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Abstract

We show that, near the diagonal set of Sn ×Sn and ignoring the terms decay-

ing exponentially when t → 0, the derivatives of heat kernel on the sphere Sn can

be described explicitly by using elementary functions and the kernels on different

dimensional spheres have certain recurrence relations. Consequently, known vari-

ous results concerning its asymptotics may be obtained by investigating only the

elementary functions.

1. Introduction and the main result

Let us take the Laplacian Δ = d∗d acting on functions on the standard
n-sphere (Sn, g) with curvature 1 where d is the exterior differential and d∗ is
its formal adjoint. We consider the fundamental solution or the heat kernel
Kn(t, r(P, Q)) associated to the heat equation with initial condition

(∂/∂t + Δ)f = 0, f |t=0 = f0.(1.1)

Note that, due to homogeneity of sphere, the kernel depends only on t and the
distance r(P, Q) of two points P , Q on Sn. In the paper we will show that,
if r(P, Q) is small, then the behavior of the derivatives of Kn(t, r(P, Q)) when
t → 0 can be described explicitly by using some elementary functions and there
exist interesting recurrence relations among the kernels on different dimensional
spheres. As a result, known various results of study on their behavior may be
obtained by investigating only the elementary functions.

Let us take 0 < δ < π/2 and consider the C∞-function on (0,∞) × [0, δ)

kn(t, r)=
em2t

(2π)m(4πt)1/2

( −1
sin r

∂

∂r

)m

e−r2/4t (n=2m+1),(1.2)

kn(t, r)=
e(2m+1)2t/4

2(2π)m+3/2t3/2

( −1
sin r

∂

∂r

)m
∫ δ

r

ds
se−s2/4t

(cos r−cos s)1/2
(n=2m+2)(1.3)
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=
e(2m+1)2t/4

(2π)m+3/2t3/2

∫ δ

r

ds (cos r − cos s)1/2
( ∂

∂s

−1
sin s

)m+1

se−s2/4t + O∞(e−1/t).

Here O∞(e−1/t) is a term, for any �, whose � times derivative by r can be esti-
mated as O(e−ε�/t) with some ε� > 0, and certainly the second equality in (1.3)
is obtained by integration by parts. Note that the change of δ > 0 brings only
an O∞(e−1/t)-term. Then we have

Theorem 1.1. Take small δ > 0. Then, for 0 < t ≤ 1 and r = r(P, Q) < δ, we
have

Kn(t, r) = kn(t, r) + O∞(e−1/t),(1.4)

Kn+2(t, r) =
ent

2π

( −1
sin r

∂

∂r

)
Kn(t, r) + O∞(e−1/t),(1.5)

Kn+1(t, r) =
∫ δ

r

ds
21/2e−(2n+1)t/4Kn+2(t, s) sin s

(cos r − cos s)1/2
+ O∞(e−1/t).(1.6)

In the normal coordinates x at a point, the distance r(P, Q) is given by

r(P, Q)=arccos
(
cos |x(P )| cos |x(Q)|+〈x(P ), x(Q)〉 sin |x(P )|

|x(P )|
sin |x(Q)|
|x(Q)|

)
,(1.7)

where 〈x(P ), x(Q)〉 is the standard inner product of the coordinate space. Thus
the behavior of derivatives of Kn(t, r(P, Q)) may be explicitly described using it
and the function kn(t, r) which can be expressed roughly as (see (2.1), (2.2))

kn(t, r) =
e−r2/4t+(n−1)2t/4

(4πt)n/2

m−1∑
j=0

tj kn,j(r2) (n = 2m + 1),(1.8)

kn(t, r) =
e−r2/4t+(n−1)2t/4

(4πt)n/2

{ N∑
j=0

tjkn,j(r2) + O∞(tN )
}

(n = 2m + 2)(1.9)

with kn,j(u) ∈ C∞(−δ2, δ2) (j = 0, 1, . . .) and, in particular,

kn,0(r2) ≡ lim
t→0

(4πt)n/2er2/4t−(n−1)2t/4 kn(t, r) =
( r

sin r

)(n−1)/2

.(1.10)

For example, the coefficients of the asymptotic expansion of the heat trace∫
Sn

dg(P )Kn(t, r(P, P )) = vol(Sn)Kn(t, 0) were calculated by Cahn-Wolf ([2]) us-

ing the theories of Lie group, symmetric space and representation, by Polterovich
([13]) using his formula in [12], certain combinatorial identities (due to some
property of hypergeometric function) and the table of eigenvalues and their mul-
tiplicities of Laplacian, and by the others ([14], etc.). Their methods need much
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acquaintance with such many areas, but in our method we have only to calculate
kn,j(0), that is, to expand

(
−1
sin r

∂
∂r

)m

e−r2/4t|r=0 at t = 0 and (1 − cos s)1/2 at
s = 0, etc., in a suitable sense (see (2.1)).

In [10] the author proposed a simple method of investigating the heat ker-
nels (acting on differential forms) on arbitrary Riemannian manifolds using only
basic knowledge of calculus: compare with the method in [5] using the Gilkey’s
invariant theory and also with the stochastic one in [4], [11], etc. In this paper, in
the case of sphere we introduce the method quite simpler than in [10], that is, we
need thus only some study of elementary function kn(t, r) or of the trigonometric
functions consisting it. The recurrence relations (1.5) and (1.6), which may clar-
ify the structure of heat kernels from a new viewpoint, come from also such an
elementary study (see (2.3)). Then how did he find out kn(t, r)? We will discuss
it in §3. In short, inspired by a certain duality between sphere (of curvature 1)
and hyperbolic space (of curvature −1) and motivated by the explicit description
([3], [6]) of the heat kernel on the latter, naturally we expected it is kn(t, r) that
is an appropriate parametrix for the former.

2. The proof of Theorem 1.1.

We will mainly discuss the proof of the formula (1.4) in the section. Before
it let us lightly ascertain (1.5), (1.6), (1.8)–(1.10), all of which will be obvious.
First, as for (1.8)–(1.10): If n = 2m + 1 they will be all obvious. If n = 2m + 2,
referring to the second expression at (1.3) we have

(cos r − cos s)1/2
( ∂

∂s

−1
sin s

)m+1

se−s2/4t

= 2−1/2(s2 − r2)1/2
( sin s+r

2
s+r
2

)1/2( sin s−r
2

s−r
2

)1/2( ∂

∂s

−1
sin s

)m+1

se−s2/4t

=
m+1∑
k=1

t−kse−s2/4t(s2 − r2)1/2Vk(s2, r2) (Vk(u, v) ∈ C∞((−δ2, δ2)2)),

∫ δ

r

ds (cos r − cos s)1/2
( ∂

∂s

−1
sin s

)m+1

se−s2/4t(2.1)

= e−r2/4t
m+1∑
k=1

t−k

∫ δ

r

ds se−(s2−r2)/4t(s2 − r2)1/2Vk(s2, r2)

= e−r2/4t4t3/2
m+1∑
k=1

t−k

∫ (δ2−r2)/4t

0

du e−uu1/2Vk(4tu + r2, r2),

which yield (1.9). We have then

(4πt)m+1er2/4t

(2π)m+3/2t3/2

∫ δ

r

ds (cos r − cos s)1/2
( s

2t sin s

)m+1

se−s2/4t(2.2)
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=
2

π1/2

∫ δ2−r2

4t

0

du e−uu1/2
( sin s+r

2
s+r
2

sin s−r
2

s−r
2

)1/2( s

sin s

)m+1∣∣∣
s=(4tu+r2)1/2

+ O(t)

→ 2
π1/2

∫ ∞

0

du e−uu1/2
( sin s+r

2
s+r
2

sin s−r
2

s−r
2

)1/2( s

sin s

)m+1∣∣∣
s=r

(t → 0)

=
2

π1/2

∫ ∞

0

du e−uu1/2
( sin r

r

)1/2( r

sin r

)m+1

=
( r

sin r

)m+1/2

.

Thus we obtain (1.10). Next, if (1.4) holds, then the formula (1.5) will be obvious
and, setting c(r, s) = cos r − cos s, we have

∫ δ

r

ds
21/2e−(4m+1)t/4k2m+2(t, s) sin s

c(r, s)1/2
(2.3)

=
t−3/2em2t

2m+2πm+3/2

∫ δ

r

ds

∫ δ

s

du
sin s

c(r, s)1/2

1
c(s, u)1/2

( ∂

∂u

−1
sin u

)m

ue−u2/4t + O∞(e−1/t)

=
t−3/2em2t

2m+2πm+3/2

∫ δ

r

du

∫ u

r

ds
sin s

c(r, s)1/2

1
c(s, u)1/2

( ∂

∂u

−1
sin u

)m

ue−u2/4t + O∞(e−1/t)

=
t−3/2em2t

2m+2πm+3/2

∫ δ

r

du
( ∂

∂u

−1
sin u

)m

ue−u2/4t

∫ u

r

ds
sin s

c(r, s)1/2c(s, u)1/2
+ O∞(e−1/t)

=
t−3/2em2t

2m+2πm+1/2

∫ δ

r

du
( ∂

∂u

−1
sin u

)m

ue−u2/4t + O∞(e−1/t)

=
t−3/2em2t

2m+2πm+1/2

1
sin r

( ∂

∂r

−1
sin r

)m−1

re−r2/4t + O∞(e−1/t)

=
t−1/2em2t

2m+1πm+1/2

( −1
sin r

∂

∂r

)m

e−r2/4t + O∞(e−1/t),

which implies (1.6).
We will now prove (1.4), which says that kn(t, r(P, Q)) approximates

Kn(t, r(P, Q)) quite well. Namely we have only to show that kn(t, r(P, Q)) is
such a good parametrix of Kn(t, r(P, Q)).

Proposition 2.1. If we take small δ > 0, then, for 0 < t ≤ 1 and r = r(P, Q) <

δ, we have
( ∂

∂r

)�

kn(t, r) = O(t−n/2−�/2e−r2/5t) (∀�),(2.4)

(∂/∂t + ΔP )kn(t, r) = O∞(e−1/t).(2.5)

And, for a C∞-function f(P ) with supp f ⊂ {P ∈ Sn | r(P, Q) < δ}, we have

lim
t→0

∫
Sn

dg(Q) f(P )kn(t, r(P, Q)) = f(Q).(2.6)
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If the proposition holds then we can easily show (1.4) by using the standard
Duhamel’s principle as follows: We take small δ1 > 0 and a cut-off function φ on
[0,∞) (� a) satisfying φ(a) = 1 if a ≤ δ2

1/4 and φ(a) = 0 if a ≥ δ2
1 . Then, for

r(P, Q) < δ1/3, we have

Kn(t, P, Q) − kn(t, P, Q) (≡ Kn(t, r(P, Q))− kn(t, r(P, Q)))

= Kn(t, P, Q) φ(r(P, Q)2) − kn(t, P, Q) φ(r(P, Q)2)

= −
∫ t

0

dτ
∂

∂τ

∫
dg(P ′) Kn(t − τ, P, P ′) kn(τ, P ′, Q)φ(r(P, P ′)2)φ(r(P ′, Q)2)

= −
∫ t

0

dτ

∫
dg(P ′)

{(
ΔP ′Kn(t − τ, P, P ′)

)
kn(τ, P ′, Q)φ(r(P, P ′)2)φ(r(P ′, Q)2)

− Kn(t − τ, P, P ′)
(
ΔP ′kn(τ, P ′, Q)

)
φ(r(P, P ′)2)φ(r(P ′, Q)2)

}
+ O∞(e−1/t)

= −
∫ t

0

dτ

∫
dg(P ′)

{(
ΔP ′Kn(t − τ, P, P ′)

)
kn(τ, P ′, Q)φ(r(P, P ′)2)φ(r(P ′, Q)2)

−Kn(t − τ, P, P ′) ΔP ′
(
kn(τ, P ′, Q)φ(r(P, P ′)2)φ(r(P ′, Q)2)

)

− 2Kn(t − τ, P, P ′) g
(
dP ′(φ(r(P, P ′)2)φ(r(P ′, Q)2)), dP ′kn(τ, P ′, Q)

)

+ Kn(t − τ, P, P ′)ΔP ′
(
φ(r(P, P ′)2)φ(r(P ′, Q)2)

)
kn(τ, P ′, Q)

}
+ O∞(e−1/t)

=
∫ t

0

dτ

∫ r(P,P ′)>δ1/6

r(P ′,Q)>δ1/6

dg(P ′)
{

2Kn(t − τ, P, P ′) g
(
dP ′(φ(r(P, P ′)2)φ(r(P ′, Q)2)), dP ′kn(τ, P ′, Q)

)

− Kn(t − τ, P, P ′)ΔP ′
(
φ(r(P, P ′)2)φ(r(P ′, Q)2)

)
kn(τ, P ′, Q)

}
+ O∞(e−1/t)

= O∞(e−1/t).

Thus (1.4) was proved.

Proof of Proposition 2.1. Obviously (1.8) and (1.9) imply (2.4). If we
take normal coordinates x at Q then the volume element near Q can be written

as dg =
(

sin r
r

)n−1

dx. Hence, using (1.8)–(1.10) we know (2.6) holds, that is, we
have ∫

Sn

dg(P ) f(P )kn(t, r(P, Q))(2.7)

=
∫

Rn

dx
( sin r

r

)n−1

f(x)
e−r2/4t+(n−1)2t/4

(4πt)n/2

{( r

sin r

)(n−1)/2

+ O(t)
}

→
( sin r

r

)n−1

f(x) e(n−1)2t/4
{( r

sin r

)(n−1)/2

+ O(t)
}∣∣∣

(t,x)=(0,0)
= f(0).

In order to show (2.5) remark that, near the point Q, the Laplacian acting on
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the functions depending only on r = r(P, Q) can be expressed as

Δ = − ∂

∂r

∂

∂r
− (n − 1) cot r

∂

∂r
.(2.8)

This comes from, for example, [7, Chapter II Proposition 5.26] and the fact that
the volume of {P ∈ Sn | r(P, Q) = r} is equal to vol(Sn−1)(sin r)n−1. As for
(2.5) with n = 2m + 1: It is enough to prove

(∂/∂t + ΔP )kn(t, r) = 0.(2.9)

Put
[(

1
sin r

∂
∂r

)�

, sin2 r
]

=
(

1
sin r

∂
∂r

)�

◦ sin2 r− sin2 r ◦
(

1
sin r

∂
∂r

)�

, etc. Then induc-
tively we know

[( 1
sin r

∂

∂r

)�

, sin2 r
]

= −�(� − 1)
( 1

sin r

∂

∂r

)�−2

+ 2� cos r
( 1

sin r

∂

∂r

)�−1

,

(2.10) [( 1
sin r

∂

∂r

)�

, cos r
]

= −�
( 1

sin r

∂

∂r

)�−1

.

These together with (2.8) imply that the left hand side of (2.9) is equal to

(−1)m

(2π)m

1
(4πt)1/2

( 1
sin r

∂

∂r

)m(
− 1

2t
+ m2 +

r2

4t2

)
em2t−r2/4t

− (−1)m

(2π)m

sin2 r

(4πt)1/2

( 1
sin r

∂

∂r

)m+2

em2t−r2/4t

− (−1)m

(2π)m

(2m + 1) cos r

(4πt)1/2

( 1
sin r

∂

∂r

)m+1

em2t−r2/4t

=
(−1)m

(2π)m

1
(4πt)1/2

( 1
sin r

∂

∂r

)m{
sin2 r

( 1
sin r

∂

∂r

)2

+ cos r
( 1

sin r

∂

∂r

)

+m2
}

em2t−r2/4t − (−1)m

(2π)m

sin2 r

(4πt)1/2

( 1
sin r

∂

∂r

)m+2

em2t−r2/4t

− (−1)m

(2π)m

(2m + 1) cos r

(4πt)1/2

( 1
sin r

∂

∂r

)m+1

em2t−r2/4t

=
(−1)m

(2π)m

1
(4πt)1/2

{[( 1
sin r

∂

∂r

)m

, sin2 r
]( 1

sin r

∂

∂r

)2

+
[( 1

sin r

∂

∂r

)m

, cos r
]( 1

sin r

∂

∂r

)
+ m2

( 1
sin r

∂

∂r

)m

−2m cos r
( 1

sin r

∂

∂r

)m+1}
em2t−r2/4t

=
(−1)m

(2π)m

1
(4πt)1/2

{
−m(m − 1)

( 1
sin r

∂

∂r

)m

+ 2m cos r
( 1

sin r

∂

∂r

)m+1

−m
( 1

sin r

∂

∂r

)m

+ m2
( 1

sin r

∂

∂r

)m

− 2m cos r
( 1

sin r

∂

∂r

)m+1}
em2t−r2/4t

= 0.
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Thus we obtain (2.9). As for (2.5) with n = 2m + 2: Set

b(s, t) =
st−3/2e−s2/4t+(2m+1)2t/4

(2π)m+3/2
, c(r, s) = cos r − cos s.

Then we have

∂

∂t
kn(t, r) =

∫ δ

r

ds c(r, s)1/2
( ∂

∂s

−1
sin s

)m+1 ∂b(s, t)
∂t

+ O∞(e−1/t)(2.11)

=
∫ δ

r

ds c(r, s)1/2
( ∂

∂s

−1
sin s

)m+1{
− 3

2t
+

(2m + 1)2

4
+

s2

4t2

}
b(s, t) + O∞(e−1/t)

=
∫ δ

r

ds c(r, s)1/2
( ∂

∂s

−1
sin s

)m+1{(2m + 1)2

4
+

∂

∂s

∂

∂s

}
b(s, t) + O∞(e−1/t).

And, using the transformations

kn(t, r) =
∫ δ

r

ds
2
3
c(r, s)3/2

( ∂

∂s

−1
sin s

)m+2

b(s, t) + O∞(e−1/t)

=
∫ δ

r

ds
4
15

c(r, s)5/2
( ∂

∂s

−1
sin s

)m+3

b(s, t) + O∞(e−1/t)

and the same formulas as (2.10), we have

Δkn(t, r) =
∫ δ

r

ds
{
− sin2 r

( −1
sin r

∂

∂r

)2 4
15

c(r, s)5/2
( ∂

∂s

−1
sin s

)m+3

(2.12)

+ (2m + 2) cos r
( −1

sin r

∂

∂r

)2
3
c(r, s)3/2

( ∂

∂s

−1
sin s

)m+2}
b(s, t) + O∞(e−1/t)

=
∫ δ

r

ds
{
−c(r, s)1/2 sin2 r

( ∂

∂s

−1
sin s

)m+3

+ (2m + 2)c(r, s)1/2 cos r
( ∂

∂s

−1
sin s

)m+2}
b(s, t) + O∞(e−1/t)

=
∫ δ

r

ds
{

(c(r, s)5/2 + 2c(r, s)3/2 cos s − c(r, s)1/2 sin2 s)
( ∂

∂s

−1
sin s

)m+3

+ (2m + 2)(c(r, s)3/2 + c(r, s)1/2 cos s)
( ∂

∂s

−1
sin s

)m+2}
b(s, t) + O∞(e−1/t)

=
∫ δ

r

ds c(r, s)1/2
{12m + 15

4

( ∂

∂s

−1
sin s

)m+1

+ (2m + 5) cos s
( ∂

∂s

−1
sin s

)m+2

− sin2 s
( ∂

∂s

−1
sin s

)m+3}
b(s, t) + O∞(e−1/t)

=
∫ δ

r

ds c(r, s)1/2
{12m + 15

4

( ∂

∂s

−1
sin s

)m+1

+ (2m + 5)
( ∂

∂s

−1
sin s

)m+2

cos s

−
( ∂

∂s

−1
sin s

)m+3

sin2 s − (2m + 5)(m + 2)
( ∂

∂s

−1
sin s

)m+1
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+ (m + 3)(m + 2)
( ∂

∂s

−1
sin s

)m+1

− 2(m + 3)
( ∂

∂s

−1
sin s

)m+2

cos s
}
b(s, t)

+O∞(e−1/t)

=
∫ δ

r

ds c(r, s)1/2
( ∂

∂s

−1
sin s

)m+1{
− (2m + 1)2

4
−

( ∂

∂s

−1
sin s

)
cos s

−
( ∂

∂s

−1
sin s

)2

sin2 s
}

b(s, t) + O∞(e−1/t)

=
∫ δ

r

ds c(r, s)1/2
( ∂

∂s

−1
sin s

)m+1{
− (2m + 1)2

4
− ∂

∂s

∂

∂s

}
b(s, t) + O∞(e−1/t).

(2.11) and (2.12) imply (2.5) with n = 2m + 2.

3. Hyperbolic space and the reason for having expected kn(t, r)
to be an appropriate parametrix

In the section we present some facts having supported the expectation that
kn(t, r) is an appropriate parametrix. Let us consider the hyperbolic space

Hn = {ξ ∈ R
n | |ξ| < 2} with gH =

∑
dξi ⊗ dξi

(1 − |ξ|2/4)2
.(3.1)

(Notice that, by using a stereographic projection, the metric on Sn near a point

Q may be expressed as gSn =
∑

dξi ⊗ dξi

(1 + |ξ|2/4)2
.) As well as (2.8), near a point

Q ∈ Hn, the Laplacian acting on the functions depending only on r = r(P, Q)
can be expressed as

ΔH = − ∂

∂r

∂

∂r
− (n − 1) coth r

∂

∂r
(3.2)

because the volume of {P ∈ Hn | r(P, Q) = r} is equal to vol(Sn−1)(sinh r)n−1.
And, according to [3] and [6], the heat kernel KH

n (t, r(P, Q)) on the hyperbolic
space is expressed explicitly as

KH
n (t, r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e−m2t

(2π)m(4πt)1/2

( −1
sinh r

∂

∂r

)m

e−r2/4t (n = 2m + 1),

e−(2m+1)2t/4

2(2π)m+3/2t3/2

( −1
sinh r

∂

∂r

)m
∫ ∞

r

ds
se−s2/4t

(cosh s − cosh r)1/2

(n = 2m + 2).

(3.3)

Observing the correspondence between (2.8) and (3.2), it will be natural to have
expected that it is (1.4) that corresponds to (3.3).

As for the expression (3.3), in [6] it was introduced by considering the prop-
erty of the wave kernel cos(t

√
ΔH − (n − 1)2/4) and the Fourier transform
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e−t(ΔH−(n−1)2/4) = (4πt)−1/2

∫ ∞

−∞
ds e−s2/4t cos

(
s
√

ΔH − (n − 1)2/4
)
,(3.4)

and in [3] the authors introduced two kinds of recurrence relations ([3, Theorem
2.1(ii)])

KH
n+2(t, r) =

e−nt

2π

( −1
sinh r

∂

∂r

)
KH

n (t, r),(3.5)

KH
n+1(t, r) =

∫ ∞

r

ds
21/2e(2n+1)t/4KH

n+2(t, s) sinh s

(cosh s − cosh r)1/2
(3.6)

by using the Selberg transform and then obtained the formula (3.3) by using the
relations and the obvious formula KH

1 (t, r) = (4πt)−1/2e−r2/4t (see (3.2) with
n = 1). Here it will be also natural to expect the heat kernels on spheres have
the relations (1.5), (1.6). The formula for KH

2 (t, r) was originally introduced in
[8] by using the Legendre function theory, etc.: Put z = cosh r then (3.2) with
n = 2 is transformed into (1 − z2)(∂/∂z)2 − 2z ∂/∂z which is the differential
part of the Legendre differential equation. Using the formula (3.2) and by an
elementary calculation, we can easily show the identity

(∂/∂t + ΔH
n+2)

e−nt

2π

( −1
sinh r

∂

∂r

)
=

e−nt

2π

( −1
sinh r

∂

∂r

)
(∂/∂t + ΔH

n )(3.7)

which will be almost equivalent to (3.5). The identity and the formulas for
KH

n (t, r) (n = 1, 2) also imply the general formula (3.3).
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