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Abstract

The gonality is an important invariant for the study of linear systems on a
curve. Although it is not so easy to determine the gonality of a given curve, the
gonality conjecture posed by Green and Lazarsfeld predicts that the gonality could
be read off from the minimal resolution of any one line bundle of sufficiently large
degree. In this paper, we consider this conjecture for a curve embedded in a toric
surface which has two P!-fibrations by toric morphisms, and prove it affirmatively
under several conditions.

1. Introduction

As mentioned in Abstract, the aim of this paper is to show the gonality con-
jecture (Conjecture 1.2) under certain conditions. First of all, in this section, we
would like to roughly review the background and preliminary results for gonality
and the gonality conjecture. Our main theorem will be stated at the end of this
section.

In this paper, a curve will always mean a nonsingular irreducible complex
projective curve unless otherwise stated. We denote by g; a 1-dimensional linear
system of degree k on a curve. For a curve C, the gonality is defined to be the
minimal degree of surjective morphisms from C to P!:

gon(C) = min{degf | f : C — P* surjective morphism} = min{k | C has g}.}.

It is known that the gonality of a nonsingular plane curve of degree d (> 2) is
equal to d — 1 ([11]). Coppens and Kato generalized this result to the case of
singular plane curves in [2]. They computed the gonality of the normalization of
a plane curve with double points under several numerical conditions on its degree
and the number of singular points. Recently, more general cases were investigated
by Ohkouchi and Sakai ([13]). Besides, in [9], Martens determined the gonality
of a nonsingular curve lying on a Hirzebruch surface.

On the other hand, there exists a close relation between the theory of syzy-
gies and geometric properties of a projective variety. In particular, the gonality
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conjecture (Conjecture 1.2) suggested by Green and Lazarsfeld in [7] predicted
the interaction between the gonality of a curve and the syzygies defined by a
line bundle on the curve. For a projective variety X, a line bundle L on X and
a coherent sheaf F on X, we denote by K, ,(X,F, L) the Koszul cohomology,
which is introduced by Green in [5] as the cohomology of the Koszul complex

,7\1 HYX,L) ® HY(X,F® (¢ —1)L) — ;\HO(X, L) ® H(X,F ®qlL)
N HO(X L) @ HOX, F e (g + 1)L).

For simplicity, if F = Ox, we suppress it and write K, ,(X,L). It is known
that there exists the following relation between the Koszul cohomology and the

syzygies :

Theorem 1.1 ([5]). Let X and L be as above. Denote by S the symmetric alge-
bra of HY(X, L), and consider the minimal free resolution of a graded S-module
as

= D S(—q)@ My — P S(—q) @M1y — D S(—q) ® Moy,

q>q2 q>q a>q0

o0
—~ @ H(X,qL) — 0.

q=0
Then K, (X, L) is isomorphic to Mp 14 as a complex vector space.

Conjecture 1.2 ([7]). Let C be a curve of genus g and L a line bundle on C
of sufficiently large degree compared to 2g. Then K, 1(C,L) =0 for any integer
p = h%(C, L) — gon(C).

This conjecture means that we can read off the gonality of a curve from the
minimal resolution of any one line bundle of sufficiently large degree. For the
cases where gon(C') = 1,2, Green has shown this conjecture affirmatively in [5].
The case where gon(C) = 3 has been done by Ehbauer ([4]). As for curves on a
Hirzebruch surface 3,, Aprodu showed it, and computed their gonality indepen-
dently of Martens’ result ([1]). In his proof, the following Theorem 1.4 played an
essential role.

Definition 1.3. Let L be a line bundle on a curve C, and ¢ a non-negative inte-
ger. We say that L satisfies the property (M,) if K, 1(C, L) = 0 for any integer
p>h%C,L)—q— 1.

Theorem 1.4 ([1]). Let C be an irrational curve which has a gi. If there is a
nonspecial and globally generated line bundle L on C with the property (My_1),
then C is k-gonal, and the gonality conjecture is true for C.
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Recall that a toric surface has a finite number of P!-fibrations by toric mor-
phisms, and Hirzebruch surfaces are the simplest examples of toric surfaces which
have one or two such P'-fibrations. In the wake of Aprodu’s result, we proved the
gonality conjecture for curves lying on a toric surface with a unique P*-fibration
([8])- This is an extension of Aprodu’s result for ¥, with a > 1. Therefore,
it is a valid question to ask whether we can generalize Aprodu’s result for the
case a = 0, that is, whether the gonality conjecture is true for the cruves on a
toric surface with two P'-fibrations. In this paper, we shall show the following
theorem :

Theorem 1.5 (Main theorem). Let S be a compact nonsingular toric sur-
face which has two P'-fibrations f and f' by toric morphisms, and C an irra-
tional curve on S. If 2 < degf|c < degf'|c and |C — F| is base point free
(where F denotes the fiber of f), then the gonality conjecture is true for C and
gon(C) = degf|c.

In Section 2, we introduce toric surfaces which are the main stage of our
study, and collect basic facts about them. In Section 3, we will see the main idea
to prove the main theorem. Although a key point of the proof is the existence
of a certain divisor called an auxiliary divisor, we do not mention its concrete
construction at all. Instead, we spend Section4 and 5 to construct an auxiliary
divisor. In these two sections, we will treat essentially different cases. We close
this section with some basics of Koszul cohomology, which are essential for our
study.

Theorem 1.6 ([1]). Let X be a nonsingular projective variety, L a line bundle
on X andY € |L| an irreducible divisor on X. If the irregularity of X is zero,
then Kp1(X,L) ~ K,1(Y, L|ly) for any integer p.

Theorem 1.7 ([5]). Let L be a line bundle on a curve C and put m = dimep)z|(C).
Then L satisfies (My,—1).

Theorem 1.8 ([1]). Let C be an irrational curve, L a nonspecial and globally
generated line bundle on C, and q a non-negative integer such that L satisfies
(My). Then, for any effective divisor D on C, also L + D satisfies (My).

2. Summary of toric surfaces

In this section, we briefly review the theory of toric surfaces. It has the close
connection with the geometry of convex polytopes in the real affine space. Many
basic properties of toric varieties and divisors on them can be interpreted in terms
of the elementary convex geometry.

We will henceforth assume that a surface is always compact and nonsingular.
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At first, it is a basic fact that a toric surface is obtained from the projective plane
or a Hirzebruch surface by a finite succession of blowing-ups with T-fixed points
(i.e. points which are invariant with respect to the action on a toric surface by the
algebraic torus T') as centers. A composite of such blowing-ups is called a toric
morphism. For a toric surface (except for the projective plane), a P!-fibration
obtained by composing a toric morphism and a ruling of the Hirzebruch surface
is called a toric ruling. Naturally, a toric surface has a finite number of toric
rulings.

In the present paper, we consider a toric surface S with two toric rulings. In
this case, the fan Ag associated to S has two lines passing through the origin.
For each half-line (which is called a cone) in Ag, a lattice point on it is called a
primitive element if it is closest to the origin. We denote by D; the T-invariant
divisor whose associated cone has a primitive element (0,1) and number other
cones in Ag clockwise. In particular, we set Dy, if its associated cone has a
primitive element (0,—1) (see Fig.1). We denote by o(D;) the cone associated

o(Dg) o(D1) o (D)
g\ o(Ds)
\\ / L~ .
U(Ddu)
Figure 1

to T-invariant divisor D; and by (x;,y;) the primitive element of o(D;). We
set Dy = Dy and Dyyq = D; formally. Then the self-intersection numbers of
T-invariant divisors are computed by the following formula.

Theorem 2.1 ([12]). For any integer i with 1 < i < d, two equalities v;D? =
—Ti—1 — Ti4+1 and yiDiQ = —Yi—1 — Yi+1 hold.

The Picard group of S is generated (not freely) by the classes of Dy, ..., Dy.
For instance, the canonical divisor of S has the relation Kg ~ — Zle D;. Be-
sides, the fibers of two toric rulings can be written as

do—1 d
F1 ~ Z I'ZDZ ~ — Z xzDz
=2 i=do+1
do—2 d

Fy~Dgy~ > yiDi+ > yiDi.
i=1 i=do+2
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We denote by fi (resp. f2) the toric ruling of S whose fiber is F} (resp. F).
Next we collect several basic properties of divisors on a toric surface. In the

remaining part of this section, let D be a divisor on S. In the case where the

complete linear system |D| is base point free, we have the following two results.

Theorem 2.2 ([12]). If |D| is base point free, then h'(S, D) = 0 for any positive
integer 1.

Theorem 2.3 ([10]). The complete linear system |D| is base point free if and
only if D has a non-negative intersection number with every T-invariant divisor
on S.

Let Op be a lattice polytope associated to D = Zle n;D;, that is, we define
Op = {(z,w) €R? | ;2 +yyw < n; for 1 <i < d}.

Although this definition depends on the description of the linear equivalence class
of D, differences of the description cause only parallel translations of (0. Hence
the shape of the lattice polytope is determined uniquely. We write the lines which
form the boundaries of Op as

Li(D) = {(z,w) € R? | z;z + y;w = n;}.

We can read off the dimension of cohomology group of D from the number of
lattice points contained in Op :

Theorem 2.4 ([12]). The equation h°(S, D) = #(0p N Z?) holds. In particular,
for a curve C on S, its genus is equal to the number of the lattice points contained
in the interior of O¢.

Proposition 2.5. Let C be a curve on S and assume that C.Fy,C.Fy > 2. If
either |C — Fy| or |C — F3| is base point free, then C' is irrational.

ProoF. We prove the case where Bs|C' — Fj| = (. By Theorem2.4, it
is sufficient to verify that there exists at least one lattice point in the inte-
rior of Og. We first note that our assumption and Theorem 2.3 imply that
(C - F).Dy = C.D; —1 > 0. Considering the construction of O¢, in the
case where C.D; > 2, we see that the lattice point 11(C) N I5(C) + (—1,-1)
is contained in the interior of Co. In the case where C.D; = 1, we put
a =min{i > 2| C.D; > 1} and b = max{i < d | C.D; > 1}. The inequal-
ity

do—2 d
=2 i=do+2

implies that either a < dy — 2 or b > dy + 2 holds. We see that the lattice point
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11(C)N1(C)+ (0, —1) (resp. 11(C) N 14(C) + (0,—1)) is contained in the interior
of ¢ if a < dy — 2 (resp. b > dy + 2). O

3. Outline of the proof

In order to prove Theorem 1.5, we need to introduce a certain divisor de-
fined with respect to a given curve, which is called an auxiliary divisor. Its
construction is, however, very complicated. Hence, in this section, we admit the
existence of auxiliary divisors satisfying Assertion 3.1-3.3 below, and will prove
Theorem 1.5. We postpone their precise construction to Section 4 (the case where
degfi|c < degfz|c) and Section5 (the case where degfi|c > degfa|c).

Let S be a toric surface as in Section2, and C' a curve on S. We denote by
F and F’ the fibers of two toric rulings of S, and put k = C.F and k' = C.F".

Assertion 3.1. Assume that k' > k > 2 and |C' — F| is base point free. Then

there exists an effective divisor Io satisfying the following properties (i)—(vi) :
(i) Io.F =1,

(ii) H'(S, —Ic) = 0,

(iii) The complete linear systems |C — I¢| and |C — Ic — F| are base point free,

(iv) (C—1Ic)* =2 1,

(v) (C = I¢)|c is nonspecial,

(vi) K,.1(S,C — Ic) = 0 holds for any integer p > h°(S,C — I¢) — 2.

We call I the auxiliary divisor of C. By the properties (iii) and (iv), we can
take a nonsingular irreducible curve C; € |C — I¢|. If C;.F' > C;.F > 2, we can
take inductively

I; : the auxiliary divisor of C},
Cj41 : a nonsingular irreducible curve in |C; — I

for a positive integer j. We put Cy = C and Iy = I¢o. In this section, we admit
the following two assertions.

Assertion 3.2. Assume that k' >k > 2 and |C — F| is base point free. There
exists a positive integer mo < k such that C;.F' = C;.F for j =1,...,mg — 1,
and moreover, the inequality Cpyy . F' > Cpy . F holds if mg < k — 1.

Assertion 3.3. Assume that k' > k > 2 and |C — F| is base point free, and let
mg be a positive integer in Assertion 3.2. Then the inequality

ho(S,C;) — h°(S,C; — I;—1) > C;.F +2
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holds for any integer j with 1 < j < min{mq, k —1}. Besides, if k' =k = 2, then
this inequality holds for j = 1.

We have the following lemma, which can be shown by the same argument as
in the proof of Lemma 2.3 in [8].

Lemma 3.4. The isomorphism K,1(S,C —Ic) ~ K, 1(C,(C —1¢)|c) holds for
any integer p > h°(S,C — 2I¢) + 1.

Theorem 1.5 follows immediately from the following proposition and Theo-
rem 1.4.

Proposition 3.5. Assume that C is irrational, k' > k > 2 and |C — F| is base
point free. If Assertion 3.1-8.3 hold, then Oc(C) satisfies the property (Mg_1).

PrOOF. We first show the case where £ = 2. By Assertion3.1 and
Lemma 3.4, we see that K, 1(C,Ci|c) = 0 for any integer p > max{h°(S,C;) —
2,h%(S,C1—1Iy)+1}. Hence, by combining this fact with Assertion 3.3, we see that
K,1(C,Ci|c) = 0 for any integer p > h9(S, C1) — 2. The short exact sequence of
sheaves 0 — Og(—1Iy) — Og(C1) — Oc(C1) — 0 induces the cohomology long
exact sequence

0— H°(S,—Io) — H°(S,C1) — H°(C,Cil) — H'(S,—1p) — -+ .

Since HO(S,—1y) = H(S,—1Iy) = 0, we have h°(S,C;) = h°(C,C1|c). In sum,
we can conclude that K, 1(C, C1|c) = 0 for any integer p > h°(C, C1|¢) — 2, that
is, Oc(Ch) satisfies (M7). Note that Oc(Cy) is nonspecial and globally gener-
ated by Assertion 3.1. Hence Theorem 1.8 implies that also O¢(C) satisfies (M7).
Here we note that in fact this lemma holds in the case where k' = k = 2 also.
Indeed, for such case, we can develop the same argument as above by using the
latter part of Assertion 3.3.

We next consider the case where k > 3 under the assumption that our propo-
sition is valid for a curve ¢’ on S if C'.'F < k-1, C"'F' > C'.F > 2 and
Bs|C' — F| = 0. For C, let my be a positive integer as in Assertion3.2. If
mo < k —2, then 2 < Cp,,.F < k — 1. Since |Cy,, — F| is base point free by As-
sertion 3.1, we see that Oc,, (C,) satisfies (Mc,, .#-1) by the hypothesis of our
induction. Consider the case where mg > k—1. We have Cj,_o.F' = Cj_o.F =2
by the property of mg. Since |Cy_2 — F| is base point free by Assertion 3.1, we
see that O¢, _,(Cr_2) satisfies (M7). In sum, in any case, we can conclude that
there is an integer m < k — 2 such that O¢, (C,,) satisfies (M¢,, r—1). Note that
Cy,...,C,, are irrational by Proposition 2.5 and (iii) in Assertion3.1.

By Theorem 1.6, we have K, 1(Cp,, Cilc,,) = Kp1(S, Cy,) for any integer p.
On the other hand, the short exact sequence of sheaves 0 — Og — Og(C,,) —
Oc,, (Cr) — 0 induces the cohomology long exact sequence
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(1) 0— HO(S, Og) — HY(S,Cp) — HO(Cm,Cm|Cm) — Hl(S7 Og)— .

Since H°(S,0s5) = C and H'(S,05) = 0, we obtain h°(Cp,,Cnlc,,) =
ho(S,Cy) — 1. Hence the vanishing K, 1(S,C,) = 0 holds for any integer
p > h°%(S,C,,) — Cpy.F — 1. Then by the same argument as in the case where
k = 2, one can show that Oc¢, _,(Cp—1) satisfies (M¢,, , r—1). We can induc-
tively verify that Oc,(C;) satisfies (M¢,; p—1) for integers 0 < j < m — 2. The
case where j = 0 is the statement of our proposition. O

4. The case where degfi|c < degfa|c

Let S be a toric surface defined in Section2, and C' a curve on S. In this
section, we consider the case where deg f1|c < degfa|c, that is, C.F} < C.F,. We
put ' = Fy and F' = F,. The aim of this section is to construct a divisor which
satisfies Assertion 3.1-3.3.

4.1 Division of the primitive element
First of all, we remark a basic fact about primitive elements of cones.

Fact 4.1. Let i be an integer with 2 < i < dy — 1, and define ¢ = min{c’ € Z |
dx;—y; > 0}. Then there is an integer r with 2 < r < i such that (z,,y.) = (1,¢).
In particular, if x; > 2, thenr < i—1 and there exists a pair of integers (s,t) with
r<s<i<t<dy—1 such that (x;,y;) = (zs,ys) + (x¢,y:) and x1ys — yrxs = 1.

Remark 4.2. Let i be an integer with 2 < i < dy — 1. If z; > 2, then dy > 5,
3 < i < dpy — 2, and moreover, the equality ¢ = min{c¢’ € Z | ¢/xs — ys; > 0} holds
in Fact4.1.

The following lemma gives us more detailed properties of the above division.

Lemma 4.3. For an integer i with 3 <i < dy—2 such that x; > 2, the pair (s,t)
in Fact 4.1 is uniquely determined. If x5 > 2, then we can divide (x4,ys) into the
sum of primitive elements as

(@s,ys) = (Twyu) + (T, 40)  (r<u<s<v<do—1, By — Yooy = 1)
by Fact4.1. Then the inequality v >t holds.
PROOF. Assumethat r<s<i<t<dy—1,r<s <i<t <dg-—1,
(@i, yi) = (s, ys) + (@, 90) = (w5, ysr) + (w0, Yo7

and xT4Ys — YiTs = TpYs — Ypr Ty = 1. We put £ = xp — x4 and y = yp — y¢. Since
T4 — YTy = T Yy; — Y T; = 1, we have x;y — y;& = 0. Hence there exists an inte-
ger n such that x = nx; and y = ny;. We thus have z; = v5s+x; = x5+ ¢ —nay,



THE GONALITY CONJECTURE FOR CURVES ON TORIC SURFACES WITH TWO P-FIBRATIONS 43

which implies n > 0. Similarly, the equation z; = zy+xy = 2y +nx;+x4 implies
n < 0. Hence we have n = 0, that is, (zs,ys) = (zs,ys) and (zp, yp) = (T4, Yt )-

Next we will show the latter part of the lemma. We put 2’ = z; — z, and
Yy =y — yp. Since z'y; —y'zs = 0, there exists an integer m such that ' = mx,
and 3y’ = mys. Then the equation x4 = z,, + T, = T, + Ty — mx, implies m > 0.
Hence we have z,y; — ¥, 7: = T,y — ypx’ = m > 0, which means v > t. O

4.2 The auxiliary divisor
Let S, C, F and F’' be as above, and put k=C.F and ¥’ = C.F'. If k > 1,
we define
A=max{i<dy—1|C.D; > 1},
= min{i > dy+ 1| C.D; > 1},
co = min{c € Z | cx) — yx > 0},
ep = —max{e € Z | ex,, —y, > 0}.

If z) > 2, then by Fact4.1 and Lemma4.3, we can divide primitive elements
repeatedly as

(:L.)\?y)\) = (xs17y81) +noz1 (xa17ya1)7 Loy Ysy — Yar Tsy
= 1(81 <A< ag <d0—1),

(x51,y51) - (xszvysz) + Na, (xazayoa)v TarYss = YarLsy

:1(82<51,0z1<042<d0—1>7

(Tsag 13 Ysag—1) = (1,¢0) + Nay, (Tag, s Yauy ) Tae, €0 — Yau,

= 1(Oéa0_1 < Qg Sdo—l).

On the other hand, in the case where ) = 1, it is obvious that the equation
(zx,yx) = (1,¢0) holds. Consequently, we obtain the unique division

(2) (.I)\, yk) = (1’ CO) =+ Nay (xalayal) +e naao (xaaovyaao)a

where A < a1 < -+ < aq, < dop — 1. Considering the definition of the division
and Fact 4.1, one can obtain the equality

ag ao
(3) Ty, <CQ+Z najyaj> — Yo, <1—|—Z najxaj> =1
j=a+1 j=a-+1

for each integer 1 < a < ay.
Similarly, we can divide

(4) (l‘u, yu) = (—1,e0) + ng, (xﬁlvyﬁﬁ) +eooe Tt gy, (xﬁbo ) yﬁb0)7
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where dp +1 < 81 < -+ < B, < . The equality

b—1 b—1
(5) (—1+ngjxgj)y5b— <60+Zm5jy5j>a:ﬁb:1

j=1 j=1
holds for each integer 1 < b < by.

Definition 4.4. Let C be a curve on S such that £ > 1, and set n; = 0 for
integers A + 1 < i < dy except for ¢ = ay,..., aq, and m; = 0 for integers
do+1<i<p—1except for i = B1,...,0,. We define the auziliary divisor
Ic = Zle p;D; of C as follows:

0 (1<i< A\ p<i<d),
do—1 do—1
x; (C(H- > njyj> +yi (— 1- > njxj> (A +1<i<d),
pbi = j=it1 j=i+1
i—1 i—1
xi<— eo— Z mjyj)—i—yi(— 1+ Z mjxj> (do+1<i<p-1).
j=do+1 j=do+1

We note that (3), (5) and an easy computation imply that p; = 1 for
i=o1,...,0q,do, B1,...,0,. Besides, it is obvious that Ic.F' = 1 by definition.
The rest of this subsection is devoted to verify that I~ satisfies Assertion 3.1.

Proposition 4.5. The divisor Io is effective.

PrROOF. Let i1 be an integer with A4+1 < i1 < dp—1. Since x)y; —yrx; <0
for any integer ¢ with A+ 1 < i < dg — 1, we have

do—1 do—1
T (Co+ Z ﬂz%) —Yx (1+ Z ﬂszz)

i=ii+1 i=ii+1
do—1 do—1 i1

=) (Co+ Z nzyz> —Yx <1+ Z nil'i> - Z i (T2Yi —YrTi) = Taya—yazr=0.
i=A+1 i=A+1 i=A+1

Hence we have the inequalities

do—1
& < y_/\ < o +Ziii1+1 Y

. - do—1 ’
Tip o Ix o L+ 0

which implies that p;, > 0. Let i2 be an integer with dy +1 < iy < p— 1. Then
the inequality

io—1 io—1 n—1
z, (60 + Z miyi> +Yu (1 - Z mifvi) =TpYu —yu%—z mi(%yi - yuﬂﬁi) <0

i=do+1 i=do+1 i=ig
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implies that
Ui o Y o 60 =Lty Ml
. 12—1
T, Ty 1-— Zzz do1 T4

We thus obtain p;, > 0. O

Proposition 4.6. The complete linear system |C — I¢| is base point free.

Proor. We put H = C' — Io. By Theorem 2.3, it is sufficient to verify that
H.D; > 0 for each integer 1 < i < d. For an integer ¢ with 1 <7 < A —1 or
uw+1<i<d,since I¢.D; =0, we have H.D; = C.D; > 0. For A, we have

do—1 do—1
Ic.Dx= prxt1= 1'/\+1<CO +> nzyz> +Yat1 (- 1-> nm)

i=A+2 i=A+2
do*l do*l
= 33,\+1<Co + Z niyi>+yx+1<— 1- Z nm) = Txp1yr — Y12y =1
i=A+1 1=A+1

and H.D,\ = C.D)\ —1 Z 0.
For the case where i = do, since (cog — 1), < Yxr,, (€0 — D)z, < =Yy, and
Dgo = 0, easy computations give

(6) C.Dy, = (doz:QyZD + Z yiD )

i=do+2
> C.(D1 +yngDxy + YuoDyo) = C.D1 + co + e,

co + €o ()\+2§d0<[£72)

I~.D, — Co ()‘+2<d0* )7
C-Hdo = €0 ()\+1—d0<ﬂ—2),
0 A+1=do=p—1).

Hence we have H.Dg4, > 0.
We next consider the case where ¢ = A\ + 1. Since the case where i = dy was
already checked, we assume that A + 1 < dy. By Theorem 2.1, we have

(7) Ic.Dxj1=prs1D34q + Paso

do—1 do—1
—(@x + zr42) (Co +> nzyz) + (Ur + yrt2) (1 +> nz$z>
i=A+2 i=A+2
do—1 do—1
+ T2 <Co + Z nzyz) ~ Ynt2 (1 + Z niﬂﬁi)
i=A+3 i=A+3
do—1 do—1
=—x) <Co + Z ni%’) +Ua <1 + Z nm)
i=A+1 i=A+1
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F e (TaYrr1 — YaTrs1)

= —Nx41-

Namely, we have H.Dy;; > 0. For an integer ¢ with A +2 < i < dy — 1, we have
Ic.D; = —n; by a computation similar to (7).
Let us consider the case where ¢ = p. If u > dy + 2, then we have

n—2 pn—2
Ic.Dy = py_1=m,_1 (— ey — Z mjyj> +yu_1<— 1+ Z mj$j>

j=do+1 j=do+1
= —Tp-1Yp + Yp—12, = 1.

If 4 = do+1, then we have I¢.D, = pg, = 1. Hence we have H.D,, = C.D,—1 >
0.

Consider the case where i = dy + 1 under the assumption that dg+ 1 # p. If
> do+ 3, then

IC'Dd0+1
2
=1—eoTay+1D5,41 + Tdo+2(—€0 — My +1Ydy+1) + Ydo+2(—1 + May112d,+1)
=14 eoTdy — Mdy+1 — Ydg+2 = —Mdg+1-

If p = dp+2, then we have ey = 1 and mgy4+1 = —2g,+2 —1 by definition. We thus
have Ic.Dg,+1 = pa, +pd0+1D§0+1 =1- xdo+1D§o+1 = —myg,+1. Hence, in any
case, the inequality H.Dg4,4+1 > 0 holds. Let ¢ be an integer with do+2 < ¢ < p—2.
Then we have I¢.D; = —m; and H.D; > 0 by computing similarly to (7).
Lastly, let us check the case where i = u — 1. Since the cases of dy and
do + 1 were already checked, we assume that © — 1 > dyp + 2. Then we have
Ic.D,_1 = —my_1 by computing. Namely, we have H.D,,_1 > 0. 0

We list the intersection numbers of I~ and the T-invariant divisors for the
later use.

—n;  (i=ag,...,q4),
1 (i =Ap),
(8) Ic.D; = —m; (izﬁlaw'vﬁbo)a
co+eo (i =do),
0 (otherwise).

Proposition 4.7. If |C — F| is base point free, then also |C — Ic — F| is base
point free.

PROOF. Since

(C_IC)D’L_l (i:17d0)7

(C—1Ic—F).D;= { (C —1I¢).D; >0 (otherwise),
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it is sufficient to verify that (C' — I¢).Dy and (C — I¢).Dy, are positive. Since
(C—F).Dy =C.Dy—1>0and Ic.D; = 0, we deduce that (C — I¢).D; is
positive. Besides, by an easy computation, we have

do—1

(C—Ic).DdO— C IC <ZyzD + Z Yi z) C Ic)D1>1 0

1=do+1

We next check the property (ii) in Assertion 3.1.
Proposition 4.8. The vanishing H'(S, —Ic) = 0 holds.

ProoOF. By Riemann-Roch theorem and Theorem 2.4, we have

1
R (S, —Ic) = ho(S,—I¢c) + h°(S, Ks + I¢) — 510.(1(5 +1Ic) -1

1
—§Ic.(KS + Ic) —1.
Recall the remark after Definition 4.4 and (8). Then

Ic.(Ks +1c)

ao bO
= IC~<_ D), +Z(paj - 1)Daj +Z(p/6j - l)Dﬁ_;’ - DM + (pdo - 1)Ddo>
° =
=Ic.(—Dy — DH) = 2. O

Proposition 4.9. Assume that k > 2 and |C — F| is base point free. Then the
divisor C — I¢ satisfies the properties (iv)—(vi) in Assertion 3.1.

PRrOOF. (iv) We put H = C — I¢ and write H ~ Zf;; hiD;. As we saw
in the Proposition 4.6, |H| is base point free. By computing (using Theorem 2.1

and 2.3), we see that h; is non-negative for each integer 2 < ¢ < d — 1. We have
hdgy = HF =k —1> 1. Hence by (6) and (8), we have

H2 2 (C— Ic).DdO Z C~Dd0 —Cop — €p 2 CD1 = (C— F)D1 +FD1 2 1.

(v) The short exact sequence of sheaves 0 — Og(—I¢) — Og(H) — Oc(H) — 0
induces the cohomology long exact sequence

- — HY(S,H) — H'(C,H|c) — H*(S,—I¢) —

Since |H| is base point free, we have H'(S, H) = 0 by Theorem 2.2. On the other
hand, since p; = 0 and pg, = 1, we have H*(S,—1I¢c) = H(S,Ks + Ic) = 0 by
Theorem 2.4. We thus obtain H(C, H|c) = 0.

(vi) We can take a nonsingular irreducible curve Cy; € |H| by (iii), (iv) and
Bertini’s theorem. Then Theorem 1.7 shows that K, 1(C1,Ci|c,) = 0 for any
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integer p > h°(C1,C1lc,) — 1. Considering the cohomology long exact sequence
similar to (1), we obtain h°(Cy,Ci|c,) = h°(S,C1) — 1. Thus we see that
K,1(C1,C1lc,) = 0 for any integer p > h°%(S,C1) — 2. On the other hand,
by Theorem 1.6, K, 1(C1,Ci|c,) =~ K,1(S, C1) holds for any integer p. a

The following lemma is necessary to prove Assertion 3.3.

Lemma 4.10. Under the same assumption as in Proposition 4.9, we can take a
nonsingular irreducible curve Cy € |C'— I¢|. The divisor (C —2I¢)|c, is nonspe-
cial.

This follows from the inequality
deg(C1 — Io)|e, =291 = C1.(—1c — Kg) —2> C1.D; —2 > —1,
where g; denotes the genus of C;. Here we used the equalities

plzl (’i:Oél,"',aaO;dOaﬁ17~-'7ﬁbo)7
C1.D; =0 (otherwise),

which are obtained by (8) and the mention after Definition 4.4.

4.3 Proof of Assertion 3.2 and 3.3

In order to prove Assertion 3.2 and 3.3 for I¢ in Definition 4.4, in this sub-
section, we consider the operation to take auxiliary divisors repeatedly.

Let D be a divisor on S such that D.D; > 1. For an integer y with
0<y< Zfi;l y; D.D;, we define

do—1
i(D,y) = maX{j >1 ‘ y < Z yiD-Di},

i=j
do—1 (Do) do—1
z(D,y) = Z x;D.D; + y:(—D’z) (y — Z yiD.DZ).

i=i(D,y)+1 i=i(D,y)+1

Let C be a curve on S such as at the beginning of this section, and k, k', A and
1 the integers as in the previous subsection.

Remark 4.11. By definition, we have z(C,0) = 0 if y, > 1. Besides,
x(C,y) = zpy/yx if i(Cyy) = A

Lemma 4.12. Assume that k > 1 and C.D1 > 1. Let y be an integer with
o <y< Zfiglin.Di, and define p = min{n € Z | n > z(C — Ic,y — co)}.
Then

z(C—Ic,y—co) +1<2(Coy) <p+1.
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PrOOF. (i) We first consider the case where y > y). By definition,
i(C,y) < X and

do—1 do—1
(9) Z yiC.D; <y < Z y;C.D;.
i=i(C,y)+1 i=i(C,y)

By computing, we have

do—1 do—1 ao
Y vilC—Ic).Di= Y 4C.D;—yslc-Dx—y_ya,lc-Da,
i=i(C,y) i=i(C,y) Jj=1
do*l agp do*l
= > %CDi—yx > _naya,= ¥, uC.Di—co,
i=i(C,y) Jj=1 i=i(C,y)
do—1 Yx —Co (i(Cy) = A),
i C-1 DZ = do—1 .
'_42 uil c) Y. yiC.Di—cy (i(Coy) <A—1).
=i(Cy)+1 i=i(Cy)+1
Hence, by (9) and the assumption y > y», we have
dg*l d()*1
Z yi(c—fc).Di <y—co < Z yi(C’—IC).D,»,
i=i(C,y)+1 i=i(C.y)

which means that i(C — I,y — ¢o) = i(C,y). If i(C,y) = A, then

Ty
2(C—Io,y—co) = =Y wmilo.Di+— <y —co+ Y yz'IC-Di>
i=At+1 Yx i=At+1

x
1:>\—1+—>‘y—x,\:x(0,y)—1.
Yx

If i(C,y) < A —1, then

do—1 ag
2(C—Ic,y —cp) = Z 2;C.D; — xy +Z Na, Ta,
i=i(C,y)+1 j=1
Ti(C) B S
+— (y — o — Z yiC.D; + ya —Z najyaj>

Yiccy) i=i(Cy)+1 j=1

do—1

= Z .Z‘iC.Di -1
i=1(C,y)+1

Z;
Yi(Cyy) i=i(C,y)+1
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We obtain 2(C — I¢,y — ¢p) = z(C,y) — 1 in both cases. Therefore, the claim is
trivial.

(ii) We next consider the case where y < yx. Note that yy > 1 and i(C,y) = A
in this case. Since

ao d[)—l do—l
Y=o <yx—co= Y Moo, ==y yilo.Di= Y yi(C —Ic).D;,
j=1 i=ay i=a

there exists an integer a with 1 < a < ag such that i(C' — Ic,y — ¢g) = . Then

ao
z(C — I,y —cy) = Z Na; Loy Yo, < — ¢~ Z nO‘JyO‘J>

j=a+1

a—1
@ w+zmMQ

Jj=1
a—1
<m4f*ZM%ﬁ (= + o, )
Jj=1
= x—*y—l—xw y) 1.
Yx
We next show the inequality x(C,y) < p + 1. Recall the notation s; which ap-
peared at the beginning of Subsection4.2. Then y,, <y < ys,_, and

aop ,:C
x(C_Iva_CO) = Z najxaj'i'y_( —Co — Z naJyaJ)

j=a+1

e (y - ysa)'

Qq

Suppose that p+ 1 = 2(C,y) = zay/yx. Then we have y = 0 by the inequality
y < yx and the fact that z) and y) are relatively prime. It follows that p is
negative, a contradiction. Suppose that p+1 < 2 y/yx. Since ) /yx < Ta, /Yo, s
we have

do—1 do—1
(p + l)yaa_ YTa, < —1 = —xq, <CO + Z nzyz> + Yaq (1 + Z nixi>

i=ag+1 1=aq+1

do—1 do—1
p< anxz+—<y_60+ anyz>

1=aq+1 1=aq+1
do*l dofl
= Z :cZ(C Ic) <y —Co + Z yz(C — IC)D1>
=g +1 You Qa i=a,+1

=2(C —Ic,y — o).



THE GONALITY CONJECTURE FOR CURVES ON TORIC SURFACES WITH TWO P-FIBRATIONS 51

This contradicts the definition of p. Hence we can conclude that p +1 >
z(C,y). O

We define i'(C,y’) and z'(C,y’) in a similar way to i(C,y) and z(C,y),
respectively. Concretely, in the case where C.D; > 1, for an integer y with

0<y < Z?idloﬂ y;C.D;, we define

J
i'(C,y') = min{j <d+1 ‘ y < Z yiO.Di},

i=do+1
' (Cy')—1 I i'(Cy') -1
$,(C, y’) = Z LL'ZCDZ + M (y' - Z yZCDZ>
i=do+1 Yircy) i=do+1

Then one can obtain the following lemma by an argument similar to that in the
proof of Lemma 4.12.

Lemma 4.13. Assume that k > 1 and C.Dy > 1. Let y' be an integer with

vy <9y < E?:;MQ y;C.D;, and definep’ = max{n € Z | n < 2'(C—Ic,y —ep)}.

Then
p—1<2'(Cy) <2 (C—1Ic,y —eo) — 1.

Let us consider the situation that we take auxiliary divisors repeatedly. From
the convex geometrical view point, this means that we reduce the size of the lat-
tice polytope step by step. We put Cy = C, and define inductively

I;_; : the auxiliary divisor of Cj_1,
C; : a nonsingular irreducible curve in |C;_; — I;_1],
Aj = max{i < dy—1]|C;.D; > 1},
w; = min{i >do+1|C;.D; > 1},
c; = min{c € Z | cxx;, —yx;, > 0},
e; = —max{e € Z | ex,, —yu, > 0}
for an integer 1 < j < k.

Lemma 4.14. Assume that k > 1 and C.Dy > 1. Let y and j be inte-

gers with y < Z?i;lino.Di and 1 < j < k. Ify > co+ -+ cj_1, then
z(Cj,y—co—---—cj—1) + 5 < x(Co,y) and there is no integer in the half-open
interval (x(Cj,y —co— -+ — ¢j—1) + 4, 2(Co,y)].

PrOOF. The inequality z(Cj,y —co — -+ —¢j_1) + 5 < z(Co,y) follows

immediately from Lemma4.12. Let j' be an integer with 0 < 5/ < j —1. We have

do—1 do—1
Z yiCy.D; = Z YiCo.Di —co —+++ —cjr—a
i=2 i=2
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by computing, where we define ¢y + - - 4+ ¢;s—1 = 0 in the case where j' = 0. We

thus have ¢y <y—co—---—cj—1 < Zjigl y:Cj.D;. Then by Lemma 4.12, there
is no integer in the half-open interval (z(Cjq1,y—co—---—cy)+5'+1,2(Cjr,y—
co— -+ —cj—1) +j']. Hence the statement of the lemma is obvious. O

A similar lemma holds for the opposite side of the lattice polytope.

Lemma 4.15. Assume that k > 1 and C.D1 > 1. Let 3y and j be integers
with y' < Y0 ,9iCoDi and 1 < j < k. Ify' > eg+ -+ ej_1, then
2 (Cj,y —eg—---—ej_1)—j > 2'(Co,y’) and there is no integer in the half-open
interval [:c’(C’O,y’),x’(Cj,y’ —ey— - —€j_1) —j).

Lemma 4.16. The equality co + - - + Cayy—1 = Yno holds.

PROOF. Suppose ¢g + -+ Cang—1 <y, — 1. Then we have

T
I(CO,CO‘F"""Con—l) — O(Co+"'+cﬂu071)
Yxo
T
< ﬂ(?JAO —1) <y,
Yxo

S '/I:(CwA(NO) + T

which contradicts Lemma4.14. Suppose ¢g + -+ + Coyy—1 = Yr, + 1 and put
s=max{i < x), — 1| ¢ >1}. Then we have

2(Csycs — 1)+ s = %(Cs—l)+8<8+1,
As
z(Co,co+-+-+ecs—1) = x(CO,CO—I—---—i—cuO,l —1) > 2(Co,yx,)
=Ty, >s+1

They contradict Lemma4.14. Hence we can conclude that ¢ + - -+ + Coyy—1 =
y)\o' D

Lemma 4.17. If co > 1 and x5, > 2, then co — 1 < yx, /or; < Yno/Tn, for
integers 1 < j < xx, — 1, especially the equality yx,/xx; = co — 1 holds for
j =Txy — 1.

PROOF. Let j be an integer with 1 < j < z),-1 — 1. We first show the
inequality yx,/xx;, > co — 1.
(i) We consider the case where zy, > 2. Since z; and y; are relatively prime, we
obtain cjry; >y, in this case. Hence
T,

. . TX; . .
o(Cjyn, —¢j) +j=—"(yx, —¢j) ti=axn — —ci+j<zy, —1+7
Yx; Y

On the other hand, we have
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T T
2(Corcot - Hejtyn —¢) = Bt teiatyy) -

)\0 AD

¢

T
=x(Co,co+ -+ cj—1+yn;) — y_ocj

0
. T\ . T
>x(Ci,yrn,)+J— —"2cj=ax, +j5— —2cj.
(Crron) Yno ! Uro

Since (z(Cj,yx, —¢j) +j,2(Co,co+---+cj_1+yx, —¢;)|NZ = () by Lemma 4.14,
we have cg < ¢j and yy,/wz;, > cj—1>co— 1.
(ii) We consider the case where z), = 1. Note that yx, = c¢;. We define
s=max{i <j—1|c¢; >1}. Then we have

T\

2(Cscs —1)+s="(cs—1)+s<s+1<j
Yxs

On the other hand, we have

x(CO’CO”"""i’Cs*]-) :x(CO,CO*F""FCj*(CjﬁL].))

T . T
/\D(Cj-i-l)Z]—Fl— A0

> x(clacl) +.] -
7 Yxo Yxo

(¢j +1).
Then by Lemma4.14, we have co — 1 < ¢; = yz, /72,

We next show the inequality yx,/zx; < ya,/Tx,- If yn;/za, = 0, then the
inequality is obviously holds. Hence we consider the case where yy;/zx, > 0.
Suppose yx,; /Tx; > Yx,/Txr,- Then we have

z(Co,co+ -+ +c¢j—1)+1

x <00,00+~-~+Cj1+ y)\[))
Txo

Y

x(C]70)+J+1:]+17

x(Cj,yM)ij SRS LU BT
Txg Yx;, Txo
They contradict Lemma 4.14.

Lastly, we show yy,/zx, = c¢o — 1, where we put a = z, — 1 for simplicity.
Because of the above arguments, it is sufficient to verify that yy, /xx, < co — 1.
Since this is obvious in the case where yy,/zy, = 0, we assume y,/xx, > 0.
Then we have ©(C,,0) +a =a = x5, — 1. On the other hand, we have

T
x(Coyco+ -+ +ca1) = 2(Coyco+ -+ + o) — y)\o Ca
Ao
N
= 2(Co,Yr,) — —Ca
Yxo
.’ﬂ)\o
= x>\0 — ——cq4.

Yxo
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Note that coxy, > y», since z), > 2. Then by Lemma4.14, we have
Tag — TaegCa/Yre = Tr, — 1, which implies that co > ya,/Tag > €a = Yn,/Ta,- O

Assertion 3.2 follows immediately from the following proposition. Needless
to say, the integer mg in the following proposition coincides with that in Asser-
tion 3.2.

Proposition 4.18. Assume that k' > k > 2 and |C — F| is base point free. Then
there exists a positive integer mg < k such that C;.F' = C;.F forj=1,...,my—1
and Chpy . F' > Cppy . F.

PROOF. (i) We first consider the case where ¢y > 2. Note that z;yx, < ¥:2x,
for integers 2 < i < dy—1if C.D; > 1. Then we have

Ao
Cl.F =k—-1= leCDz —1
=2
Ao—1
= Y 2,C.D; +,(C.Dy, — 1) + 75, — 1,

=2
Cl.F/ = klfcofeo

A d
= zo:leDz + Z yzCDz —Co — €o

i=1 =0
Ao—1
> CVl)l + zﬂ Z szD'L + y)\oC'Dx\o + Yuo — Co — €0
Ao =2
Ao—1
> 14 (CO — 1) Z x;,C.D; + (CO — 1).%)\OC.D)\O — Co
=2
Ao—1
= (CO - 1) Z z;,C.D; + (Co - 1)1‘,\0(0.on — 1) + (Co — 1)(1‘AD — 1)
1=2

Hence we have C1.F’ > C1.F. Namely, the lemma is valid for my = 1 in this
case.
(ii) Similarly, in the case where eg > 2, one can show that the lemma is valid for
mo = 1.

From now on, we assume that ¢y < 1 and e < 1.
(iii) Assume that ¢y +eg < 1 or k' > k + 2. Then, since

Cl.FI—Cl.F:k/—Io.DdO—k’—i-l:k‘l—k’—CO—eO-l-lZl,

the lemma is valid for mg = 1.

(iv) For the remaining case where ¢y = eg = 1 and k¥’ = k + 1, it is sufficient to
verify the following claim :

ClaimA: Two inequalities 2 < ), < k, =k < 2,, < —2 hold and there



THE GONALITY CONJECTURE FOR CURVES ON TORIC SURFACES WITH TWO P-FIBRATIONS 55

exists an integer my with 2 < my < min{xy,, —x,,} such that
1 (1<j<my—2),
f-Da = {0 (G =mo—1).
First we mention the inequalities k& = ZfiglxiC.Di > 1z, and k =
7Zj=do+1 2;,C.D; > —x,,. By the definition of Ay, x;y5, < %ixa, holds if
2<i<dy—1and C.D; > 1. Similarly, z;y,, > ¥y, holds if dy +1 < i < d
and C.D; > 1. Hence we obtain

do—1 d
K =CDi+y yCDi+ Y yC.D;
i=2 i=do+1
do—1 d
Z 1+ yﬂ Z .’I,‘ZCDZ + Yio Z IZCDZ
o 5 Lo ;a1
— 14 (yﬂ - yﬂ) k.
Txo g
It follows that
(10) Yro _ Ypo <1.
Txo Lo

Since ¢y = e = 1, we have yy,/xx, < 1 and y,,/x,, > —1, which mean that
Ty, > 2 and x,, < 2.

From now on, we assume that x,, < —x,,. The case where x,, > —z,, can
be shown in a similar way. Let j be an integer with 1 < 5 < x), — 1 such that
I1.Dgy = -+ =1;_1.Dg, = 1. We verify that I;.D4, <1, especially I;.Dg, = 0 if
j=zx, — 1. By Lemma4.14 and 4.15, we have

X .
(11)  z(Coyco+ -+ +cjo1) = —y“ (co+--++c¢j—1) <x(C;,0)+ 7+ 1,
Ao
x .
I/(Co,eo 4+ -4+ ejfl) = y“o (60 4+ -4+ ejfl) > I/(Cj,O) -7 —1
Ho

On the other hand, it follows from Lemma4.17 that cj,e; < 1. If ¢; = ¢; = 1,
then we have x(C},0) = 2/(C},0) = 0 and

&_yﬂ>Co+"'+Cj_1—|—60+"'+ej_1
T Luo Jj+1
co+eo+11.Dg, +---+1j_1.Dyg,

= :]_7
J+1

0

a contradiction. Hence we obtain I;.Dg, = ¢; +e; < 1.
In the case where j =z, — 1, we have ¢; = 0 by Lemma4.17 and
CO+"'+C]'*1 _ yﬂ
j+1 Ty,
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by Lemma4.16. If e; = 1, then we have z/(C},0) = 0. Hence, by noting (11), we
obtain a contradiction

&_yﬂ> o+ -F+cC_1+e+---+ei1

=1.
T\ Ty 7j+1

0
Therefore, we can conclude e; = 0, that is, I;.Dg, = 0 in this case. O

Let us show one more lemma needed in the proof of Assertion 3.3.

Lemma 4.19. Assume that k' > k > 2 and |C — F| is base point free, and let
mg be a positive integer in Proposition 4.18. If co = eq = 1, then either of the
inequalities Ty, =2 0rmy, <2 holds for each integer 1 < j < mg — 1.

Proor. Note that, in this case, the integer mg is equal to that in Claim A
in the proof of Proposition4.18. The case where j = 1 is contained in Claim A.
Hence let j be an integer with 2 < j7 < my — 1, and suppose Ty, = —Tpu;_, = L
Since I;_1.Dg, = cj—1+ej_1 = 1, either ¢;_; or e;_1 is equal to one. If ¢c;_; =1,
then we have yx,/xx, > yr,_,/zx,_, = 1 by Lemma4.17. Hence (10) implies
that y,,/x,, = 0. This contradicts the fact that ey = 1. We obtain a similar
contradiction in the case where e;_; = 1. Therefore, two equalities Txh,_, =1
and z,; , = —1 do not occur at the same time. ]

Finally, we prove Assertion 3.3.

Proposition 4.20. Assume that k' > k > 2 and |C'—F| is base point free, and let
mg be a positive integer in Proposition 4.18. Then the inequality in Assertion 3.3
holds for each integer 1 < j < myg. Besides, if k' = k = 2, then this inequality
holds for j = 1.

PrOOF. Considering the cohomology long exact sequence similar to (1), we
obtain h°(S, C;) = h°(C;, C; |c;)+1. On the other hand, the short exact sequence
0 — Os(=Ij—1) — Os(Cj = Ij—1) — Oc¢,(Cj — I;_1) — 0 and Proposition 4.8
induce the cohomology exact sequence

(12) 0— H°(S,Cj — Ij—1) — H(C;, (Cj = Ij-1)|c,) — 0.
Hence it is sufficient to verify the inequality
(13) h°(Cj. Cjle;) — h°(Cy, (Cj = Lj—1)le;) = Cj.F + 1.

The divisor (C; — I;_1)|c, is nonspecial by Lemma4.10. By Riemann-Roch the-
orem, we have

(14) deng|cj - QQJ = 7Cj.KS -2 Z Cj.Dl -2 2 71,

where g; denotes the genus of C;. Hence also Cj|c; is nonspecial. Thus (13) is
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equivalent to the inequality
(15) Ci i1 >C;.F+1.

In the case where ¢y £ 1 or eg # 1 or k' > k 4 2, mg is equal to one by (i)—(iii)
in the proof of Proposition4.18. Since C;1.Iy > C1.Dg, = C1.F' > C1.F + 1 by
the definition of mg, (15) holds in this case.

Let us consider the case where cg = 1, ¢g = 1 and ¥/ = k + 1. In the case
where 1 < j < mg — 1, we have Ta,_y 220r 2y, <=2 by Lemma4.19. Hence
if we divide (zx,_,,yx,_,) and (2,,_,,yu,_,) as (2) and (4), then either a,, or
Bp, exists. If oy, exists, then by (8), we have

Cj-Ij—l > Cj'(DaaO + Ddo) = — j—l'DaaO + CO-Ddo — (IQ + -+ Ij—l)-Ddo
= naao +CoF,7]71 ZCO-Ffj‘Fnaao
= Cj.F—l—naao.

A similar computation is carried out in the case where (;, exists to verify
the inequality Cj.I;_y > C;.F + mg, . In the case where j = mg, we have
Cig-Img—1 > Cimg-Day = Cppo . F' > Cppy . F + 1.

Lastly, let us show (15) for j = 1 under the assumption that ¥’ = k = 2.
Namely, we will show the inequality C1.Iyp > 2. If x5, > 2 or z,, < —2, then this
can be proved by the same argument as above. Assume ), = 1 and z,, = —1.
Since k = Zfi;lxiC.Di > 2, C.Dy), > 2 or there exists an integer 7 with
2 <i<dy—1such that i # Ag and C.D; > 1. We thus have

do—1 do—1
A
1=K —-1> Z y;C.D; > ayL‘TZ Z 2, C.D; > yx,-
=2 =2
Hence y), must be zero. Similarly, one can obtain y,, = 0. We thus have
IO-DdO =cyo+e9=0and Ci.Iy > Cl-Ddo = C~Dd0 =k =2. O

5. The case where degfi|c > degfa|c

In this section, we consider the case where degfi|c > degfs|c, that is,
CF, >CF, Weput F =F, F/' = F, k= C.F and ¥ = C.F'. In order
to simplify the argument, we renumber the T-invariant divisors. Concretely, we
denote by D; the T-invariant divisor whose associated cone has the primitive
element (—1,0), and number other cones in Ag clockwise. In particular, we set
Dy, if its primitive element is (0,1) (see Fig.2). Note that, in this case, the fiber
F and F’ are written as

d—2
F~Dg~Y uiD;
=2
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do—1 d—1
F/ ~ —Z IZDZ ~ Z .’L‘iDi.
i=1 i=do+1
N U(Ddo) o
(D) -\
\\ / .~
O'(Dl) O'(Ddfl)
O'(Dd)
Figure 2

If ¥ > k > 2, we define
v = max{i < dy | C.D; > 1},
o = —max{c € Z|x, —cy, > 0},
ep = min{e € Z | z¢ — eye < 0},
fo = min{cp, ep}.
Ifvr=1o0r & =d-—1, then C becomes a curve considered in Section4. We thus
assume that v > 2 and £ < d — 2 in this section. Note that the five statements

co=0,e=0, fo =0, v =dy and & = dy are equivalent. By Fact4.1 and the
argument in Subsection 4.1, we obtain the unique divisions

(16) (v, 40) = (—Co; 1) + 1y, (@4, Yy ) + -+ + Ny (T s Yooy
(Vv <y <0 <95 < do),
(ze,ye) = (eo, 1) +ms, (x5,,95,) + -+ - +ms, (25,5 s,,)
(do <01 < -+ <ty <E),

where n., and ms; are positive integers. We note that
S0 S0
(17) Trys <1+Z n’ij’Yj) _y’ys<_CO+ Z n'ij'Yj) =1
j=s+1 Jj=s+1
for each integer 1 < s < s¢ and

t—1 t—1
(18) (60 +Z mzsj%]-)yst — <1 +Z m5]-y5j>$6t =1

j=1 j=1



THE GONALITY CONJECTURE FOR CURVES ON TORIC SURFACES WITH TWO P!-FIBRATIONS 59

for each integer 1 < t < t5. There exists an integer ¢ such that (z,,y,) =
(eo — ¢o,1). Obviously, we see that « = dy (resp. v+ 1< ¢ <E—-1)if fob, =0
(resp. fo > 1).

5.1 The auxiliary divisor
In this subsection, we keep the above notation. Let C' be a curve on S such
that k < k', v>2and £ <d-—2.

Definition 5.1. Let C' be a curve on S such that & > 2, and set n; = 0 for inte-
gers v+1 < ¢ < dg except fori =v1,...,7vs, and m; = 0 for integers dp < ¢ < &—1
except for ¢ = 61,...,0d:,. We define the auziliary divisor Ic = 2?21 ¢D; + F'
of C as follows:

(i) The case where ¢ < dy (that is, ¢g > ep).

do do
i (1 + 2 nj%‘) +Yi <00 -2 ﬂj%‘) v+l<i<e—1),
j=it1 j=it+1
_ €oYi (L <i<do),
4 = i—1 i—1
IC1< 1= mjyj> + v (60 +>° mj%‘) (do+1<i<&-1),
j=do j=do
0 (otherwise).

(ii) The case where ¢ > do + 1 (that is, ¢ < ep).

<1+Z njy]> +yz(co— Z n]x]> (r+1<i<dy),
Jj=i+1 j=i+1
CoYi (do+1<i<u),
qi = 1—1 1—1
(—1—2 mjyj)—i—yz(eo—I—Z mjxj> L+1<i<eg-1),
j=do j=do
0 (otherwise).

It is obvious that I.F = 1 by definition. We remark that Ic = F’ if fo = 0.
Besides, by (17) and (18), we have ¢; =1 for i = v1,...,7%y,01,...,0j,-
Lemma 5.2. Ifco > eg > 1, then ¢ > ,,.

PROOF. If ¢ < 74, then we have z,  /y, > z./y. = eo — co. By (17),
the inequality y,, eo < 2, + Yy, co = 1 holds. This implies that y,, =0, a
contradiction. O

Corollary 5.3. If cog > ey > 1, then n; = 0 for any integer t +1 < ¢ < dy.

Lemma 5.4. Assume that fo > 1. If t=v+1 (resp. 1 = £ — 1), then eg = 1
(resp. co =1).

ProoOF. We note that ¢y and eg are positive by assumption. Assume that
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t =v+ 1. Then, since x,y, — y,x, = 1, we have

X, 1 1 1
eco=c+—+—<c+(-c+)+—=1+—<2.

14 yl/ yl/ yl/
Similarly, if ¢ = { — 1, then the equality z¢y, — y¢x, = 1 implies that

T 1 1 1
00:60——54-—<€0—(60—1)+—:1+—§2. 0
Ye Ye Ye Ye

There is no essential difference between the cases where ¢y > eg and ¢g < eg.
Hence we will prove all the remaining propositions and lemmas in this subsection
only for the former case.

Proposition 5.5. The divisor Io is effective.

This lemma can be shown by a computation similar to that in the proof of
Proposition 4.5. The following Proposition 5.6 and 5.8 correspond to the property
(iii) in Assertion3.1.

Proposition 5.6. Assume that k > 2. The complete linear system |C — I¢| is
base point free.

Proor. If fo = 0, then C.Dg, > 1 and I = F’. Hence our lemma is
clear in this case. We thus consider the case where fy > 1, that is, ¢y and eg
are positive and & > dy + 1. We will compute the intersection number Io.D;
only for ¢ = dgy,¢. In the other cases, we can compute similarly to the proof of
Proposition 4.6 to verify that (C — I¢).D; is non-negative.

In the case where i = dy, we divide the situation into six cases as follows:

() vhl=r=dy=¢—1,
(i) v+2<i=dy=¢—1,
(i) t+1<dy=¢—1,
(iv) v+l=1=dy<E—2,
) v+2<i=dy<E—2,
)

t+1<dy<€—2.

—~

v

(vi

Lemma5.4 and the assumption ¢y > eo implies that eg = 1 in the case (iv), and
co = €9 = 1 in the cases (i) and (ii). By definition, ng, = y4,—1 — 1 if v = dp — 1,
and mq, = Ydo+1 — L if & =do + 1.

(i) Since Ic = Dg, + F’, we have Ic.Dg, = —Ydg—1 — Ydo+1 +1 = —Ngy — Mg, — 1.
(11) Since I = (—1 — Ng, + ydo—l)Ddo—l + Ddo + F’7 we have

Ic.Dgy = =1 —ngy + Ydg—1 — Ydo—1 — Ydo+1 + 1 = —ngy —mg, — 1.
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(iii) In this case, we have ey = 1 by definition. Besides, 75, < dp—1 by Lemma 5.2,
which implies that ng, = 0. Hence I¢.Dgy, = (Yay—1Ddy—1 + Da, + F').Da, =
—Ydo+1 + 1= —nd, — Md,.

(iv) Since Ic = Dy, + (=1 — may + Yag+1)Dag+1 + F', we have

Ic-Day = =Ydo—1 —Ydo+1 — L =Mdy +Ydo+1+1 = —Ydy—1 —Mdy = —Ndy — M, — 1.
(v) Note that ¢p = eg. Then, since ¢4,—1 = —1 — Ngy + Ydg—1, 9dy = €o and
Qdo+1 = —1 — mg, + €0Ydy+1, We have

Ic.Dgy = =1 —nay + Ydg—1 — €0(Wdg—1 + Ydo+1) — 1 — Mgy, + €0Yao+1 + 1

= —ng, — Mg, — 1.
(vi) In this case, we have ng, = 0 by the same argument as in (iii). Hence
Ic.Day = €0Ydy—1— €0(Ydo—1+ Ydo+1) — L — My + €0Ydg+1 + 1 = —Nay — M-

We next compute I-.D, under the assumption ¢ < dy — 1. If © > v+ 2, then
we have

IC'DL = Q5‘L—1(]- + nLyL) + yL—l(CO - anL) - 6O(yL—l + yL+1) + eoYit1
=z, +n(x 12, —y—12,) + (o — €0)Y—1

= Y1 —TY—1—n,=-n,— L

In the case where ¢+ = v + 1, since ¢g = 1 by Lemmab.4, we have Io.D, =
—(Yo-1 + Yot1) + Y41 = —y. If y, = 1, then we have n, = 0, that is,
I¢.D, = —n, — 1. If y, > 2, then since 7,, < v + 1 by Lemma5.2, we have
Yso =V + 1 and so = 1. Hence I¢.D, = -1 —ny,y,, = —n, — L. O

List 5.7. We list the intersection numbers of I and the T-invariant divisors on
S.
(A) In the case where fy =0,

1 (i=dy,d),

Ic.D; =
@i {0 (otherwise).

(B) In the case where fy > 1 and ¢ = dp,

—Ndy — Mgy — 1 (’L = do),
—n; (i # dosi = Y1, -+, Vso )
Ic.D; = 1 (7;:”7§7d)7
—m; (i#do,i:(sl,...,(stg),
0 (otherwise).

(C) In the case where fop > 1 and ¢ < dy — 1,
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*ndo 7md0 (Z )
—n; — 1 (i=1),
o —ny (2%62—717--.,’}/30),
fobi= 1 (i=n&d),
—m; ( ;édo,z—él,...,éto),
0 (otherwise).

Proposition 5.8. If |C — F| is base point free, then also |C — Ic — F| is base
point free.

We can easily show the above proposition by using List 5.7. We next check
the property (ii) in Assertion3.1.

Proposition 5.9. The vanishing H' (S, —Ic) = 0 holds.

PRrROOF. We write the linear equivalence class of F’ as F” Zfo LD
Clearly the coefficients of D1 and Dy_1 in Io are one and zero, respectlvely. It
follows from Theorem 2.4 that H°(S, Kg + Ic) = 0. Hence, by the same compu-
tation as that in Proposition 4.8, it is enough to show Io.(Kgs + I¢) = —2.

In the case (A) in List 5.7, since I = F’, we have Io.(Ks + I¢) = F'.Kg =
F'.(=Dg, — Dg) = —2. Recall that ¢; =1 for i = y1,...,7s,,01,-.-,0t,. In the
case (B), we have

Ic(Ks+1Ic) =1c.((qy — 1)Dy + (qay — 1)Da, + (g¢ — 1) D¢ + (g2 — 1)Da + F')
:_1+(Qdo _1)(_ndo — Mg, _1) _1_1+qd0
= (eg — 1)(—ngy — ma,) — 2.

This value is clearly equal to minus two if eg = 1. In the case where ey > 2, since
N, = M4, = 0 by definition, we have I.(Kg+Ic) = —2. Lastly, we consider the
case (C). By computing, we have Io.(Kg + Ic) = (eg — 1)(—ng, — mag, —n,) — 2.
This value is equal to minus two if ey = 1. Consider the case where ey > 2. Note
that mg, = 0 in this case. Let us show that n, = ng, = 0. This is obvious if
Y, = 1 by definition. We assume y, > 2, and prove the inequality ¢ > ~;5,. The
inequality ¢ > ~;, follows from Lemma5.2. Suppose that Zy,, = —co+ 2. Then

by (17), we have the inequality 1 = x,, +coy,,, > —co—|—2+coy% , which implies
a contradiction co(y%0 — 1) < —1. Hence we have x, = eg —cg > 2 —¢cg > T, -
It follows that n, = ng, =0 and I¢.(Kg + Ic) = —2. |

Proposition 5.10. Assume that k > 2 and |C — F| is base point free. Then the
divisor C — I satisfies the properties (iv)—(vi) in Assertion 3.1.

PrOOF. (iv) We put H = C' — I¢. Since |H| has no base points, we can
write H ~ Zd ! h;D; with non-negative integers h;. Then we have hy_1 =
H.Dy;=C.Dg— IC.Dd = C.F —1 > 1. By assumption, we have (C — F).D4_1 =
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C.Dy_1 —1>0. It follows that H> > H.Dy_1 = C.Dg_1 — Ic.Dg_1 > 1. Recall
that H?(S,—Ic) = 0 as mentioned at the beginning of the proof of Proposi-
tion5.9. Then (v) and (vi) can be shown by the same argument as that in the
proof of Proposition 4.9. g

We next aim to show the lemma similar to Lemma4.10. Although it is ideal
that (C —2I¢)|¢, is nonspecial for a curve Cy € |C — I¢| in any case, in fact, we
need a certain condition (see Lemma5.12).

Lemma 5.11. Assume thatk > 2, fo > 1 and |C'—F| is base point free. Besides,
we assume that C satisfies neither of the following conditions (a) nor (b) :

(a) y, =1, C.D, =1 and C.D; =0 for any integer 2 <i <wv — 1.

(b) ye =1, C.D¢ =1 and C.D; =0 for any integer £ <i < d— 2.

Then there exists an effective divisor E on S such that |C —2Ic — E)| is base point
free, h%(S,C —2Ic — E) = h°(S,C — 2I¢) and E.(E + Kg) < 2E.(C — 2I¢).

PrOOF. We first aim to prove the existence of an effective divisor E; satis-
fying the following properties (i)—(iii) :
(i) (C—2I¢c—E1).D; >0for1<i<dyandi=d,
(ii) h2(S,C —2Ic — Eq) = h°(S,C — 21¢),
(111) El.(El + KS) < 2E1(C — 2[0)
If C.D, > 2, the zero divisor satisfies (i)—(iii). We thus assume that C.D, = 1,
and define

vV =max{i<v-1|C.D; > 1},

M (Y > 2),

v =min{i >v+1|(C—-2I¢).D;, > 1} =
L (yu:]-

By the information of the intersection numbers

>1  (i=v),
=-1 (i=v),
(C*2IC)'Dz >1 (i:'y'),
=0 V4+1<i<v—-1lLrv+1<i<y —-1),

we can see the partial shape of Oc_ap, around the line I, (C — 21¢) (see Fig.3
(1).
Let us verify the following two claims (see Fig.3 (2)):

Claim 1: The intersection point Py = l,,_1(C — 2I¢) N1,/(C — 2I¢) lies on the
half-line Ly = {R — a(y, —x,) | a > 0}.

Claim2: The intersection point Qo = l4/(C — 2I¢) N1y 41(C — 21¢) lies on the
half-line Ly = {R + a(y,/, —2,/) | a > 0}.

If we put P = (p1,p2), then the X-coordinate of R is greater than or equal to

p1— Yy (see Fig.4). Since the X-coordinate of P is less than or equal to p; —y,/,
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P =1,(C—2I5)N1,(C — 21c)
Ly 1,1(C —2Ic)

1,(C—2I
1(C —2I¢) v )

1,(C — 21¢) Ly (C — 21¢)

Figure 3

Ly (C —2I¢)
Figure 4

Claim 1 is true if y, < y,+. Let us consider the case where y,, > vy,/. It is sufficient
to show the inequality

(19) xv/(y,/ — yy/) <Yy (xV — xV/),

In the case where y, = 1, we have x, = —c¢g and 7' = ¢. On the other hand,
V' > 2 since C does not satisfies the condition (a). We thus have

Yy (.Z,, - .Z,,/) — Ty (yl/ - yu’) == 60(yu’ - ]-) — Ty — CoYp > 0.

Assume that y,, > 2. Since 7' = v, and 2+, y, — y4, 2, = 1 by (17), the inequality
(19) is obvious. We next show Claim 2. Since

Qo =Q+ (C—2Ic).Dy(yy, —2y) =Q — 2Ic-Dy (yy, —T),

it is sufficient for Claim2 to verify the inequality —2y,Ic.D > y,. This is
obvious if 5, = 1. We thus consider the case where y,, > 2. Note that v/ = ~; in
this case. If sg = 1, then since (x,,y,) = (—co, 1) + 1y, (T4, , Yy, ), We have
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Yo = 140,95 < 204,15, < =2y, [0 Dy,

If s9 > 2, then we have 2, (Yo — Ny, Yyy ) — Yo (Tw — Ny T4, ) = 1 by (17). Hence
we can write (T, , Yy, ) = €(Xvy,s Yo ) + C(@0 — Mgy Ty, Yo — Ny, Yoy, ) With integers e
and (. Since Ty, Yy, — Yy Tryy = Ty Yo — Y4, T = 1, we have € = ¢ = 1. It follows
that (n,, +1)y,, > y,. Since the inequality Ic.D,, < —n,, holds by List 5.7, we
have —2y.,,Ic.D~, > y,. Hence Claim 2 is true. Besides, we remark that

(20) —IC.D,Y/ Z Yuv

if ¥/ = +. This is obvious in the case where y, = 1. If y, > 2, then we have
T = ¢, that is, y,, = 1. Hence the above two inequalities I¢.D,, < —n,, and
(ny, + 1)y, > vy, implies that —Ic.Dy > y,.

We denote by Q. = (z,w,) the lattice point in 1,/ (C' — 2I¢) N Oc—_a1,,
which is closest to L;. Note that the line [;(C — 2Ix) passes through the point
P (resp. Q) for any integer v/ +1<i<wv—1 (resp. v+ 1 <i <+ —1). Thus we
can inductively define positive integers 7; for v/ +1 < i <4’ — 1 as follows (see
Fig.5):

T; : the positive integer such that the line [;(C—2Io—7;D;) passes through Q;41,
Q;=(z;,w;): the lattice point in ;(C—2Ic—7;D;)NOc—ar, which is closest to L.

By definition, we have

Figure 5

(1) = zi(z0 —zi + ) Fyilwo —w; — ) (V+1<i<v—1),
! xi(z0 — 2i) + yi(wo — wy;) (v<i<y —1),

where we set Q@ = (zp,wp). We put E; = ZZ;;}H 7;D;. By definition, it
is obvious that E; satisfies the property (i). Besides, for an integer ¢ with
v +1 < i<+ —1, the lattice points contained in the domain surrounded by
li—1(C—2Ic—Ey), 1;(C—2Ic— E1) and Ly must lie on the line [;(C — 21 — Ey).
This means that F; satisfies the property (ii). For the later use, we note that
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(22) Ty —1 S _IC“D'y’

holds if 4/ = ¢. Indeed, if we suppose that v/ = ¢ and 7,_1 > —Ic.D,,
then the point Q" = Q + v, (y,/, —z,) lies on Lo since the X-coordinate of R
(resp. Q') is less (resp. greater) than or equal to that of P. Namely, @’ lies on
Iy (C —2Ic)NOc—_21.. On the other hand, by (20), we deduce that @’ is nearer
to Ly than Q = Q + 7y —1(yy, —24), which contradicts the definition of Q..

Let us show that E; satisfies (iii). By computing, we have (C' — 2I¢).E; =
7,(C — 2I¢).D, = —7,. Hence it is sufficient to verify E;.(Eq + Kg) < —27,.
We first consider the case where y, > 2. Since 4/ = 7, in this case, we have
TyYy — Yy, = 1 by (17). Hence the lattice point P — (y,7, —z,/) lies on the
half-line L;. We thus see that Q.11 = P— (y,/, —x,+) by the property (ii), which
implies that

Tyg1 = Tyy1(20 — 2o +Yu) + Yorg1(Wo — Wy — )

f— 1‘,//+1y,// —|— yyl+1(—$y/) = 1

On the other hand, we can write

Q"/’ = Q + S(y’y/a _.’L"y/),
Qy—1 = Qy +t(Yyy—1, =T 1),
Qu = Q’y’ + (aab)

with integers s, t, a, and b. We note that az, + by, > 0. Then, by (21), we have

Tyr—1 = Ly—1(20 = Zy—1) + Yy 1 (wo — Wy 1)
= Ty_1(—8Yy — tyy—1) + Yy—1(sTy +tzy_1) =5,
T, = (20 — 2v) + Yo (wo — wy) = 2, (—5Yyy — a) + Yy (sx4 — b)

= Ty_1— (az, +by,) < 7/_1.

In sum, we obtain

71—1
Ey.(Ey + Kg) = E1.<— Dy + > (ri—1)D; - D%)
1=v’+1
S El.(—DV/ + (T,/ - I)DV - D’Y1)
= —Tyr41+ (Tl, — 1)E1.DV — Ty —1

—Tyi41 — Ty + 1- Ty —1 < =27,

IN

Let us consider the case where y, = 1. We note that z, = —cy and 7' = ¢
in this case. If (C' — 2I¢ — Ey).D; = 0 for integers v/ +1 < i < 4’ — 1, then
we have @)y = Q,/—1. Namely, R must be a lattice point. Then, since the
X-coordinate of R is greater than (resp. less than or equal to) that of @ (resp.
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P), we have v/ = 1, which contradicts the condition (a). Hence we can take an
integer k =max{n |V +1<n <+ —-1,(C—2Ic— E;).D, > 1}. If kK > v, then
by computing, we have

Tr = Tu(—Yy) T Yuly = —Tx + (€0 = c0)Yx,

7, < xu(_yw’ + yn) + yu(xw’ - :L‘,{) = —CoYr T €0 — Tp < Tgeo

We thus have

(23)  Ey.(Ey+ Kg) = EB. < D, + Z 7 —1)D; — D, )
1=v’/+1
—E\.Dy + (1. — 1)B1.Dy + (1, — 1)E1.D, — E1.D.,

<

STl =T T +2—Ty1 < —T — T < —27,.
In the case where k = v, we have F;.D, < —2 and
By .(E\+Kg)<—Ey.Dy+(1,—1)E1.Dy—Ey.Dy < —Tyr 11 =27, 4271 < —273,.
In the case where k < v, we have

T = Tx(Yy — y’y/) + Yz, + x'y’) = €Yk
T, < 2y(—yy) + Yy =€y < Ty.

Hence the inequality (23) holds in this case also. Therefore, E; satisfies the
property (iii).
We define
0 =max{i <{—1|(C—-2Ic).D; > 1} = { O (v 2 2)
v (e =1),
g =min{i >¢+1|C.D; >1}.

Then, by a similar Way to that in the case of E;, we can construct the effective
divisor Ey = E 5, 41 wiD; satisfying the following properties (i)' (iii)’:

(i) (C —2I¢ — E3).D; >0 for dy <i <d,

(i) hO(S,C — 2Ic — Ey) = hY(S,C — 21¢),

(iii)/ Eg.(Eg + Ks> < 2E2.(C - 2[0).

Note that F> = 0 in the case where C.D; > 2. In sum, we obtain the effective

divisors

0 (C.D, > 2),
E = ~' -1 y = o (g >2),
> ©D; (C.D,=1), ¢t (y,=1),
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0 C.Dg > 2
By={ €21 (D=2 5/:{ Ot (ye > 2),
Z wiDZ- (CDg = 1), -
i=6'+1
which satisfy the properties (i)—(iii) and (i)'—(iii)’.

We put E = E;y + E5. Let us check that (C — 2l — E).D; > 0 holds for
any integer 1 < ¢ < d. This is obvious if either E; or Fs is equal to zero.
Hence we consider the case where C.D, = C.Dg = 1. By noting 7' < ¢ < ¢,
(C—2I¢ — E).D; is non-negative if i # ¢. Since (C'—2Ic — E).D, is non-negative
if ¥/ <t or ¢’ >, we consider the case where v = § = 1. Then we have

(C - 2]0 - E).DL Z —2[c.DL — Tyr—1 — W§'41-

Similarly to (22), one can show the inequality ws 41 < —I¢.Ds in the case where
0’ = . We thus have (C' — 2Ic — E).D, > 0. In sum, we can conclude that
Bs|C — 21 — E| = (. Since

Oc—2re \ Oc—216— = Oc—21. \ (Oc—21c—5, NOc—21o—E,)
= (Oc-2rc \Oc—21c—g,) U (Oc—21, \Oc—21c—E,),

the properties (ii) and (i)’ imply that (Oc—21. \ Oc—21.—r) N Z = 0. Namely,
we obtain h%(S,C — 2Ic — E) = h%(S,C — 21¢). Lastly, we have

E.(E+ Ks) - 2E(C — 2[0)
= El.(El + Ks) — 2E1.(C — 2[(;) + EQ.(EQ + Ks) — 2E2.(O — 2[(;) + 2K, .E5
<2FE.FE>, =0

by the properties (iii) and (iii)’. O

Lemma 5.12. Assume that k > 2 and |C — F| is base point free. By Proposi-
tion 5.10, we can take a nonsingular irreducible curve Cy € |C — I¢|. If fo > 1
and C satisfies neither of the conditions (a) nor (b) in Lemma5.11, then the
divisor (C1 — Ic)|c, s nonspecial.

PRrROOF. Since |C'—Fi| has no base points, we have (C—F1).D; = C.D1—1 >
0. Hence, by Riemann-Roch theorem and List 5.7, we have

degCllc, — 291
= 0. Ks—2>Cy.Dy—2=C.Dy—2> —1,

where g1 denotes the genus of C;. Hence also Cy|¢, is nonspecial.

Assume that C satisfies neither of (a) nor (b). Since H(S,—Ig) =
H?(S,—Ic) = 0, the cohomology exact sequence similar to (12) implies that
hY(Cy, (C = 2Ic)|c,) = hi(S,C — 2Ic). We take the effective divisor E as in
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Lemmab5.11. Then we have
hl(S,C — 2I¢)
1
=ho(S,C —2Ic) + 5(6’ —2Ic).(Ks — C +2Ic) — 1

1
:h%&C—ﬂb—Ey+?0—ﬂb—EMKg—C+Mb+E%J
1
+ EE(E + Ks> — E(C — 2[0)

1
:hl(S,C—QIC—E)+§E.(E+KS)—E.(C—QIC) <0. O

We need Lemma5.12 in the proof of Assertion3.3. Hence we must show
Assertion 3.3 independently for the cases excluded in Lemma5.12.

Lemma 5.13. Assume thatk > 2, fo > 1 and |C —F)| is base point free. If either
of the conditions (a) or (b) in Lemma5.11 holds, then h°(S,C — Ic) — h°(S,C —
2[@) >(C—1Ic).F+2.

C.F
C.F — f,

Oeo—1e

Figure 6

PrROOF. We prove the case of (a). By Theorem 2.4, the statement of the
lemma is equivalent to the inequality #(0c—_7. NZ?) —4(0c_21. NZ?) > C.F +1.
Comparing the two lattice polytope ¢ and Oe—_j, by the definition of I, we
see that the horizontal distance between [;(C') and I;(C' — I¢) (similarly, I;(C'—I¢)
and [;(C' — 21¢)) is at least one for each integer dg +1 < ¢ < d —1 (see Fig.6).
Indeed, if we write the linear equivalence class of F' as F’/ ~ ZZ;&I x;D;, then
the coefficient of D; in the linear equivalence class of I is at least x; for each
integer dg + 1 < i < d — 1. By noting the existence of the point P, we see that
there exist at least C.F’' — fo + 2 lattice points in Oc_j, \ Oc—2r.. Hence the
lemma is clear if fy = 1. Let us consider the case where fy > 2. In this case, we
have

d—2 d—2
C.F=Y y0Di=1+Y yC.D;,
i=2 i=do+1
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d—1 d—2
CF = Y @CDi>CDiy+"5 Y yC.Di>1+ (eg—1)(C.F—1)
i=do+1 € iZdot1
>1+(fo-1)(CF—-1)=CF+(fo—-2)(C.F-1)>CF+ fy—2.

Hence the lemma is true in this case also. O

Lemma 5.14. Assume that k > 2 and fo = 0. Then h°(S,C — Ic) — h%(S,C —
2Ic) > (C —1¢).F + 2.

PROOF. Since Ic = F’ in this case, the vertical distance between [;(C)
and [;(C — I¢) (similarly, [;(C — I¢) and [;(C — 2I¢)) is just one for each inte-
ger dg +1 < i < d—1. Hence, by a similar argument to that in the proof of
Lemma 5.13, we have $(0c_7. NZ?) — #(0¢_2r, NZ?) > C.F + 1. O

5.2 Proof of Assertion 3.2 and 3.3
In this subsection, we will prove Assertion 3.2 and 3.3. Let D be a divisor on
S such that D.D; > 1. For an integer z with 0 < z < D.F’, we define

dy—1
(D, x) max{j >1 ‘ x < fgz: :viD.Di},
i=j

do—1 Yi(D,x) do—1
y(D,x) = > yD.D; - ——— (x + > xiD.Di).
i=i(D,x)+1 Li(D,x) i=i(D,z)+1

Let C be a curve on S such as at the beginning of this section and I¢ the aux-
iliary divisor of C. In this subsection, we write the linear equivalence class of F”

as I/ ~ Zjo_-il 2;D;. Then I is written as

do d—1
Ic =Y ¢iDi+ Y (g +z:)Di,
=0 do+1

where we formally set gg = qq and Dy = Dy.

Remark 5.15. By definition, we have y(C,0) = 0. Besides, y(C,z) = —y,x/x,
if i(C,x) =v.

Lemma 5.16. Assume that k > 2 and C.Dy > 1. Let x be an integer with
fo <z <C.F', and define g=min{n € Z | n > y(C — Ic,xz — fo)}. Then

y(C —1Ic,x — fo) +ng, <y(C,z) < q+ng, (co > eop),
y(C —Ic,x — fo) +nag, +1 <y(Coz) <qg+ng +1 (co < eo).

PrOOF. We prove only the former case. The latter case can be proved
by a similar procedure. Since ¢y > ey, we have v,t < dg — 1. Let us compute
Zfiilcz) z;lc.D;. Recall (C) in List 5.7. If 1 = 5, then by noting =, = eg—co,
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we have
do—1
Z Tilo.Di = Ty — Ny Ty — - =Ny Ty — (”750 + 1)35750
i=i(C,z)

= —C0 — Ty,, = —€0-
If « > 7, + 1, then by noting n, = 0, we have

do—1
§ : rilo.Di =y — Ny &y — -0 — Ny Lysg = & = —Co — XL, = —€0-

i=i(C,x)
We thus obtain

—eo—m (i(Cyx) =),

(24) > fCiIGDi:{ —eo  (i(Cx)<v—1).

i=i(C,z)+1
Similarly, we can obtain
do—1 .
Oz: yICD = { Ndo — Y (2(0733):”)7
i=i(C,ax)+1 Ndy (i(C,x) <v—1).

(i) Consider the case where z > —z,. If i(C, z) = v, then we have

do—1 do—1
y(C —Io,x—e) = =Y yilo.Di+ <93€o -3 inC~Di>
i=v+1 i=v+1

Y
=Yy — Mgy — —z — Y = y(C, ) — ng,.
T,

On the other hand, if i(C,z) < v — 1, then we have

do—1 do—1
i=i(C,x)+1 i=1(C,x)
do—1 do—1
— Z $Z(C’—IC)D2 <zr—e < — Z LL'Z(C—IC)D,L
i=i(C,z)+1 i=i(C,z)

by (24). This means that i(C — Ic,z — eg) = i(C, z). Hence

y(C —Io,x — ep)

dop—1 y c. do—1
= Z y,(C — Ic).D 2( x) ( —eg + Z (C — Ic)Dl>
i=i(C,x)+1 Ti(Cy) i=i(C,z)+1
do—1 do—1

T
i=i(C,x)+1 i(Cyx) i=i(C,x)+1

71

Z ¥:C.D; —ng, — Yica) (az + Z xiC’.Di) =y(C,x) — ng,-
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Consequently, our lemma is true in any case.

(ii) We next consider the case where x < —x,. Note that i(C,z) = v and
y(C,x) = —yyx/z, in this case. Since C.D; =0 for i(C,z) +1 <1i <dy—1, we
have

do—1 do—1
rT—eyg < —Ty, —ey= Z v le.D; = — Z ZZ(C — Ic)DZ
i=i(Cya)+1 i=i(C\z)+1

by (24). Hence there exists an integer s with 1 < s < s such that
i(C —Ic,x —ep) =s. Then

do—1 do—1
y(C —Io,z—e) = Y w(C—1Ic).D; — L <xeo+ Y (- IC)D>

1=7ys+1 ’Yb i=vs+1

do—1 do—1
_ZyzC Ic).D <x—eo+Z:czC IC)D>

1="s 1="s

do—1 do—1
<Zy20 Ic).D (.%‘—EO-I-Z (C —I¢).D )

1= 1=7s

dO 1 do 1
:_ZszCD —(x—eo—szICD>

i=s i="s

vs—1 vs—1
= —Nyg, +yl/+ Z szCD _ZL'_<:I;+:I:V+ Z szCD)

i=v+1 i=v+1
Ys—1 y
= —Ng, — —T + Z (yz - _‘/EZ)IC -Dz
Ty 1=v—+1 v
< —Ngy, — ——x = y(C x) Ndy

We next show the inequality y(C, z) < ¢+ng,. Suppose that ¢+ ng, = y(C,x) =
—yyx/x,. Note that ¢ + ng, is the integer. Then we have z = 0 by the in-
equality < —z,, and the fact that z,, and y, are relatively prime. This implies
that ¢ is nonpositive, a contradiction. Suppose that ¢ + ng, < —y,z/x,. Since
Yu /Ty > Yy, /T~,, We have

do dO
—(q+ndy )y, —ayy, < —1=—a,, (1 +) ny) + 4, (— oty nx)

i=7s+1 i=7s+1
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)
IA

d
1+Z n;Y; — —y—<x—co—|— zO: nm)
“/

1=7s+1 : i=7vs+1

do—1 do—1
1+ > nyi— y%’ (x—COJr > nwz) (*)-

i=vs+1 1=7ys+1

If ¢ > v5 4+ 1, then by List 5.7, we have

do—1 y do—1
- iIo.Di — 22z —eg — ilc.D;
(%) Z Yilc z, (90 €0 Z Tilc )

1=7s+1 1=7s+1

do—1 do—1
Z yz(C - Ic).D Y (.’I} —eg + Z xl C 1¢).D; )
1=7s+1 ’Y' i=7vs+1

= x(C —Ig,z — ep).

If + = ~s, then since (C' — I¢).D; =0 for v, + 1 <1i < dy — 1, we have

(1) = 1= Doz — ) = L (z— e)

Lrys Loy,
do—1 do—1
= Z yi(c—fc).D Y <$—€0+ Z CCZ C Ic)D>
i=ys+1 T i=7s+1

= x(C —Ig,z — ep).

Obviously, they contradict the definition of gq. Consequently, we can conclude
that y(C,z) < g+ ng,. O

We define ¢/(D,z’) and y'(D,2’) in a way similar to i(D,z) and y(D,x),
respectively. Concretely, in the case where D.Dy_1 > 1, for an integer =’ with
0 <z’ < D.F’', we define

J
i'(D,x’) = min{j <d-1 ‘ < Y xiD.DZ},

i=do+1
i'(D,x’')—1 Yir (D) i/ (D,x’)—1
YD) = % yz‘D-Di+7’<$'— 5 :ciD.Dz»).
i=do+1 Zi(D,x") i=do+1

Then we can obtain the following lemma by an argument similar to that in the
proof of Lemma 5.16.

Lemma 5.17. Assume that k > 2 and C.Dg_1 > 1. Let 2’ be an integer with
fo<a' <C.F', and define ¢ =min{n € Z | n >y (C — Ic,x’ — fo)}. Then

y'(C—Ic, 2" — fo) + mg, + 1 <y (C,2') < ¢ +mg,+1 (co> ep),
Y (C = Ic, 2’ — fo) + my, <Y (C,2") < q + my, (co < eg).
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Similar to Section 4, we next consider the operation to take auxiliary divisors
repeatedly. We put Cy = C and Iy = I¢, and take a nonsingular irreducible
curve Cy € |Cy — Iy|. For an integer n > 2, if C;.F > 2, C;.F' > 2 and

max{i < do | Cj.Di > 1} > 2,

Vj
&
for any integer j with 1 < j < n — 1, then we can take the auxiliary divisor I,,_;

of C,—1 and a nonsingular irreducible curve C,, € |C,,_1 — I,,_1| inductively. Note
that n < C.F — 1 by the condition Cy,_1.F > 2. We define

c; = —max{c € Z|x,, —cy,, >0},
e; = min{e € Z | ¢, — eye; < 0},
fi = min{c;, €5},
a; : the cardinality of the set {l]0<1<j,¢ <e}

for an integer j with 0 < j < n — 1. We divide each (z,,,¥,,) and (z¢,,ye;) in
ways similar to (16) as

do
(xy.i’yyj) = (_cj’ ]‘) + Z ’I’L‘z (xiayi)a
i:l/j+1
&—1
(e, 9e;) = (€5, 1) + Z mi (i, Yi).

i=do

In the following Lemma 5.18-5.20, we assume that we can take nonsingular irre-
ducible curves C1,...,C), in the above way.

Lemma 5.18. Assume that C.D; > 1. Let x be an integer with v <
— Y i Co Dy If x> fo+ -+ faor and C;.Dgy = 0 for j = 0,...,n,
then y(Cn,x — fo— -+ — fa_1) + an—1 < y(Co, z) and there is no integer in the
half-open interval (y(Cn,x —fo—+ = foo1) +n-1, y(Co,m)].

PRrROOF. Let j be an integer with 0 < 7 < n — 1. By assumption, we have

cj # e; and nflo = mfio = (. Besides, by computing, we have

do—1 do—1
> 2:CiDi =Y ;,Co.Di+ fo+ -+ fio1,
i=1 i=1

where we define fy + --- + fj_1 = 0 in the case where j = 0. We thus have
fi <ax=fo——fj-1 < — Zlizl x;C;.D;. In the case where c; > e;, Lemma5.16
implies that y(Cj41,z— fo—---— fj) < y(Cj,x— fo—---— f;—1) and there exists no
integer in the half-open interval (y(C’jH, z—fo—--—f;),y(Cj,x—fo—-- ~ffj_1)] .



THE GONALITY CONJECTURE FOR CURVES ON TORIC SURFACES WITH TWO P-FIBRATIONS 75

Similarly, if ¢; < e;, then there exists no integer in the half-open interval
(y(C’j+1,x —fo——f)+LylCjxz—fo—-— fj_l)]. Therefore, our lemma
is clear. g

A similar lemma holds for the opposite side of the lattice polytope.

Lemma 5.19. Assume that C.Dg_1 > 1. Let 2’ be an integer with =’ <
Z?;;O“Fl z;Co.D;. If &' > fo+ -+ fae1 and Cj.Dgy, = 0 for j = 0,...,n,
then /' (Cr, 2’ — fo— -+ — fa_1) + 1 — an—1 <y (Co,2’') and there is no integer
in the half-open interval (y'(Cp, 2’ — fo — = fa-1) + 1 — an_1,y (Co, 2')] .

Lemma 5.20. Assume that k' —k = fo — 1> 1 and |C — F| is base point free.
Ifn<k—-2and fr=---=fno1=1, thenv, >2 and &, < d— 2.

PROOF. An easy computation shows that C,,_1.F' = C.F'—fo—--+—f,_o =
CF—-—n+1=C,_1.F. Suppose that v, = 1. Since C,.D; = 0 for any inte-
ger 2 < ¢ < dy, by List5.7, C,,_1 must satisfy the properties ¢, 1 < e,_1,
Yv,» =1, Ch_1.Dy, , =1 and Cp—1.D; = 0 for any integer 2 < ¢ < wy,_; — 1.
Since e,_1 > 2, by the same computation as that at the last of the proof of
Lemma5.13, we have Cp,_1.F' > C,,_1.F, a contradiction. One can induce the
same contradiction under the assumption that &, = d — 1. O

Let us consider Assertion 3.2 with respect to a special case:

Lemma 5.21. Assume k' = k+1 > 3, fo = 2 and |C—F| is base point free. Then
Ty, < —2, T¢, > 2 and there exists an integer m with 2 < m < min{—x,,, T¢,}
such that fi == frn_o =1 and f—1 =0.

Proor. Since fy = 2, we have C. Dy, = 0, x,, < =Yy, and xg, > yg,. 1t
follows that z,, < —2 and x¢, > 2. As we saw in the proof of Proposition 5.10
and Lemmab5.12, C.D; and C.Dy_; are positive. By the inequality

d—2
(25) k=Y ;,C.D;
i=2
do—1 d—2 do—1 d—2
= ZyZCDz + Z yZC’DZ S yﬂ leCDl +yﬁ Z J,‘lCDl
i—2 i=do+1 Tvo 55 Teo ;Zgot1

— I (_CF 4+ CD) + 2 (CF — C.D4 1) < (— Do +yﬁ)(k’ -1,

Ty Zgo Tvy e
we obtain
(26) L
Ty,  Tg,
Consider the case where min{—z, ,z¢} = 2. If z,, = —2, we have

Yy, = 1, that is, ¢¢ = 2 by the assumption fo = 2. Hence, by (26), we have
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1/2 < ye,/xe, < 1/(eg — 1), that is, eg = 2. Similarly, one can show ¢y = ey = 2
in the case where x¢, = 2. Therefore, by (B) in List 5.7, we have C1.Dg, > 1 in
this case. Hence the lemma is valid for m = 2.

We assume that mg = min{—x,,,%¢,} > 3. Let us consider the following
operation :

f1 = 0. — We can finish our proof.
We can take Cy. — { fi = 1. — We can take Cy by Lemma 5.20 if k£ > 3. e

fi>2.

f2 = 0. — We can finish our proof.
— { fa =1. - We can take C's by Lemma5.20 if £ > 4. e

fa>2.

— e,

Then, since k = k' — 1> —21C.Dy — 2,,,C.D,,, — 1 > my, it is sufficient to check
that

(i) f; <1if fi=---= fj_1 =1 for an integer j with 1 < j <mg —1,
(ii) especially fio—1 =01if f1 =+ = fino—2 = 1.
(i) Let j be an integer with 1 < j < mg — 1 such that f =--- = f;_1 = 1. By

Lemma 5.20, we can take the auxiliary divisor I;_; of C;_; and a nonsingular
irreducible curve C; € |[Cj_1 — I;_1|. Suppose that f; > 2. Since z,, < —2
and z¢; > 2, we have y(Cj,1) = —y,,/x,, and y'(Cj,1) = y¢, /we,. Hence, by
Lemma5.18 and 5.19,

Yy

Y(Co,j+2) = === (+2) <min{l € Z [ 1 > y(Cj,1) + a1}
Vo
. yl/j
mm{lEZ‘l> +aj_1}aj_1+1,
Ty,
y/(Coj+2) = 22(j+2) <minfl € Z 1> y/(Cy, 1) +j — ;1)
o
:mm{leZ‘l>x—+]—aj1}:j—aj1+1.
&

These inequalities imply that —y,, /%y, + Ye, /Te, < 1, a contradiction. We thus
obtain f; < 1.

(ii) Conmsidering y(Co,mo — 1), y(Cmy—2,0), ¥’ (Co,mo — 1) and y'(Cpyy—2,0),
Lemma5.18 and 5.19 implies that

(27) <am0_3, fzﬂ(mo - 1)} NZ =0,

Yo

<m0 -2 — Qpy—3, !Z%(mo - 1):| NZ= @
0
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Note that z,, < —y., and x¢, > yg, by the assumption fo = 2. In the case where
Moy = —Zy,, We obtain auy,,—3 = 4y, — 1 by the first equality of (27). Since

Yvmg—2

(y(0m0—27 1) + O‘mo—37y(005m0)} NZ= <_ + Yvy — layV0:| NZ = ®7

Lvmg—2
we have yl,mo_z/xl,mo_2 = —1, that is, ¢;,—2 = 1. On the other hand, since
(¥ (Crmg—2,1) + Mo — 2 — -3,y (Co, mo)| N Z

y mqo—
== <€02 - xl/o - yl/() - 1,y50xl/0:| mZ = ®7
Lpmy—2 T,

we have e, ,/%e, , > 1. Indeed, if ye, ,/7¢, , < 1, then we have
—YeoTuy/Tey < —Tuy — Yoy, Which contradicts (26). Hence we obtain e, ,_2 = 1.
Therefore, we can conclude that C,,,—1.Dg4, > 1 by (B) in List 5.7, which means
that f,—1 = 0. In the case where mo = x¢,, we obtain a;,—3 = T¢, — yg, — 1
by the second equality of (27). Since

Yvmg -
(Y(Crmg—2, 1)+my—3,y(Co, mo)|NZ = (—£+x€0 — e, —1, —%x&)] NZ =190,
me,O—Q a:yo
we have y,,, ./, , > —1. Indeed, if y,,, /7y, , < —1, then we have
—YuoZeo /Tuy < Tgy — Yo, Which contradicts (26). We thus have ¢py—2 = 1. On
the other hand, since

Yemo—2

(y/(Cmo—Za 1)+m07270‘m0—3a y/(cﬂva)]mZ - (Ig
mg—2

+Yeo Lyﬁo] NZ= Q]’

we have ygmo_z/xgmo_z =1, that is, e,,,—2 = 1. Consequently, we have f,,,—1 =0
in this case also. g

In keeping with the Lemma5.21, let us show Assertion 3.2.
Proposition 5.22. For the curve C, Assertion 3.2 is true.

ProOF. First, if K = 2 and C1.F' > C1.F (resp. C1.F' = C}.F), then the
statement is obviously true for mo = 1 (resp. mo = 2). Hence we assume that
k> 3.

Consider the case where fy < 1. Since

CL.F —Cl.F=CF —IpF —CF+IpF=k —fo—k+1>2— fy>1,

the lemma is valid for mg = 1 in this case.

Let us consider the case where fo = 2. If ¥ > k + 2, then we have
C1.F' > C1.F + 1, and can finish the proof. On the other hand, in the case
where k¥ = k + 1, the lemma is valid for mg = m, where m is the integer in
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Lemma 5.21. Indeed, this is clear in the case where C,,_1.F = 1. If C,,,_1.F > 2,
then we can take the auxiliary divisor I,,_1 of C,,_1 and a nonsingular irre-
ducible curve Cy, € |Cyi—1 — In—1| by Lemma5.20. Since f,,—1 = 0, we obtain
Cn.F'>C,,.F+1.

From now on, we assume that fy > 3. Since z,, < —2y,, and z¢, > 2ye,,
we have k' > k + 2 by the same computation as (25). We put a = Z?igl y;C.D;
and b= Y02 4C.D;.
(i) Consider the case where fo > 3 and &’ = k + 2. Then we have

do—1 do—1

Yuo 1 K —-CDy k+2-C.D;
< == OCD; < —— C.D; = = )
a_x,,();x 00_1;:5 co—1 co—1
d—2 do—1
1 k' —C.Dgy_ k+2—-C.Dgy_
b < yﬁ Z z;,C.D; < Z z;,C.D; = -1 = + d 1.
Te, < eg — 1 & ep— 1 eg — 1
1=do+1 1=2

Here we note that C.D; = 1. Indeed, if C.D; > 2 and k is even (resp. odd), then
we have a < k/2 and b < k/2 (resp. a < (k—1)/2 and b < (k + 1)/2), which
contradicts the equality k = a + b. Similarly, one can obtain C.Dy_; = 1. If
co > 4, then we have

1 (=39,
a < E (k-25)7

which contradicts that k = a4+ b and b < (k4 1)/2. We thus have ¢y = 3.
Similarly, one can obtain eg = 3. In sum, we have f; = 0 by (B) in List 5.7, and
moreover

Cl.FI:C.F/—Io.F/:C.F+2—f0:C.F—].:Cl.F.

Since C1.F = k—1 > 2, we can take the auxiliary divisor I; of C'; and a nonsingu-
lar irreducible curve Cy € |Cy —1I1| by Lemma5.20. Then we obtain Co.F’ > C5.F
by f1 = 0. Therefore, the lemma is valid for my = 2 in this case.

(ii) Consider the case where fy > 3 and k' > k + 3. If fy = 3, then we have

C\.F' =C.F —3>C.F=0C.F+1.
Assume that fy > 4 and @ > b. Then we have

Ci.F=CF-1=a+b—-1<2a-1
I/ofl
=2 5C.D; + 2y, (C.Dyy — 1) + 2y, — 1,
=2
CL.F' = C.F' — f,
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do—1

= — inC.Di—fO ZC.Dl—Zﬂa—fo > 1—|—(f0—1)a—f0
i=1 Yo
vo—1
= (fo=1) Y %C.Di+ (fo— Doy (C.Dyy — 1) + (fo — 1)(yw, — 1)
=2

We thus obtain C1.F’ > C.F if y,, > 2. If y,,, = 1, then by noting k > 3, we have
the inequality Y 7%, v;C.D; > 2. Hence, in this case, either ;’i;l y;C.D; > 1
or C.D,, > 2 holds, which implies that C;.F’ > C;.F. Similarly, one can obtain
the same inequality in the case where fy > 4 and a < b. Therefore, the lemma is
valid for mg = 1 in this case. O

Proposition 5.23. For the curve C, Assertion 3.3 is true.

PROOF. Let j be an integer with 1 < j < min{mg, k—1}. If f;_1 = 0 (resp.
fj—1 > 1 and C;_; satisfies (a) or (b) in Lemma5.11), then the statement follows
from Lemmab5.14 (resp. Lemma 5.13).

Consider the case where f;_1 > 1 and C;_; satisfies neither (a) nor (b).
Note that H*(S,—1;_1) = 0 by Proposition5.9 and (C; — I;_1)|c, is nonspecial
by Lemma5.12. Besides, a similar computation to (14) shows that also Cj|c,
is nonspecial. Hence we see that the statement of our lemma is equivalent to
the inequality C;.1;_1 > C;.F + 1 by the same argument as that in the proof of
Proposition 4.20. Let ¢; 1 be an integer such that (z,,_,,%,,_,) = (ej_1—¢;j_1,1).
For the auxiliary divisor I;_; = 2?21 q;D; + F', we have q,,_, = fj—1 > 1. Since
C;j.D,;_, > 1 by List 5.7, we have

Cjli—1 > Cj.(q,;_,D +F)>C;.F'+1>C;.F +1.

Lj—1
The above argument all goes through for j =1 if C.F' = C.F = 2. O
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