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Abstract

The gonality is an important invariant for the study of linear systems on a

curve. Although it is not so easy to determine the gonality of a given curve, the

gonality conjecture posed by Green and Lazarsfeld predicts that the gonality could

be read off from the minimal resolution of any one line bundle of sufficiently large

degree. In this paper, we consider this conjecture for a curve embedded in a toric

surface which has two P1-fibrations by toric morphisms, and prove it affirmatively

under several conditions.

1. Introduction

As mentioned in Abstract, the aim of this paper is to show the gonality con-
jecture (Conjecture 1.2) under certain conditions. First of all, in this section, we
would like to roughly review the background and preliminary results for gonality
and the gonality conjecture. Our main theorem will be stated at the end of this
section.

In this paper, a curve will always mean a nonsingular irreducible complex
projective curve unless otherwise stated. We denote by g1

k a 1-dimensional linear
system of degree k on a curve. For a curve C, the gonality is defined to be the
minimal degree of surjective morphisms from C to P

1 :

gon(C) = min{degf | f : C → P
1 surjective morphism} = min{k | C has g1

k}.
It is known that the gonality of a nonsingular plane curve of degree d (≥ 2) is
equal to d − 1 ([11]). Coppens and Kato generalized this result to the case of
singular plane curves in [2]. They computed the gonality of the normalization of
a plane curve with double points under several numerical conditions on its degree
and the number of singular points. Recently, more general cases were investigated
by Ohkouchi and Sakai ([13]). Besides, in [9], Martens determined the gonality
of a nonsingular curve lying on a Hirzebruch surface.

On the other hand, there exists a close relation between the theory of syzy-
gies and geometric properties of a projective variety. In particular, the gonality

2000 Mathematics Subject Classification. Primary 14H51; Secondary 14M25.
Key words and phrases. The gonality conjecture, toric surfaces



36 R. Kawaguchi

conjecture (Conjecture 1.2) suggested by Green and Lazarsfeld in [7] predicted
the interaction between the gonality of a curve and the syzygies defined by a
line bundle on the curve. For a projective variety X, a line bundle L on X and
a coherent sheaf F on X, we denote by Kp,q(X,F , L) the Koszul cohomology,
which is introduced by Green in [5] as the cohomology of the Koszul complex

p+1∧
H0(X, L) ⊗ H0(X,F ⊗ (q − 1)L) →

p∧
H0(X, L) ⊗ H0(X,F ⊗ qL)

→
p−1∧

H0(X, L) ⊗ H0(X,F ⊗ (q + 1)L).

For simplicity, if F = OX , we suppress it and write Kp,q(X, L). It is known
that there exists the following relation between the Koszul cohomology and the
syzygies :

Theorem 1.1 ([5]). Let X and L be as above. Denote by S the symmetric alge-
bra of H0(X, L), and consider the minimal free resolution of a graded S-module
as

· · · → ⊕
q≥q2

S(−q) ⊗ M2,q → ⊕
q≥q1

S(−q) ⊗ M1,q → ⊕
q≥q0

S(−q) ⊗ M0,q

→
∞⊕

q=0
H0(X, qL) → 0.

Then Kp,q(X, L) is isomorphic to Mp,p+q as a complex vector space.

Conjecture 1.2 ([7]). Let C be a curve of genus g and L a line bundle on C

of sufficiently large degree compared to 2g. Then Kp,1(C, L) = 0 for any integer
p ≥ h0(C, L) − gon(C).

This conjecture means that we can read off the gonality of a curve from the
minimal resolution of any one line bundle of sufficiently large degree. For the
cases where gon(C) = 1, 2, Green has shown this conjecture affirmatively in [5].
The case where gon(C) = 3 has been done by Ehbauer ([4]). As for curves on a
Hirzebruch surface Σa, Aprodu showed it, and computed their gonality indepen-
dently of Martens’ result ([1]). In his proof, the following Theorem 1.4 played an
essential role.

Definition 1.3. Let L be a line bundle on a curve C, and q a non-negative inte-
ger. We say that L satisfies the property (Mq) if Kp,1(C, L) = 0 for any integer
p ≥ h0(C, L) − q − 1.

Theorem 1.4 ([1]). Let C be an irrational curve which has a g1
k. If there is a

nonspecial and globally generated line bundle L on C with the property (Mk−1),
then C is k-gonal, and the gonality conjecture is true for C.
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Recall that a toric surface has a finite number of P1-fibrations by toric mor-
phisms, and Hirzebruch surfaces are the simplest examples of toric surfaces which
have one or two such P1-fibrations. In the wake of Aprodu’s result, we proved the
gonality conjecture for curves lying on a toric surface with a unique P1-fibration
([8]). This is an extension of Aprodu’s result for Σa with a ≥ 1. Therefore,
it is a valid question to ask whether we can generalize Aprodu’s result for the
case a = 0, that is, whether the gonality conjecture is true for the cruves on a
toric surface with two P1-fibrations. In this paper, we shall show the following
theorem :

Theorem 1.5 (Main theorem). Let S be a compact nonsingular toric sur-
face which has two P1-fibrations f and f ′ by toric morphisms, and C an irra-
tional curve on S. If 2 ≤ degf |C < degf ′|C and |C − F | is base point free
(where F denotes the fiber of f), then the gonality conjecture is true for C and
gon(C) = degf |C .

In Section 2, we introduce toric surfaces which are the main stage of our
study, and collect basic facts about them. In Section 3, we will see the main idea
to prove the main theorem. Although a key point of the proof is the existence
of a certain divisor called an auxiliary divisor, we do not mention its concrete
construction at all. Instead, we spend Section 4 and 5 to construct an auxiliary
divisor. In these two sections, we will treat essentially different cases. We close
this section with some basics of Koszul cohomology, which are essential for our
study.

Theorem 1.6 ([1]). Let X be a nonsingular projective variety, L a line bundle
on X and Y ∈ |L| an irreducible divisor on X. If the irregularity of X is zero,
then Kp,1(X, L) � Kp,1(Y, L|Y ) for any integer p.

Theorem 1.7 ([5]). Let L be a line bundle on a curve C and put m = dimϕ|L|(C).
Then L satisfies (Mm−1).

Theorem 1.8 ([1]). Let C be an irrational curve, L a nonspecial and globally
generated line bundle on C, and q a non-negative integer such that L satisfies
(Mq). Then, for any effective divisor D on C, also L + D satisfies (Mq).

2. Summary of toric surfaces

In this section, we briefly review the theory of toric surfaces. It has the close
connection with the geometry of convex polytopes in the real affine space. Many
basic properties of toric varieties and divisors on them can be interpreted in terms
of the elementary convex geometry.

We will henceforth assume that a surface is always compact and nonsingular.
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At first, it is a basic fact that a toric surface is obtained from the projective plane
or a Hirzebruch surface by a finite succession of blowing-ups with T -fixed points
(i.e. points which are invariant with respect to the action on a toric surface by the
algebraic torus T ) as centers. A composite of such blowing-ups is called a toric
morphism. For a toric surface (except for the projective plane), a P1-fibration
obtained by composing a toric morphism and a ruling of the Hirzebruch surface
is called a toric ruling. Naturally, a toric surface has a finite number of toric
rulings.

In the present paper, we consider a toric surface S with two toric rulings. In
this case, the fan ΔS associated to S has two lines passing through the origin.
For each half-line (which is called a cone) in ΔS , a lattice point on it is called a
primitive element if it is closest to the origin. We denote by D1 the T -invariant
divisor whose associated cone has a primitive element (0, 1) and number other
cones in ΔS clockwise. In particular, we set Dd0 if its associated cone has a
primitive element (0,−1) (see Fig. 1). We denote by σ(Di) the cone associated

σ(D1) σ(D2)

σ(D3)

σ(Dd)

σ(Dd0)

Figure 1

to T -invariant divisor Di and by (xi, yi) the primitive element of σ(Di). We
set D0 = Dd and Dd+1 = D1 formally. Then the self-intersection numbers of
T -invariant divisors are computed by the following formula.

Theorem 2.1 ([12]). For any integer i with 1 ≤ i ≤ d, two equalities xiD
2
i =

−xi−1 − xi+1 and yiD
2
i = −yi−1 − yi+1 hold.

The Picard group of S is generated (not freely) by the classes of D1, . . . , Dd.
For instance, the canonical divisor of S has the relation KS ∼ −∑d

i=1 Di. Be-
sides, the fibers of two toric rulings can be written as

F1 ∼
d0−1∑
i=2

xiDi ∼ −
d∑

i=d0+1

xiDi

F2 ∼ Dd0 ∼
d0−2∑
i=1

yiDi +
d∑

i=d0+2

yiDi.
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We denote by f1 (resp. f2) the toric ruling of S whose fiber is F1 (resp. F2).
Next we collect several basic properties of divisors on a toric surface. In the

remaining part of this section, let D be a divisor on S. In the case where the
complete linear system |D| is base point free, we have the following two results.

Theorem 2.2 ([12]). If |D| is base point free, then hi(S, D) = 0 for any positive
integer i.

Theorem 2.3 ([10]). The complete linear system |D| is base point free if and
only if D has a non-negative intersection number with every T -invariant divisor
on S.

Let �D be a lattice polytope associated to D =
∑d

i=1 niDi, that is, we define

�D = {(z, w) ∈ R
2 | xiz + yiw ≤ ni for 1 ≤ i ≤ d }.

Although this definition depends on the description of the linear equivalence class
of D, differences of the description cause only parallel translations of �D. Hence
the shape of the lattice polytope is determined uniquely. We write the lines which
form the boundaries of �D as

li(D) = {(z, w) ∈ R
2 | xiz + yiw = ni}.

We can read off the dimension of cohomology group of D from the number of
lattice points contained in �D :

Theorem 2.4 ([12]). The equation h0(S, D) = �(�D ∩ Z2) holds. In particular,
for a curve C on S, its genus is equal to the number of the lattice points contained
in the interior of �C .

Proposition 2.5. Let C be a curve on S and assume that C.F1, C.F2 ≥ 2. If
either |C − F1| or |C − F2| is base point free, then C is irrational.

Proof. We prove the case where Bs|C − F1| = ∅. By Theorem2.4, it
is sufficient to verify that there exists at least one lattice point in the inte-
rior of �C . We first note that our assumption and Theorem 2.3 imply that
(C − F1).D1 = C.D1 − 1 ≥ 0. Considering the construction of �C , in the
case where C.D1 ≥ 2, we see that the lattice point l1(C) ∩ l2(C) + (−1,−1)
is contained in the interior of �C . In the case where C.D1 = 1, we put
a = min{i ≥ 2 | C.Di ≥ 1} and b = max{i ≤ d | C.Di ≥ 1}. The inequal-
ity

C.F2 = 1 +
d0−2∑
i=2

yiC.Di +
d∑

i=d0+2

yiC.Di ≥ 2

implies that either a ≤ d0 − 2 or b ≥ d0 + 2 holds. We see that the lattice point
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l1(C)∩ l2(C) + (0,−1) (resp. l1(C)∩ ld(C) + (0,−1)) is contained in the interior
of �C if a ≤ d0 − 2 (resp. b ≥ d0 + 2). �

3. Outline of the proof

In order to prove Theorem 1.5, we need to introduce a certain divisor de-
fined with respect to a given curve, which is called an auxiliary divisor. Its
construction is, however, very complicated. Hence, in this section, we admit the
existence of auxiliary divisors satisfying Assertion 3.1–3.3 below, and will prove
Theorem 1.5. We postpone their precise construction to Section 4 (the case where
degf1|C ≤ degf2|C) and Section 5 (the case where degf1|C ≥ degf2|C).

Let S be a toric surface as in Section 2, and C a curve on S. We denote by
F and F ′ the fibers of two toric rulings of S, and put k = C.F and k′ = C.F ′.

Assertion 3.1. Assume that k′ ≥ k ≥ 2 and |C − F | is base point free. Then
there exists an effective divisor IC satisfying the following properties (i)–(vi) :

(i) IC .F = 1,

(ii) H1(S,−IC) = 0,

(iii) The complete linear systems |C − IC | and |C − IC − F | are base point free,

(iv) (C − IC)2 ≥ 1,

(v) (C − IC)|C is nonspecial,

(vi) Kp,1(S, C − IC) = 0 holds for any integer p ≥ h0(S, C − IC) − 2.

We call IC the auxiliary divisor of C. By the properties (iii) and (iv), we can
take a nonsingular irreducible curve C1 ∈ |C − IC |. If Cj .F

′ ≥ Cj .F ≥ 2, we can
take inductively

Ij : the auxiliary divisor of Cj ,

Cj+1 : a nonsingular irreducible curve in |Cj − Ij |
for a positive integer j. We put C0 = C and I0 = IC . In this section, we admit
the following two assertions.

Assertion 3.2. Assume that k′ > k ≥ 2 and |C − F | is base point free. There
exists a positive integer m0 ≤ k such that Cj .F

′ = Cj .F for j = 1, . . . , m0 − 1,
and moreover, the inequality Cm0 .F

′ > Cm0 .F holds if m0 ≤ k − 1.

Assertion 3.3. Assume that k′ > k ≥ 2 and |C − F | is base point free, and let
m0 be a positive integer in Assertion 3.2. Then the inequality

h0(S, Cj) − h0(S, Cj − Ij−1) ≥ Cj .F + 2
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holds for any integer j with 1 ≤ j ≤ min{m0, k− 1}. Besides, if k′ = k = 2, then
this inequality holds for j = 1.

We have the following lemma, which can be shown by the same argument as
in the proof of Lemma 2.3 in [8].

Lemma 3.4. The isomorphism Kp,1(S, C − IC) � Kp,1(C, (C − IC)|C) holds for
any integer p ≥ h0(S, C − 2IC) + 1.

Theorem 1.5 follows immediately from the following proposition and Theo-
rem 1.4.

Proposition 3.5. Assume that C is irrational, k′ > k ≥ 2 and |C − F | is base
point free. If Assertion 3.1–3.3 hold, then OC(C) satisfies the property (Mk−1).

Proof. We first show the case where k = 2. By Assertion 3.1 and
Lemma 3.4, we see that Kp,1(C, C1|C) = 0 for any integer p ≥ max{h0(S, C1) −
2, h0(S, C1−I0)+1}. Hence, by combining this fact with Assertion 3.3, we see that
Kp,1(C, C1|C) = 0 for any integer p ≥ h0(S, C1)− 2. The short exact sequence of
sheaves 0 → OS(−I0) → OS(C1) → OC(C1) → 0 induces the cohomology long
exact sequence

0 → H0(S,−I0) → H0(S, C1) → H0(C, C1|C) → H1(S,−I0) → · · · .

Since H0(S,−I0) = H1(S,−I0) = 0, we have h0(S, C1) = h0(C, C1|C). In sum,
we can conclude that Kp,1(C, C1|C) = 0 for any integer p ≥ h0(C, C1|C)−2, that
is, OC(C1) satisfies (M1). Note that OC(C1) is nonspecial and globally gener-
ated by Assertion 3.1. Hence Theorem 1.8 implies that also OC(C) satisfies (M1).
Here we note that in fact this lemma holds in the case where k′ = k = 2 also.
Indeed, for such case, we can develop the same argument as above by using the
latter part of Assertion 3.3.

We next consider the case where k ≥ 3 under the assumption that our propo-
sition is valid for a curve C ′ on S if C ′.F ≤ k − 1, C ′.F ′ > C ′.F ≥ 2 and
Bs|C ′ − F | = ∅. For C, let m0 be a positive integer as in Assertion 3.2. If
m0 ≤ k − 2, then 2 ≤ Cm0 .F ≤ k − 1. Since |Cm0 − F | is base point free by As-
sertion 3.1, we see that OCm0

(Cm0) satisfies (MCm0 .F−1) by the hypothesis of our
induction. Consider the case where m0 ≥ k− 1. We have Ck−2.F

′ = Ck−2.F = 2
by the property of m0. Since |Ck−2 − F | is base point free by Assertion 3.1, we
see that OCk−2(Ck−2) satisfies (M1). In sum, in any case, we can conclude that
there is an integer m ≤ k−2 such that OCm

(Cm) satisfies (MCm.F−1). Note that
C0, . . . , Cm are irrational by Proposition 2.5 and (iii) in Assertion 3.1.

By Theorem 1.6, we have Kp,1(Cm, Cm|Cm
) � Kp,1(S, Cm) for any integer p.

On the other hand, the short exact sequence of sheaves 0 → OS → OS(Cm) →
OCm

(Cm) → 0 induces the cohomology long exact sequence
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0 → H0(S,OS) → H0(S, Cm) → H0(Cm, Cm|Cm
) → H1(S,OS) → · · · .(1)

Since H0(S,OS) = C and H1(S,OS) = 0, we obtain h0(Cm, Cm|Cm
) =

h0(S, Cm) − 1. Hence the vanishing Kp,1(S, Cm) = 0 holds for any integer
p ≥ h0(S, Cm) − Cm.F − 1. Then by the same argument as in the case where
k = 2, one can show that OCm−1(Cm−1) satisfies (MCm−1.F−1). We can induc-
tively verify that OCj

(Cj) satisfies (MCj .F−1) for integers 0 ≤ j ≤ m − 2. The
case where j = 0 is the statement of our proposition. �

4. The case where degf1|C ≤ degf2|C
Let S be a toric surface defined in Section 2, and C a curve on S. In this

section, we consider the case where degf1|C ≤ degf2|C , that is, C.F1 ≤ C.F2. We
put F = F1 and F ′ = F2. The aim of this section is to construct a divisor which
satisfies Assertion 3.1–3.3.

4.1 Division of the primitive element
First of all, we remark a basic fact about primitive elements of cones.

Fact 4.1. Let i be an integer with 2 ≤ i ≤ d0 − 1, and define c = min{c′ ∈ Z |
c′xi−yi ≥ 0}. Then there is an integer r with 2 ≤ r ≤ i such that (xr, yr) = (1, c).
In particular, if xi ≥ 2, then r ≤ i−1 and there exists a pair of integers (s, t) with
r ≤ s < i < t ≤ d0 − 1 such that (xi, yi) = (xs, ys) + (xt, yt) and xtys − ytxs = 1.

Remark 4.2. Let i be an integer with 2 ≤ i ≤ d0 − 1. If xi ≥ 2, then d0 ≥ 5,
3 ≤ i ≤ d0 − 2, and moreover, the equality c = min{c′ ∈ Z | c′xs − ys ≥ 0} holds
in Fact 4.1.

The following lemma gives us more detailed properties of the above division.

Lemma 4.3. For an integer i with 3 ≤ i ≤ d0−2 such that xi ≥ 2, the pair (s, t)
in Fact 4.1 is uniquely determined. If xs ≥ 2, then we can divide (xs, ys) into the
sum of primitive elements as

(xs, ys) = (xu, yu) + (xv, yv) (r ≤ u < s < v ≤ d0 − 1, xvyu − yvxu = 1)

by Fact 4.1. Then the inequality v ≥ t holds.

Proof. Assume that r ≤ s < i < t ≤ d0 − 1, r ≤ s′ < i < t′ ≤ d0 − 1,

(xi, yi) = (xs, ys) + (xt, yt) = (xs′ , ys′) + (xt′ , yt′)

and xtys − ytxs = xt′ys′ − yt′xs′ = 1. We put x = xt′ −xt and y = yt′ − yt. Since
xtyi − ytxi = xt′yi − yt′xi = 1, we have xiy− yix = 0. Hence there exists an inte-
ger n such that x = nxi and y = nyi. We thus have xi = xs +xt = xs +xt′ −nxi,
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which implies n ≥ 0. Similarly, the equation xi = xs′+xt′ = xs′+nxi+xt′ implies
n ≤ 0. Hence we have n = 0, that is, (xs′ , ys′) = (xs, ys) and (xt′ , yt′) = (xt, yt).

Next we will show the latter part of the lemma. We put x′ = xt − xv and
y′ = yt − yv. Since x′ys − y′xs = 0, there exists an integer m such that x′ = mxs

and y′ = mys. Then the equation xs = xu + xv = xu + xt − mxs implies m ≥ 0.
Hence we have xvyt − yvxt = xvy′ − yvx′ = m ≥ 0, which means v ≥ t. �

4.2 The auxiliary divisor
Let S, C, F and F ′ be as above, and put k = C.F and k′ = C.F ′. If k ≥ 1,

we define

λ = max{i ≤ d0 − 1 | C.Di ≥ 1},
μ = min{i ≥ d0 + 1 | C.Di ≥ 1},
c0 = min{c ∈ Z | cxλ − yλ ≥ 0},
e0 = −max{e ∈ Z | exμ − yμ ≥ 0}.

If xλ ≥ 2, then by Fact 4.1 and Lemma 4.3, we can divide primitive elements
repeatedly as

(xλ, yλ) = (xs1 , ys1) + nα1(xα1 , yα1), xα1ys1 − yα1xs1

= 1 (s1 < λ < α1 < d0 − 1) ,

(xs1 , ys1) = (xs2 , ys2) + nα2(xα2 , yα2), xα2ys2 − yα2xs2

= 1 (s2 < s1, α1 < α2 < d0 − 1) ,

...

(xsa0−1 , ysa0−1) = (1, c0) + nαa0
(xαa0

, yαa0
), xαa0

c0 − yαa0

= 1 (αa0−1 < αa0 ≤ d0 − 1) .

On the other hand, in the case where xλ = 1, it is obvious that the equation
(xλ, yλ) = (1, c0) holds. Consequently, we obtain the unique division

(xλ, yλ) = (1, c0) + nα1(xα1 , yα1) + · · · + nαa0
(xαa0

, yαa0
),(2)

where λ < α1 < · · · < αa0 ≤ d0 − 1. Considering the definition of the division
and Fact 4.1, one can obtain the equality

xαa

(
c0 +

a0∑
j=a+1

nαj
yαj

)
− yαa

(
1 +

a0∑
j=a+1

nαj
xαj

)
= 1(3)

for each integer 1 ≤ a ≤ a0.
Similarly, we can divide

(xμ, yμ) = (−1, e0) + nβ1(xβ1 , yβ1) + · · · + nβb0
(xβb0

, yβb0
),(4)
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where d0 + 1 ≤ β1 < · · · < βb0 < μ. The equality

(
− 1 +

b−1∑
j=1

mβj
xβj

)
yβb

−
(

e0 +
b−1∑
j=1

mβj
yβj

)
xβb

= 1(5)

holds for each integer 1 ≤ b ≤ b0.

Definition 4.4. Let C be a curve on S such that k ≥ 1, and set ni = 0 for
integers λ + 1 ≤ i ≤ d0 except for i = α1, . . . , αa0 and mi = 0 for integers
d0 + 1 ≤ i ≤ μ − 1 except for i = β1, . . . , βb0 . We define the auxiliary divisor
IC =

∑d
i=1 piDi of C as follows :

pi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 (1 ≤ i ≤ λ, μ ≤ i ≤ d),

xi

(
c0+

d0−1∑
j=i+1

njyj

)
+yi

(
− 1−

d0−1∑
j=i+1

njxj

)
(λ + 1 ≤ i ≤ d0),

xi

(
− e0−

i−1∑
j=d0+1

mjyj

)
+yi

(
− 1+

i−1∑
j=d0+1

mjxj

)
(d0 + 1 ≤ i ≤ μ − 1).

We note that (3), (5) and an easy computation imply that pi = 1 for
i = α1, . . . , αa0 , d0, β1, . . . , βb0 . Besides, it is obvious that IC .F = 1 by definition.
The rest of this subsection is devoted to verify that IC satisfies Assertion 3.1.

Proposition 4.5. The divisor IC is effective.

Proof. Let i1 be an integer with λ+1 ≤ i1 ≤ d0−1. Since xλyi−yλxi < 0
for any integer i with λ + 1 ≤ i ≤ d0 − 1, we have

xλ

(
c0+

d0−1∑
i=i1+1

niyi

)
−yλ

(
1+

d0−1∑
i=i1+1

nixi

)

=xλ

(
c0+

d0−1∑
i=λ+1

niyi

)
−yλ

(
1+

d0−1∑
i=λ+1

nixi

)
−

i1∑
i=λ+1

ni(xλyi−yλxi) ≥ xλyλ−yλxλ =0.

Hence we have the inequalities

yi1

xi1

<
yλ

xλ
≤ c0 +

∑d0−1
i=i1+1 niyi

1 +
∑d0−1

i=i1+1 nixi

,

which implies that pi1 > 0. Let i2 be an integer with d0 + 1 ≤ i2 ≤ μ − 1. Then
the inequality

xμ

(
e0 +

i2−1∑
i=d0+1

miyi

)
+ yμ

(
1−

i2−1∑
i=d0+1

mixi

)
=xμyμ − yμxμ−

μ−1∑
i=i2

mi(xμyi − yμxi) ≤ 0
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implies that

yi2

xi2

>
yμ

xμ
≥ −e0 −

∑i2−1
i=d0+1 miyi

1 −∑i2−1
i=d0+1 mixi

.

We thus obtain pi2 > 0. �

Proposition 4.6. The complete linear system |C − IC | is base point free.

Proof. We put H = C − IC . By Theorem 2.3, it is sufficient to verify that
H.Di ≥ 0 for each integer 1 ≤ i ≤ d. For an integer i with 1 ≤ i ≤ λ − 1 or
μ + 1 ≤ i ≤ d, since IC .Di = 0, we have H.Di = C.Di ≥ 0. For λ, we have

IC .Dλ= pλ+1 = xλ+1

(
c0 +

d0−1∑
i=λ+2

niyi

)
+ yλ+1

(
− 1 −

d0−1∑
i=λ+2

nixi

)

= xλ+1

(
c0 +

d0−1∑
i=λ+1

niyi

)
+yλ+1

(
− 1 −

d0−1∑
i=λ+1

nixi

)
= xλ+1yλ − yλ+1xλ = 1

and H.Dλ = C.Dλ − 1 ≥ 0.
For the case where i = d0, since (c0 − 1)xλ0 < yλ0 , (e0 − 1)xμ0 < −yμ0 and

D2
d0

= 0, easy computations give

C.Dd0 = C.

( d0−2∑
i=1

yiDi+
d∑

i=d0+2

yiDi

)
(6)

≥ C.(D1 + yλ0Dλ0 + yμ0Dμ0) ≥ C.D1 + c0 + e0,

IC .Dd0 =

⎧⎪⎪⎨
⎪⎪⎩

c0 + e0 (λ + 2 ≤ d0 ≤ μ − 2),
c0 (λ + 2 ≤ d0 = μ − 1),
e0 (λ + 1 = d0 ≤ μ − 2),
0 (λ + 1 = d0 = μ − 1).

Hence we have H.Dd0 ≥ 0.
We next consider the case where i = λ + 1. Since the case where i = d0 was

already checked, we assume that λ + 1 < d0. By Theorem 2.1, we have

IC .Dλ+1= pλ+1D
2
λ+1 + pλ+2(7)

= −(xλ + xλ+2)
(

c0 +
d0−1∑

i=λ+2

niyi

)
+ (yλ + yλ+2)

(
1 +

d0−1∑
i=λ+2

nixi

)

+ xλ+2

(
c0 +

d0−1∑
i=λ+3

niyi

)
− yλ+2

(
1 +

d0−1∑
i=λ+3

nixi

)

= −xλ

(
c0 +

d0−1∑
i=λ+1

niyi

)
+ yλ

(
1 +

d0−1∑
i=λ+1

nixi

)
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+ nλ+1(xλyλ+1 − yλxλ+1)

= −nλ+1.

Namely, we have H.Dλ+1 ≥ 0. For an integer i with λ + 2 ≤ i ≤ d0 − 1, we have
IC .Di = −ni by a computation similar to (7).

Let us consider the case where i = μ. If μ ≥ d0 + 2, then we have

IC .Dμ = pμ−1 = xμ−1

(
− e0 −

μ−2∑
j=d0+1

mjyj

)
+ yμ−1

(
− 1 +

μ−2∑
j=d0+1

mjxj

)

= −xμ−1yμ + yμ−1xμ = 1.

If μ = d0 +1, then we have IC .Dμ = pd0 = 1. Hence we have H.Dμ = C.Dμ−1 ≥
0.

Consider the case where i = d0 + 1 under the assumption that d0 + 1 �= μ. If
μ ≥ d0 + 3, then

IC .Dd0+1

= 1 − e0xd0+1D
2
d0+1 + xd0+2(−e0 − md0+1yd0+1) + yd0+2(−1 + md0+1xd0+1)

= 1 + e0xd0 − md0+1 − yd0+2 = −md0+1.

If μ = d0+2, then we have e0 = 1 and md0+1 = −xd0+2−1 by definition. We thus
have IC .Dd0+1 = pd0 + pd0+1D

2
d0+1 = 1 − xd0+1D

2
d0+1 = −md0+1. Hence, in any

case, the inequality H.Dd0+1 ≥ 0 holds. Let i be an integer with d0+2 ≤ i ≤ μ−2.
Then we have IC .Di = −mi and H.Di ≥ 0 by computing similarly to (7).

Lastly, let us check the case where i = μ − 1. Since the cases of d0 and
d0 + 1 were already checked, we assume that μ − 1 ≥ d0 + 2. Then we have
IC .Dμ−1 = −mμ−1 by computing. Namely, we have H.Dμ−1 ≥ 0. �

We list the intersection numbers of IC and the T -invariant divisors for the
later use.

IC .Di =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ni (i = α1, . . . , αa0),
1 (i = λ, μ),

−mi (i = β1, . . . , βb0),
c0 + e0 (i = d0),

0 (otherwise).

(8)

Proposition 4.7. If |C − F | is base point free, then also |C − IC − F | is base
point free.

Proof. Since

(C − IC − F ).Di =
{

(C − IC).Di − 1 (i = 1, d0),
(C − IC).Di ≥ 0 (otherwise),
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it is sufficient to verify that (C − IC).D1 and (C − IC).Dd0 are positive. Since
(C − F ).D1 = C.D1 − 1 ≥ 0 and IC .D1 = 0, we deduce that (C − IC).D1 is
positive. Besides, by an easy computation, we have

(C − IC).Dd0 = (C − IC).
( d0−1∑

i=1

yiDi +
d∑

i=d0+1

yiDi

)
≥ (C − IC).D1 ≥ 1. �

We next check the property (ii) in Assertion 3.1.

Proposition 4.8. The vanishing H1(S,−IC) = 0 holds.

Proof. By Riemann-Roch theorem and Theorem 2.4, we have

h1(S,−IC) = h0(S,−IC) + h0(S, KS + IC) − 1
2
IC .(KS + IC) − 1

= −1
2
IC .(KS + IC) − 1.

Recall the remark after Definition 4.4 and (8). Then

IC .(KS + IC)

= IC .

(
− Dλ +

a0∑
j=1

(pαj
− 1)Dαj

+
b0∑

j=1

(pβj
− 1)Dβj

− Dμ + (pd0 − 1)Dd0

)

= IC .(−Dλ − Dμ) = −2. �

Proposition 4.9. Assume that k ≥ 2 and |C − F | is base point free. Then the
divisor C − IC satisfies the properties (iv)–(vi) in Assertion 3.1.

Proof. (iv) We put H = C − IC and write H ∼ ∑d−1
i=2 hiDi. As we saw

in the Proposition 4.6, |H| is base point free. By computing (using Theorem 2.1
and 2.3), we see that hi is non-negative for each integer 2 ≤ i ≤ d − 1. We have
hd0 = H.F = k − 1 ≥ 1. Hence by (6) and (8), we have

H2 ≥ (C − IC).Dd0 ≥ C.Dd0 − c0 − e0 ≥ C.D1 = (C − F ).D1 + F.D1 ≥ 1.

(v) The short exact sequence of sheaves 0 → OS(−IC) → OS(H) → OC(H) → 0
induces the cohomology long exact sequence

· · · → H1(S, H) → H1(C, H|C) → H2(S,−IC) → · · · .

Since |H| is base point free, we have H1(S, H) = 0 by Theorem 2.2. On the other
hand, since p1 = 0 and pd0 = 1, we have H2(S,−IC) = H0(S, KS + IC) = 0 by
Theorem 2.4. We thus obtain H1(C, H|C) = 0.
(vi) We can take a nonsingular irreducible curve C1 ∈ |H| by (iii), (iv) and
Bertini’s theorem. Then Theorem 1.7 shows that Kp,1(C1, C1|C1) = 0 for any
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integer p ≥ h0(C1, C1|C1) − 1. Considering the cohomology long exact sequence
similar to (1), we obtain h0(C1, C1|C1) = h0(S, C1) − 1. Thus we see that
Kp,1(C1, C1|C1) = 0 for any integer p ≥ h0(S, C1) − 2. On the other hand,
by Theorem 1.6, Kp,1(C1, C1|C1) � Kp,1(S, C1) holds for any integer p. �

The following lemma is necessary to prove Assertion 3.3.

Lemma 4.10. Under the same assumption as in Proposition 4.9, we can take a
nonsingular irreducible curve C1 ∈ |C − IC |. The divisor (C −2IC)|C1 is nonspe-
cial.

This follows from the inequality

deg(C1 − IC)|C1 − 2g1 = C1.(−IC − KS) − 2 ≥ C1.D1 − 2 ≥ −1,

where g1 denotes the genus of C1. Here we used the equalities⎧⎨
⎩

pi = 0 (1 ≤ i ≤ λ, μ ≤ i ≤ d),
pi = 1 (i = α1, · · · , αa0 , d0, β1, . . . , βb0),

C1.Di = 0 (otherwise),

which are obtained by (8) and the mention after Definition 4.4.

4.3 Proof of Assertion 3.2 and 3.3
In order to prove Assertion 3.2 and 3.3 for IC in Definition 4.4, in this sub-

section, we consider the operation to take auxiliary divisors repeatedly.
Let D be a divisor on S such that D.D1 ≥ 1. For an integer y with

0 ≤ y <
∑d0−1

i=1 yiD.Di, we define

i(D, y) = max
{

j ≥ 1
∣∣∣ y <

d0−1∑
i=j

yiD.Di

}
,

x(D, y) =
d0−1∑

i=i(D,y)+1

xiD.Di +
xi(D,y)

yi(D,y)

(
y −

d0−1∑
i=i(D,y)+1

yiD.Di

)
.

Let C be a curve on S such as at the beginning of this section, and k, k′, λ and
μ the integers as in the previous subsection.

Remark 4.11. By definition, we have x(C, 0) = 0 if yν ≥ 1. Besides,
x(C, y) = xλy/yλ if i(C, y) = λ.

Lemma 4.12. Assume that k ≥ 1 and C.D1 ≥ 1. Let y be an integer with
c0 ≤ y <

∑d0−1
i=2 yiC.Di, and define p = min{n ∈ Z | n > x(C − IC , y − c0)}.

Then

x(C − IC , y − c0) + 1 ≤ x(C, y) < p + 1.



THE GONALITY CONJECTURE FOR CURVES ON TORIC SURFACES WITH TWO P
1-FIBRATIONS 49

Proof. (i) We first consider the case where y ≥ yλ. By definition,
i(C, y) ≤ λ and

d0−1∑
i=i(C,y)+1

yiC.Di ≤ y <

d0−1∑
i=i(C,y)

yiC.Di.(9)

By computing, we have

d0−1∑
i=i(C,y)

yi(C − IC).Di =
d0−1∑

i=i(C,y)

yiC.Di − yλIC .Dλ −
a0∑

j=1

yαj
IC .Dαj

=
d0−1∑

i=i(C,y)

yiC.Di − yλ +
a0∑

j=1

nαj
yαj

=
d0−1∑

i=i(C,y)

yiC.Di − c0,

d0−1∑
i=i(C,y)+1

yi(C − IC).Di =

⎧⎪⎨
⎪⎩

yλ − c0 (i(C, y) = λ),
d0−1∑

i=i(C,y)+1

yiC.Di − c0 (i(C, y) ≤ λ − 1).

Hence, by (9) and the assumption y ≥ yλ, we have

d0−1∑
i=i(C,y)+1

yi(C − IC).Di ≤ y − c0 <

d0−1∑
i=i(C,y)

yi(C − IC).Di,

which means that i(C − IC , y − c0) = i(C, y). If i(C, y) = λ, then

x(C − IC , y − c0) = −
d0−1∑

i=λ+1

xiIC .Di +
xλ

yλ

(
y − c0 +

d0−1∑
i=λ+1

yiIC .Di

)

= xλ − 1 +
xλ

yλ
y − xλ = x(C, y) − 1.

If i(C, y) ≤ λ − 1, then

x(C − IC , y − c0) =
d0−1∑

i=i(C,y)+1

xiC.Di − xλ +
a0∑

j=1

nαj
xαj

+
xi(C,y)

yi(C,y)

(
y − c0 −

d0−1∑
i=i(C,y)+1

yiC.Di + yλ −
a0∑

j=1

nαj
yαj

)

=
d0−1∑

i=i(C,y)+1

xiC.Di − 1

+
xi(C,y)

yi(C,y)

(
y −

d0−1∑
i=i(C,y)+1

yiC.Di

)
= x(C, y) − 1.
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We obtain x(C − IC , y − c0) = x(C, y) − 1 in both cases. Therefore, the claim is
trivial.
(ii) We next consider the case where y < yλ. Note that yλ ≥ 1 and i(C, y) = λ

in this case. Since

y − c0 < yλ − c0 =
a0∑

j=1

nαj
yαj

= −
d0−1∑
i=α1

yiIC .Di =
d0−1∑
i=α1

yi(C − IC).Di,

there exists an integer a with 1 ≤ a ≤ a0 such that i(C − IC , y − c0) = αa. Then

x(C − IC , y − c0) =
a0∑

j=a+1

nαj
xαj

+
xαa

yαa

(
y − c0 −

a0∑
j=a+1

nαj
yαj

)

= xλ − 1 −
a−1∑
j=1

nαj
xαj

+
xαa

yαa

(
y − yλ +

a−1∑
j=1

nαj
yαj

)

< xλ − 1 − xλ

yλ

a−1∑
j=1

nαj
yαj

+
xλ

yλ

(
y − yλ +

a−1∑
j=1

nαj
yαj

)

=
xλ

yλ
y − 1 = x(C, y) − 1.

We next show the inequality x(C, y) < p + 1. Recall the notation si which ap-
peared at the beginning of Subsection 4.2. Then ysa

≤ y < ysa−1 and

x(C − IC , y − c0) =
a0∑

j=a+1

nαj
xαj

+
xαa

yαa

(
y − c0 −

a0∑
j=a+1

nαj
yαj

)

= xsa
− 1 +

xαa

yαa

(y − ysa
).

Suppose that p + 1 = x(C, y) = xλy/yλ. Then we have y = 0 by the inequality
y < yλ and the fact that xλ and yλ are relatively prime. It follows that p is
negative, a contradiction. Suppose that p+1 < xλy/yλ. Since xλ/yλ < xαa

/yαa
,

we have

(p + 1)yαa
− yxαa

≤ −1 = −xαa

(
c0 +

d0−1∑
i=αa+1

niyi

)
+ yαa

(
1 +

d0−1∑
i=αa+1

nixi

)

p ≤
d0−1∑

i=αa+1

nixi +
xαa

yαa

(
y − c0 +

d0−1∑
i=αa+1

niyi

)

=
d0−1∑

i=αa+1

xi(C − IC).Di +
xαa

yαa

(
y − c0 +

d0−1∑
i=αa+1

yi(C − IC).Di

)

= x(C − IC , y − c0).
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This contradicts the definition of p. Hence we can conclude that p + 1 >

x(C, y). �

We define i′(C, y′) and x′(C, y′) in a similar way to i(C, y) and x(C, y),
respectively. Concretely, in the case where C.D1 ≥ 1, for an integer y′ with
0 ≤ y′ <

∑d+1
i=d0+1 yiC.Di, we define

i′(C, y′) = min
{

j ≤ d + 1
∣∣∣ y′ <

j∑
i=d0+1

yiC.Di

}
,

x′(C, y′) =
i′(C,y′)−1∑

i=d0+1

xiC.Di +
xi′(C,y′)

yi′(C,y′)

(
y′ −

i′(C,y′)−1∑
i=d0+1

yiC.Di

)
.

Then one can obtain the following lemma by an argument similar to that in the
proof of Lemma 4.12.

Lemma 4.13. Assume that k ≥ 1 and C.D1 ≥ 1. Let y′ be an integer with
v0 ≤ y′ <

∑d+1
i=d0+2 yiC.Di, and define p′ = max{n ∈ Z | n < x′(C−IC , y′−e0)}.

Then

p′ − 1 < x′(C, y′) ≤ x′(C − IC , y′ − e0) − 1.

Let us consider the situation that we take auxiliary divisors repeatedly. From
the convex geometrical view point, this means that we reduce the size of the lat-
tice polytope step by step. We put C0 = C, and define inductively

Ij−1 : the auxiliary divisor of Cj−1,

Cj : a nonsingular irreducible curve in |Cj−1 − Ij−1|,
λj = max{i ≤ d0 − 1 | Cj .Di ≥ 1},
μj = min{i ≥ d0 + 1 | Cj .Di ≥ 1},
cj = min{c ∈ Z | cxλj

− yλj
≥ 0},

ej = −max{e ∈ Z | exμj
− yμj

≥ 0}
for an integer 1 ≤ j ≤ k.

Lemma 4.14. Assume that k ≥ 1 and C.D1 ≥ 1. Let y and j be inte-
gers with y ≤ ∑d0−1

i=2 yiC0.Di and 1 ≤ j ≤ k. If y ≥ c0 + · · · + cj−1, then
x(Cj , y − c0 − · · · − cj−1) + j ≤ x(C0, y) and there is no integer in the half-open
interval

(
x(Cj , y − c0 − · · · − cj−1) + j, x(C0, y)

]
.

Proof. The inequality x(Cj , y − c0 − · · · − cj−1) + j ≤ x(C0, y) follows
immediately from Lemma 4.12. Let j′ be an integer with 0 ≤ j′ ≤ j−1. We have

d0−1∑
i=2

yiCj′ .Di =
d0−1∑
i=2

yiC0.Di − c0 − · · · − cj′−1



52 R. Kawaguchi

by computing, where we define c0 + · · ·+ cj′−1 = 0 in the case where j′ = 0. We
thus have cj′ ≤ y−c0−· · ·−cj′−1 ≤ ∑d0−1

i=2 yiCj′ .Di. Then by Lemma 4.12, there
is no integer in the half-open interval

(
x(Cj′+1, y−c0−· · ·−cj′)+j′+1, x(Cj′ , y−

c0 − · · · − cj′−1) + j′
]
. Hence the statement of the lemma is obvious. �

A similar lemma holds for the opposite side of the lattice polytope.

Lemma 4.15. Assume that k ≥ 1 and C.D1 ≥ 1. Let y′ and j be integers
with y′ ≤ ∑d+1

i=d0+2 yiC0.Di and 1 ≤ j ≤ k. If y′ ≥ e0 + · · · + ej−1, then
x′(Cj , y

′−e0−· · ·−ej−1)− j ≥ x′(C0, y
′) and there is no integer in the half-open

interval
[
x′(C0, y

′), x′(Cj , y
′ − e0 − · · · − ej−1) − j

)
.

Lemma 4.16. The equality c0 + · · · + cxλ0−1 = yλ0 holds.

Proof. Suppose c0 + · · · + cxλ0−1 ≤ yλ0 − 1. Then we have

x(C0, c0 + · · · + cxλ0−1) =
xλ0

yλ0

(c0 + · · · + cxλ0−1)

≤ xλ0

yλ0

(yλ0 − 1) < xλ0

≤ x(Cxλ0
, 0) + xλ0 ,

which contradicts Lemma 4.14. Suppose c0 + · · · + cxλ0−1 ≥ yλ0 + 1 and put
s = max{i ≤ xλ0 − 1 | ci ≥ 1}. Then we have

x(Cs, cs − 1) + s =
xλs

yλs

(cs − 1) + s < s + 1,

x(C0, c0 + · · · + cs − 1) = x(C0, c0 + · · · + cxλ0−1 − 1) ≥ x(C0, yλ0)

= xλ0 ≥ s + 1.

They contradict Lemma 4.14. Hence we can conclude that c0 + · · · + cxλ0−1 =
yλ0 . �

Lemma 4.17. If c0 ≥ 1 and xλ0 ≥ 2, then c0 − 1 ≤ yλj
/xλj

≤ yλ0/xλ0 for
integers 1 ≤ j ≤ xλ0 − 1, especially the equality yλj

/xλj
= c0 − 1 holds for

j = xλ0 − 1.

Proof. Let j be an integer with 1 ≤ j ≤ xλ0−1 − 1. We first show the
inequality yλj

/xλj
≥ c0 − 1.

(i) We consider the case where xλj
≥ 2. Since xj and yj are relatively prime, we

obtain cjxλj
> yλj

in this case. Hence

x(Cj , yλj
− cj) + j =

xλj

yλj

(yλj
− cj) + j = xλj

− xλj

yλj

cj + j < xλj
− 1 + j.

On the other hand, we have



THE GONALITY CONJECTURE FOR CURVES ON TORIC SURFACES WITH TWO P
1-FIBRATIONS 53

x(C0, c0 + · · · + cj−1 + yλj
− cj) =

xλ0

yλ0

(c0 + · · · + cj−1 + yλj
) − xλ0

yλ0

cj

= x(C0, c0 + · · · + cj−1 + yλj
) − xλ0

yλ0

cj

≥ x(Cj , yλj
) + j − xλ0

yλ0

cj = xλj
+ j − xλ0

yλ0

cj .

Since (x(Cj , yλj
−cj)+ j, x(C0, c0 + · · ·+cj−1 +yλj

−cj)]∩Z = ∅ by Lemma 4.14,
we have c0 ≤ cj and yλj

/xλj
> cj − 1 ≥ c0 − 1.

(ii) We consider the case where xλj
= 1. Note that yλj

= cj . We define
s = max{i ≤ j − 1 | ci ≥ 1}. Then we have

x(Cs, cs − 1) + s =
xλs

yλs

(cs − 1) + s < s + 1 ≤ j.

On the other hand, we have

x(C0, c0 + · · · + cs − 1) = x(C0, c0 + · · · + cj − (cj + 1))

≥ x(Cj , cj) + j − xλ0

yλ0

(cj + 1) ≥ j + 1 − xλ0

yλ0

(cj + 1).

Then by Lemma 4.14, we have c0 − 1 ≤ cj = yλj
/xλj

.
We next show the inequality yλj

/xλj
≤ yλ0/xλ0 . If yλj

/xλj
= 0, then the

inequality is obviously holds. Hence we consider the case where yλj
/xλj

> 0.
Suppose yλj

/xλj
> yλ0/xλ0 . Then we have

x

(
C0, c0 + · · · + cj−1 +

yλ0

xλ0

)
= x(C0, c0 + · · · + cj−1) + 1

≥ x(Cj , 0) + j + 1 = j + 1,

x

(
Cj ,

yλ0

xλ0

)
+ j =

xλj

yλj

· yλ0

xλ0

+ j < j + 1.

They contradict Lemma 4.14.
Lastly, we show yλa

/xλa
= c0 − 1, where we put a = xλ0 − 1 for simplicity.

Because of the above arguments, it is sufficient to verify that yλa
/xλa

≤ c0 − 1.
Since this is obvious in the case where yλa

/xλa
= 0, we assume yλa

/xλa
> 0.

Then we have x(Ca, 0) + a = a = xλ0 − 1. On the other hand, we have

x(C0, c0 + · · · + ca−1) = x(C0, c0 + · · · + ca) − xλ0

yλ0

ca

= x(C0, yλ0) −
xλ0

yλ0

ca

= xλ0 −
xλ0

yλ0

ca.
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Note that c0xλ0 > yλ0 since xλ0 ≥ 2. Then by Lemma 4.14, we have
xλ0 − xλ0ca/yλ0 ≥ xλ0 − 1, which implies that c0 > yλ0/xλ0 ≥ ca ≥ yλa

/xλa
. �

Assertion 3.2 follows immediately from the following proposition. Needless
to say, the integer m0 in the following proposition coincides with that in Asser-
tion 3.2.

Proposition 4.18. Assume that k′ > k ≥ 2 and |C−F | is base point free. Then
there exists a positive integer m0 ≤ k such that Cj .F

′ = Cj .F for j = 1, . . . , m0−1
and Cm0 .F

′ > Cm0 .F .

Proof. (i) We first consider the case where c0 ≥ 2. Note that xiyλ0 ≤ yixλ0

for integers 2 ≤ i ≤ d0 − 1 if C.Di ≥ 1. Then we have

C1.F = k − 1 =
λ0∑
i=2

xiC.Di − 1

=
λ0−1∑
i=2

xiC.Di + xλ0(C.Dλ0 − 1) + xλ0 − 1,

C1.F
′ = k′ − c0 − e0

=
λ0∑
i=1

yiC.Di +
d∑

i=μ0

yiC.Di − c0 − e0

≥ C.D1 +
yλ0

xλ0

λ0−1∑
i=2

xiC.Di + yλ0C.Dλ0 + yμ0 − c0 − e0

> 1 + (c0 − 1)
λ0−1∑
i=2

xiC.Di + (c0 − 1)xλ0C.Dλ0 − c0

= (c0 − 1)
λ0−1∑
i=2

xiC.Di + (c0 − 1)xλ0(C.Dλ0 − 1) + (c0 − 1)(xλ0 − 1).

Hence we have C1.F
′ > C1.F . Namely, the lemma is valid for m0 = 1 in this

case.
(ii) Similarly, in the case where e0 ≥ 2, one can show that the lemma is valid for
m0 = 1.

From now on, we assume that c0 ≤ 1 and e0 ≤ 1.
(iii) Assume that c0 + e0 ≤ 1 or k′ ≥ k + 2. Then, since

C1.F
′ − C1.F = k′ − I0.Dd0 − k + 1 = k′ − k − c0 − e0 + 1 ≥ 1,

the lemma is valid for m0 = 1.
(iv) For the remaining case where c0 = e0 = 1 and k′ = k + 1, it is sufficient to
verify the following claim :
Claim A : Two inequalities 2 ≤ xλ0 ≤ k, −k ≤ xμ0 ≤ −2 hold and there
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exists an integer m0 with 2 ≤ m0 ≤ min{xλ0 ,−xμ0} such that

Ij .Dd0 =
{

1 (1 ≤ j ≤ m0 − 2),
0 (j = m0 − 1).

First we mention the inequalities k =
∑d0−1

i=2 xiC.Di ≥ xλ0 and k =
−∑d

i=d0+1 xiC.Di ≥ −xμ0 . By the definition of λ0, xiyλ0 ≤ yixλ0 holds if
2 ≤ i ≤ d0 − 1 and C.Di ≥ 1. Similarly, xiyμ0 ≥ yixμ0 holds if d0 + 1 ≤ i ≤ d

and C.Di ≥ 1. Hence we obtain

k′ = C.D1 +
d0−1∑
i=2

yiC.Di +
d∑

i=d0+1

yiC.Di

≥ 1 +
yλ0

xλ0

d0−1∑
i=2

xiC.Di +
yμ0

xμ0

d∑
i=d0+1

xiC.Di

= 1 +
(

yλ0

xλ0

− yμ0

xμ0

)
k.

It follows that
yλ0

xλ0

− yμ0

xμ0

≤ 1.(10)

Since c0 = e0 = 1, we have yλ0/xλ0 < 1 and yμ0/xμ0 > −1, which mean that
xλ0 ≥ 2 and xμ0 ≤ −2.

From now on, we assume that xλ0 ≤ −xμ0 . The case where xλ0 ≥ −xμ0 can
be shown in a similar way. Let j be an integer with 1 ≤ j ≤ xλ0 − 1 such that
I1.Dd0 = · · · = Ij−1.Dd0 = 1. We verify that Ij .Dd0 ≤ 1, especially Ij .Dd0 = 0 if
j = xλ0 − 1. By Lemma 4.14 and 4.15, we have

x(C0, c0 + · · · + cj−1) =
xλ0

yλ0

(c0 + · · · + cj−1) < x(Cj , 0) + j + 1,(11)

x′(C0, e0 + · · · + ej−1) =
xμ0

yμ0

(e0 + · · · + ej−1) > x′(Cj , 0) − j − 1.

On the other hand, it follows from Lemma 4.17 that cj , ej ≤ 1. If cj = ej = 1,
then we have x(Cj , 0) = x′(Cj , 0) = 0 and

yλ0

xλ0

− yμ0

xμ0

>
c0 + · · · + cj−1 + e0 + · · · + ej−1

j + 1

=
c0 + e0 + I1.Dd0 + · · · + Ij−1.Dd0

j + 1
= 1,

a contradiction. Hence we obtain Ij .Dd0 = cj + ej ≤ 1.
In the case where j = xλ0 − 1, we have cj = 0 by Lemma 4.17 and

c0 + · · · + cj−1

j + 1
=

yλ0

xλ0
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by Lemma 4.16. If ej = 1, then we have x′(Cj , 0) = 0. Hence, by noting (11), we
obtain a contradiction

yλ0

xλ0

− yμ0

xμ0

>
c0 + · · · + cj−1 + e0 + · · · + ej−1

j + 1
= 1.

Therefore, we can conclude ej = 0, that is, Ij .Dd0 = 0 in this case. �

Let us show one more lemma needed in the proof of Assertion 3.3.

Lemma 4.19. Assume that k′ > k ≥ 2 and |C − F | is base point free, and let
m0 be a positive integer in Proposition 4.18. If c0 = e0 = 1, then either of the
inequalities xλj−1 ≥ 2 or xμj−1 ≤ −2 holds for each integer 1 ≤ j ≤ m0 − 1.

Proof. Note that, in this case, the integer m0 is equal to that in Claim A
in the proof of Proposition 4.18. The case where j = 1 is contained in Claim A.
Hence let j be an integer with 2 ≤ j ≤ m0 − 1, and suppose xλj−1 = −xμj−1 = 1.
Since Ij−1.Dd0 = cj−1 +ej−1 = 1, either cj−1 or ej−1 is equal to one. If cj−1 = 1,
then we have yλ0/xλ0 ≥ yλj−1/xλj−1 = 1 by Lemma 4.17. Hence (10) implies
that yμ0/xμ0 = 0. This contradicts the fact that e0 = 1. We obtain a similar
contradiction in the case where ej−1 = 1. Therefore, two equalities xλj−1 = 1
and xμj−1 = −1 do not occur at the same time. �

Finally, we prove Assertion 3.3.

Proposition 4.20. Assume that k′ > k ≥ 2 and |C−F | is base point free, and let
m0 be a positive integer in Proposition 4.18. Then the inequality in Assertion 3.3
holds for each integer 1 ≤ j ≤ m0. Besides, if k′ = k = 2, then this inequality
holds for j = 1.

Proof. Considering the cohomology long exact sequence similar to (1), we
obtain h0(S, Cj) = h0(Cj , Cj |Cj

)+1. On the other hand, the short exact sequence
0 → OS(−Ij−1) → OS(Cj − Ij−1) → OCj

(Cj − Ij−1) → 0 and Proposition 4.8
induce the cohomology exact sequence

0 → H0(S, Cj − Ij−1) → H0(Cj , (Cj − Ij−1)|Cj
) → 0.(12)

Hence it is sufficient to verify the inequality

h0(Cj , Cj |Cj
) − h0(Cj , (Cj − Ij−1)|Cj

) ≥ Cj .F + 1.(13)

The divisor (Cj − Ij−1)|Cj
is nonspecial by Lemma 4.10. By Riemann-Roch the-

orem, we have

degCj |Cj
− 2gj = −Cj .KS − 2 ≥ Cj .D1 − 2 ≥ −1,(14)

where gj denotes the genus of Cj . Hence also Cj |Cj
is nonspecial. Thus (13) is
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equivalent to the inequality

Cj .Ij−1 ≥ Cj .F + 1.(15)

In the case where c0 �= 1 or e0 �= 1 or k′ ≥ k + 2, m0 is equal to one by (i)–(iii)
in the proof of Proposition 4.18. Since C1.I0 ≥ C1.Dd0 = C1.F

′ ≥ C1.F + 1 by
the definition of m0, (15) holds in this case.

Let us consider the case where c0 = 1, e0 = 1 and k′ = k + 1. In the case
where 1 ≤ j ≤ m0 − 1, we have xλj−1 ≥ 2 or xμj−1 ≤ −2 by Lemma 4.19. Hence
if we divide (xλj−1 , yλj−1) and (xμj−1 , yμj−1) as (2) and (4), then either αa0 or
βb0 exists. If αa0 exists, then by (8), we have

Cj .Ij−1 ≥ Cj .(Dαa0
+ Dd0) = −Ij−1.Dαa0

+ C0.Dd0 − (I0 + · · · + Ij−1).Dd0

= nαa0
+ C0.F

′ − j − 1 ≥ C0.F − j + nαa0

= Cj .F + nαa0
.

A similar computation is carried out in the case where βb0 exists to verify
the inequality Cj .Ij−1 ≥ Cj .F + mβb0

. In the case where j = m0, we have
Cm0 .Im0−1 ≥ Cm0 .Dd0 = Cm0 .F

′ ≥ Cm0 .F + 1.
Lastly, let us show (15) for j = 1 under the assumption that k′ = k = 2.

Namely, we will show the inequality C1.I0 ≥ 2. If xλ0 ≥ 2 or xμ0 ≤ −2, then this
can be proved by the same argument as above. Assume xλ0 = 1 and xμ0 = −1.
Since k =

∑d0−1
i=2 xiC.Di ≥ 2, C.Dλ0 ≥ 2 or there exists an integer i with

2 ≤ i ≤ d0 − 1 such that i �= λ0 and C.Di ≥ 1. We thus have

1 = k′ − 1 ≥
d0−1∑
i=2

yiC.Di ≥ yλ0

xλ0

d0−1∑
i=2

xiC.Di > yλ0 .

Hence yλ0 must be zero. Similarly, one can obtain yμ0 = 0. We thus have
I0.Dd0 = c0 + e0 = 0 and C1.I0 ≥ C1.Dd0 = C.Dd0 = k′ = 2. �

5. The case where degf1|C ≥ degf2|C
In this section, we consider the case where degf1|C ≥ degf2|C , that is,

C.F1 ≥ C.F2. We put F = F2, F ′ = F1, k = C.F and k′ = C.F ′. In order
to simplify the argument, we renumber the T -invariant divisors. Concretely, we
denote by D1 the T -invariant divisor whose associated cone has the primitive
element (−1, 0), and number other cones in ΔS clockwise. In particular, we set
Dd0 if its primitive element is (0, 1) (see Fig. 2). Note that, in this case, the fiber
F and F ′ are written as

F ∼ Dd ∼
d−2∑
i=2

yiDi
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F ′ ∼ −
d0−1∑
i=1

xiDi ∼
d−1∑

i=d0+1

xiDi.

σ(D1)

σ(D2)

σ(Dd0)

σ(Dd−1)

σ(Dd)

Figure 2

If k′ ≥ k ≥ 2, we define

ν = max{i ≤ d0 | C.Di ≥ 1},
ξ = min{i ≥ d0 | C.Di ≥ 1},

c0 = −max{c ∈ Z | xν − cyν ≥ 0},
e0 = min{e ∈ Z | xξ − eyξ ≤ 0},
f0 = min{c0, e0}.

If ν = 1 or ξ = d − 1, then C becomes a curve considered in Section 4. We thus
assume that ν ≥ 2 and ξ ≤ d − 2 in this section. Note that the five statements
c0 = 0, e0 = 0, f0 = 0, ν = d0 and ξ = d0 are equivalent. By Fact 4.1 and the
argument in Subsection 4.1, we obtain the unique divisions

(xν , yν) = (−c0, 1) + nγ1(xγ1 , yγ1) + · · · + nγs0
(xγs0

, yγs0
)(16)

(ν < γ1 < · · · < γs0 ≤ d0),

(xξ, yξ) = (e0, 1) + mδ1(xδ1 , yδ1) + · · · + mδt0
(xδt0

, yδt0
)

(d0 ≤ δ1 < · · · < δt0 < ξ),

where nγi
and mδj

are positive integers. We note that

xγs

(
1 +

s0∑
j=s+1

nγj
yγj

)
− yγs

(
− c0 +

s0∑
j=s+1

nγj
xγj

)
= 1(17)

for each integer 1 ≤ s ≤ s0 and

(
e0 +

t−1∑
j=1

mδj
xδj

)
yδt

−
(

1 +
t−1∑
j=1

mδj
yδj

)
xδt

= 1(18)
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for each integer 1 ≤ t ≤ t0. There exists an integer ι such that (xι, yι) =
(e0 − c0, 1). Obviously, we see that ι = d0 (resp. ν + 1 ≤ ι ≤ ξ − 1) if f0 = 0
(resp. f0 ≥ 1).

5.1 The auxiliary divisor
In this subsection, we keep the above notation. Let C be a curve on S such

that k ≤ k′, ν ≥ 2 and ξ ≤ d − 2.

Definition 5.1. Let C be a curve on S such that k ≥ 2, and set ni = 0 for inte-
gers ν+1 ≤ i ≤ d0 except for i = γ1, . . . , γs0 and mi = 0 for integers d0 ≤ i ≤ ξ−1
except for i = δ1, . . . , δt0 . We define the auxiliary divisor IC =

∑d
i=1 qiDi + F ′

of C as follows :
(i) The case where ι ≤ d0 (that is, c0 ≥ e0).

qi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xi

(
1 +

d0∑
j=i+1

njyj

)
+ yi

(
c0 −

d0∑
j=i+1

njxj

)
(ν + 1 ≤ i ≤ ι − 1),

e0yi (ι ≤ i ≤ d0),

xi

(
− 1 −

i−1∑
j=d0

mjyj

)
+ yi

(
e0 +

i−1∑
j=d0

mjxj

)
(d0 + 1 ≤ i ≤ ξ − 1),

0 (otherwise).

(ii) The case where ι ≥ d0 + 1 (that is, c0 < e0).

qi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xi

(
1 +

d0∑
j=i+1

njyj

)
+ yi

(
c0 −

d0∑
j=i+1

njxj

)
(ν + 1 ≤ i ≤ d0),

c0yi (d0 + 1 ≤ i ≤ ι),

xi

(
− 1 −

i−1∑
j=d0

mjyj

)
+ yi

(
e0 +

i−1∑
j=d0

mjxj

)
(ι + 1 ≤ i ≤ ξ − 1),

0 (otherwise).

It is obvious that IC .F = 1 by definition. We remark that IC = F ′ if f0 = 0.
Besides, by (17) and (18), we have qi = 1 for i = γ1, . . . , γi0 , δ1, . . . , δj0 .

Lemma 5.2. If c0 ≥ e0 ≥ 1, then ι ≥ γs0 .

Proof. If ι < γs0 , then we have xγs0
/yγs0

> xι/yι = e0 − c0. By (17),
the inequality yγs0

e0 < xγs0
+ yγs0

c0 = 1 holds. This implies that yγs0
= 0, a

contradiction. �

Corollary 5.3. If c0 ≥ e0 ≥ 1, then ni = 0 for any integer ι + 1 ≤ i ≤ d0.

Lemma 5.4. Assume that f0 ≥ 1. If ι = ν + 1 (resp. ι = ξ − 1), then e0 = 1
(resp. c0 = 1).

Proof. We note that c0 and e0 are positive by assumption. Assume that
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ι = ν + 1. Then, since xιyν − yιxν = 1, we have

e0 = c0 +
xν

yν
+

1
yν

< c0 + (−c0 + 1) +
1
yν

= 1 +
1
yν

≤ 2.

Similarly, if ι = ξ − 1, then the equality xξyι − yξxι = 1 implies that

c0 = e0 − xξ

yξ
+

1
yξ

< e0 − (e0 − 1) +
1
yξ

= 1 +
1
yξ

≤ 2. �

There is no essential difference between the cases where c0 ≥ e0 and c0 ≤ e0.
Hence we will prove all the remaining propositions and lemmas in this subsection
only for the former case.

Proposition 5.5. The divisor IC is effective.

This lemma can be shown by a computation similar to that in the proof of
Proposition 4.5. The following Proposition 5.6 and 5.8 correspond to the property
(iii) in Assertion 3.1.

Proposition 5.6. Assume that k ≥ 2. The complete linear system |C − IC | is
base point free.

Proof. If f0 = 0, then C.Dd0 ≥ 1 and IC = F ′. Hence our lemma is
clear in this case. We thus consider the case where f0 ≥ 1, that is, c0 and e0

are positive and ξ ≥ d0 + 1. We will compute the intersection number IC .Di

only for i = d0, ι. In the other cases, we can compute similarly to the proof of
Proposition 4.6 to verify that (C − IC).Di is non-negative.

In the case where i = d0, we divide the situation into six cases as follows :

(i) ν + 1 = ι = d0 = ξ − 1,

(ii) ν + 2 ≤ ι = d0 = ξ − 1,

(iii) ι + 1 ≤ d0 = ξ − 1,

(iv) ν + 1 = ι = d0 ≤ ξ − 2,

(v) ν + 2 ≤ ι = d0 ≤ ξ − 2,

(vi) ι + 1 ≤ d0 ≤ ξ − 2.

Lemma 5.4 and the assumption c0 ≥ e0 implies that e0 = 1 in the case (iv), and
c0 = e0 = 1 in the cases (i) and (ii). By definition, nd0 = yd0−1 − 1 if ν = d0 − 1,
and md0 = yd0+1 − 1 if ξ = d0 + 1.
(i) Since IC = Dd0 +F ′, we have IC .Dd0 = −yd0−1−yd0+1 +1 = −nd0 −md0 −1.
(ii) Since IC = (−1 − nd0 + yd0−1)Dd0−1 + Dd0 + F ′, we have

IC .Dd0 = −1 − nd0 + yd0−1 − yd0−1 − yd0+1 + 1 = −nd0 − md0 − 1.
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(iii) In this case, we have e0 = 1 by definition. Besides, γs0 ≤ d0−1 by Lemma 5.2,
which implies that nd0 = 0. Hence IC .Dd0 = (yd0−1Dd0−1 + Dd0 + F ′).Dd0 =
−yd0+1 + 1 = −nd0 − md0 .
(iv) Since IC = Dd0 + (−1 − md0 + yd0+1)Dd0+1 + F ′, we have

IC .Dd0 = −yd0−1−yd0+1−1−md0 +yd0+1+1 = −yd0−1−md0 = −nd0 −md0 −1.

(v) Note that c0 = e0. Then, since qd0−1 = −1 − nd0 + yd0−1, qd0 = e0 and
qd0+1 = −1 − md0 + e0yd0+1, we have

IC .Dd0 = −1 − nd0 + yd0−1 − e0(yd0−1 + yd0+1) − 1 − md0 + e0yd0+1 + 1

= −nd0 − md0 − 1.

(vi) In this case, we have nd0 = 0 by the same argument as in (iii). Hence

IC .Dd0 = e0yd0−1− e0(yd0−1+ yd0+1) − 1 − md0 + e0yd0+1 + 1 = −nd0 − md0 .

We next compute IC .Dι under the assumption ι ≤ d0 − 1. If ι ≥ ν + 2, then
we have

IC .Dι = xι−1(1 + nιyι) + yι−1(c0 − nιxι) − e0(yι−1 + yι+1) + e0yι+1

= xι−1 + nι(xι−1xι − yι−1xι) + (c0 − e0)yι−1

= yιxι−1 − xιyι−1 − nι = −nι − 1.

In the case where ι = ν + 1, since e0 = 1 by Lemma 5.4, we have IC .Dι =
−(yι−1 + yι+1) + yι+1 = −yν . If yν = 1, then we have nι = 0, that is,
IC .Dι = −nι − 1. If yν ≥ 2, then since γs0 ≤ ν + 1 by Lemma 5.2, we have
γs0 = ν + 1 and s0 = 1. Hence IC .Dι = −1 − nγ1yγ1 = −nι − 1. �

List 5.7. We list the intersection numbers of IC and the T -invariant divisors on
S.
(A) In the case where f0 = 0,

IC .Di =
{

1 (i = d0, d),
0 (otherwise).

(B) In the case where f0 ≥ 1 and ι = d0,

IC .Di =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−nd0 − md0 − 1 (i = d0),
−ni (i �= d0, i = γ1, . . . , γs0),
1 (i = ν, ξ, d),

−mi (i �= d0, i = δ1, . . . , δt0),
0 (otherwise).

(C) In the case where f0 ≥ 1 and ι ≤ d0 − 1,
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IC .Di =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−nd0 − md0 (i = d0),
−ni − 1 (i = ι),
−ni (i �= ι, i = γ1, . . . , γs0),
1 (i = ν, ξ, d),

−mi (i �= d0, i = δ1, . . . , δt0),
0 (otherwise).

Proposition 5.8. If |C − F | is base point free, then also |C − IC − F | is base
point free.

We can easily show the above proposition by using List 5.7. We next check
the property (ii) in Assertion 3.1.

Proposition 5.9. The vanishing H1(S,−IC) = 0 holds.

Proof. We write the linear equivalence class of F ′ as F ′ ∼ −∑d0−1
i=1 xiDi.

Clearly the coefficients of D1 and Dd−1 in IC are one and zero, respectively. It
follows from Theorem2.4 that H0(S, KS + IC) = 0. Hence, by the same compu-
tation as that in Proposition 4.8, it is enough to show IC .(KS + IC) = −2.

In the case (A) in List 5.7, since IC = F ′, we have IC .(KS + IC) = F ′.KS =
F ′.(−Dd0 − Dd) = −2. Recall that qi = 1 for i = γ1, . . . , γs0 , δ1, . . . , δt0 . In the
case (B), we have

IC .(KS + IC) = IC .((qν − 1)Dν + (qd0 − 1)Dd0 + (qξ − 1)Dξ + (qd − 1)Dd + F ′)

= −1 + (qd0 − 1)(−nd0 − md0 − 1) − 1 − 1 + qd0

= (e0 − 1)(−nd0 − md0) − 2.

This value is clearly equal to minus two if e0 = 1. In the case where e0 ≥ 2, since
nd0 = md0 = 0 by definition, we have IC .(KS +IC) = −2. Lastly, we consider the
case (C). By computing, we have IC .(KS + IC) = (e0 − 1)(−nd0 −md0 −nι)− 2.
This value is equal to minus two if e0 = 1. Consider the case where e0 ≥ 2. Note
that md0 = 0 in this case. Let us show that nι = nd0 = 0. This is obvious if
yν = 1 by definition. We assume yν ≥ 2, and prove the inequality ι > γs0 . The
inequality ι ≥ γs0 follows from Lemma 5.2. Suppose that xγs0

≥ −c0 + 2. Then
by (17), we have the inequality 1 = xγs0

+c0yγs0
≥ −c0+2+c0yγs0

, which implies
a contradiction c0(yγs0

− 1) ≤ −1. Hence we have xι = e0 − c0 ≥ 2 − c0 > xγs0
.

It follows that nι = nd0 = 0 and IC .(KS + IC) = −2. �

Proposition 5.10. Assume that k ≥ 2 and |C − F | is base point free. Then the
divisor C − IC satisfies the properties (iv)–(vi) in Assertion 3.1.

Proof. (iv) We put H = C − IC . Since |H| has no base points, we can
write H ∼ ∑d−1

i=2 hiDi with non-negative integers hi. Then we have hd−1 =
H.Dd = C.Dd − IC .Dd = C.F − 1 ≥ 1. By assumption, we have (C −F ).Dd−1 =
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C.Dd−1 − 1 ≥ 0. It follows that H2 ≥ H.Dd−1 = C.Dd−1 − IC .Dd−1 ≥ 1. Recall
that H2(S,−IC) = 0 as mentioned at the beginning of the proof of Proposi-
tion 5.9. Then (v) and (vi) can be shown by the same argument as that in the
proof of Proposition 4.9. �

We next aim to show the lemma similar to Lemma 4.10. Although it is ideal
that (C − 2IC)|C1 is nonspecial for a curve C1 ∈ |C − IC | in any case, in fact, we
need a certain condition (see Lemma 5.12).

Lemma 5.11. Assume that k ≥ 2, f0 ≥ 1 and |C−F | is base point free. Besides,
we assume that C satisfies neither of the following conditions (a) nor (b) :
(a) yν = 1, C.Dν = 1 and C.Di = 0 for any integer 2 ≤ i ≤ ν − 1.
(b) yξ = 1, C.Dξ = 1 and C.Di = 0 for any integer ξ ≤ i ≤ d − 2.
Then there exists an effective divisor E on S such that |C−2IC −E| is base point
free, h0(S, C − 2IC − E) = h0(S, C − 2IC) and E.(E + KS) ≤ 2E.(C − 2IC).

Proof. We first aim to prove the existence of an effective divisor E1 satis-
fying the following properties (i)–(iii) :
(i) (C − 2IC − E1).Di ≥ 0 for 1 ≤ i ≤ d0 and i = d,
(ii) h0(S, C − 2IC − E1) = h0(S, C − 2IC),
(iii) E1.(E1 + KS) ≤ 2E1.(C − 2IC).
If C.Dν ≥ 2, the zero divisor satisfies (i)–(iii). We thus assume that C.Dν = 1,
and define

ν′ = max{i ≤ ν − 1 | C.Di ≥ 1},

γ′ = min{i ≥ ν + 1 | (C − 2IC).Di ≥ 1} =

{
γ1 (yν ≥ 2),

ι (yν = 1).

By the information of the intersection numbers

(C − 2IC).Di

⎧⎪⎪⎨
⎪⎪⎩

≥ 1 (i = ν′),
= −1 (i = ν),
≥ 1 (i = γ′),
= 0 (ν′ + 1 ≤ i ≤ ν − 1, ν + 1 ≤ i ≤ γ′ − 1),

we can see the partial shape of �C−2IC
around the line lν(C − 2IC) (see Fig. 3

(1)).
Let us verify the following two claims (see Fig. 3 (2)) :

Claim 1 : The intersection point P0 = lν′−1(C − 2IC) ∩ lν′(C − 2IC) lies on the
half-line L1 = {R − a(yγ′ ,−xγ′) | a ≥ 0}.

Claim 2 : The intersection point Q0 = lγ′(C − 2IC) ∩ lγ′+1(C − 2IC) lies on the
half-line L2 = {R + a(yν′ ,−xν′) | a ≥ 0}.

If we put P = (p1, p2), then the X-coordinate of R is greater than or equal to
p1−yν (see Fig. 4). Since the X-coordinate of P0 is less than or equal to p1−yν′ ,
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lν (C − 2IC)

lν(C − 2IC)
lγ (C − 2IC)

Q = lν(C − 2IC) ∩ lγ (C − 2IC)

P = lν (C − 2IC) ∩ lν(C − 2IC)

R = lν (C − 2IC) ∩ lγ (C − 2IC)

L1

L2

lν −1(C − 2IC)

C−2IC

lγ +1(C − 2IC)

(1) (2)

Figure 3

L1

lν −1(C − 2IC)

P

P0

R

−xν

yν

Figure 4

Claim 1 is true if yν < yν′ . Let us consider the case where yν > yν′ . It is sufficient
to show the inequality

xγ′(yν − yν′) ≤ yγ′(xν − xν′).(19)

In the case where yν = 1, we have xν = −c0 and γ′ = ι. On the other hand,
ν′ ≥ 2 since C does not satisfies the condition (a). We thus have

yγ′(xν − xν′) − xγ′(yν − yν′) = e0(yν′ − 1) − xν′ − c0yν′ > 0.

Assume that yν ≥ 2. Since γ′ = γ1 and xγ1yν − yγ1xν = 1 by (17), the inequality
(19) is obvious. We next show Claim 2. Since

Q0 = Q + (C − 2IC).Dγ′(yγ′ ,−xγ′) = Q − 2IC .Dγ′(yγ′ ,−xγ′),

it is sufficient for Claim 2 to verify the inequality −2yγ′IC .Dγ′ ≥ yν . This is
obvious if yν = 1. We thus consider the case where yν ≥ 2. Note that γ′ = γ1 in
this case. If s0 = 1, then since (xν , yν) = (−c0, 1) + nγ1(xγ1 , yγ1), we have
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yν = 1 + nγ1yγ1 ≤ 2nγ1yγ1 ≤ −2yγ1IC .Dγ1 .

If s0 ≥ 2, then we have xγ2(yν − nγ1yγ1) − yγ2(xν − nγ1xγ1) = 1 by (17). Hence
we can write (xγ1 , yγ1) = ε(xγ2 , yγ2)+ ζ(xν −nγ1xγ1 , yν −nγ1yγ1) with integers ε

and ζ. Since xγ2yγ1 − yγ2xγ1 = xγ1yν − yγ1xν = 1, we have ε = ζ = 1. It follows
that (nγ1 + 1)yγ1 > yν . Since the inequality IC .Dγ1 ≤ −nγ1 holds by List 5.7, we
have −2yγ1IC .Dγ1 > yν . Hence Claim 2 is true. Besides, we remark that

−IC .Dγ′ ≥ yν(20)

if γ′ = ι. This is obvious in the case where yν = 1. If yν ≥ 2, then we have
γ1 = ι, that is, yγ1 = 1. Hence the above two inequalities IC .Dγ1 ≤ −nγ1 and
(nγ1 + 1)yγ1 > yν implies that −IC .Dγ′ ≥ yν .

We denote by Qγ′ = (zγ′ , wγ′) the lattice point in lγ′(C − 2IC) ∩ �C−2IC

which is closest to L1. Note that the line li(C − 2IC) passes through the point
P (resp. Q) for any integer ν′ + 1 ≤ i ≤ ν − 1 (resp. ν + 1 ≤ i ≤ γ′ − 1). Thus we
can inductively define positive integers τi for ν′ + 1 ≤ i ≤ γ′ − 1 as follows (see
Fig. 5) :

τi : the positive integer such that the line li(C−2IC−τiDi) passes through Qi+1,

Qi =(zi, wi) : the lattice point in li(C−2IC−τiDi)∩�C−2IC
which is closest to L1.

By definition, we have

lγ (C − 2IC)
Qγ

Qγ −1

Qγ −2

L1

Figure 5

τi =
{

xi(z0 − zi + yν) + yi(w0 − wi − xν) (ν′ + 1 ≤ i ≤ ν − 1),
xi(z0 − zi) + yi(w0 − wi) (ν ≤ i ≤ γ′ − 1),

(21)

where we set Q = (z0, w0). We put E1 =
∑γ′−1

i=ν′+1 τiDi. By definition, it
is obvious that E1 satisfies the property (i). Besides, for an integer i with
ν′ + 1 ≤ i ≤ γ′ − 1, the lattice points contained in the domain surrounded by
li−1(C−2IC −E1), li(C−2IC −E1) and L1 must lie on the line li(C−2IC −E1).
This means that E1 satisfies the property (ii). For the later use, we note that
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τγ′−1 ≤ −IC .Dγ′(22)

holds if γ′ = ι. Indeed, if we suppose that γ′ = ι and τγ′−1 > −IC .Dγ′ ,
then the point Q′ = Q + yν(yγ′ ,−xγ′) lies on L2 since the X-coordinate of R

(resp. Q′) is less (resp. greater) than or equal to that of P . Namely, Q′ lies on
lγ′(C − 2IC)∩�C−2IC

. On the other hand, by (20), we deduce that Q′ is nearer
to L1 than Qγ′ = Q + τγ′−1(yγ′ ,−xγ′), which contradicts the definition of Qγ′ .

Let us show that E1 satisfies (iii). By computing, we have (C − 2IC).E1 =
τν(C − 2IC).Dν = −τν . Hence it is sufficient to verify E1.(E1 + KS) ≤ −2τν .
We first consider the case where yν ≥ 2. Since γ′ = γ1 in this case, we have
xγ′yν − yγ′xν = 1 by (17). Hence the lattice point P − (yν′ ,−xν′) lies on the
half-line L1. We thus see that Qν′+1 = P −(yν′ ,−xν′) by the property (ii), which
implies that

τν′+1 = xν′+1(z0 − zν′+1 + yν) + yν′+1(w0 − wν′+1 − xν)

= xν′+1yν′ + yν′+1(−xν′) = 1.

On the other hand, we can write

Qγ′ = Q + s(yγ′ ,−xγ′),

Qγ′−1 = Qγ′ + t(yγ′−1,−xγ′−1),

Qν = Qγ′ + (a, b)

with integers s, t, a, and b. We note that axν + byν ≥ 0. Then, by (21), we have

τγ′−1 = xγ′−1(z0 − zγ′−1) + yγ′−1(w0 − wγ′−1)

= xγ′−1(−syγ′ − tyγ′−1) + yγ′−1(sxγ′ + txγ′−1) = s,

τν = xν(z0 − zν) + yν(w0 − wν) = xν(−syγ′ − a) + yν(sxγ′ − b)

= τγ′−1 − (axν + byν) ≤ τγ′−1.

In sum, we obtain

E1.(E1 + KS) = E1.

(
− Dν′ +

γ1−1∑
i=ν′+1

(τi − 1)Di − Dγ1

)

≤ E1.(−Dν′ + (τν − 1)Dν − Dγ1)

= −τν′+1 + (τν − 1)E1.Dν − τγ1−1

≤ −τν′+1 − τν + 1 − τγ1−1 ≤ −2τν .

Let us consider the case where yν = 1. We note that xν = −c0 and γ′ = ι

in this case. If (C − 2IC − E1).Di = 0 for integers ν′ + 1 ≤ i ≤ γ′ − 1, then
we have Qγ′ = Qν′−1. Namely, R must be a lattice point. Then, since the
X-coordinate of R is greater than (resp. less than or equal to) that of Q (resp.
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P ), we have ν′ = 1, which contradicts the condition (a). Hence we can take an
integer κ = max{n | ν′ + 1 ≤ n ≤ γ′ − 1, (C − 2IC −E1).Dn ≥ 1}. If κ > ν, then
by computing, we have

τκ = xκ(−yγ′) + yκxγ′ = −xκ + (e0 − c0)yκ,

τν ≤ xν(−yγ′ + yκ) + yν(xγ′ − xκ) = −c0yκ + e0 − xκ ≤ τκ.

We thus have

E1.(E1 + KS) = E1.

(
− Dν′ +

γ′−1∑
i=ν′+1

(τi − 1)Di − Dγ′

)
(23)

≤ −E1.Dν′ + (τκ − 1)E1.Dκ + (τν − 1)E1.Dν − E1.Dγ′

≤ −τν′+1 − τκ − τν + 2 − τγ′−1 ≤ −τκ − τν ≤ −2τν .

In the case where κ = ν, we have E1.Dν ≤ −2 and

E1.(E1+KS)≤−E1.Dν′+(τν−1)E1.Dν−E1.Dγ′ ≤−τν′+1−2τν+2−τγ′−1≤−2τν .

In the case where κ < ν, we have

τκ = xκ(yν − yγ′) + yκ(−xν + xγ′) = e0yκ,

τν ≤ xν(−yγ′) + yνxγ′ = e0 ≤ τκ.

Hence the inequality (23) holds in this case also. Therefore, E1 satisfies the
property (iii).

We define

δ′ = max{i ≤ ξ − 1 | (C − 2IC).Di ≥ 1} =

{
δt0 (yξ ≥ 2),

ι (yξ = 1),

ξ′ = min{i ≥ ξ + 1 | C.Di ≥ 1}.

Then, by a similar way to that in the case of E1, we can construct the effective
divisor E2 =

∑ξ′−1
i=δ′+1 ωiDi satisfying the following properties (i)′–(iii)′ :

(i)′ (C − 2IC − E2).Di ≥ 0 for d0 ≤ i ≤ d,
(ii)′ h0(S, C − 2IC − E2) = h0(S, C − 2IC),
(iii)′ E2.(E2 + KS) ≤ 2E2.(C − 2IC).

Note that E2 = 0 in the case where C.Dξ ≥ 2. In sum, we obtain the effective
divisors

E1 =

⎧⎪⎨
⎪⎩

0 (C.Dν ≥ 2),
γ′−1∑

i=ν′+1

τiDi (C.Dν = 1),
γ′ =

{
γ1 (yν ≥ 2),
ι (yν = 1),
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E2 =

⎧⎪⎨
⎪⎩

0 (C.Dξ ≥ 2),
ξ′−1∑

i=δ′+1

ωiDi (C.Dξ = 1),
δ′ =

{
δt0 (yξ ≥ 2),
ι (yξ = 1)

which satisfy the properties (i)–(iii) and (i)′–(iii)′.
We put E = E1 + E2. Let us check that (C − 2IC − E).Di ≥ 0 holds for

any integer 1 ≤ i ≤ d. This is obvious if either E1 or E2 is equal to zero.
Hence we consider the case where C.Dν = C.Dξ = 1. By noting γ′ ≤ ι ≤ δ′,
(C−2IC −E).Di is non-negative if i �= ι. Since (C−2IC −E).Dι is non-negative
if γ′ < ι or δ′ > ι, we consider the case where γ′ = δ′ = ι. Then we have

(C − 2IC − E).Dι ≥ −2IC .Dι − τγ′−1 − ωδ′+1.

Similarly to (22), one can show the inequality ωδ′+1 ≤ −IC .Dδ′ in the case where
δ′ = ι. We thus have (C − 2IC − E).Dι ≥ 0. In sum, we can conclude that
Bs|C − 2IC − E| = ∅. Since

�C−2IC
\ �C−2IC−E = �C−2IC

\ (�C−2IC−E1 ∩ �C−2IC−E1)

= (�C−2IC
\ �C−2IC−E1) ∪ (�C−2IC

\ �C−2IC−E2),

the properties (ii) and (ii)′ imply that (�C−2IC
\ �C−2IC−E) ∩ Z = ∅. Namely,

we obtain h0(S, C − 2IC − E) = h0(S, C − 2IC). Lastly, we have

E.(E + KS) − 2E.(C − 2IC)

= E1.(E1 + KS) − 2E1.(C − 2IC) + E2.(E2 + KS) − 2E2.(C − 2IC) + 2E1.E2

≤ 2E1.E2 = 0

by the properties (iii) and (iii)′. �

Lemma 5.12. Assume that k ≥ 2 and |C − F | is base point free. By Proposi-
tion 5.10, we can take a nonsingular irreducible curve C1 ∈ |C − IC |. If f0 ≥ 1
and C satisfies neither of the conditions (a) nor (b) in Lemma5.11, then the
divisor (C1 − IC)|C1 is nonspecial.

Proof. Since |C−F1| has no base points, we have (C−F1).D1 = C.D1−1 ≥
0. Hence, by Riemann-Roch theorem and List 5.7, we have

degC1|C1 − 2g1

= −C1.KS − 2 ≥ C1.D1 − 2 = C.D1 − 2 ≥ −1,

where g1 denotes the genus of C1. Hence also C1|C1 is nonspecial.
Assume that C satisfies neither of (a) nor (b). Since H1(S,−IC) =

H2(S,−IC) = 0, the cohomology exact sequence similar to (12) implies that
h1(C1, (C − 2IC)|C1) = h1(S, C − 2IC). We take the effective divisor E as in
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Lemma 5.11. Then we have

h1(S, C − 2IC)

= h0(S, C − 2IC) +
1
2
(C − 2IC).(KS − C + 2IC) − 1

= h0(S, C − 2IC − E) +
1
2
(C − 2IC − E).(KS − C + 2IC + E) − 1

+
1
2
E.(E + KS) − E.(C − 2IC)

= h1(S, C − 2IC − E) +
1
2
E.(E + KS) − E.(C − 2IC) ≤ 0. �

We need Lemma 5.12 in the proof of Assertion 3.3. Hence we must show
Assertion 3.3 independently for the cases excluded in Lemma 5.12.

Lemma 5.13. Assume that k ≥ 2, f0 ≥ 1 and |C−F | is base point free. If either
of the conditions (a) or (b) in Lemma5.11 holds, then h0(S, C − IC)− h0(S, C −
2IC) ≥ (C − IC).F + 2.

1 C.F

C.F
C

f0

1

C−IC

C.F − f0

C−2IC

1

P

Figure 6

Proof. We prove the case of (a). By Theorem 2.4, the statement of the
lemma is equivalent to the inequality �(�C−IC

∩Z2)− �(�C−2IC
∩Z2) ≥ C.F +1.

Comparing the two lattice polytope �C and �C−IC
, by the definition of IC , we

see that the horizontal distance between li(C) and li(C−IC) (similarly, li(C−IC)
and li(C − 2IC)) is at least one for each integer d0 + 1 ≤ i ≤ d − 1 (see Fig. 6).
Indeed, if we write the linear equivalence class of F ′ as F ′ ∼ ∑d−1

d0+1 xiDi, then
the coefficient of Di in the linear equivalence class of IC is at least xi for each
integer d0 + 1 ≤ i ≤ d − 1. By noting the existence of the point P , we see that
there exist at least C.F ′ − f0 + 2 lattice points in �C−IC

\ �C−2IC
. Hence the

lemma is clear if f0 = 1. Let us consider the case where f0 ≥ 2. In this case, we
have

C.F =
d−2∑
i=2

yiC.Di = 1 +
d−2∑

i=d0+1

yiC.Di,
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C.F ′ =
d−1∑

i=d0+1

xiC.Di ≥ C.Dd−1 +
xξ

yξ

d−2∑
i=d0+1

yiC.Di > 1 + (e0 − 1)(C.F − 1)

≥ 1 + (f0 − 1)(C.F − 1) = C.F + (f0 − 2)(C.F − 1) ≥ C.F + f0 − 2.

Hence the lemma is true in this case also. �

Lemma 5.14. Assume that k ≥ 2 and f0 = 0. Then h0(S, C − IC) − h0(S, C −
2IC) ≥ (C − IC).F + 2.

Proof. Since IC = F ′ in this case, the vertical distance between li(C)
and li(C − IC) (similarly, li(C − IC) and li(C − 2IC)) is just one for each inte-
ger d0 + 1 ≤ i ≤ d − 1. Hence, by a similar argument to that in the proof of
Lemma 5.13, we have �(�C−IC

∩ Z2) − �(�C−2IC
∩ Z2) ≥ C.F + 1. �

5.2 Proof of Assertion 3.2 and 3.3
In this subsection, we will prove Assertion 3.2 and 3.3. Let D be a divisor on

S such that D.D1 ≥ 1. For an integer x with 0 ≤ x ≤ D.F ′, we define

i(D, x) = max
{

j ≥ 1
∣∣∣ x < −

d0−1∑
i=j

xiD.Di

}
,

y(D, x) =
d0−1∑

i=i(D,x)+1

yiD.Di −
yi(D,x)

xi(D,x)

(
x +

d0−1∑
i=i(D,x)+1

xiD.Di

)
.

Let C be a curve on S such as at the beginning of this section and IC the aux-
iliary divisor of C. In this subsection, we write the linear equivalence class of F ′

as F ′ ∼ ∑d−1
d0+1 xiDi. Then IC is written as

IC =
d0∑

i=0

qiDi +
d−1∑
d0+1

(qi + xi)Di,

where we formally set q0 = qd and D0 = Dd.

Remark 5.15. By definition, we have y(C, 0) = 0. Besides, y(C, x) = −yνx/xν

if i(C, x) = ν.

Lemma 5.16. Assume that k ≥ 2 and C.D1 ≥ 1. Let x be an integer with
f0 ≤ x ≤ C.F ′, and define q = min{n ∈ Z | n > y(C − IC , x − f0)}. Then

y(C − IC , x − f0) + nd0 ≤ y(C, x) < q + nd0 (c0 > e0),
y(C − IC , x − f0) + nd0 + 1 ≤ y(C, x) < q + nd0 + 1 (c0 < e0).

Proof. We prove only the former case. The latter case can be proved
by a similar procedure. Since c0 > e0, we have ν, ι ≤ d0 − 1. Let us compute∑d0−1

i=i(C,x) xiIC .Di. Recall (C) in List 5.7. If ι = γs0 , then by noting xγs0
= e0−c0,
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we have

d0−1∑
i=i(C,x)

xiIC .Di = xν − nγ1xγ1 − · · · − nγs0−1xγs0−1 − (nγs0
+ 1)xγs0

= −c0 − xγs0
= −e0.

If ι ≥ γs0 + 1, then by noting nι = 0, we have

d0−1∑
i=i(C,x)

xiIC .Di = xν − nγ1xγ1 − · · · − nγs0
xγs0

− xι = −c0 − xι = −e0.

We thus obtain

d0−1∑
i=i(C,x)+1

xiIC .Di =
{ −e0 − xν (i(C, x) = ν),

−e0 (i(C, x) ≤ ν − 1).
(24)

Similarly, we can obtain

d0−1∑
i=i(C,x)+1

yiIC .Di =
{

nd0 − yν (i(C, x) = ν),
nd0 (i(C, x) ≤ ν − 1).

(i) Consider the case where x ≥ −xν . If i(C, x) = ν, then we have

y(C − IC , x − e0) = −
d0−1∑

i=ν+1

yiIC .Di +
yν

xν

(
x − e0 −

d0−1∑
i=ν+1

xiIC .Di

)

= yν − nd0 −
yν

xν
x − yν = y(C, x) − nd0 .

On the other hand, if i(C, x) ≤ ν − 1, then we have

−
d0−1∑

i=i(C,x)+1

xiC.Di ≤ x < −
d0−1∑

i=i(C,x)

xiC.Di

−
d0−1∑

i=i(C,x)+1

xi(C − IC).Di ≤ x − e0 < −
d0−1∑

i=i(C,x)

xi(C − IC).Di

by (24). This means that i(C − IC , x − e0) = i(C, x). Hence

y(C − IC , x − e0)

=
d0−1∑

i=i(C,x)+1

yi(C − IC).Di −
yi(C,x)

xi(C,x)

(
x − e0 +

d0−1∑
i=i(C,x)+1

xi(C − IC).Di

)

=
d0−1∑

i=i(C,x)+1

yiC.Di − nd0 −
yi(C,x)

xi(C,x)

(
x +

d0−1∑
i=i(C,x)+1

xiC.Di

)
= y(C, x) − nd0 .
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Consequently, our lemma is true in any case.
(ii) We next consider the case where x < −xν . Note that i(C, x) = ν and
y(C, x) = −yνx/xν in this case. Since C.Di = 0 for i(C, x) + 1 ≤ i ≤ d0 − 1, we
have

x − e0 < −xν − e0 =
d0−1∑

i=i(C,x)+1

xiIC .Di = −
d0−1∑

i=i(C,x)+1

xi(C − IC).Di

by (24). Hence there exists an integer s with 1 ≤ s ≤ s0 such that
i(C − IC , x − e0) = γs. Then

y(C − IC , x − e0) =
d0−1∑

i=γs+1

yi(C − IC).Di − yγs

xγs

(
x − e0 +

d0−1∑
i=γs+1

xi(C − IC).Di

)

=
d0−1∑
i=γs

yi(C − IC).Di − yγs

xγs

(
x − e0 +

d0−1∑
i=γs

xi(C − IC).Di

)

≤
d0−1∑
i=γs

yi(C − IC).Di − yν

xν

(
x − e0 +

d0−1∑
i=γs

xi(C − IC).Di

)

= −
d0−1∑
i=γs

yiIC .Di − yν

xν

(
x − e0 −

d0−1∑
i=γs

xiIC .Di

)

= −nd0 + yν +
γs−1∑

i=ν+1

yiIC .Di − yν

xν

(
x + xν +

γs−1∑
i=ν+1

xiIC .Di

)

= −nd0 −
yν

xν
x +

γs−1∑
i=ν+1

(
yi − yν

xν
xi

)
IC .Di

≤ −nd0 −
yν

xν
x = y(C, x) − nd0 .

We next show the inequality y(C, x) < q +nd0 . Suppose that q +nd0 = y(C, x) =
−yνx/xν . Note that q + nd0 is the integer. Then we have x = 0 by the in-
equality x < −xν and the fact that xν and yν are relatively prime. This implies
that q is nonpositive, a contradiction. Suppose that q + nd0 < −yνx/xν . Since
yν/xν > yγs

/xγs
, we have

−(q + nd0)xγs
− xyγs

≤ −1 = −xγs

(
1 +

d0∑
i=γs+1

niyi

)
+ yγs

(
− c0 +

d0∑
i=γs+1

nixi

)
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q ≤ 1 +
d0∑

i=γs+1

niyi − nd0 −
yγs

xγs

(
x − c0 +

d0∑
i=γs+1

nixi

)

= 1 +
d0−1∑

i=γs+1

niyi − yγs

xγs

(
x − c0 +

d0−1∑
i=γs+1

nixi

)
· · · (∗).

If ι ≥ γs + 1, then by List 5.7, we have

(∗) = −
d0−1∑

i=γs+1

yiIC .Di − yγs

xγs

(
x − e0 −

d0−1∑
i=γs+1

xiIC .Di

)

=
d0−1∑

i=γs+1

yi(C − IC).Di − yγs

xγs

(
x − e0 +

d0−1∑
i=γs+1

xi(C − IC).Di

)

= x(C − IC , x − e0).

If ι = γs, then since (C − IC).Di = 0 for γs + 1 ≤ i ≤ d0 − 1, we have

(∗) = 1 − yγs

xγs

(x − c0) = − yγs

xγs

(x − e0)

=
d0−1∑

i=γs+1

yi(C − IC).Di − yγs

xγs

(
x − e0 +

d0−1∑
i=γs+1

xi(C − IC).Di

)

= x(C − IC , x − e0).

Obviously, they contradict the definition of q. Consequently, we can conclude
that y(C, x) < q + nd0 . �

We define i′(D, x′) and y′(D, x′) in a way similar to i(D, x) and y(D, x),
respectively. Concretely, in the case where D.Dd−1 ≥ 1, for an integer x′ with
0 ≤ x′ ≤ D.F ′, we define

i′(D, x′) = min
{

j ≤ d − 1
∣∣∣ x′ <

j∑
i=d0+1

xiD.Di

}
,

y′(D, x′) =
i′(D,x′)−1∑

i=d0+1

yiD.Di +
yi′(D,x′)

xi′(D,x′)

(
x′ −

i′(D,x′)−1∑
i=d0+1

xiD.Di

)
.

Then we can obtain the following lemma by an argument similar to that in the
proof of Lemma 5.16.

Lemma 5.17. Assume that k ≥ 2 and C.Dd−1 ≥ 1. Let x′ be an integer with
f0 ≤ x′ ≤ C.F ′, and define q′ = min{n ∈ Z | n > y′(C − IC , x′ − f0)}. Then

y′(C − IC , x′ − f0) + md0 + 1 ≤ y′(C, x′) < q′ + md0 + 1 (c0 > e0),
y′(C − IC , x′ − f0) + md0 ≤ y′(C, x′) < q′ + md0 (c0 < e0).
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Similar to Section 4, we next consider the operation to take auxiliary divisors
repeatedly. We put C0 = C and I0 = IC , and take a nonsingular irreducible
curve C1 ∈ |C0 − I0|. For an integer n ≥ 2, if Cj .F ≥ 2, Cj .F

′ ≥ 2 and

νj = max{i ≤ d0 | Cj .Di ≥ 1} ≥ 2,

ξj = min{i ≥ d0 | Cj .Di ≥ 1} ≤ d − 2

for any integer j with 1 ≤ j ≤ n− 1, then we can take the auxiliary divisor In−1

of Cn−1 and a nonsingular irreducible curve Cn ∈ |Cn−1−In−1| inductively. Note
that n ≤ C.F − 1 by the condition Cn−1.F ≥ 2. We define

cj = −max{c ∈ Z | xνj
− cyνj

≥ 0},
ej = min{e ∈ Z | xξj

− eyξj
≤ 0},

fj = min{cj , ej},
αj : the cardinality of the set {l | 0 ≤ l ≤ j, cl < el}

for an integer j with 0 ≤ j ≤ n − 1. We divide each (xνj
, yνj

) and (xξj
, yξj

) in
ways similar to (16) as

(xνj
, yνj

) = (−cj , 1) +
d0∑

i=νj+1

nj
i (xi, yi),

(xξj
, yξj

) = (ej , 1) +
ξj−1∑
i=d0

mj
i (xi, yi).

In the following Lemma 5.18–5.20, we assume that we can take nonsingular irre-
ducible curves C1, . . . , Cn in the above way.

Lemma 5.18. Assume that C.D1 ≥ 1. Let x be an integer with x ≤
−∑d0−1

i=1 xiC0.Di. If x ≥ f0 + · · · + fn−1 and Cj .Dd0 = 0 for j = 0, . . . , n,
then y(Cn, x − f0 − · · · − fn−1) + αn−1 ≤ y(C0, x) and there is no integer in the
half-open interval

(
y(Cn, x − f0 − · · · − fn−1) + αn−1, y(C0, x)

]
.

Proof. Let j be an integer with 0 ≤ j ≤ n − 1. By assumption, we have
cj �= ej and nj

d0
= mj

d0
= 0. Besides, by computing, we have

d0−1∑
i=1

xiCj .Di =
d0−1∑
i=1

xiC0.Di + f0 + · · · + fj−1,

where we define f0 + · · · + fj−1 = 0 in the case where j = 0. We thus have
fj ≤ x−f0−· · ·−fj−1 ≤ −∑d0−1

i=1 xiCj .Di. In the case where cj > ej , Lemma 5.16
implies that y(Cj+1, x−f0−· · ·−fj) ≤ y(Cj , x−f0−· · ·−fj−1) and there exists no
integer in the half-open interval

(
y(Cj+1, x−f0−· · ·−fj), y(Cj, x−f0−· · ·−fj−1)

]
.
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Similarly, if cj < ej , then there exists no integer in the half-open interval(
y(Cj+1, x− f0 − · · · − fj) + 1, y(Cj , x− f0 − · · · − fj−1)

]
. Therefore, our lemma

is clear. �

A similar lemma holds for the opposite side of the lattice polytope.

Lemma 5.19. Assume that C.Dd−1 ≥ 1. Let x′ be an integer with x′ ≤∑d−1
i=d0+1 xiC0.Di. If x′ ≥ f0 + · · · + fn−1 and Cj .Dd0 = 0 for j = 0, . . . , n,

then y′(Cn, x′ − f0 − · · · − fn−1) + n − αn−1 ≤ y′(C0, x
′) and there is no integer

in the half-open interval
(
y′(Cn, x′ − f0 − · · · − fn−1) + n − αn−1, y

′(C0, x
′)

]
.

Lemma 5.20. Assume that k′ − k = f0 − 1 ≥ 1 and |C − F | is base point free.
If n ≤ k − 2 and f1 = · · · = fn−1 = 1, then νn ≥ 2 and ξn ≤ d − 2.

Proof. An easy computation shows that Cn−1.F
′ = C.F ′−f0−· · ·−fn−2 =

C.F − n + 1 = Cn−1.F . Suppose that νn = 1. Since Cn.Di = 0 for any inte-
ger 2 ≤ i ≤ d0, by List 5.7, Cn−1 must satisfy the properties cn−1 < en−1,
yνn−1 = 1, Cn−1.Dνn−1 = 1 and Cn−1.Di = 0 for any integer 2 ≤ i ≤ νn−1 − 1.
Since en−1 ≥ 2, by the same computation as that at the last of the proof of
Lemma 5.13, we have Cn−1.F

′ > Cn−1.F , a contradiction. One can induce the
same contradiction under the assumption that ξn = d − 1. �

Let us consider Assertion 3.2 with respect to a special case :

Lemma 5.21. Assume k′ = k+1 ≥ 3, f0 = 2 and |C−F | is base point free. Then
xν0 ≤ −2, xξ0 ≥ 2 and there exists an integer m with 2 ≤ m ≤ min{−xν0 , xξ0}
such that f1 = · · · = fm−2 = 1 and fm−1 = 0.

Proof. Since f0 = 2, we have C.Dd0 = 0, xν0 < −yν0 and xξ0 > yξ0 . It
follows that xν0 ≤ −2 and xξ0 ≥ 2. As we saw in the proof of Proposition 5.10
and Lemma 5.12, C.D1 and C.Dd−1 are positive. By the inequality

k =
d−2∑
i=2

yiC.Di(25)

=
d0−1∑
i=2

yiC.Di +
d−2∑

i=d0+1

yiC.Di ≤ yν0

xν0

d0−1∑
i=2

xiC.Di +
yξ0

xξ0

d−2∑
i=d0+1

xiC.Di

=
yν0

xν0

(−C.F ′ + C.D1) +
yξ0

xξ0

(C.F ′ − C.Dd−1) ≤
(
− yν0

xν0

+
yξ0

xξ0

)
(k′ − 1),

we obtain

− yν0

xν0

+
yξ0

xξ0

≥ 1.(26)

Consider the case where min{−xν0 , xξ0} = 2. If xν0 = −2, we have
yν0 = 1, that is, c0 = 2 by the assumption f0 = 2. Hence, by (26), we have
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1/2 ≤ yξ0/xξ0 < 1/(e0 − 1), that is, e0 = 2. Similarly, one can show c0 = e0 = 2
in the case where xξ0 = 2. Therefore, by (B) in List 5.7, we have C1.Dd0 ≥ 1 in
this case. Hence the lemma is valid for m = 2.

We assume that m0 = min{−xν0 , xξ0} ≥ 3. Let us consider the following
operation :

We can take C1. →

⎧⎪⎨
⎪⎩

f1 = 0. → We can finish our proof.
f1 = 1. → We can take C2 by Lemma 5.20 if k ≥ 3. −−↙
f1 ≥ 2.

→

⎧⎪⎨
⎪⎩

f2 = 0. → We can finish our proof.
f2 = 1. → We can take C2 by Lemma 5.20 if k ≥ 4. −−↙
f2 ≥ 2.

→ · · · .

Then, since k = k′ − 1 ≥ −x1C.D1 − xν0C.Dν0 − 1 ≥ m0, it is sufficient to check
that

(i) fj ≤ 1 if f1 = · · · = fj−1 = 1 for an integer j with 1 ≤ j ≤ m0 − 1,
(ii) especially fm0−1 = 0 if f1 = · · · = fm0−2 = 1.

(i) Let j be an integer with 1 ≤ j ≤ m0 − 1 such that f1 = · · · = fj−1 = 1. By
Lemma 5.20, we can take the auxiliary divisor Ij−1 of Cj−1 and a nonsingular
irreducible curve Cj ∈ |Cj−1 − Ij−1|. Suppose that fj ≥ 2. Since xνj

≤ −2
and xξj

≥ 2, we have y(Cj , 1) = −yνj
/xνj

and y′(Cj , 1) = yξj
/xξj

. Hence, by
Lemma 5.18 and 5.19,

y(C0, j + 2) = − yν0

xν0

(j + 2) < min{l ∈ Z | l > y(Cj , 1) + αj−1}

= min
{

l ∈ Z

∣∣∣ l > − yνj

xνj

+ αj−1

}
= αj−1 + 1,

y′(C0, j + 2) =
yξ0

xξ0

(j + 2) < min{l ∈ Z | l > y′(Cj , 1) + j − αj−1}

= min
{

l ∈ Z

∣∣∣ l >
yξj

xξj

+ j − αj−1

}
= j − αj−1 + 1.

These inequalities imply that −yν0/xν0 + yξ0/xξ0 < 1, a contradiction. We thus
obtain fj ≤ 1.
(ii) Considering y(C0, m0 − 1), y(Cm0−2, 0), y′(C0, m0 − 1) and y′(Cm0−2, 0),
Lemma 5.18 and 5.19 implies that(

αm0−3,− yν0

xν0

(m0 − 1)
]
∩ Z = ∅,(27) (

m0 − 2 − αm0−3,
yξ0

xξ0

(m0 − 1)
]
∩ Z = ∅.
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Note that xν0 < −yν0 and xξ0 > yξ0 by the assumption f0 = 2. In the case where
m0 = −xν0 , we obtain αm0−3 = yν0 − 1 by the first equality of (27). Since

(y(Cm0−2, 1) + αm0−3, y(C0, m0)] ∩ Z =
(
− yνm0−2

xνm0−2

+ yν0 − 1, yν0

]
∩ Z = ∅,

we have yνm0−2/xνm0−2 = −1, that is, cm0−2 = 1. On the other hand, since

(y′(Cm0−2, 1) + m0 − 2 − αm0−3, y
′(C0, m0)] ∩ Z

=
(

yξm0−2

xξm0−2

− xν0 − yν0 − 1,− yξ0

xξ0

xν0

]
∩ Z = ∅,

we have yξm0−2/xξm0−2 ≥ 1. Indeed, if yξm0−2/xξm0−2 < 1, then we have
−yξ0xν0/xξ0 < −xν0 − yν0 , which contradicts (26). Hence we obtain em0−2 = 1.
Therefore, we can conclude that Cm0−1.Dd0 ≥ 1 by (B) in List 5.7, which means
that fm0−1 = 0. In the case where m0 = xξ0 , we obtain αm0−3 = xξ0 − yξ0 − 1
by the second equality of (27). Since

(y(Cm0−2, 1)+αm0−3, y(C0, m0)]∩Z =
(
− yνm0−2

xνm0−2

+xξ0−yξ0−1,− yν0

xν0

xξ0

]
∩Z = ∅,

we have yνm0−2/xνm0−2 ≥ −1. Indeed, if yνm0−2/xνm0−2 < −1, then we have
−yν0xξ0/xν0 < xξ0 − yξ0 , which contradicts (26). We thus have cm0−2 = 1. On
the other hand, since

(y′(Cm0−2, 1)+m0−2−αm0−3, y
′(C0, m0)]∩Z =

(
yξm0−2

xξm0−2

+yξ0 −1, yξ0

]
∩Z = ∅,

we have yξm0−2/xξm0−2 = 1, that is, em0−2 = 1. Consequently, we have fm0−1 = 0
in this case also. �

In keeping with the Lemma 5.21, let us show Assertion 3.2.

Proposition 5.22. For the curve C, Assertion 3.2 is true.

Proof. First, if k = 2 and C1.F
′ > C1.F (resp. C1.F

′ = C1.F ), then the
statement is obviously true for m0 = 1 (resp. m0 = 2). Hence we assume that
k ≥ 3.

Consider the case where f0 ≤ 1. Since

C1.F
′ − C1.F = C.F ′ − I0.F

′ − C.F + I0.F = k′ − f0 − k + 1 ≥ 2 − f0 ≥ 1,

the lemma is valid for m0 = 1 in this case.
Let us consider the case where f0 = 2. If k′ ≥ k + 2, then we have

C1.F
′ ≥ C1.F + 1, and can finish the proof. On the other hand, in the case

where k′ = k + 1, the lemma is valid for m0 = m, where m is the integer in
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Lemma 5.21. Indeed, this is clear in the case where Cm−1.F = 1. If Cm−1.F ≥ 2,
then we can take the auxiliary divisor Im−1 of Cm−1 and a nonsingular irre-
ducible curve Cm ∈ |Cm−1 − Im−1| by Lemma 5.20. Since fm−1 = 0, we obtain
Cm.F ′ ≥ Cm.F + 1.

From now on, we assume that f0 ≥ 3. Since xν0 < −2yν0 and xξ0 > 2yξ0 ,
we have k′ ≥ k + 2 by the same computation as (25). We put a =

∑d0−1
i=2 yiC.Di

and b =
∑d−2

i=d0+1 yiC.Di.
(i) Consider the case where f0 ≥ 3 and k′ = k + 2. Then we have

a ≤ yν0

xν0

d0−1∑
i=2

xiC.Di < − 1
c0 − 1

d0−1∑
i=2

xiC.Di =
k′ − C.D1

c0 − 1
=

k + 2 − C.D1

c0 − 1
,

b ≤ yξ0

xξ0

d−2∑
i=d0+1

xiC.Di <
1

e0 − 1

d0−1∑
i=2

xiC.Di =
k′ − C.Dd−1

e0 − 1
=

k + 2 − C.Dd−1

e0 − 1
.

Here we note that C.D1 = 1. Indeed, if C.D1 ≥ 2 and k is even (resp. odd), then
we have a < k/2 and b ≤ k/2 (resp. a ≤ (k − 1)/2 and b < (k + 1)/2), which
contradicts the equality k = a + b. Similarly, one can obtain C.Dd−1 = 1. If
c0 ≥ 4, then we have

a

⎧⎨
⎩

≤ 1 (k = 3, 4),

<
k + 1

3
(k ≥ 5),

which contradicts that k = a + b and b ≤ (k + 1)/2. We thus have c0 = 3.
Similarly, one can obtain e0 = 3. In sum, we have f1 = 0 by (B) in List 5.7, and
moreover

C1.F
′ = C.F ′ − I0.F

′ = C.F + 2 − f0 = C.F − 1 = C1.F.

Since C1.F = k−1 ≥ 2, we can take the auxiliary divisor I1 of C1 and a nonsingu-
lar irreducible curve C2 ∈ |C1−I1| by Lemma 5.20. Then we obtain C2.F

′ > C2.F

by f1 = 0. Therefore, the lemma is valid for m0 = 2 in this case.
(ii) Consider the case where f0 ≥ 3 and k′ ≥ k + 3. If f0 = 3, then we have

C1.F
′ = C.F ′ − 3 ≥ C.F = C1.F + 1.

Assume that f0 ≥ 4 and a ≥ b. Then we have

C1.F = C.F − 1 = a + b − 1 ≤ 2a − 1

= 2
ν0−1∑
i=2

yiC.Di + 2yν0(C.Dν0 − 1) + 2yν0 − 1,

C1.F
′ = C.F ′ − f0



THE GONALITY CONJECTURE FOR CURVES ON TORIC SURFACES WITH TWO P
1-FIBRATIONS 79

= −
d0−1∑
i=1

xiC.Di − f0 ≥ C.D1 − xν0

yν0

a − f0 > 1 + (f0 − 1)a − f0

= (f0 − 1)
ν0−1∑
i=2

yiC.Di + (f0 − 1)yν0(C.Dν0 − 1) + (f0 − 1)(yν0 − 1).

We thus obtain C1.F
′ > C1.F if yν0 ≥ 2. If yν0 = 1, then by noting k ≥ 3, we have

the inequality
∑ν0

i=2 yiC.Di ≥ 2. Hence, in this case, either
∑ν0−1

i=2 yiC.Di ≥ 1
or C.Dν0 ≥ 2 holds, which implies that C1.F

′ > C1.F . Similarly, one can obtain
the same inequality in the case where f0 ≥ 4 and a ≤ b. Therefore, the lemma is
valid for m0 = 1 in this case. �

Proposition 5.23. For the curve C, Assertion 3.3 is true.

Proof. Let j be an integer with 1 ≤ j ≤ min{m0, k−1}. If fj−1 = 0 (resp.
fj−1 ≥ 1 and Cj−1 satisfies (a) or (b) in Lemma 5.11), then the statement follows
from Lemma 5.14 (resp. Lemma 5.13).

Consider the case where fj−1 ≥ 1 and Cj−1 satisfies neither (a) nor (b).
Note that H1(S,−Ij−1) = 0 by Proposition 5.9 and (Cj − Ij−1)|Cj

is nonspecial
by Lemma 5.12. Besides, a similar computation to (14) shows that also Cj |Cj

is nonspecial. Hence we see that the statement of our lemma is equivalent to
the inequality Cj .Ij−1 ≥ Cj .F + 1 by the same argument as that in the proof of
Proposition 4.20. Let ιj−1 be an integer such that (xιj−1 , yιj−1) = (ej−1−cj−1, 1).
For the auxiliary divisor Ij−1 =

∑d
i=1 qiDi +F ′, we have qιj−1 = fj−1 ≥ 1. Since

Cj .Dιj−1 ≥ 1 by List 5.7, we have

Cj .Ij−1 ≥ Cj .(qιj−1Dιj−1 + F ′) ≥ Cj .F
′ + 1 ≥ Cj .F + 1.

The above argument all goes through for j = 1 if C.F ′ = C.F = 2. �
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