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On the residues of spectral zeta functions on spheres

Takakazu Hattori

(Received October 24, 2011; Revised December 2, 2011)

Abstract

We introduce a series of functions whose residues can be calculated easily. In

terms of their residues one can describe the residues of the spectral zeta functions

on spheres. The formula thus gotten gives us an efficient method for calculating

the residues of the zeta functions.

1. Introduction

Let us consider the n-dimensional unit sphere Sn with the canonical metric
and consider the Laplacian Δn which acts on functions on Sn. Let

0 = λn,0 < λn,1 ≤ λn,2 ≤ . . . (→ ∞)

be the sequence of its eigenvalues, which are repeated according to their multi-
plicities. The spectral zeta function ζn(s) is defined by

ζn(s) =
∞∑

j=1

λ−s
n,j (s ∈ C).

This series converges absolutely on the half plane Re(s) > n/2 and has a mero-
morphic continuation to C with only simple poles at

s =
n

2
,

n

2
− 1,

n

2
− 2, . . . (if n is odd),

s =
n

2
,

n

2
− 1,

n

2
− 2, . . . , 1 (if n is even),

whose residues were studied closely by many researchers (e.g. Minakshisundaram-
Pleijel [3], Carletti-Monti Bragadin [1]).

In this paper, we introduce a series of functions Z1(s, r), Z2(s, r), . . . on
C × [0, π) (� (s, r)) inductively, which are all meromorphic with respect to the
variable s, and whose residues can be calculated easily. We found an interesting
formula which expresses the residues of ζn(s) in terms of the residues of the func-
tions. The formula gives us an efficient method for calculating the residues of
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ζn(s). In section 2, following the statement of the main theorem, we will report
some results of calculation using the method.

I would like to thank Professor M. Nagase for his advice which is very helpful
for the work in the paper.

2. Main results and some calculations of residues

Let us define the functions Z1(s, r), Z2(s, r), . . . ( (s, r) ∈ C × [0, π) ) induc-
tively as follows:

(2.1) Z1(s, r) =
1

Γ(s)
2−1/2

(2π)1/2

1
s − 1/2

,

Z2(s, r) =
1

Γ(s)
2−1

(2π)3/2
(2.2)

×
∫ 1

0

ts−1−3/2er2/4t

(∫ δ

r

σe−σ2/4t

(cos r − cos σ)1/2
dσ

)
dt,

Zn+2(s, r) =
1
2π

−1
sin r

∂

∂r
Zn(s, r)(2.3)

+
1
4π

r

sin r

1
s − 1

Zn(s − 1, r).

Then, certainly, as a function of s, every Zn(s, r) has simple poles at

s =
n

2
,

n

2
− 1,

n

2
− 2, . . . ,

1
2

(if n is odd),

s =
n

2
,

n

2
− 1,

n

2
− 2, . . . , 1 (if n is even),

and we obtain the following:

Theorem 2.1
(1) The residues of ζn(s) are expressed by using the residues of Zn(s, 0) as

Res
s=n/2−j

ζn(s)(2.4)

= vol(Sn)
N∑

l=0

1
(j − l)!

(
(n − 1)2

4

)j−l Γ(n/2 − l)
Γ(n/2 − j)

Res
s=n/2−l

Zn(s, 0),

where

N =

{
max{n−1

2 , j} (n is odd)

j (n is even).
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Table 1 Residues of ζn(s) at n
2
− j (j = 0, 1, . . . )

����n
j

0 1 2 3 . . .

1 1 0 0 0 . . .

3 1
2

1
4

− 1
16

1
32

. . .

5 1
24

5
24

1
6

− 1
12

. . .

7 1
720

11
288

1379
5760

527
1280

. . .

(2) Z2m(s, r) and Z2m+1(s, r) are related to each other as

Z2m(s, r)

=
1

Γ(s)
21/2

m∑
j=0

Γ(m +
1
2
− j)

∫ 1

0

ts−1−m−1/2+j

×
∫ δ

r

Res
s=m+1/2−j

Z2m+1(s, σ) · sinσ

(cos r − cos σ)1/2
e−(σ2−r2)/4t dσ dt

+ ρ(s, r),

where ρ(s, r) is holomorphic on C (� s) and smooth at r = 0.

Using the theorem, we can calculate all the residues of ζn(s) easily in prin-
ciple. As an example, in Table 1, we enumerate some of its residues when n is
odd, which are obtained by using the formula (2.4) as follows:

First, let us calculate some of the residues of Zn(s, r). The function Z1(s, r),
which does not depend on r, has only one pole at s = 1/2 with residue 1/2π. By
the formula (2.3), we have

Res
s=(n+2)/2−j

Zn+2(s, r) =
1
2π

−1
sin r

∂

∂r
Res

s=n/2−(j−1)
Zn(s, r)

+
1
4π

r

sin r

1
n/2 − j

Res
s=n/2−j

Zn(s − 1, r).

Hence, the residues of Z3(s, r) can be calculated as

Res
s=3/2

Z3(s, r) =
(

1
2π

)2
r

sin r
, Res

s=3/2−1
Z3(s, r) = 0.

We obtain thus

Res
s=3/2−0

Z3(s, 0) =
(

1
2π

)2

, Res
s=3/2−1

Z3(s, 0) = 0.

We enumerate some of the residues of Zn(s, 0) in Table 2, which together with
the formula (2.4) yields Table 1.
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Table 2 Residues of Zn(s, 0)

����n

poles
1
2

3
2

5
2

7
2

1 1
2π

3 0
(

1
2π

)2
5 0

(
1
2π

)3 (− 1
3

) (
1
2π

)3 1
3

7 0
(

1
2π

)4 4
15

(
1
2π

)4 (− 1
3

) (
1
2π

)4 1
15

3. Preparation for the proof of Theorem 2.1

First, let us gather some known results, which yield us to focus on a certain
function denoted ζ̃n(s, r) on C × [0, π) (refer to (3.10)) for the proof of Theo-
rem 2.1.

Let Kn(t) = Kn(t, x, y) denote the fundamental solution or the heat kernel
of the heat equation with the initial condition on Sn:(

∂

∂t
+ Δn

)
f(t, x) = 0, f(0, x) = f0(x).

By the homogeneity of sphere, the kernel depends only on t and the geodesic
distance r = r(x, y), so that we denote it simply by Kn(t, r). It is well known
that its trace

(3.1) Tr(Kn(t)) =
∫

Sn

Kn(t, 0) dg(x) = vol(Sn)Kn(t, 0)

(dg is the volume element of Sn) can be described as

Tr(Kn(t)) =
∞∑

j=0

e−tλn,j .

By the Mellin transform of
∑∞

j=1 e−tλn,j = Tr(Kn(t)) − 1, we obtain

(3.2) ζn(s) =
1

Γ(s)

∫ ∞

0

ts−1 (Tr(Kn(t)) − 1) dt.

Proposition 3.1 (e.g. Gilkey [2])
(1) The trace can be expanded asymptotically as

Tr(Kn(t)) ∼
∞∑

j=0

t−n/2+jAj (t ↓ 0).

(2) Let us take N ∈ N and decompose (3.2) into three terms:
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ζn(s) =
1

Γ(s)

∫ 1

0

ts−1
N∑

j=0

t−n/2+jAj dt

+
1

Γ(s)

∫ 1

0

ts−1

⎛⎝Tr(Kn(t)) − 1 −
N∑

j=0

t−n/2+jAj

⎞⎠ dt

+
1

Γ(s)

∫ ∞

1

ts−1 (Tr(Kn(t)) − 1) dt.

Then, the latter two terms are holomorphic on {s ∈ C|Re(s) > n/2 − N − 1},
and, hence, we have

ζn(s) =
1

Γ(s)

N∑
j=0

Aj

s − n/2 + j
+ R(s),

where R(s) is holomorphic on {s ∈ C|Re(s) > n/2 − N − 1}.

Proposition 3.2 (Nagase [5]) Let us define kn(t, r) as

(3.3) kn(t, r) =
2−1/2

(2π)n/2
t−1/2e(n−1)2t/4

( −1
sin r

∂

∂r

)m

e−r2/4t (n = 2m + 1),

kn(t, r) =
2−1

(2π)(n+1)/2
t−3/2e(n−1)2t/4(3.4)

×
( −1

sin r

∂

∂r

)m ∫ δ

r

σe−σ2/4t

(cos r − cos σ)1/2
dσ (n = 2m + 2).

Then Kn(t, r) can be described as

(3.5) Kn(t, r) = kn(t, r) + O∞(e−1/t),

where O∞(e−1/t) is a function with respect to t and r whose derivative of arbi-
trary order with respect to r is estimated as O(e−ε/t) with some ε > 0 when t

tends to 0.

Corollary 3.3 (Nagase [5]) We have

(3.6) kn+2(t, r) =
ent

2π

( −1
sin r

∂

∂r

)
kn(t, r)

and

(3.7) kn+1(t, r) = 21/2e−(2n+1)t/4

∫ δ

r

kn+2(t, σ) sin σ

(cos r − cos σ)1/2
dσ + O∞(e−1/t).
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Moreover, according to Nagase [5], kn(s, r) has the following expansion:

(3.8) kn(t, r) = e−r2/4t+(n−1)2t/4 t−n/2
m∑

j=0

tjAm,j(r) (n = 2m + 1),

kn(t, r) = e−r2/4t+(n−1)2t/4(3.9)

×
⎛⎝t−n/2

N∑
j=0

tjBm,j(r) + O∞(t−n/2+N+1)

⎞⎠ (n = 2m + 2),

where O∞(t−n/2+N+1) is a term whose derivative of arbitrary order with respect
to r is estimated as O(t−n/2+N+1).

In this paper we are interested in the residues of ζn(s), hence, in the co-
efficients of the asymptotic expansion of (3.1): refer to Proposition 3.1. For
example, in the case where n is odd, (3.5) and (3.8) imply that the trace (3.1)
can be expanded as

Tr(Kn(t)) = vol(Sn) e−02/4t+(n−1)2t/4 t−n/2
m∑

j=0

tjAm,j(0) + O∞(e−1/t)

= vol(Sn) t−n/2
∞∑

l=0

1
l!

(
(n − 1)2

4

)l

tl
m∑

j=0

tjAm,j(0) + O∞(e−1/t).

Thus it will be obvious that, in general, if we set

k̃n(t, r) = er2/4t−(n−1)2t/4 kn(t, r),

then we have only to investigate the asymptotics of

1
Γ(s)

∫ ∞

0

ts−1k̃n(t, r) dt

to know the residues of ζn(s). Moreover, we may ignore the holomorphic part

1
Γ(s)

∫ ∞

1

ts−1k̃(t, r) dt.

Namely, it will be enough, for our purpose, to investigate the coefficients of the
expansion of

(3.10) ζ̃n(s, r) =
1

Γ(s)

∫ 1

0

ts−1k̃n(t, r) dt.

4. Proof of Theorem 2.1

Theorem 2.1 is an easy consequence of the following two propositions:
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Proposition 4.1 We have

(4.1) ζ̃n(s, r) = Zn(s, r) + ρ(s, r),

where ρ(s, r) is holomorphic on C (� s) and smooth at r = 0.

Proposition 4.2
(1) The residues of ζn(s) are expressed as

Res
s=n/2−j

ζn(s)(4.2)

= vol(Sn)
N∑

l=0

1
(j − l)!

(
(n − 1)2

4

)j−l Γ(n/2 − l)
Γ(n/2 − j)

Res
s=n/2−l

ζ̃n(s, 0),

where

N =

{
max{n−1

2 , j} (n is odd)

j (n is even).

(2) ζ̃2m(s, r) and ζ̃2m+1(s, r) are related to each other as

ζ̃2m(s, r)(4.3)

=
1

Γ(s)
21/2

m∑
j=0

Γ(m +
1
2
− j)

∫ 1

0

ts−1−m−1/2+j

×
∫ δ

r

Res
s=m+1/2−j

ζ̃2m+1(s, σ) · sin σ

(cos r − cos σ)1/2
e−(σ2−r2)/4t dσ dt

+ ρ(s, r),

where ρ(s, r) is holomorphic on C (� s) and smooth at r = 0.

To prove the propositions we need some lemmas.

Lemma 4.3 We have

(4.4) ζ̃1(s, r) =
1

Γ(s)
2−1/2

(2π)1/2

1
s − 1/2

,

and

ζ̃2(s, r) =
1

Γ(s)
2−1

(2π)3/2
(4.5)

×
∫ 1

0

ts−1−3/2er2/4t

(∫ δ

r

σe−σ2/4t

(cos r − cos σ)1/2
dσ

)
dt.
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Proof. The formulas are obtained by straightforward calculation. �

Lemma 4.4 We have

(4.6) k̃n+2(t, r) =
1
2π

−1
sin r

∂

∂r
k̃n(t, r) +

1
4π

r

sin r

1
t

k̃n(t, r),

(4.7) k̃n+1(t, r) = 21/2

∫ δ

r

k̃n+2(t, σ) sin σ

(cos r − cos σ)1/2
e−(σ2−r2)/4t dσ + O∞(e−1/t),

and k̃n(t, r) has the following expansion:

(4.8) k̃n(t, r) = t−n/2
m∑

j=0

tjAm,j(r) (n = 2m + 1),

(4.9) k̃n(t, r) = t−n/2
N∑

j=0

tjBm,j(r) + O∞(t−n/2+N+1) (n = 2m + 2),

where Am,j(r) are even functions and are smooth at r = 0, and Bm,j(r) are
smooth at r = 0.

Remark. The formulas (4.8) and (4.9) are essentially equivalent to the for-
mulas (3.8) and (3.9). In the following proof, the parts proving the formulas (4.8)
and (4.9) are based on Nagase [5].

Proof. We can check the formulas (4.6) and (4.7) easily by using the formu-
las (3.6) and (3.7) respectively. Let us prove (4.8) by induction. We have

k̃1(t, r) = er2/4t−02t/4k1(t, r) =
2−1/2

(2π)1/2
t−1/2.

Thus (4.8) holds if n = 1. Next, let us assume that k̃n(t, r) has the expan-
sion (4.8). Then, by using (4.6), we have

k̃n+2(t, r) =
1
2π

t−(n+2)/2
m∑

j=0

tj+1 −r

sin r

1
r

∂

∂r
Am,j(r)

+
1
4π

t−(n+2)/2
m∑

j=0

tj
r

sin r
Am,j(r).

In the right hand side of the formula, ∂
∂rAm,j(r) is an odd function which is

smooth at r = 0, so that 1
r

∂
∂rAm,j(r) is certainly an even function. Therefore,

we have the formula (4.8) for any n. Next, to prove (4.9) first we show
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(4.10)
(

∂

∂σ

−1
sinσ

)m+1

σe−σ2/4t = t−(m+1)
m+1∑
j=0

tjβm,j(σ)σe−σ2/4t,

where βm,j(σ) are even functions which are smooth at σ = 0. When m = 0, we
have

∂

∂σ

−1
sinσ

σe−σ2/4t =
(−1

σ

∂

∂σ

σ

sin σ
+

σ

sinσ

1
2t

)
σe−σ2/4t.

In the right hand side of the formula, ∂
∂σ

σ
sin σ is an odd function which is smooth

at σ = 0, so that −1
σ

∂
∂σ

σ
sin σ is an even function. Thus (4.10) holds if m = 0.

Next, let us assume that (4.10) holds. Then, we have(
∂

∂σ

−1
sin σ

)(m+1)+1

σe−σ2/4t =
(

∂

∂σ

−1
sin σ

)
t−(m+1)

m+1∑
j=0

tjβm,j(σ)σe−σ2/4t

= t−(m+2)

⎛⎝m+1∑
j=0

tj+1

(
∂

∂σ

σ

sin σ
· βm,j(σ)

−1
σ

+
σ

sin σ
· ∂

∂σ
βm,j(σ) · −1

σ

)

+
m+1∑
j=0

tj
1
2

σ

sinσ
βm,j(σ)

⎞⎠σe−σ2/4t.

In the last expression, ∂
∂σ

σ
sin σ · βm,j(σ)−1

σ , σ
sin σ · ∂

∂σ βm,j(σ) · −1
σ , 1

2
σ

sin σ βm,j(σ)
are certainly even functions. Therefore, we have (4.10) for any m. Next, let us
prove (4.9). We set n = 2m + 2. By applying integration by parts to the right
hand of (3.4), we have

kn(t, r) =
1

(2π)(n+1)/2
t−3/2e(n−1)2t/4

×
∫ δ

r

(cos r − cos σ)1/2

(
∂

∂σ

−1
sinσ

)m+1

σe−σ2/4t dσ

+ O∞(e−1/t).

Therefore,

k̃n(t, r) =
1

(2π)(n+1)/2
t−3/2

× er2/4t

∫ δ

r

(cos r − cos σ)1/2

(
∂

∂σ

−1
sin σ

)m+1

σe−σ2/4t dσ

+ O∞(e−1/t).

Now, by using (4.10), let us calculate the part underlined. We have
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er2/4t

∫ δ

r

(cos r − cos σ)1/2

(
∂

∂σ

−1
sinσ

)m+1

σe−σ2/4t dσ

= t−(m+1)
m+1∑
j=0

tj
∫ δ

r

(cos r − cos σ)1/2βm,j(σ)σe−(σ2−r2)/4t dσ

= t−(m+1)
m+1∑
j=0

tj
∫ δ

r

2−1/2S(σ2, r2)(σ2 − r2)1/2βm,j(σ)σe−(σ2−r2)/4t dσ,

where we set S(σ2, r2) =
(

sin σ+r
2

σ+r
2

)1/2 (
sin σ−r

2
σ−r

2

)1/2

, which is obviously smooth

with respect to the variables σ2 and r2. Now, by putting (σ2 − r2)/4t = u, the
part underlined is equal to

21/2t−(m+1)+3/2
m+1∑
j=0

tj
∫ (δ2−r2)/4t

0

S(4tu − r2, r2)βm,j(4tu − r2)u1/2e−u du.

Since ∫ (δ2−r2)/4t

0

S(4tu − r2, r2)βm,j(4tu − r2)u1/2e−u du

is smooth with respect to t, we obtain the expansion (4.9). �

Lemma 4.5 We have

ζ̃n+2(s, r) =
1
2π

−1
sin r

∂

∂r
ζ̃n(s, r)(4.11)

+
1
4π

r

sin r

1
s − 1

ζ̃n(s − 1, r) + ρ(s, r),

where ρ(s, r) is holomorphic on C (� s) and smooth at r = 0.

Proof. If n = 2m + 1, by referring to (3.10), (4.6) and (4.8), the formula
will be obvious. Let us consider the case where n = 2m + 2. The formula (4.9)
implies ∫ 1

0

ts−1 ∂

∂r
k̃n(t, r) dt − ∂

∂r

∫ 1

0

ts−1k̃n(t, r) dt

=
∫ 1

0

ts−1 ∂

∂r

⎛⎝t−n/2
N∑

j=0

tjBm,j(r) + O∞(t−n/2+N+1)

⎞⎠ dt

− ∂

∂r

∫ 1

0

ts−1

⎛⎝t−n/2
N∑

j=0

tjBm,j(r) + O∞(t−n/2+N+1)

⎞⎠ dt

=
∂

∂r

∫ 1

0

ts−1O∞(t−n/2+N+1) dt −
∫ 1

0

∂

∂r
ts−1O∞(t−n/2+N+1) dt,
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which is certainly holomorphic on {s ∈ C|Re(s) ≥ −N + m} and smooth at
r = 0. Hence, we obtain

(4.12)
∫ 1

0

ts−1 ∂

∂r
k̃n(t, r) dt =

∂

∂r

∫ 1

0

ts−1k̃n(t, r) dt + ρ(s, r).

Therefore, we have

1
Γ(s)

∫ 1

0

ts−1

(
1
2π

−1
sin r

∂

∂r
k̃n(t, r) +

1
4π

r

sin r

1
t
k̃n(t, r)

)
dt

=
1
2π

−1
sin r

∂

∂r

1
Γ(s)

∫ 1

0

ts−1k̃n(t, r) dt

+
1
4π

r

sin r

1
Γ(s)

∫ 1

0

ts−2k̃n(t, r) dt + ρ(s, r).

Hence, by using (3.10) and (4.6), we have (4.11). �

Now, let us prove Proposition 4.1 and Proposition 4.2.
Proof of Proposition 4.1. Using Lemma 4.3 and Lemma 4.5, we obtain

(4.1) immediately. �

Proof of (2) in Proposition 4.2. By using (3.10) and (4.8), we have

ζ̃2m+1(s, r) =
1

Γ(s)

∫ 1

0

ts−1−m−1/2
m∑

j=0

tjAm,j(r) dt

=
1

Γ(s)

m∑
j=0

Am,j(r)
s − m − 1/2 + j

.

Therefore, the coefficients in (4.8) are expressed as

Am,j(r) = Γ(m +
1
2
− j) Res

s=m+1/2−j
ζ̃2m+1(s, r).

Hence, we have

k̃2m+1(t, r) = t−m−1/2
m∑

j=0

tjΓ(m +
1
2
− j) Res

s=m+1/2−j
ζ̃2m+1(s, r).

Now, by using (4.7), we obtain

k̃2m(t, r)

= 21/2
m∑

j=0

Γ(m +
1
2
− j) ts−1−m−1/2+j

×
∫ δ

r

Res
s=m+1/2−j

ζ̃2m+1(s, σ) · sin σ

(cos r − cos σ)1/2
e−(σ2−r2)/4t dσ

+ O∞(e−1/t).
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Consequently, by using (3.10), we have (4.3). �

Proof of (1) in Proposition 4.2. For j = 0, 1, . . . , n/2−1, the coefficients
in the formula (4.9) are expressed as

(4.13) Bm,j(r) = Γ(
n

2
− j) Res

s=n/2−j
ζ̃n(s, r).

Using this formula, we prove (4.2) only in the case where n = 2m + 2. Referring
to (4.9), we can calculate kn(t, 0) as follows:

kn(t, 0) = e−02/4t+(n−1)2t/4 k̃n(t, 0)

=
∞∑

l=0

1
l!

(
(n − 1)2

4

)l

×
⎛⎝t−n/2

N∑
j=0

tjΓ(
n

2
− j) Res

s=n/2−j
ζ̃n(s, 0) + O(t−n/2+N+1)

⎞⎠
= t−n/2

N∑
j=0

tj
j∑

l=0

1
(j − l)!

(
(n − 1)2

4

)j−l

× Γ(
n

2
− j) Res

s=n/2−j
ζ̃n(s, 0) + O(t−n/2+N+1).

Hence, we have

ζn(s) = vol(Sn)
1

Γ(s)

∫ 1

0

ts−1kn(t, 0) dt + ρ(s)

= vol(Sn)
1

Γ(s)

N∑
j=0

1
s − n/2 + j

×
j∑

l=0

1
(j − l)!

(
(n − 1)2

4

)j−l

Γ(
n

2
− j) Res

s=n/2−j
ζ̃n(s, 0) dt + ρ(s),

where ρ(s) are holomorphic functions on {s ∈ C|Re(s) > n/2−N−1}. Therefore,
we have

Res
s=n/2−j

ζn(s)

= vol(Sn)
j∑

l=0

1
(j − l)!

(
(n − 1)2

4

)j−l Γ(n/2 − l)
Γ(n/2 − j)

Res
s=n/2−l

ζ̃n(s, 0).

�
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