
∫ π

0

{
sin 2nx

2n
(K2y1)(x) − (cos 2nx)(K2y2)(x)

}
(4nd + d2 + Q(x)) dx.

It is easy to see ∫ π

0

∫ x

0

sin2 2n(x − x1) dx1dx =
π2

4
.

Using the condition
∫ π

0

Q(x) dx = 0, we have

∫ π

0

∫ x

0

{
sin2 2n(x − x1)

}
(Q(x1) + Q(x)) dx1dx = 0,

∫ π

0

∫ x

0

{
sin2 2n(x − x1)

}
Q(x1)Q(x) dx1dx = −π2

4
|Q̄4n|2.

Hence d satisfies∣∣(4nd + d2)2 − |Q̄4n|2
∣∣

=
∣∣∣∣16n2

π2

∫ π

0

{
sin 2nx

2n
(K2y1)(x) − (cos 2nx)(K2y2)(x)

}
(4nd + d2 + Q(x)) dx

∣∣∣∣
� 16n2

π2
‖K‖2

L∞→L∞

(‖y1‖L∞

2n
+ ‖y2‖L∞

) (
π|4nd + d2| + ‖Q‖L1

)

� 16
nπ2

(
π|4nd + d2| + ‖Q‖L1

)3

1 − ‖K‖L∞→L∞

�
C

(
π|4nd + d2| + ‖Q‖L1

)
n

{
(4nd + d2)2 + 1

}
.

(3.2)

Since we have already known d = o(1), it holds

π|4nd + d2| + ‖Q‖L1 = o(n).

Combining this and Q̄4n = o(1) (by Riemann-Lebesgue’s Lemma) with (3.2), we
obtain the assertion of Theorem 1.3 �
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