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Abstract

This paper is the fourth part of successive studies of infinitesimal deformations

of a conic bundle of dimension three. We discuss relationship between infinitesimal

deformations of a conic bundle and the corresponding infinitesimal displacements of

its discriminant locus in case where the discriminant locus has singularity. We shall

prove that, if a deformation family of a conic bundle admits no smoothing of the

singular points of the discriminant locus, then two kinds of Kodaira-Spencer maps

are compatible with each other. We shall also prove that certain conic bundles

admit no non-trivial small deformation families fixing their discriminant loci.

1. Introduction and the results

This paper is the fourth part of successive studies of infinitesimal deforma-
tions of a conic bundle of dimension three. The first part [2], the second part [3]
and the third part [4] shall be referred as Part I, Part II and Part III respectively.

In Part I [2] we have discussed relationship between infinitesimal deforma-
tions of a conic bundle f : X → Y with dimX = 3 and infinitesimal displacements
of the discriminant locus Δ = ΔX/Y in Y . (For the definitions of a conic bundle
and its discriminant locus, we refer to [2, Definition 1.1, Definition 1.2].)

Let f : X → Y be a conic bundle with dimX = 3. As is known ([1, Propo-
sition 1.2], [7, p.83]), there exist a locally free sheaf E of rank three on Y , an
invertible sheaf M on Y and a section q ∈ H0(Y, S2(E) ⊗ M) such that X is
identified with the zero locus of q in PY (E) and that f is the restriction of the
natural projection π : PY (E) → Y to X.

Let {ft : Xt → Y }t∈M be a deformation family of f : X → Y with Xo = X

and fo = f (see §2). Horikawa [5] developed deformation theory of holomorphic
maps in general. Due to [5] we have the map

(1.1) τ : To(M) → DX/Y = H
1(F : ΘX → f∗ΘY )

of Kodaira-Spencer type for the family {ft : Xt → Y }t∈M , where To(M) denotes
the tangent space of the base space M at o ∈ M and F : ΘX → f∗ΘY is the
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natural homomorphism induced by f : X → Y (see §2 for precise construction).
On the other hand, the family {ft : Xt → Y }t∈M naturally induces a fam-

ily {Δt}t∈M of displacements of Δ = Δo. Kodaira [6] studied displacements of
submanifolds of a complex manifold . We can apply Kodaira’s arguments to our
case and we have the map

(1.2) ρ : To(M) → H0(Δ, NΔ/Y ),

which is another type of Kodaira-Spencer map, where NΔ/Y denotes the normal
sheaf of Δ in Y (see §2 for precise construction).

Now we ask the following question.

Question. How are the maps τ and ρ related to each other?

Part I [2] has given a partial answer to the question above in case where Δ
is smooth. Let us briefly recall our arguments in [2].

First of all, we have the natural homomorphism

(1.3) P : DX/Y → H0(X,SX/Y )

due to Horikawa [5], where SX/Y = Coker(F : ΘX → f∗ΘY ) (see §2). On the
other hand, we proved that, if Δ is smooth, there exists a natural isomorphism

(1.4) ψ : H0(Δ, NΔ/Y ) → H0(X,SX/Y )

(cf. [2, Corollary 2.6]). Moreover, we proved that

(1.5) ρ = ψ−1 ◦ P ◦ τ,

which shows the compatibility of τ and ρ (cf. [2, Theorem 2.12]).
In Part II [3], we discussed a kind of rigidity of a conic bundle. Assume that

Y = P
2 and that f : X → Y is a conic bundle determined by E , M and q, where

E is a locally free sheaf of rank three on Y , M is an invertible sheaf on Y and
q ∈ H0(Y, S2(E) ⊗M). Assume furthermore that E is a direct sum of invertible
sheaves and that Δ is smooth. Then, by using (1.5), we proved that there exists
no non-trivial small deformation of f : X → Y that is again a conic bundle over
Y with the same discriminant locus Δ (cf. [3, Corollary 3.14]).

The aim of this paper is to generalize these results [2, Theorem 2.12] and [3,
Corollary 3.14] to the case where Δ has singularity.

There is a problem, however, that we do not have the map ’ψ’ in general. In
Part III [4], we proved that there does not exist such a natural isomorphism as
ψ of (1.4), if Δ has singularity.

Let us explain more precisely. Let f : X → Y be a conic bundle with
dimX = 3. Let B = {x ∈ X | f is not smooth at x }. Let h : B → X and
ι : Δ → Y be the natural inclusion maps and we put g = f ◦ h : B → Y . The
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map g factors through g′ : B → Δ with g = ι ◦ g′. Then we have a natural
homomorphism

(1.6) λ : ΘY ⊗OΔ → g′∗SX/Y

as follows. The canonical homomorphism f∗ΘY → SX/Y naturally induces a
homomorphism f∗ΘY ⊗ OB → SX/Y , since SX/Y is an OB-module ( cf. [2,
Proposition 2.2] and [2, Theorem 2.3]). Noting that f∗ΘY ⊗ OB = g∗ΘY =
g′∗(ΘY ⊗OΔ) and applying g′∗ to the homomorphism above, we get a homomor-
phism g′∗g

′∗(ΘY ⊗OΔ) → g′∗SX/Y . By taking the composition with the standard
homomorphism ΘY ⊗OΔ → g′∗g

′∗(ΘY ⊗OΔ), we get the homomorphism λ.
On the other hand, we have the standard homomorphism

(1.7) μ : ΘY ⊗OΔ → NΔ/Y .

In Part III [4] we proved that Ker(λ) = Ker(μ) and that Coker(λ) is isomor-
phic to Coker(μ). We have the following commutative diagram:

(1.8)
Ker(λ) → ΘY ⊗OΔ

λ−→ g′∗SX/Y → Coker(λ)
=↓ =↓ ∼=↓

Ker(μ) → ΘY ⊗OΔ
μ−→ NΔ/Y → Coker(μ).

We also proved that, if Δ has singularity, there does not exist any isomor-
phism between g′∗SX/Y and NΔ/Y that is compatible with λ and μ (cf. [4, Main
Theorem]).

Now we put

(1.9) A = Im(λ), B = Im(μ).

Then we have the natural isomorphism

(1.10) ψ̄ : A → B

that is compatible with λ and μ. We also denote by the same symbol ψ̄ the
isomorphism H0(Δ,A) → H0(Δ,B) induced by (1.10).

Remark 1.1 We have Supp(Coker(λ)) = Supp(Coker(μ)) = Sing(Δ) (cf. [4,
Corollary 2.3] and [4, Corollary 3.2]). In particular, if Δ is smooth, λ and μ are
surjective. In this case ψ̄ naturally induces an isomorphism H0(Δ, g′∗SX/Y ) →
H0(Δ, NΔ/Y ), which coincides with ψ−1 : H0(X,SX/Y ) → H0(Δ, NΔ/Y ) via
H0(X,SX/Y ) = H0(B,SX/Y ) ∼= H0(Δ, g′∗SX/Y ), where ψ is the isomorphism of
(1.4).

Now we have the following results, which are generalization of [2, Theo-
rem 2.12] and [3, Corollary 3.14].
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Theorem 1.2 Let f : X → Y be a conic bundle with dimX = 3 and
{ft : Xt → Y }t∈M a deformation family of f . Assume that the induced fam-
ily {Δt}t∈M of discriminant loci does not admit smoothing of any singular point
of Δ.
(1) We have Im(P ◦ τ) ⊂ H0(Δ,A), where Im(P ◦ τ) is regarded as a subspace

of H0(Δ, g′∗SX/Y ) via H0(X,SX/Y ) ∼= H0(Δ, g′∗SX/Y ).
(2) We have Im(ρ) ⊂ H0(Δ,B).
(3) We can define the composition map ψ̄ ◦P ◦ τ : To(M) → H0(Δ,B) and we

have ρ = ψ̄ ◦ P ◦ τ .

Corollary 1.3 Assume that Y = P
2 and that f : X → Y is a conic bundle

determined by E, M and q, where E is a locally free sheaf of rank three on Y ,
M is an invertible sheaf on Y and q ∈ H0(Y, S2(E) ⊗M). Assume furthermore
that E is a direct sum of invertible sheaves. Then there exists no non-trivial small
deformation of f : X → Y that is again a conic bundle over Y with the same
discriminant locus Δ.

2. Notation and preliminaries

Let us recall some definitions and discussions in Part I [2], Part II [3] and
Part III [4] in order to fix notation in this paper. Some of the notation in our
previous papers shall be slightly changed here.

A. First we shall briefly recall the deformation theory of holomorphic maps
due to E. Horikawa [5] (see also Part I [2]).

Let Y be a compact complex manifold of dimension m. By a family of holo-
morphic maps into Y , we mean a quadruplet (X ,Φ, p,M) of complex manifolds
X , M and holomorhic maps Φ : X → Y ×M , p : X → M with the following
properties:
(i) p is smooth and proper.
(ii) q ◦ Φ = p, where q : Y ×M →M denotes the natural projection.

Putting Xt = p−1(t) and ft = Φ|Xt
for t ∈ M , we denote the family

(X ,Φ, p,M) by {ft : Xt → Y }t∈M . Let o ∈ M , X = Xo and f = fo. Then
the family {ft : Xt → Y }t∈M is called a deformation family of f : X → Y .

Let F : ΘX → f∗ΘY be the natural homomorphism induced by f . We put
ΘX/Y = Ker(f), SX/Y = Coker(F ) and DX/Y = H

1(F : ΘX → f∗ΘY ). Then
we have an exact sequence

(2.1) 0 → H1(X,ΘX/Y ) → DX/Y → H0(X,SX/Y ) → H2(X,ΘX/Y ).

Horikawa showed that the infinitesimal deformations of f are classified by
DX/Y . He also defined a kind of Kodaira-Spencer map τ : To(M) → DX/Y .
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Let U = {Ui} be a finite Stein open covering of X. For a sheaf F on X,
we denote the group of the q-cochains and the q-cocycles with coefficients in F
by Cq(U ,F) and Zq(U ,F) respectively. We denote the q-th coboundary map by
δ : Cq(U ,F) → Cq+1(U ,F). Then we have

(2.2) DX/Y =
{ (τ, σ) ∈ C0(U , f∗ΘY ) × Z1(U ,ΘX) | δ(τ) = F (σ) }

{ (F (g), δ(g)) | g ∈ C0(U ,ΘX) }
The map τ is determined as follows. Shrinking M , if necessary, we assume

the following.
(i) M is an open set in C

k with coordinates t = (t1, . . . , tk) and o = (0, . . . , 0).
(ii) X is covered by a finite number of Stein coordinate open sets {Ui}. Each
Ui is covered by a system of coordinates (zi, t) such that p(zi, t) = t, where
(zi, t) = (z1

i , . . . , z
n
i , t1, . . . , tk).

(iii) Φ(Ui) ⊂ Vi × M , where Vi is an open set of Y covered by a system of
coordinates wi = (w1

i , . . . , w
m
i ).

(iv) Φ is given by wl
i = Φl

i(zi, t) for l = 1, . . . ,m.
(v) (zi, t) ∈ Ui coincides with (zj , t) ∈ Uj if and only if zl

i = φl
ij(z

1
j , . . . , z

n
j , t)

for l = 1, . . . , n, where φl
ij (l = 1, . . . , n) are holomorphic transition functions.

(vi) wi ∈ Vi coincides with wj ∈ Vj if and only if wl
i = ψl

ij(w
1
j , . . . , w

m
j ) for

l = 1, . . . ,m, where ψl
ij (l = 1, . . . ,m) are holomorphic transition functions.

Let Ui = Ui ∩ X and U denote the covering {Ui} of X. For any element
∂/∂t ∈ To(M), we put

τi =
m∑

l=1

∂Φl
i

∂t

∣∣∣∣
t=0

· ∂

∂wl
i

∈ Γ(Ui, f
∗ΘY ),(2.3)

σij =
n∑

l=1

∂φl
ij

∂t

∣∣∣∣∣
t=0

· ∂

∂zl
i

∈ Γ(Uij ,ΘX).(2.4)

Then τ = {τi} ∈ C0(U , f∗ΘY ) and σ = {σij} ∈ Z1(U ,ΘX) represents an
element of DX/Y , which we define to be τ(∂/∂t). Thus we can define the map

(2.5) τ : To(M) → DX/Y

Let P : f∗ΘY → SX/Y be the natural homomorphism. For an element of
DX/Y , we take a representative (τ, σ) ∈ C0(U , f∗ΘY )×Z1(U ,ΘX) with τ = {τi}
and σ = {σij}. Then the collection {P (τi)} patches together to an element of
H0(X,SX/Y ). In this way, we can define the map

(2.6) P : DX/Y → H0(X,SX/Y ),

which is nothing but the homomorphism appearing in (2.1), where we use the
same symbol P as above.
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B. Next we shall briefly discuss displacements of a divisor on a complex
manifold.

Let Y be a compact complex manifold of dimension m and {Vi} a Stein open
covering of Y . Assume that each Vi is a sufficiently small open set with a system
of coordinates wi = (w1

i , . . . , w
m
i ). Let Δ be a reduced divisor on Y . Let

(2.7) ξi(wi) = 0

be a defining equation of Δ ∩ Vi in Vi. Let I be the defining ideal sheaf of Δ
in Y . We define the homomorphism ζi : Γ(Δ ∩ Vi, I/I2) → Γ(Δ ∩ Vi,OΔ) by
ζi(ξi mod I2) = 1. Then we have

(2.8) Γ(Δ ∩ Vi, NΔ/Y ) = Γ(Δ ∩ Vi,OΔ) · ζi.

Now we define the map ρ. Let {Δt}t∈M be a family of displacements of
Δ = Δo defined by local equations

(2.9) ξ̃i(wi, t) = ξ̃i(w1
i , . . . , w

m
i , t1, . . . , tk) = 0

with ξ̃i(wi, 0) = ξi(wi). For any element ∂/∂t ∈ To(M), we put

(2.10) ρi

(
∂

∂t

)
=

(
−∂ξ̃i
∂t

∣∣∣∣∣
t=0

mod I
)

· ζi.

Then the collection {ρi(∂/∂t)} patches together to an element ρ(∂/∂t) of
H0(Δ, NΔ/Y ). In this way we can define the map

(2.11) ρ : To(M) → H0(Δ, NΔ/Y ).

Remark 2.1 K. Kodaira originally studied the case where Δ is smooth. Sup-
pose that {Δt}t∈M is defined by local equations w1

i = ϕ̃i(w2
i , . . . , w

m
i , t) on Vi.

Then he defined ρ(∂/∂t) by ((∂ϕ̃i/∂t)|t=0 mod I) · ζi. In this case we have
ξ̃i = w1

i − ϕ̃. Since we have ∂ϕ̃i/∂t = −∂ξ̃i/∂t, (2.10) is a generalization of the
original definition.

C. Here we recall some discussions on conic bundles in Part I [2] and Part
III [4]. Let f : X → Y be a conic bundle with dimX = 3. We put

(2.12) B = {x ∈ X | f is not smooth at x }, Δ = f(B).

Let p ∈ Δ. We take a sufficiently small neighbourhood V of p with a system
of coordinates (r, s) so that p = { r = s = 0 }. In this paper we discuss the
following two cases.

Case I: p ∈ Δ \ Sing(Δ).
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In this case, there exists a unique point p′ ∈ B satisfying f(p′) = p. We can
take such a system (α, β, γ) of local coordinates on X around p′ that the map f
is given by

(2.13) (α, β, γ) 
→ (r, s) = (βγ, α)

(cf. [2, Proposition 2.1 (ii) (b)]). Then F : ΘX → f∗ΘY is given by

(2.14)
∂

∂α

→ ∂

∂s
,

∂

∂β

→ γ

∂

∂r
,

∂

∂γ

→ β

∂

∂r

(cf. [2, Proposition 2.2 (ii) (c)]).
The locus B is defined by β = γ = 0 around p′. We have SX/Y, p′ = OB, p′ · ν

with ν = P (∂/∂r), where the homomorphism P : f∗ΘY → SX/Y is given by

(2.15) ϕ1(α, β, γ)
∂

∂r
+ ϕ2(α, β, γ)

∂

∂s

→ (ϕ1 mod (β, γ)) · ν = ϕ1(α, 0, 0) · ν

(see also [2, Proposition 2.2 (ii) (f)]).
The discriminant locus Δ is defined by r = 0 around p.

Case II: p ∈ Sing(Δ).
In this case, there exist open subsets U1 and U2 of X satisfying the following

properties, after shrinking V if necessary (cf. [4, §1]).
(i) XV := f−1(V ) = U1 ∪ U2.
(ii) We can choose coordinates (α1, β1, γ1) on U1 so that f |U1 is defined by

(2.16) (α1, β1, γ1) 
→ (r, s) = (β2
1 − α1γ

2
1 , α1).

(iii) We can choose coordinates (α2, β2, γ2) on U2 so that f |U2 is defined by

(2.17) (α2, β2, γ2) 
→ (r, s) = (α2, β
2
2 − α2γ

2
2).

(iv) On U1 ∩ U2 we have α1 = β2
2 − α2γ

2
2 , β1 = β2γ

−1
2 and γ1 = γ−1

2 .
Then F : Γ(U1,ΘX) → Γ(U1, f

∗ΘY ) is given by

(2.18)
∂

∂α1

→ −γ2

1

∂

∂r
+

∂

∂s
,

∂

∂β1

→ 2β1

∂

∂r
,

∂

∂γ1

→ −2α1γ1

∂

∂r
.

The locus B ∩ U1 is defined by β1 = α1γ1 = 0. We have Γ(B ∩ U1,SX/Y ) =
Γ(B∩U1,OB) ·ν1 with ν1 = P (∂/∂r), where P : Γ(U1, f

∗ΘY ) → Γ(B∩U1,SX/Y )
is given by

(2.19) ϕ1(α1, β1, γ1)
∂

∂r
+ϕ2(α1, β1, γ1)

∂

∂s

→ ((ϕ1 + γ2

1ϕ2) mod (β1, α1γ1)) · ν1.

On the other hand, the homomorphism F : Γ(U2,ΘX) → Γ(U2, f
∗ΘY ) is

given by
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(2.20)
∂

∂α2

→ ∂

∂r
− γ2

2

∂

∂s
,

∂

∂β2

→ 2β2

∂

∂s
,

∂

∂γ2

→ −2α2γ2

∂

∂s
.

The locus B ∩ U2 is defined by β2 = α2γ2 = 0. We have Γ(B ∩ U2,SX/Y ) =
Γ(B∩U2,OB) ·ν2 with ν2 = P (∂/∂s), where P : Γ(U2, f

∗ΘY ) → Γ(B∩U2,SX/Y )
is given by

(2.21) ϕ1(α2, β2, γ2)
∂

∂r
+ϕ2(α2, β2, γ2)

∂

∂s

→ ((γ2

2ϕ1 +ϕ2) mod (β2, α2γ2)) · ν2.

In this case, Δ is defined by rs = 0 around p.

Remark 2.2 (1) All the singular points of B and Δ are ordinary double
points.

(2) For any singular point q of B, the image f(q) is a singular point of Δ. For
each singular point p of Δ, there exists exactly two singular points p′1 and p′2
of B satisfying f(p′i) = q (i = 1, 2).

3. Proof of Theorem 1.2 (1) and (2)

The aim of this section is to prove Theorem 1.2 (1) and (2).
Let { ft : Xt → Y }t∈M be a deformation family of a conic bundle f : X → Y

with dimX = 3. Assume that this family does not admit smoothing of any
singular point of Δ. We shall prove that P ◦ τ(To(M)) ⊂ H0(Δ,A) and that
ρ(To(M)) ⊂ H0(Δ,B).

Let us begin with local discussions around a singular point of Δ.
Let p ∈ Sing(Δ). We use the notation in §2 C. Case II.

Proposition 3.1 (1) Any element φ̃ of Γ(B ∩ XV ,SX/Y ) = Γ(Δ ∩
V, g′∗SX/Y ) is written in the following form:

{
φ̃|B∩U1 = ((a0 + a1γ1 + a2γ

2
1 + φ1(α1)) mod (β1, α1γ1)) · ν1,

φ̃|B∩U2 = ((a0γ
2
2 + a1γ2 + a2 + φ2(α2)) mod (β2, α2γ2)) · ν2,

where ai (i = 0, 1, 2) are constants and the functions φ1(α1) and φ2(α2) are
holomorphic functions with φ1(0) = 0 and φ2(0) = 0 which are defined on U1

and U2, respectively.
(2) The above element φ̃ belongs to Γ(Δ ∩ V,A) if and only if a1 = 0.

Proof. Straightforward from [4, Proposition 2.1 (1)] and [4, Proposi-
tion 2.2 (5)]. (Note that some of the notation in [4] is different from our notation
here.)

Now we adjust the notation in §2 B to our case in the following way. Since
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dimY = 2 in our case, we put m = 2. We also put Vi = V , w1
i = r, w2

i = s and
ξi(wi) = ξ(r, s).

In this case we have ξ(r, s) = rs, since Δ ∩ V is defined by rs = 0. Let ζ be
the element of Γ(Δ∩V,NΔ/Y ) that satisfies ζ : ξ mod (rs)2 
→ 1 mod (rs). Then
we have Γ(Δ ∩ V,NΔ/Y ) = Γ(Δ ∩ V,OΔ) · ζ.

Proposition 3.2 An element ϕ̃ = (ϕ(r, s) mod (rs)) · ζ ∈ Γ(Δ ∩ V,NΔ/Y )
belongs to Γ(Δ ∩ V,B) if and only if ϕ(0, 0) = 0, that is to say ϕ ∈ (r, s).

Proof. Straightforward from [4, Proposition 3.1 (3)].

Let us now discuss the family {Δt}t∈M of the discriminant loci.
Let p ∈ Sing(Δ). We denote by Δ(1) the irreducible component of Δ ∩ V

determined by r = 0. We denote by Δ(2) the component determined by s = 0.
We put

(3.1) ξ1(r, s) = r, ξ2(r, s) = s.

Now we assume that the family {Δt ∩ V }t∈M does not admit smoothing of
the singular point p. Then there exist two families {Δ(1)

t }t∈M and {Δ(2)
t }t∈M of

displacements of Δ(1) and Δ(2), respectively.
Suppose that the family {Δ(1)

t }t∈M is determined by

(3.2) r = ε1(s, t)

with ε1(s, 0) = 0. We also suppose that {Δ(2)
t }t∈M is determined by

(3.3) s = ε2(r, t)

with ε2(r, 0) = 0. Let us put

(3.4) ξ̃1(r, s, t) = r − ε1(s, t), ξ̃2(r, s, t) = s− ε2(r, t) and ξ̃ = ξ̃1ξ̃2.

Then the family {Δ(i)
t }t∈M (resp. {Δt ∩ V }t∈M ) is determined by

(3.5) ξ̃i(r, s, t) = 0 (resp. ξ̃(r, s, t) = 0)

with ξ̃i(r, s, 0) = ξi(r, s) for i = 1, 2 (resp. ξ̃(r, s, 0) = ξ(r, s) = rs).
Now we prove Theorem 1.2 (2).

Proof of Theorem 1.2 (2). Let ∂/∂t be any element of To(M). To ver-
ify that ρ(∂/∂t) ∈ H0(Δ,B), we have only to discuss locally around each point
p ∈ Δ.

If p is a smooth point of Δ, there is nothing to check, since μ is surjective
around p.

Let p ∈ Sing(Δ). Using the notation above, we have
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∂ξ̃

∂t

∣∣∣
t=0

= ξ̃1(r, s, 0)
∂ξ̃2
∂t

∣∣∣
t=0

+ ξ̃2(r, s, 0)
∂ξ̃1
∂t

∣∣∣
t=0

= −r ∂ε2
∂t

∣∣∣
t=0

− s
∂ε1
∂t

∣∣∣
t=0

.

Thus ρ(∂/∂t) is locally expressed as

(3.6)
(
r
∂ε2
∂t

∣∣∣
t=0

+ s
∂ε1
∂t

∣∣∣
t=0

mod (rs)
)
· ζ

around p (cf. (2.10)), whence we have ρ(∂/∂t) ∈ Γ(Δ,B) by Proposition 3.2.
Thus Theorem 1.2 (2) is proved.

Next we discuss Im(P ◦ τ).
Let p ∈ Sing(Δ) as before. We adjust the notation in §2 B as follows. We

have XV = U1 ∪ U2 as above. We put n = 3, z1
i = αi, z2

i = βi, z3
i = γi and

Φj
i (zi, t) = Φj

i (αi, βi, γi, t) (1 ≤ i ≤ 2, 1 ≤ j ≤ 2). Thus {ft : Xt → Y }t∈M is
defined by

(3.7) r = Φ1
i (αi, βi, γi, t), s = Φ2

i (αi, βi, γi, t)

on Ui (i = 1, 2) with

(3.8)
{

Φ1
1(α1, β1, γ1, 0) = β2

1 − α1γ
2
1 ,

Φ2
1(α1, β1, γ1, 0) = α1,

{
Φ1

2(α2, β2, γ2, 0) = α2,

Φ2
2(α2, β2, γ2, 0) = β2

2 − α2γ
2
2 .

Let ∂/∂t be any element of To(M). We can describe P ◦ τ(∂/∂t) locally
around p as follows. Applying (2.3) to this case, we have

(3.9) τi =
∂Φ1

i

∂t

∣∣∣∣
t=0

· ∂
∂r

+
∂Φ2

i

∂t

∣∣∣∣
t=0

· ∂
∂s

∈ Γ(Ui, f
∗ΘY )

(i = 1, 2). By applying (2.19) and (2.21), we have

(3.10)

⎧⎪⎪⎨
⎪⎪⎩

P (τ1) =
((∂Φ1

1

∂t

∣∣∣
t=0

+ γ2
1

∂Φ2
1

∂t

∣∣∣
t=0

)
mod (β1, α1γ1)

)
· ν1,

P (τ2) =
((

γ2
2

∂Φ1
2

∂t

∣∣∣
t=0

+
∂Φ2

2

∂t

∣∣∣
t=0

)
mod (β2, α2γ2)

)
· ν2.

The sections P (τ1) and P (τ2) patch together to a section of Γ(Δ ∩ V, g′∗SX/Y ),
which is nothing but P ◦ τ(∂/∂t)|Δ∩V .

On the other hand, B ∩ XV has three irreducible components, which we
denote by B(0), B(1) and B(2), satisfying the following properties.
(i) B(0)∩U1 is defined by α1 = β1 = 0 and B(0)∩U2 is defined by α2 = β2 = 0.

We have f(B(0)) = {p}.
(ii) B(1) ∩ U1 is defined by β1 = γ1 = 0 and B(1) ∩ U2 = ∅. We have
f(B(1)) = Δ(1).

(iii) B(2) ∩ U1 = ∅ and B(2) ∩ U2 is defined by β2 = γ2 = 0. We have
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f(B(2)) = Δ(2).
Let us note that any small deformation of a conic bundle is again a conic

bundle (cf. [3, Proposition 4.1]), whence we may assume that, for each t ∈ M ,
ft : Xt → Y is a conic bundle, after shrinking M if necessary. Since {Δt}t∈M

does not admit smoothing of Δ, the corresponding family {Bt}t∈M also does not
admit smoothing of B (cf. Remark 2.2). Hence each component B(i) has a family
{B(i)

t }t∈M of its own displacements for i = 0, 1, 2.

Now we prove Theorem 1.2 (1).

Proof of Theorem 1.2 (1). Let p be a point of Δ and q a point
of B with g′(q) = p. Note that (f∗ΘY )q → SX/Y,q is surjective and that
(g′∗(ΘY ⊗ OΔ))q = (f∗ΘY ⊗ OB)q → SX/Y,q is also surjective. If p is a non-
singular point of Δ, then g′ : B → Δ is a local isomorphism around q (cf. [2,
Proposition 1.4 (ii)]). Therefore λ is surjective around a nonsingular point p of
Δ, that is to say, λp : (ΘY ⊗ OΔ)p → (g′∗SX/Y )p is surjective. (See also [4,
Corollary 2.3].)

Thus we have only to discuss locally around a singular point of Δ. Suppose
that p is a singular point of Δ. Let ∂/∂t ∈ To(M).

The components Δ(1)
t and Δ(2)

t of Δ ∩ V intersect at one point, which we
denote by pt. Suppose that the point pt is defined by

(3.11) r = η1(t), s = η2(t)

with η1(0) = η2(0) = 0. We also suppose that the family {B(0)
t }t∈M is defined by

(3.12) αi = ui(γi, t), βi = vi(γi, t)

on Ui (i = 1, 2) with ui(γi, 0) = vi(γi, 0) = 0. Noting that ft(B
(0)
t ) = {pt}, we

have

(3.13) Φj
i (ui(γi, t), vi(γi, t), γi, t) = ηj(t)

(i = 1, 2; j = 1, 2). Putting t = 0 after applying ∂/∂t to (3.13), we have

∂Φj
i

∂αi
(0, 0, γi, 0) · ∂ui

∂t

∣∣∣∣
t=0

+
∂Φj

i

∂βi
(0, 0, γi, 0) · ∂vi

∂t

∣∣∣∣
t=0

(3.14)

+
∂Φj

i

∂t
(0, 0, γi, 0) =

∂ηj

∂t

∣∣∣∣
t=0

for i = 1, 2 and j = 1, 2. Note that ui(γi, 0) = vi(γi, 0) = 0.
Since we have

∂Φ1
1

∂α1
(0, 0, γ1, 0) = −γ2

1 ,
∂Φ1

1

∂β1
(0, 0, γ1, 0) = 0,(3.15)
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∂Φ2
2

∂α2
(0, 0, γ2, 0) = −γ2

2 ,
∂Φ2

2

∂β2
(0, 0, γ2, 0) = 0(3.16)

from (3.8), we obtain the following equalities from (3.14):

∂Φ1
1

∂t
(0, 0, γ1, 0) =

∂η1
∂t

∣∣∣∣
t=0

+ γ2
1

∂u1

∂t

∣∣∣∣
t=0

,(3.17)

∂Φ2
2

∂t
(0, 0, γ2, 0) =

∂η2
∂t

∣∣∣∣
t=0

+ γ2
2

∂u2

∂t

∣∣∣∣
t=0

.(3.18)

Since η1 and η2 do not depend on γ1 and γ2, the above equalities (3.17) and
(3.18) imply that (∂Φ1

1/∂t)(0, 0, γ1, 0) and (∂Φ2
2/∂t)(0, 0, γ2, 0) do not contain

terms of γ1 and γ2 of degree one, respectively. Then, using Lemma 3.3 below, we
can show that (∂Φ1

1/∂t)|t=0, (∂Φ2
2/∂t)|t=0, (∂Φ1

1/∂t)|t=0 + γ2
1 · (∂Φ2

1/∂t)|t=0 and
γ2
2 · (∂Φ1

2/∂t)|t=0 +(∂Φ2
2/∂t)|t=0 do not contain terms of γ1 and γ2 of degree one,

respectively.
Then, applying Proposition 3.1 to (3.10), we have

(3.19) P ◦ τ(∂/∂t)|Δ∩V ∈ Γ(Δ ∩ V,A).

Thus we have Im(P ◦ τ) ⊂ H0(Δ,A).

Lemma 3.3 Let F (α, β, γ) be a holomorphic function with

F (α, β, γ) ≡ f0 + f1α+ f2α
2 + . . .

+g1γ + g2γ
2 + . . . mod (β, αγ).

Assume that F (0, 0, γ) = f0 + g1γ + g2γ
2 + . . . does not contain a term of γ of

degree one (that is to say, g1 = 0), then F (α, β, γ) does not contain a term of γ
of degree one.

Proof. It is obvious.

4. Proof of Theorem 1.2 (3)

In this section we shall prove Theorem 1.2 (3). Assume that the family
{Δt}t∈M does not admit smoothing of Δ as before. Let ∂/∂t be any element of
To(M). We prove Theorem 1.2 (3) by local discussions around p ∈ Δ.

Case A: p ∈ Sing(Δ).
Suppose that the family {B(i)

t }t∈M is defined by

(4.1) βi = bi(αi, t), γi = ci(αi, t)

on Ui with bi(αi, 0) = ci(αi, 0) = 0 (i = 1, 2). Since we have ft(B
(i)
t ) = Δ(i)

t
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(i = 1, 2), the following equalities hold.

Φ1
1(α1, b1(α1, t), c1(α1, t), t) = ε1(Φ2

1(α1, b1(α1, t), c1(α1, t), t), t),(4.2)

Φ2
2(α2, b2(α2, t), c2(α2, t), t) = ε2(Φ1

2(α2, b2(α2, t), c2(α2, t), t), t).(4.3)

Putting t = 0 after applying ∂/∂t to (4.2), we have

∂Φ1
1

∂β1
(α1, 0, 0, 0) · ∂b1

∂t

∣∣∣
t=0

+
∂Φ1

1

∂γ1
(α1, 0, 0, 0) · ∂c1

∂t

∣∣∣
t=0

+
∂Φ1

1

∂t
(α1, 0, 0, 0)

=
∂ε1
∂s

(α1, 0) · ∂Φ2
1(α1, b1(α1, t), c1(α1, t), t)

∂t

∣∣∣
t=0

+
∂ε1
∂t

(α1, 0).

From (3.8) we have

∂Φ1
1

∂β1
(α1, 0, 0, 0) =

∂Φ1
1

∂γ1
(α1, 0, 0, 0) = 0.

Since ε1(s, 0) = 0, we have (∂ε1/∂s)(α1, 0) = 0. Thus we have

(4.4)
∂Φ1

1

∂t
(α1, 0, 0, 0) =

∂ε1
∂t

(α1, 0).

Similarly, putting t = 0 after applying ∂/∂t to (4.3) and noting that

∂ε2
∂r

(α2, 0) =
∂Φ2

2

∂β2
(α2, 0, 0, 0) =

∂Φ2
2

∂γ2
(α2, 0, 0, 0) = 0,

we obtain

(4.5)
∂Φ2

2

∂t
(α2, 0, 0, 0) =

∂ε2
∂t

(α2, 0).

By Proposition 3.1 (1), P ◦ τ(∂/∂t)|Δ∩V is determined by P (τ1) and P (τ2)
of the following form:

(4.6)
{
P (τ1) = ((a0 + a1γ1 + a2γ

2
1 + φ1(α1)) mod (β1, α1γ1)) · ν1,

P (τ2) = ((a0γ
2
2 + a1γ2 + a2 + φ2(α2)) mod (β2, α2γ2)) · ν2,

where ai (i = 0, 1, 2) are constants and φi (i = 1, 2) are holomorphic functions
with φ1(0) = φ2(0) = 0. Then, by Theorem 1.2 (1) and Proposition 3.1 (2), we
have a1 = 0, whence we have

(4.7)
{
P (τ1) = ((a0 + a2γ

2
1 + φ1(α1)) mod (β1, α1γ1)) · ν1,

P (τ2) = ((a0γ
2
2 + a2 + φ2(α2)) mod (β2, α2γ2)) · ν2.

Comparing (4.7) with (3.10), we have

a0 + φ1(α1) =
∂Φ1

1

∂t
(α1, 0, 0, 0) =

∂ε1
∂t

(α1, 0),
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a2 + φ2(α2) =
∂Φ2

2

∂t
(α2, 0, 0, 0) =

∂ε2
∂t

(α2, 0).

In particular, we have a0 = (∂ε1/∂t)(0, 0) and a2 = (∂ε2/∂t)(0, 0). Thus
P ◦ τ(∂/∂t)|Δ∩V is determined by

(4.8)

⎧⎪⎪⎨
⎪⎪⎩

P (τ1) =
((

γ2
1

∂ε2
∂t

(0, 0) +
∂ε1
∂t

(α1, 0)
)

mod (β1, α1γ1)
)
· ν1,

P (τ2) =
((

γ2
2

∂ε1
∂t

(0, 0) +
∂ε2
∂t

(α2, 0)
)

mod (β2, α2γ2)
)
· ν2.

Next we calculate ψ̄ ◦ P ◦ τ(∂/∂t)|Δ∩V . Let us put ϕi(r, s) = (∂εi/∂t)|t=0

(i = 1, 2) and

(4.9) ω =
(
ϕ1 mod (rs)

) ∂
∂r

+
(
ϕ2 mod (rs)

) ∂
∂s

∈ Γ(Δ ∩ V,ΘY ⊗OΔ).

Then [4, Proposition 2.2 (1)] implies that λ(ω) ∈ Γ(Δ ∩ V, g′∗SX/Y ) is expressed
by λ1(ω) and λ2(ω) in the following form:

(4.10)
{
λ1(ω) = ((ϕ1(0, α1) + γ2

1ϕ2(0, 0)) mod (β1, α1γ1)) · ν1,
λ2(ω) = ((γ2

2ϕ1(0, 0) + ϕ2(α2, 0)) mod (β2, α2γ2)) · ν2,

which is nothing but P ◦ τ(∂/∂t)|Δ∩V . (Compare (4.8) with (4.10). Note that
the notation in [4] is different from the notation here. We have to change (s, t)
in [4] into (r, s) here.)

On the other hand, [4, Proposition 3.1 (1)] implies that
(4.11)

μ(ω) =
(
(sϕ1 + rϕ2) mod (rs)

) · ζ =
((

s
∂ε1
∂t

∣∣∣
t=0

+ r
∂ε2
∂t

∣∣∣
t=0

)
mod (rs)

)
· ζ,

which is nothing but ρ(∂/∂t)|Δ∩V . (Compare (3.6) with (4.11).)
These arguments imply that

(4.12) ψ̄ ◦ P ◦ τ
( ∂
∂t

)∣∣∣
Δ∩V

= ρ
( ∂
∂t

)∣∣∣
Δ∩V

.

Case B: p ∈ Δ \ Sing(Δ).
In this case, we use the notation of Case I in §2 C. Suppose that f is de-

termined around p′ by (2.13). Suppose furthermore that {ft : Xt → Y }t∈M is
determined by

(4.13) r = Φ1(α, β, γ, t), s = Φ2(α, β, γ, t)

with Φ1(α, β, γ, 0) = βγ and Φ2(α, β, γ, 0) = α. We also suppose that {Bt}t∈M

is determined around p′ by
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(4.14) β = b(α, t), γ = c(α, t)

with b(α, 0) = c(α, 0) = 0 and that {Δt}t∈M is determined around p by

(4.15) r = ε(s, t)

with ε(s, 0) = 0. Since we have ft(Bt) = Δt, the following equality holds:

(4.16) Φ1
(
α, b(α, t), c(α, t), t

)
= ε
(
Φ2(α, b(α, t), c(α, t), t), t

)
.

Putting t = 0 after applying ∂/∂t to (4.16) and noting that

∂Φ1

∂β
(α, 0, 0, 0) =

∂Φ1

∂γ
(α, 0, 0, 0) =

∂ε

∂s
(α, 0) = 0,

we have

(4.17)
∂Φ1

∂t
(α, 0, 0, 0) =

∂ε

∂t
(α, 0).

Then, by (2.15) and (4.17), we obtain

(4.18) P ◦ τ
( ∂
∂t

)∣∣∣
Δ∩V

= P
(∂Φ1

∂t

∣∣∣
t=0

· ∂
∂r

+
∂Φ2

∂t

∣∣∣
t=0

· ∂
∂s

)
=
∂ε

∂t
(α, 0) · ν.

In this case, g′ : B → Δ is defined by α 
→ s and it is locally isomorphic
around p′. Then the homomorphism λ : Γ(Δ∩V,ΘY ⊗OΔ) → Γ(Δ∩V, g′∗SX/Y )
is essentially equal to P via the correspondence α 
→ s and it is determined by

(4.19) ϕ1(s)
∂

∂r
+ ϕ2(s)

∂

∂s

→ ϕ1(s) · ν

with ν = λ(∂/∂r), whereas μ : Γ(Δ ∩ V,ΘY ⊗ OΔ) → Γ(Δ ∩ V,NΔ/Y ) is deter-
mined by

(4.20) ϕ1(s)
∂

∂r
+ ϕ2(s)

∂

∂s

→ ϕ1(s) · ζ

with ζ = μ(∂/∂r), whence we have

(4.21) ψ̄(ν) = ζ.

Let us now put ξ̃(r, s, t) = r − ε(s, t). Then we have

(4.22) ρ
( ∂
∂t

)∣∣∣
Δ∩V

= −∂ξ̃
∂t

∣∣∣
t=0

· ζ =
∂ε

∂t
(s, 0) · ζ

By (4.18), (4.21) and (4.22), we have

(4.23) ρ
( ∂
∂t

)∣∣∣
Δ∩V

= ψ̄ ◦ P ◦ τ
( ∂
∂t

)∣∣∣
Δ∩V

.
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Thus Theorem 1.2 (3) is proved.

5. Proof of Corollary 1.3

Finally we prove Corollary 1.3.
Let Y = P

2 and f : X → Y a conic bundle determined by E , M and q.
Assume that E is a direct sum of invertible sheaves.

By [3, Theorem 3.3], we have f∗ΘX/Y
∼= E ⊗ det(E)−1 ⊗ M−1, which is

also a direct sum of invertible sheaves on P
2. Hence we have H1(X,ΘX/Y ) ∼=

H1(P2, f∗ΘX/Y ) = 0, since we have Rif∗ΘX/Y = 0 for i > 0 by [3, Lemma 3.1].
Then the exact sequence (2.1) implies that P : DX/Y → H0(X,SX/Y ) is injective.

If Δ is smooth, we are already done by [3, Corollary 3.14].
Suppose that Δ has singularity. Let {ft : Xt → Y }t∈M be a deformation

family of f : X → Y . Assume that the discriminant locus of ft coincides with
Δ for each t ∈ M . Since the family does not admit smoothing of any singular
point of Δ, of course, we have Im(P ◦ τ) ⊂ H0(Δ,A) and Im(ρ) ⊂ H0(Δ,B) by
Theorem 1.2.

Then Corollary 1.3 is proved, since the map ψ̄ ◦ P |H0(Δ,A) is injective.
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