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Abstract

We classify the 3-Weierstrass points on the genus two curves

Ca,b : y2 = x6 + ax4 + bx2 + 1,

where a, b ∈ C are two parameters. We describe the classification in terms of the

invariants u = ab and v = a3 + b3 (cf. [7]).

1. Introduction

We consider a 2-parameters family of genus two curves Ca,b defined by

Ca,b : y2 = x6 + ax4 + bx2 + 1, (Δ(a, b) �= 0),

where Δ(a, b) = −64(27 − 18ab + 4a3 + 4b3 − a2b2)2 is the discriminant of the
polynomial x6 + ax4 + bx2 + 1. It is clear that the curves Ca,b admit an extra
involution (x, y) �→ (−x, y) which differs from the hyperelliptic involution.

It is well known that, for a hyperelliptic curve C of a genus g ≥ 2 the set of
ordinary Weierstrass points on C, denoted by W1(C), are nothing but its set of
the (2g+2)-ramification points over P

1. Furthermore, W1(C) is contained in the
set of the q-Weierstrass points on C, denoted by Wq(C), for every q ≥ 2. For a
point P ∈ C, let w(q)(P ) denote the q-weight of P .

For a genus two curve C, we have the equality W1(C) = W2(C). For a point
P ∈W3(C), there occur three cases: w(3)(P ) = 1, 2 and 3. We have w(3)(P ) = 3
if and only if P ∈W1(C). We can divide W3(C) as

W3(C) = W3(C)1 ∪W3(C)2 ∪W1(C) (disjoint union),

where W3(C)1 (resp. W3(C)2) is the set of the 3-Weierstrass points P with
w(3)(P ) = 1 (resp. w(3)(P ) = 2). We denote by N1 (resp. N2) the number of
points in W3(C)1 (resp. W3(C)2). We have the formula: N1 + 2N2 = 32.
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Shaska and Völklein [7] found a generic moduli for the curves Ca,b. They
introduced the invariants u = ab and v = a3 + b3 of a D6 action, where
D2n denotes the dihedral group of order 2n (see Subsection 2.2). We have
Δ(a, b) = −64 δ(u, v)2, where δ(u, v) = 27 + 4v − 18u − u2. Set Λ : δ(u, v) = 0.
Then the complement C2 \ Λ generically classifies the curves Ca,b. The curves
Ca,b with the same invariants (u, v) are isomorphic, hence they have the same
pair (N1, N2).

We define the following curves in the (u, v)-plane:

S : s(u, v) = −1125 + 4v + 110u− u2 = 0,

T : t(u, v) = v2 − 4u3 = 0,

M : m(u, v)= 4v − u(u+ 16) = 0,

G : g(u, v) = 20796875 − 13942500u− 571350u2 − 98324u3 − 3645u4

+3429000v − 235440uv + 1512u2v + 52272v2 = 0.

The curves S and T were introduced in [7], where it was shown that if (u, v) ∈ S

(resp. T ), then there exists an automorphism of order three (resp. four) on Ca,b.
We will encounter the curves M and G in Section 3.

The purpose of this paper is to prove the following:

Theorem. We classify the 3-Weierstrass points on Ca,b as follows:

N1 N2 (u, v) Geometry Aut(Ca,b)

0 16 (25,−250) S ∩ G ∩ T GL2(3)

12 10 A M ∩ S ∩ G D12

16 8
B± G ∩ T D8

Q the node of G V4

20 6 E± M ∩ G V4

24 4

(0, 0) M ∩ T Z3 � D8

(16, 128) M ∩ T D8

general points on S D12

general points on G V4

28 2 general points on M V4

32 0 otherwise V4

Here, we used the following notations:

N1 = #(W3(C)1), N2 = #(W3(C)2),

A = (
125
14

,
43625
784

), Q = (−25
2
,−11125

176
),

B±= (
1025
729

± 5200
729

√−2, −698750
19683

± 758000
19683

√−2),

E±= (−647
256

± 3519
3328

√−39, −33079811
1703936

± 4930119
1703936

√−39).
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In Section 2, we recall some basic facts on q-Weierstrass points and Wron-
skian forms of q-differentials on genus two curves. In Section 3, we compute the
3-Weierstrass points on Ca,b and prove Theorem. In Section 4, we prove that
every 3-Weierstrass point of 3-weight 2 on a genus two curve is a q-Weierstrass
point of q-weight 2 (q ≥ 4) except if q ≡ 2 (mod 3). We used the computer
softwares Mathematica and Maple to perform the computations.

2. Preliminaries

Let C be a non-singular projective curve of genus two. Let H0(C, (Ω1)q)
be the C-vector space of holomorphic q-differentials on C. By Riemann-Roch
Theorem, we have dimH0(C, (Ω1)q) = (2q − 1), for q ≥ 2.

Definition 1. For a point P on C, take a basis {ψ1, . . . , ψ2q−1} of H0(C, (Ω1)q)
so that ordP (ψ1) < · · · < ordP (ψ2q−1). Letting ni = ordP (ψi) + 1, the sequence
G(q)(P ) = {n1, n2, . . . , n2q−1} is called the q-gap sequence of P . The non-negative
integer

w(q)(P ) =
2q−1∑
i=1

(ni − i)

is called the q-weight of P. We say that a point P ∈ C is a q-Weierstrass point if
w(q)(P ) > 0. We denote by Wq(C) the set of all q-Weierstrass points on C.

Definition 2. Now we define the Wronskian form:

Ωq=W (ψ1, . . . , ψ2q−1) ∈ H0(C, (Ω1)(2q−1)2).

Since every q-differential ψi can be written in a form ψi = fi(z)(dz)q, i =
1, . . . , 2q − 1, where fi is a holomorphic function and z is a local coordinate,
then, we define

Ωq=W (ψ1, . . . , ψ2q−1) = W (f1, . . . , f2q−1)(dz)(2q−1)2 ,

where:

W (f1, . . . , f2q−1) =

∣∣∣∣∣∣∣∣∣∣∣

f1(z) f2(z) · · · f2q−1(z)

f
′
1(z) f

′
2(z) · · · f

′
2q−1(z)

...
...

. . .
...

f
(2q−2)
1 (z) f

(2q−2)
2 (z) · · · f

(2q−2)
2q−1 (z)

∣∣∣∣∣∣∣∣∣∣∣
Hence, we obtain

div(Ωq) = div(W (f1, . . . , f2q−1)) + (2q − 1)2div(dz).

By using the Wronskian method, we can prove the following:
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Lemma 1. We have the formula:∑
P∈C

w(q)(P ) = 2(2q − 1)2, for q ≥ 2.

Lemma 2 (Duma [3]). For every P ∈ C, we have w(q)(P ) ≤ 3. The equality
occurs if and only if P ∈W1(C).

Lemma 3. The possible 3-gap sequences of P ∈W3(C) are listed as follows:

G(3)(P ) w(3)(P )

{1, 2, 3, 4, 6} 1

{1, 2, 3, 4, 7} 2

{1, 2, 3, 5, 7} 3

Proof. It suffices to see that {1, 2, 3, 5, 6} is not a 3-gap sequence. Let P ∈ C

be a 3-Weierstrass point with w(3)(P ) = 2. Since P /∈ W1(C), there exists an
element ψ ∈ H0(C,Ω1) such that ordP (ψ) = 1. We have ordP (ψ3) = 3, hence
4 ∈ G(3)(P ).

2.1 The 3 -Weierstrass points on Ca,b

Here, we will restrict our attention to the curves Ca,b. Write f(x, y) =
y2−(x6+ax4+bx2+1). Clearly, x6+ax4+bx2+1 = (x2−α2

1)(x
2−α2

2)(x
2−α2

3),
where α1, α2, α3 are nonzero distinct complex numbers. The set of branch points
is given by {±α1,±α2,±α3}. The corresponding set of the ramification points
on Ca,b is given by

{R±
1 = (±α1, 0), R±

2 = (±α2, 0), R±
3 = (±α3, 0)}.

There are two points over the point ∞ ∈ P
1, in the nonsingular model of Ca,b, we

call these two points P∞
1 and P∞

2 . We will denote by P 0
1 and P 0

2 the two points
over the point 0 ∈ P

1.
In order to compute the 3-Weierstrass points on Ca,b, we use the following

basis of holomorphic 3-differentials:

ψ0 = (1/y3)(dx)3, ψ1 = (x/y3)(dx)3, ψ2 = (x2/y3)(dx)3,

ψ3 = (x3/y3)(dx)3, ψ4 = (1/y2)(dx)3.

The divisors of these holomorphic 3-differentials are given as follows:

div(ψ0) = 3(P∞
1 + P∞

2 ), div(ψ1) = (P 0
1 + P 0

2 ) + 2(P∞
1 + P∞

2 ),

div(ψ2) = 2(P 0
1 + P 0

2 ) + (P∞
1 + P∞

2 ), div(ψ3) = 3(P 0
1 + P 0

2 ),

div(ψ4) =
∑3

i=1

(
R+

i +R−
i

)
.

We can compute the Wronskian form Ω3 (see Definition 2) by using the 4-th
differentiation y(4) of y by x as follows:



THE 3 -WEIERSTRASS POINTS ON GENUS TWO CURVES 5

Lemma 4. 1) W (1, x, x2, x3, y) = 12y(4).

2) Ω3(x, a, b) = W (1, x, x2, x3, y)(dx)25/f15
y ∈ H0(Ca,b, (Ω1)25).

2.2 Parameter spaces of the curves Ca,b

The parameter space of the family Ca,b, is given by C2 \ Λ̃ where Λ̃ is a
quartic curve defined by

Λ̃ : δ̃(a, b) = 27 − 18ab+ 4a3 + 4b3 − a2b2 = 0 (Δ(a, b) = −64 δ̃(a, b)2).

The dihedral group D6 = 〈σ1, σ2〉 acts on the (a, b)-plane in the following way:

σ1 : (a, b) → (ωa, ω2b), σ2 : (a, b) → (b, a),

where ω = exp(2πi/3). The invariant ring under the action of D6 is generated
by u = ab and v = a3 + b3, so that

C[a, b]D6 = C[u, v].

Note that δ̃(a, b) = δ(u, v) and we defined the curve Λ : δ(u, v) = 0. We then
have the isomorphism

(
C2 \ Λ̃

)
/D6

∼= C2 \ Λ. In particular, the points

(a, b), (ωa, ω2b), (ω2a, ωb), (b, a), (ωb, ω2a), (ω2b, ωa)

correspond to the same point (u, v) = (ab, a3 + b3) in C2 \ Λ.

Lemma 5. In C2 \Λ, the intersections of the curves S, T, M and G defined in
Introduction are given as follows (see also Introduction, for A, B±, E±):

S ∩ T = {(25,−250), (225, 6750), (9, 54)},
S ∩M = {A},
M ∩ T = {(0, 0), (16, 128)},
G ∩ S = {(25,−250), A},
G ∩M = {E±, A},
G ∩ T = {B±, (25,−250), (1,−2), (

121
25

,
2662
125

)}.

Remark 1. The curve G has a node at the point Q and a tacnode on the line
at infinity. Hence, G is a rational curve.

Shaska and Völklein in [7] determined the automorphism group of Ca,b in
terms of u and v as follows:

Lemma 6. 1) Aut(Ca,b) ∼= GL2(3) if and only if (u, v) = (25,−250),

2) Aut(Ca,b) ∼= Z3 �D8 if and only if (u, v) = (0, 0) or (225, 6750),
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3) Aut(Ca,b) ∼= D12 if and only if (u, v) ∈ S and u �= 9, 70 + 30
√

5, 25,

4) Aut(Ca,b) ∼= D8 if and only if (u, v) ∈ T and u �= 1, 9, 0, 25, 225,

5) Aut(Ca,b) ∼= V4 if and only if (u, v) /∈ (S ∪ T ) \ Λ.

3. Proof of Theorem

Using Lemma 4, we can write the Wronskian form Ω3 on Ca,b as:

Ω3 = Φ(x, a, b)(dx)25/f22
y ,

where the polynomial

Φ(x, a, b) = (4a− b2) + (60 − 16ab+ 4b3)x2 + (70b− 56a2 + 14ab2)x4

− (196b− 84a2)x10 + (70a− 56b2 + 14ba2)x12

+ (60 − 16ab+ 4a3)x14 + (4b− a2)x16

is of degree 14 or 16 according as the coefficient 4b− a2 of x16 is zero or not. We
infer that

div(Ω3) = 3

(
3∑

i=1

(
R+

i +R−
i

))
+ 16(P∞

1 + P∞
2 ) + div(Φ)0 − div(Φ)∞.

In view of Lemma 2, we see that Φ(x, a, b) has no multiple roots whose multiplic-
ities are greater than 2.

3.1 Case(I): 4b− a2 = 0
Suppose 4b− a2 = 0. In this case, we have

Φ(x, a) = Φ(x, a, a2/4) = Const.
{
a(64 − a3) + (960 − 64a3 + a6)x2

+ (−616a2 + 14a5)x4 + (−3136a+ 84a4)x6 + (−4560 + 240a3)x8

+ (560a2)x10 + (1120a)x12 + 960x14
}
.

The pole divisor of Φ(x, a) is given by 14(P∞
1 + P∞

2 ), so we get

div(Ω3) = 3

(
3∑

i=1

(
R+

i +R−
i

))
+ 2(P∞

1 + P∞
2 ) + div(Φ)0,

which implies that w(3)(P∞
1 ) = w(3)(P∞

2 ) = 2. By computing the discriminant
of Φ(x, a), we have

Disc(Φ) = Const Δ(a)18aη(a)U(a)2V (a)4,

where Δ(a) = Δ(a, a2/4) �= 0 and
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η(a) = 64 − a3,

U(a) = 332750 + 8411a3 + 416a6,

V (a) = −250 + 7a3.

We see that Φ has a multiple root if and only if aη(a)U(a)V (a) = 0. To determine
the number of the multiple roots of Φ = Φ(x, a), we compute the subresultants
R(i) of the two polynomials Φ and Φx (the differentiation by x). Since Φ has at
most double roots, if R(1)(a) = · · · = R(s)(a) = 0, R(s+1)(a) �= 0, then Φ has s
double roots at a. We obtain

R(1)(Φ,Φx;x) = Const. Δ(a)18a η(a)U(a)2V (a)4,

R(2)(Φ,Φx;x) = Const. Δ(a)15 U(a)V (a)3 ζ12(a),

R(3)(Φ,Φx;x) = Const. Δ(a)12V (a)2ζ9(a) ζ12(a),

R(4)(Φ,Φx;x) = Const. Δ(a)10aV (a)ζ9(a)χ12(a),

R(5)(Φ,Φx;x) = Const. Δ(a)8a3 ζ6(a)χ12(a),

where ζn(a) and χn(a) are polynomials of degree n of a.
We consider the curve M̃ : (4b− a2)(4a− b2) = 0. Note that

(4b− a2)(b2 − 4a) = m(u, v) = 4v − u(u+ 16).

In Introduction, we defined the curve M : m(u, v) = 0.

Case aη(a) = 0. Since Res(aη(a), U(a)V (a)ζ12(a); a) �= 0, we conclude that Φ
has one multiple root if aη(a) = 0.

(i) The point (a, b) = (0, 0) corresponds to the point (0, 0) ∈ (M ∩ T ) \ Λ.
We have

Φ(x, 0, 0) = 15x2(4 − 19x6 + 4x12).

Thus, we have W3(C0,0)2 = {P∞
1 , P∞

2 , P 0
1 , P

0
2 }.

(ii) For the case in which η(a) = 0, we have three points

(4, 4), (4ω, 4ω2), (4ω2, 4ω),

which correspond to the point (16, 128) ∈ (M ∩ T ) \ Λ. We have

Φ(x, 4, 4) = 5x2(12 + 56x2 + 112x4 + 135x6 + 112x8 + 50x10 + 12x12).

Thus, W3(Ca,b)2 = {P∞
1 , P∞

2 , P 0
1 , P

0
2 }.

Case U(a) = 0. Since Res(U(a), V (a)ζ9(a)ζ12(a); a) �= 0, we infer that Φ has two
multiple roots if U(a) = 0. There occur three points over the point E+ and three
points over the point E−. It follows that N2 = 6.
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Case V (a) = 0. Since Res(V (a), aζ6(a)χ12(a); a) �= 0, we infer that Φ has four
multiple roots if V (a) = 0. There occur three points over the point A. It follows
that N2 = 10.

Otherwise, Φ has no multiple roots, thus, W3(Ca,b)2 = {P∞
1 , P∞

2 }.
We summarize the results for the case in which 4b− a2 = 0.

(u, v) N1 N2 Aut(Ca,b)

V (a) = 0 A 12 10 D12

U(a) = 0 E± 20 6 V4

η(a) = 0 (16, 128) 24 4 D8

a = 0 (0, 0) 24 4 Z3 � D8

otherwise 28 2 V4

By Lemma 5, we see that A ∈ S ∩G, E± ∈ G and (0, 0), (16, 128) ∈M .

3.2 Case(II): 4b− a2 �= 0
We now turn to the case in which 4b− a2 �= 0. In this case, we have

div(Ω3) = 3

(
3∑

i=1

(
R+

i +R−
i

))
+ div(Φ)0.

By computing the discriminant of Φ = Φ(x, a, b), we find that

Disc(Φ) = Const Δ(a, b)18(4b− a2)2(4a− b2)F 2
4 (a, b)F 2

8 (a, b),

where

F4(a, b) = −1125 + 110ab+ 4a3 + 4b3 − a2b2,

F8(a, b) = 20796875 − 13942500ab+ 3429000(a3 + b3) − 571350a2b2

−235440ab(a3 + b3) + 6220a3b3 + 52272(a6 + b6)

+1512a2b2(a3 + b3) − 3645a4b4.

We consider the following curves in the (a, b)-plane:

S̃ : F4(a, b) = 0 and G̃ : F8(a, b) = 0.

We can write as

F4(a, b) = s(u, v) = −1125 + 4v + 110u− u2,

F8(a, b) = g(u, v) = 20796875 − 13942500u− 571350u2 − 98324u3 − 3645u4

+3429000v − 235440uv + 1512u2v + 52272v2.

We have already defined the following curves in the (u, v)-plane:
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S : s(u, v) = 0 and G : g(u, v) = 0.

For the case in which (4a − b2)F4(a, b)F8(a, b) �= 0, we see that Φ has no
multiple roots. Hence, W3(Ca,b) = W3(Ca,b)1 ∪W1(Ca,b) (disjoint union).

We now determine the number of the multiple roots for the case in which
(4a − b2)F4(a, b)F8(a, b) = 0. We compute the subresultants of the two polyno-
mials Φ and Φx:

R(1)(Φ,Φx;x) = Const. Δ(a, b)18(4b− a2)2(4a− b2)F 2
4 (a, b)F 2

8 (a, b),

R(2)(Φ,Φx;x) = Const. Δ(a, b)15(4b− a2)2F4(a, b)F8(a, b)γ21(a, b),

R(3)(Φ,Φx;x) = Const. Δ(a, b)12(4b− a2)2γ21(a, b)γ18(a, b),

where γn(a, b) are polynomials of degree n of a and b.

3.2.1 On the conic M

Suppose 4a − b2 = 0. Since Ca,b
∼= Cb,a via the birational map (x, y) →

(1/x, y/x3), we have only to refer Subsection 3.1.

3.2.2 On the conic S

We now consider the points on S̃. We have

Res(F4, γ21γ18; a) = Const. (−27 + b3)4(125 + b3)12(−15625 + 784b3)2V (b)3.

So the curve S̃ has intersection points with the curve Γ̃ : γ21(a, b)γ18(a, b) = 0
if and only if Res(F4, γ21γ18; a) = 0. It suffices to consider the points in
(S̃ ∩ Γ̃) \ (Λ̃ ∪ M̃). We have three points

(−5,−5), (−5ω,−5ω2), (−5ω2,−5ω),

which correspond to the point (25,−250) ∈ S. Note that the above three points
also belong to G̃ (see Lemma 5). We have

Φ(x,−5,−5) = −5(1 + 10x2 + x4)2(3 − 2x2 + 3x4)2.

Hence, Φ has eight multiple roots so that N2 = 16.
Finally, for the general points in S̃ \ Λ̃, Φ has two multiple roots. It follows

that N2 = 4. Thus, we obtain the following table:

(u, v) N1 N2 Aut(Ca,b)

(25,−250) 0 16 GL2(3)

general points on S 24 4 D12
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3.2.3 On the quartic G

We consider the points on G̃. We have

Res(F8, γ21γ18; a)

= Const. (1 + b3)20(125 + b3)12(−250 + 11b3)4(1375 + 16b3)4(−15625 + 784b3)2

× (275− 130b+ 27b2)4(75625 + 35750b+ 9475b2 + 3510b3 + 729b4)4V (b)3U(b).

In (G̃ ∩ Γ̃) \ (Λ̃ ∪ M̃ ∪ S̃), we first find three points

(μ+, μ+), (ωμ+, ω
2μ+), (ω2μ+, ωμ+)

over the point B+ ∈ G and three points

(μ−, μ−), (ωμ−, ω2μ−), (ω2μ−, ωμ−)

over the point B− ∈ G, where μ± = 5(13 ± 8
√−2)/27. We have

Φ(x, μ±, μ±) = Const. ξ±8 (x) (±3 + (±10 + 8
√−2)x2 ± 3x4)2

By computing the discriminant of the polynomials ξ±8 (x), we can check that
ξ±8 (x) have no multiple roots. It follows that N2 = 8. We can then find six points
(5(2/11)1/3, (−5/2)(11/2)1/3), . . . over the point Q ∈ G. We have

Φ
(
x, 5(2/11)1/3, (−5/2)(11/2)1/3

)
= Const. Θ8(x) ((22/3)(111/3) + 4(21/3)(112/3)x2 − 4x4)2.

By computing the discriminant of the polynomial Θ8(x), we can check that Θ8(x)
has no multiple roots. Therefore, we see that N2 = 8.

Finally, for the general points in G̃ \ (Λ̃ ∪ S̃), Φ has two multiple roots.
Therefore, we see that N2 = 4. We obtain the following table:

(u, v) N1 N2 Aut(Ca,b)

B± 16 8 D8

Q 16 8 V4

general points on G 24 4 V4

Remark 2. The quartic S̃ has nodes at the 3 points over (25,−250). The oc-
tic G̃ has two tacnodes on the line at infinity and 15 nodes (the 3 points over
(25,−250), the 3 points each over B±, the 6 points over the node Q of G). As a
consequence, we see that S̃ is an elliptic curve and G̃ is a genus two curve.
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4. Higher order Weierstrass points

Let C be a genus two curve. For q ≥ 4, in case w(q)(P ) = 2, there exist two
types of q-gap sequences:

type I: G(q)(P ) = {1, 2, ..., 2q − 3, 2q − 2, 2q + 1},
type II: G(q)(P ) = {1, 2, ..., 2q − 3, 2q − 1, 2q}.

Let us denote by Wq(C)2,I (resp. Wq(C)2,II) the set of q-Weierstrass points of
q-weight 2 of type I (resp. type II) on the curve C.

Lemma 7 (see also Theorem 6.13 in [1]). Let C be a genus two curve. If
P ∈W3(C)2, then we have

w(q)(P ) =

⎧⎨⎩
2 (type I) if q ≡ 0 (mod 3),
2 (type II) if q ≡ 1 (mod 3),
0 if q ≡ 2 (mod 3).

Proof. We give the proof only for the case in which q ≡ 0 (mod 3). Assume that
P ∈ W3(C)2. In view of Lemma 3, there exists an element ψ ∈ H0(C, (Ω1)3)
such that ordP (ψ) = 6. Write q = 3m. Clearly, ψm ∈ H0(C, (Ω1)q) and
ordP (ψm) = 6m = 2q. Thus, we have 2q + 1 ∈ G(q)(P ). We infer that
G(q)(P ) = {1, 2, , 3, . . . , 2q − 3, 2q − 2, 2q + 1}.
Remark 3. We can also prove that every 3-Weierstrass point of 3-weight 1 on
C is not a 4-Weierstrass point.

Lemma 8. Let C be a genus two curve. Let σ be an automorphism of C of order
three. Then, σ has four fixed points and every fixed point P is a q-Weierstrass
point (q ≥ 3) except if q ≡ 2 (mod 3). We have

w(q)(P ) =
{

2 (type I) if q ≡ 0 (mod 3),
2 (type II) if q ≡ 1 (mod 3).

Proof. Let ν(σ) denote the number of the fixed points of σ. Let g be the genus
of the curve C = C/ 〈σ〉. By using the Riemann-Hurwitz formula, we have

1 = 3(g − 1) + ν(σ).

It follows that 0 ≤ g < 2. If g = 1, then ν(σ) = 1, which contradicts Theo-
rem V.2.11 in [5]. So we must have g = 0 and ν(σ) = 4. By Satz 6.4 in [3], every
fixed point P of σ is a q-Weierstrass point (q ≥ 3) except if q ≡ 2 (mod 3). The
assertion then follows from Lemma 7.

Example 1. We consider the following 1-parameter family of genus two curves:



12 M. Farahat and F. Sakai

Ct : y2 = x6 + tx3 + 1, (t �= ±2).

The curve Ct has an extra involution (x, y) �−→ (1/x, y/x3). Clearly, ρ : (x, y) �→
(ωx, y) acts on Ct. The two automorphisms ρ and ρ2 are elements of order three
in Aut(Ct). The fixed points of both ρ and ρ2 are given by

Fix(ρ) = Fix(ρ2) = {P 0
1 , P

0
2 , P

∞
1 , P∞

2 } ⊂W3(Ct)2.

We remark that the curve Ct is isomorphic to the curve Ca,b with

a = 3
(

10 − t

2 − t

)(
2 − t

2 + t

)2/3

, b = 3
(

10 + t

2 + t

)(
2 + t

2 − t

)2/3

.

Hence, u = 9
(
100 − t2

)
/
(
4 − t2

)
and v = 54

(
2000 + 360t2 + t4

)
/
(
4 − t2

)2. We
can easily check that (u, v) ∈ S.

Remark 4. It turns out that the genus two curve G̃ is birationally equivalent to
the curve: y2 = x6 + 322x3 + 1. We used the package software Weierstrassform
(Maple).
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