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3412, 4231 patterns produce singular points of essential sets
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Abstract

This article introduces new concepts dual bigrassmannian permutations and

dual essential sets with the discussion of singular patterns (3412, 4231). We show

that (dual) bigrassmannian permutations may contain only 3412 (4231). Then we

define singularity of points of essential sets by singularity of certain corresponding

(dual) bigrassmannian permutations (this discussion depends on the authors’ re-

cent result that given a permutation, there exists a bijection between the set of all

bigrassmannian permutations maximal below it and its essential set). Our main

theorem shows that if a permutation contains singular a pattern, then there exists

a singular point in its (dual) essential set.

1. Introduction

This article treats three objects on the symmetric groups together: singular
(3412, 4231) patterns, bigrassmannian permutations and essential sets. Each of
them is quite important and deep in topics of combinatorics of permutations,
Coxeter groups with Bruhat order, Schubert varieties, and so on. There are many
recent developments in the literature, for exmaple, see [1, 2, 7, 12] for 3412 and 4231
patterns and singularity of Schubert varieties, [8, 10] for bigrassmannian permuta-
tions, [4, 5, 6, 11, 14] for essential sets.

The author recently proved [9] that given a permutation, there exists a bijec-
tion between the set of all bigrassmannian permutations maximal below it and its
essential set. This article further investigates this bijection from two points of view,
singularity and duality. Let us say that a permtation is singular if it contains a
subsequence of four elements with the same relative order as 3412 or 4231 as in Sec-
tion 2. Then Section 3 introduces bigrassmannian permutations and its dual. Here
“dual” bigrassmannian permutations has two interpretations. First, it is certainly
“order-dual” of bigrassmannian permutations meaning that x ∈ Sn is bigrassman-
nian if and only if w0x is dual bigrassmannian where w0 is the maximum element
of Sn. Second, given a bigrassmannian permutation x, there exists precisely one
dual bigrassmannian permutation x∗ such that the essential set of x (which consists

2000 Mathematics Subject Classification. Primary: 20F55; Secondary: 20B30
Key words and phrases. 3412 and 4231 patterns, Bigrassmannian permutations, Essential sets.



14 M. Kobayashi

of actually the only one point) is equal to the dual essential set of x∗ and values
of certain rank functions coincide at that point (so this may be called “essentially
dual”). In Section 4 we will see these results and examples with definitions of essen-
tial sets and such rank functions. After that we come to define singularity of points
of essential sets under the bijection in the author’s result as mentioned above. Our
main theorem in Section 5 proves that every singular pattern necessarily produces
a singular point in (dual) essential sets.

Theorem. Let x ∈ Sn. If x is singular, then there exists a singular point in its
(dual) essential sets.

2. 3412 and 4231 patterns

We begin with a definition of two types of singular patterns.

Definition 2.1. Let x ∈ Sn and (i1, i2, i3, i4) be a quadruple of integers. We
say that it is a 3412 pattern of x if 1 ≤ i1 < i2 < i3 < i4 ≤ n and
x(i3) < x(i4) < x(i1) < x(i2). Denote by P3412(x) the set of all 3412 patterns
of x. We say that x contains 3412 if P3412(x) �= ∅. (i1, i2, i3, i4) is a 4231 pattern
of x if 1 ≤ i1 < i2 < i3 < i4 ≤ n and x(i4) < x(i2) < x(i3) < x(i1). Similarly
define P4231(x) and say x contains 4231 if P4231(x) �= ∅. Moreover, x is singular if
x contains 3412 or 4231.

To express and understand permutations visibly, it is useful to place a dot (�) at
positions {(i, x(i)) | 1 ≤ i ≤ n} in an n×n matrix. Figure 1 shows such placements
for singular patterns.

Example 2.2. Some permutations may contain both of singular patterns. Let
x = 5736241. Then P3412(x) = {(1, 2, 3, 6), (1, 2, 5, 6), (1, 4, 5, 6)} as 5734, 5724, 5624
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3412 4231
Figure 1 Singular patterns
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seen from one-line notation of x and P4231(x) = {(1, 3, 6, 7), (1, 5, 6, 7), (2, 3, 4, 7),
(2, 3, 6, 7), (2, 5, 6, 7), (4, 5, 6, 7)} as 5341, 5241, 7361, 7341, 7241, 6241.

3. bigrassmannian permutations

From now on we begin to view Sn as a poset with Bruhat order. For its defini-
tion, which we do not actually need here, refer to [3, Chapters 1, 2]. In this order,
bigrassmannian permutations play an important role. In particular, the most impor-
tant property is that bigrassmannian permutations are equivalently join-irreducible
elements in this order (Remark 3.2). We will also introduce dual bigrassmannian
permutations.

Definition 3.1. For x ∈ Sn, define the set of left and right descents as

DL(x) = {1 ≤ i ≤ n − 1 | x−1(i) > x−1(i + 1)},
DR(x) = {1 ≤ i ≤ n − 1 | x(i) > x(i + 1)}.

We say that x is bigrassmannian if #DL(x) = #DR(x) = 1 and x is dual bi-
grassmannian if #DL(x) = #DR(x) = n − 2. From now on by ≤ we mean the
Bruhat order on Sn. Then denote by B(Sn) and B∗(Sn) the set of all (dual) bi-
grassmannian permutations, respectively. Define B(x) = {w ∈ B(Sn) | w ≤ x} and
B∗(x) = {w ∈ B∗(Sn) | w ≥ x}.
Remark 3.2. Each x ∈ Sn can be written as x = ∨Max B(x) = ∧MinB∗(x),
the join of maximal elements of B(x) and the meet of minimal elements of B∗(x)
since (dual) bigrassmannian permutations are equivalently join-irreducible (meet-
irreducilbe) elements in Sn. For details, see [9, Sections 1, 2]. In Section 4, we
will particularly discuss the bijection between elements of Max B(x) (MinB∗(x))
and (dual) essential sets. These decompositions are in fact unique so that they
encode many properties of x. Our main theorem will show that existence of sin-
gular patterns of x guarantees existence of singular permutations in MaxB(x) or
MinB∗(x).

Following [13, Section 8], we next introduce a convenient parameter of (dual)
bigrassmannian permutations with three positive integers.

Definition 3.3. Let An = {(a, b, c) ∈ N3 | 1 ≤ b ≤ a ≤ n − 1 and b + 1 ≤ c ≤
n − a + b}. For each (a, b, c) ∈ An, define Jabc ∈ B(Sn) and Mabc ∈ B∗(Sn) by

Jabc(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i if 1 ≤ i ≤ b − 1,

i + c − b if b ≤ i ≤ a,

i − a + b − 1 if a + 1 ≤ i ≤ a − b + c,

i if a − b + c + 1 ≤ i ≤ n
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and

Mabc(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n − i + 1 if 1 ≤ i ≤ a − b,

c + a − b − i if a − b + 1 ≤ i ≤ a,

n + b + 1 − i if a + 1 ≤ i ≤ n + b − c + 1,

n − i + 1 if n + b − c + 2 ≤ i ≤ n.

Example 3.4. For n = 9, we see J536 = 126783459 and M536 = 985437621.

Proposition 3.5.

(1) Jabc contains 3412 if and only if a − b ≥ 1 and c − b ≥ 2. Moreover, any Jabc

does not contain 4231.

(2) Mabc contains 4231 if and only if a− b ≥ 1 and c− b ≥ 2. Moreover, any Mabc

does not contain 3412.

Proof. Notice that one-line notation of Jabc consists of (at most four and at least
two) consecutive increasing sequences. At most four means the first or fourth se-
quence(s) may be empty if b − 1 = 0 or n − a + b − c = 0. At least two means the
middle two sequences are not empty. More explicitly,

Jabc = 1 2 · · ·︸ ︷︷ ︸
b−1

c c + 1 · · ·︸ ︷︷ ︸
a−b+1

b b + 1 · · ·︸ ︷︷ ︸
c−b

a − b + c + 1 a − b + c + 2 · · · .︸ ︷︷ ︸
n−a+b−c

It is easy to see that if Jabc contains 3412, then the two middle sequences must
have length greater than 1, i.e., a − b + 1 ≥ 2 and c − b ≥ 2 (and vice versa).
Obviously any Jabc cannot contain 4231.

In the same way, Mabc consists of (at most four and at least two) consecutive
decreasing sequences as

Mabc = n n − 1 · · ·︸ ︷︷ ︸
a−b

c−1 c−2 · · ·︸ ︷︷ ︸
b

n−a+b n−a+b−1 · · ·︸ ︷︷ ︸
n−a+b−c+1

c−b−1 c−b−2 · · · .︸ ︷︷ ︸
c−b−1

If Mabc contains 4231, then the first and fourth sequences cannot be empty, i.e.,
a − b ≥ 1 and c − b − 1 ≥ 1 (and vice versa). Obviously any Mabc cannot contain
3412.

Remark 3.6.

(1) Consequently, Jabc is singular if and only if so is Mabc (with different types of
singular patterns).

(2) Later in Definition 4.5, we will talk about singularity of Ja,b,c+1, not Jabc. Thus
actually singular condition for Ja,b,c+1 is a − b ≥ 1 and (c + 1) − b ≥ 2, i.e.,
c − b ≥ 1.
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4. singular points in (dual) essential sets

Fulton [6] introduced the essential set for permutations. This section introduces
new concepts and objects: dual essential set, b- and b∗-rank and singularity for each
point in (dual) essential sets.

Definition 4.1. Let x ∈ Sn.

(1) The essential set of x in {1, 2, . . . , n}2 is

Ess(x) = {(a, c) | a < x−1(c), c < x(a), x(a + 1) ≤ c, x−1(c + 1) ≤ a}.
To each (a, c) ∈ Ess(x), we associate a set B = B(a, c) and a positive integer
(call it b-rank) b = b(a, c) defined by

B = {a′ | 1 ≤ a′ ≤ a and 1 ≤ x(a′) ≤ c + 1}
and b = #B.

(2) The dual essential set of x is

Ess∗(x) = {(a, c) | a ≥ x−1(c), c ≥ x(a), x(a + 1) > c, x−1(c + 1) > a}.
Also to each (a, c) ∈ Ess∗(x), we associate a set B∗ = B∗(a, c) and a positive
integer (call it b∗-rank) b∗ = b∗(a, c) defined by

B∗ = {a′ | 1 ≤ a′ ≤ a and 1 ≤ x(a′) ≤ c}
and b∗ = #B∗ (this happens to be the usual rank function rx in context of
essential sets, though).

We should have written B(a, c, x) and b(a, c, x), but we drop x from notation
whenever no confusion arises.

The following two propositions show that there exists a bijection between each
element of Max B(x) (MinB∗(x)) and each point of Ess(x) (Ess∗(x)).

Proposition 4.2. [9, Lemma 4.2] For 1 ≤ a, c ≤ n−1, we have (a, c) ∈ Ess(x) ⇐⇒
Ja,b,c+1 ∈ MaxB(x) where b = b(a, c).

Proposition 4.3. (a, c) ∈ Ess∗(x) ⇐⇒ Ma,b,c+1 ∈ MinB∗(x) where b = b∗(a, c).

Proof. The idea of this proof is quite similar to that of [9, Lemma 4.2]. For each
Mabc ∈ B∗(Sn), define

C∗
1 (Mabc) = Ma,b+1,c+1 if a − b ≥ 1,

C∗
2 (Mabc) = Ma−1,b,c if a − b ≥ 1,

C∗
3 (Mabc) = Ma+1,b+1,c if c − b ≥ 2,

C∗
4 (Mabc) = Ma,b,c−1 if c − b ≥ 2.
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Figure 2 Ess(3412) = {(2, 2)} = Ess∗(4231) (singular)

Then (some of) these four elements cover Mabc in B∗(Sn) and furthermore any other
element does not cover Mabc in B∗(Sn) as [9, Proposition 2.7]. It is the fact [13,
Section 8] that Mabc satisfies the property that if x ∈ Sn and {xab | 1 ≤ b ≤ a} is
the increasing arrangement (i.e., xa1 < xa2 < · · · < xaa) of {x(1), x(2), . . . , x(a)},
then we have xab ≤ c − 1 ⇐⇒ Mabc ∈ B∗(x).

Now let y = Ma,b,c+1. Due to the above facts, to show that y ∈ MinB∗(x), it
is enough to verify that

(a) x �≤ C∗
1 (y) = Ma,b+1,c+2 or equivalently xa,b+1 ≤ c + 2

(b)x �≤ C∗
2 (y) = Ma−1,b,c+1 or equivalently xa−1,b ≤ c + 1

(c) x �≤ C∗
3 (y) = Ma+1,b+1,c+1 or equivalently xa+1,b+1 ≤ c + 1

(d1) x �≤ C∗
4 (y) = Mabc or equivalently xab ≥ c

(d2) y ∈ B∗(x) or equivalently xab ≤ c

where b = b∗(a, c). Then check that (a) ⇐⇒ x−1(c + 1) > a, (b) ⇐⇒ x(a) ≤ c,
(c) ⇐⇒ x(a + 1) > c and (d1)&(d2) ⇐⇒ x−1(c) ≤ a.

Example 4.4. As a consequence of these propositions, we obtain Ess(Ja,b,c+1) =
{(a, c)} = Ess∗(Ma,b,c+1). In fact, this implies further that b- and b∗-rank coincide
at this point, i.e, b(a, c, Ja,b,c+1) = b = b∗(a, c,Ma,b,c+1). Figure 2 shows such an
example that 3412 (= J213) and 4231 (= M213) share the point (2, 2) (crossed boxes
× ( + ) indicate points of (dual) essential sets). Observe that order duals of these,

1324 and 2143 also share (2, 2) in their (dual) essential sets, but these permutations
are not singular anymore (Figure 3).

Note that b∗(a, c) is a weakly increasing function with respect to a and c. Let
us write the matrix whose (a, c) entry is b∗(a, c) of x as seen in Figure 4. Then at a
point (a, c) ∈ Ess(x) in this matrix, b∗ was invariant from north and west while b∗

will do increase to south and east (the essential set is the set of such points in the
matrix). Dually, at a point (a, c) ∈ Ess∗(x), b∗ will be invariant to south and east
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Figure 3 Ess(1324) = {(2, 2)} = Ess∗(2143) (nonsingular)
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Figure 4 local behavior of b∗-rank at points of (dual) essential sets
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Figure 5 Ess(5736241) (taken from [5]) and Ess∗(5736241)

while b∗ did increase from north and west. In general, dual essential sets are the set
of such points.
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We have seen in Sections 2 and 3 that (dual) bigrassmannian permutations may
be singular with the pattern 3412 (4231). Under bijections of Propositions 4.2 and
4.3, it is natural to define singularity for points of (dual) essential sets.

Definition 4.5. Let us say that (a, c) ∈ Ess(x) is singular if a − b ≥ 1 and
c − b ≥ 1 (so that the corresponding Ja,b,c+1 ∈ Max B(x) is singular). Similarly
(a, c) ∈ Ess∗(x) is singular if a − b∗ ≥ 1 and c − b∗ ≥ 1.

Example 4.6. Figure 5 gives another example of essential sets for x = 5736241.
Tables 1 and 2 show b- and b∗-rank of points.

Table 1 Ess(5736241)

(a, c) (2, 4) (2, 6) (4, 2) (4, 4) (6, 1)

b 1 2 1 2 1

a − b 1 0 3 2 5

c − b 3 4 1 2 0

singularity
√

—–
√ √

—–

Table 2 Ess∗(5736241)

(a, c) (1, 5) (3, 3) (3, 5) (5, 3)

b∗ 1 1 2 2

a − b∗ 0 2 1 3

c − b∗ 4 2 3 1

singularity —–
√ √ √

5. Main theorem

Theorem. Let x ∈ Sn. If x is singular, then there exists a singular point in
Ess(x) ∪ Ess∗(x). More precisely, if x contains 3412, then there exists a singular
point in Ess(x). If x contains 4231, then there exists a singular point in Ess∗(x).

Theorem follows from Propositions 3.5, 4.2, 4.3 and the following two lemmas.

Lemma 1. Let (i1, i2, i3, i4) ∈ P3412(x). Define

C = {c′ | (x−1(c′), i2, i3, i4) ∈ P3412(x)},
c = min C − 1,

A = {i | i2 ≤ i and x(i + 1) ≤ c},
a = min A.

Then (a, c) is a singular point of Ess(x).

For convenience, say x(i0) = min C, with (i0, i2, i3, i4) ∈ P3412(x) so that
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x(i0) = c + 1. Note that C,A are nonempty since x(i0) ∈ C and i3 − 1 ∈ A

(because i2 ≤ i3 − 1 and x((i3 − 1) + 1) = x(i3) < x(i4) < x(i0) = c + 1, i.e.,
x(i3) ≤ c).

Proof. It is enough to show that (i) a < x−1(c) (ii) c < x(a) (iii) x(a + 1) ≤ c

(iv) x−1(c + 1) ≤ a (v) a − b ≥ 1 and (vi) c − b ≥ 1 where b = b(a, c). (iii),
(ii) follow from minimality of a (i.e., a − 1 �∈ A and a ∈ A) as x(a + 1) ≤ c and
x(a) = x((a − 1) + 1) > c. (iv) is clear since x−1(c + 1) = i0 < i2 ≤ a. We
next prove (i). Suppose, toward a contradiction, that a ≥ x−1(c). Then c = x(j)
for some j ≤ a. First, if i2 + 1 ≤ j ≤ a, then i2 ≤ j − 1 ≤ a − 1 and hence
x(j) = x((j − 1) + 1) > c by minimality of a, but c = x(j), a contradiction. Sec-
ond, if j = i2, then x(j) = c < x(i0) < x(i2), a contradiction. So j �= i2. Third,
assume j < i2. Note that x(i4) ≤ c = x(j) < x(i0) < x(i2) (x(i4) ≤ c follows from
(i0, i2, i3, i4) ∈ P3412(x) and hence x(i4) < x(i0) = c + 1. The equality is acutually
impossible since j < i2 < i3 < i4). Then j < i2 and x(i4) ≤ c = x(j) < x(i0) < x(i2)
together mean (j, i2, i3, i4) ∈ P3412(x), a contradiction for minimality of x(i0). Thus
we proved (i).

It remains to show (v), (vi). Recall that

b = b(a, c) = #{a′ | 1 ≤ a′ ≤ a and 1 ≤ x(a′) ≤ c + 1}.

Here we remark that b ≤ min{a, c + 1}. Note that 1 ≤ i2 ≤ a but x(i2) > x(i0) =
c + 1. As a result, the number of a′ such that 1 ≤ a′ ≤ a and 1 ≤ x(a) ≤ c + 1 is
at most a − 1 (i.e., we excluded the case a′ = i2). Thus b ≤ a − 1. Note also that
x(i3) < x(i4) ≤ c + 1 but a < i3 < i4. Thus b ≤ c + 1− 2 (i.e., we excluded the case
both x(a′) = x(i3) and x(a′) = x(i4)). Conclude that a − b ≥ 1 and c − b ≥ 1.

Lemma 2. Let (i1, i2, i3, i4) ∈ P4231(x). Define

C = {c′ | x−1(c′) ≤ i2 and c′ < x(i3)},
c = max C,

A = {i | i2 ≤ i and x(i + 1) > c},
a = min A.

Then (a, c) is a singular point of Ess∗(x).

Again, C,A are nonempty since x(i2) ∈ C and i3 − 1 ∈ A (because c < x(i3)).

Proof. It is enough to show that (i) a ≥ x−1(c) (ii) c ≥ x(a) (iii) x(a + 1) > c

(iv) x−1(c + 1) > a (v) a − b∗ ≥ 1 and (vi) c − b∗ ≥ 1 where b∗ = b∗(a, c). (iii), (ii)
follow from minimality of a. (i) is clear since x−1(c) ≤ i2 ≤ a. We next prove (iv) .
Suppose, toward a contradiction, that x−1(c + 1) ≤ a, say x(j) = c + 1 for j ≤ a.
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First, if i2 +1 ≤ j ≤ a then i2 ≤ j−1 ≤ a−1 and hence x(j) = x((j−1)+1) ≤ c by
minimality of a, but c+1 = x(j), a contradiction. Second, assume j ≤ i2. Note that
x(j) = c+1 ≤ x(i3) since c < x(i3). But here the equality x(j) = x(i3) is impossible
since we are assuming that j ≤ i2 (< i3). Thus x(j) = c + 1 < x(i3), j ≤ i2, which
is a contradiction for maximality of c. Thus we proved (iv).

It remains to show that (v), (vi). Recall that

b∗ = b∗(a, c) = #{a′ | 1 ≤ a′ ≤ a and 1 ≤ x(a′) ≤ c}.

Here we remark that b∗ ≤ min{a, c}. Note that i1 < i2 ≤ a but x(i1) > x(i3) > c.
Thus b∗ ≤ a− 1 (i.e., we excluded the case a′ = i1). Note also that x(i4) < x(i2) ≤
max C = c but i4 > i3 − 1 ≥ a. Then we have b∗ ≤ c− 1 (i.e., we excluded the case
x(a′) = x(i4)). Conclude that a − b∗ ≥ 1 and c − b∗ ≥ 1.
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