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Abstract

A knot K is called a 1-genus 1-bridge knot in a 3-manifold M if (M, K) has

a Heegaard splitting (V1, t1) ∪ (V2, t2) where Vi is a solid torus and ti is a bound-

ary parallel arc properly embedded in Vi. If the exterior of a knot has a genus

2 Heegaard splitting, we say that the knot has an unknotting tunnel. Naturally

the exterior of a 1-genus 1-bridge knot K allows a genus 2 Heegaard splitting, i.e.,

K has an unknotting tunnel. But, in general, there are unknotting tunnels which

are not derived form this procedure. Some of them may be levelled with the torus

∂V1 = ∂V2, whose case was studied in our previous paper [4]. In this paper, we

consider the remaining case.

1. Introduction

This paper is a sequel to our previous paper [4]. We will use the same nota-
tions and terminology.

A properly embedded arc t in a solid torus V is called trivial if it is bound-
ary parallel, that is, there is a disk C embedded in V such that t ⊂ ∂C and
C ∩ ∂V = cl (∂C − t). We call C a canceling disk of t. Let M be a closed con-
nected orientable 3-manifold, and K a knot in M . We call K a 1-genus 1-bridge
knot in M if M is a union of two solid tori V1 and V2 glued along their boundary
tori ∂V1 and ∂V2 and if K intersects each solid torus Vi in a trivial arc ti for i = 1
and 2. The splitting (M,K) = (V1, t1) ∪H1 (V2, t2) is called a 1-genus 1-bridge
splitting of (M,K), where H1 = V1 ∩ V2 = ∂V1 = ∂V2, the torus. We call also
the torus H1 a 1-genus 1-bridge splitting. We say (1, 1)-knots and (1, 1)-splitting
for short.

We recall the definition of a (2, 0)-splitting. Let W be a handlebody, and K

a knot in intW . We say K is a core in W if there are a disk D and an annulus
A such that D is properly embedded in W and intersects K transversely in a
single point and that A is embedded in W with K ⊂ ∂A and A∩ ∂W = ∂A−K.
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We say that the pair (M,K) admits a (2, 0)-splitting if M is a union of two
handlebodies of genus two, say W1 and W2, glued along ∂W1 and ∂W2 and if K

forms a core in W1. The closed surface H2 = ∂W1 = ∂W2 = W1 ∩ W2 gives the
splitting (M,K) = (W1,K) ∪H2 (W2, ∅) and is called a (2, 0)-splitting surface or
a (2, 0)-splitting for short. This is also called a (2; 1, 0)-splitting surface in [8]. It
is easy to see that cl (W1 −N(K)) is a compression body, and H2 = ∂W1 = ∂W2

gives a genus two Heegaard splitting of the exterior of K.
A (1, 1)-knot admits a (2, 0)-splitting naturally as follows. Let (M,K) =

(V1, t1) ∪H1 (V2, t2) be a (1, 1)-splitting. We take a regular neighborhood N(t2)
of the arc t2 in V2. Then (M,K) = (V1 ∪ N(t2),K) ∪ (cl (V2 − N(t2)), ∅) is a
(2, 0)-splitting. We may take a regular neighborhood of t1 to obtain another
(2, 0)-splitting. Such (2, 0)-splittings are characterized in the following man-
ner. A (2, 0)-splitting (M,K) = (W1,K) ∪H (W2, ∅) is meridionally stabilized
if there is a disk Di properly embedded in Wi for i = 1 and 2 such that ∂D1 and
∂D2 intersect each other transversely in a single point in H = ∂W1 = ∂W2

and that D1 intersects K transversely in a single point. A (2, 0)-splitting
(M,K) = (Vi ∪ N(tj),K) ∪ (cl (Vj − N(tj)), ∅), which is derived from a (1, 1)-
splitting (M,K) = (V1, t1) ∪ (V2, t2), is meridionally stabilized since we can take
the disk D1 to be a meridian disk of the arc tj in N(tj), and the disk D2 to be a
canceling disk of the arc tj . Conversely, we can obtain a (1, 1)-splitting torus by
compressing the meridionally stabilized (2, 0)-splitting surface along D1.

A torus knot is a (1, 1)-knot. The result on unknotting tunnels of torus knots
by Z. Boileau, M. Rost and H. Zieschang in [3] together with the results in [1], [2]
and [11] implies that there is a torus knot which admits a (2, 0)-splitting which
is not derived from a (1, 1)-splitting.

We consider the situation where a knot K in M admits both a (1, 1)-splitting
(M,K) = (V1, t1)∪H1 (V2, t2) and a (2, 0)-splitting (M,K) = (W1,K)∪H2 (W2, ∅).
In most cases, under some technical conditions, we can place the splitting sur-
faces H1 and H2 so that they intersect each other in a non-empty collection of
loops which are K-essential both in H1 and H2, where a loop of H1∩H2 is called
K-essential in Hi if it does not bound a disk intersecting K in at most one point
in Hi. This is proven by a similar argument introduced by H. Rubinstein and M.
Scharlemann in [12] and developed by T. Kobayashi and O. Saeki in [10]. In this
paper, we begin with the situation where H1 and H2 intersect each other in a
non-empty collection of K-essential loops. Let � denote the number of K-essential
loops of H1 ∩H2. The number � is said to be minimum if there is no isotopies of
H1 and H2 in (M,K) so that they intersect each other in a non-empty collection
of smaller number of loops which are K-essential both in H1 and in H2. We recall
the result in the previous paper [4] in the case of M = S3.

Theorem 1.1 ([4]). Suppose M is the 3-sphere S3, and � is minimum and � �= 2
(either � ≥ 3 or � = 1). Then, at least one of the following conditions holds.
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(1) The (2, 0)-splitting H2 is meridionally stabilized.

(2) There is an arc γ which forms a spine of (W1,K) and is isotopic into the
torus H1. Moreover, we can take γ so that there is a canceling disk Ci of the
arc ti in (Vi, ti) with ∂Ci ∩ γ = ∂γ = ∂ti for i = 1 or 2.

(3) The (1, 1)-splitting H1 admits a satellite diagram of a longitudinal slope.

We recall some terminologies for the conclusions (2) and (3) of the above
theorem. An embedded arc γ in W1 forms a spine of (W1,K) if γ ∩K = ∂γ and
W1 collapses to K∪γ. We say that a (1, 1)-splitting (M,K) = (V1, t1)∪H1 (V2, t2)
admits a satellite diagram if there is an essential simple loop l on the torus H1

such that the arcs t1 and t2 have canceling disks which are disjoint from l. We
call l the slope of the satellite diagram. We say that the slope of the satellite
diagram is longitudinal if it is longitudinal on ∂V1 or ∂V2. If l is longitudinal on
∂V1, then the boundary torus of the regular neighborhood of (H1 − N(l)) ∪ C2

also gives a (1, 1)-splitting, where C2 is a canceling disk of t2 with C2 ∩ l = ∅.

Figure 1

In this paper, we consider the case of the number of intersection loops � = 2.
Let X be a compact orientable 3-manifold, and T a compact 1-manifold prop-

erly embedded in X. For i = 1 and 2, let Fi be either a compact 2-submanifold
of ∂X or a compact orientable 2-manifold which is properly embedded in X and
is transverse to T . Suppose that T ∩ ∂Fi = ∅ for i = 1 and 2. F1 is said to be
T -compressible in (X,T ) if there is a disk D1 embedded in X with D1∩F1 = ∂D1

and D1 ∩ T = ∅ such that ∂D1 does not bound a disk in F1 − T . We call D1 a
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T -compressing disk. F2 is said to be meridionally compressible in (X,T ) if there
is a disk D2 embedded in X with D2∩F2 = ∂D2 such that D2 intersects T trans-
versely in a single point and that ∂D2 does not bound a disk which intersects T

in a single point in F2. We call D2 a meridionally compressing disk.
A (1, 1)-splitting (M,K) = (V1, t1) ∪H1 (V2, t2) is called weakly K-reducible

if there is a ti-compressing or meridionally compressing disk Di of H1 = ∂Vi in
(Vi, ti) for i = 1 and 2 such that ∂D1 ∩ ∂D2 = ∅. A (1, 1)-splitting is called
strongly K-irreducible if it is not weakly K-reducible. (1, 1)-knots which admit a
weakly K-reducible (1, 1)-splitting are characterized in Lemma 3.2 in [7], which
is recalled in Proposition 2.6.

A (2, 0)-splitting (M,K) = (W1,K) ∪H2 (W2, ∅) is called weakly K-reducible
if there is a K-compressing or meridionally compressing disk D1 of H2 = ∂W1 in
(W1,K) and a compressing disk D2 of H2 = ∂W2 in W2 such that ∂D1∩∂D2 = ∅.
(2, 0)-knots which admit a weakly K-reducible (2, 0)-splitting are characterized
in Proposition 2.14 in [5] which is recalled in Proposition 2.10. There we find
that a meridionally stabilized (2, 0)-splitting is weakly K-reducible.

To apply arguments by Kobayashi and Saeki in [10], to make the (1, 1)-
splitting H1 and the (2, 0)-splitting H2 intersect in K-essential loops, we need
the conditions that neither H1 nor H2 is weakly K-reducible and that M has a
2-fold branched cover with branch set K. See Section 1 in the previous paper
[4] for detail. We also need the condition on a branched cover when we apply
Proposition 2.12 (Proposition 3.4 in [9]).

In this paper, we will prove the following theorem.

Theorem 1.2. Let M be the 3-sphere or a lens space (other than S2×S1), and K

a knot in M . Let (V1, t1)∪H1 (V2, t2) and (W1,K)∪H2 (W2, ∅) be a (1, 1)-splitting
and a (2, 0)-splitting of (M,K). Suppose that the surfaces H1 and H2 intersect
each other in two loops which are K-essential both in H1 and in H2. Further, we
assume that M has a 2-fold branched cover with branch set K. Then at least one
of the six conditions (a) ∼ (f) below holds.

(a) We can isotope H1 and H2 in (M,K) so that they intersect in one loop which
is K-essential both in H1 and in H2.

(b) The (2, 0)-splitting H2 is weakly K-reducible.

(c) The knot K is a torus knot.

(d) The knot K is a satellite knot.

(e) The (1, 1)-splitting H1 admits a satellite diagram of a longitudinal slope.

(f) There is an essential separating disk D2 in W2, and an arc α in W1 such
that α ∩ K is one of the endpoints ∂α, and α ∩ ∂W1 is the other endpoint,
say p, of α and that D2 cuts off a solid tours U1 from W2 with p ∈ ∂U1 and
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with the torus ∂N(U1 ∪α) isotopic to the (1, 1)-splitting torus H1 in (M,K).
See Figure 1.

We recall some terminologies for the conclusions (c) and (d) in the above
theorem. We say that K is a torus knot if K can be isotoped into a torus which
gives a genus one Heegaard splitting of M . We call K a satellite knot if the
exterior E(K) = cl (M −N(K)) contains an incompressible torus T which is not
parallel to ∂E(K). The torus T may not bound a solid torus in M .

Theorem 1.2 provides the case (3-1) of Theorem 1.3 in [4] so that the proof
completes.

2. Preliminaries

Definition 2.1. Let X be an orientable 3-manifold, and T a compact 1-manifold
properly embedded in X. Let F be a compact orientable 2-manifold properly em-
bedded in X. Suppose that ∂F is disjoint from T and that T is transverse to F .
We say that F is T -∂-compressible in (X,T ) if there is a disk D embedded in X

satisfying all of the following conditions:

(1) D is disjoint from T ;

(2) D ∩ (F ∪ ∂X) = ∂D;

(3) D ∩ F is an essential arc properly embedded in F − T ;

(4) ∂D ∩ ∂X is an essential arc in the surface obtained from ∂X − T by cutting
along ∂F .

We call such a disk D a T -∂-compressing disk of F . When there is not such a
disk, we say that F is T -∂-incompressible in (X,T ).

Remark. In the usual definition, the above condition (4) is omitted, but we
add this in this paper as in [5] and [7]. Note that this definition is equivalent to
the usual one when F is T -incompressible.

Lemma 2.2 (Lemma 2.10 in [7]). Let V be a solid torus, and t a trivial arc
properly embedded in V . Let F be a compact orientable 2-manifold properly em-
bedded in V so that F is transverse to t and ∂F ∩ t = ∅. Suppose that F is
t-incompressible and t-∂-incompressible in (V, t). Then F is a union of finitely
many surfaces of types (1) ∼ (6) below:

(1) a 2-sphere disjoint from t;

(2) a 2-sphere intersecting t transversely in two points;

(3) a meridian disk of V disjoint from t;

(4) a meridian disk of V intersecting t transversely in a single point;
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(5) a peripheral disk disjoint from t;

(6) a peripheral disk intersecting t transversely in a single point.

Lemma 2.3 (Lemma 3.10 in [5]). Let W be a handlebody of genus two, and
K a core loop in W . Let F be a compact orientable 2-manifold properly em-
bedded in W so that F is transverse to K. Suppose that F is K-incompressible
and K-∂-incompressible. Then F is a disjoint union of finitely many surfaces as
below:

(1) a 2-sphere disjoint from K;

(2) a 2-sphere which bounds a trivial 1-string tangle in (W,K);

(3) an essential disk of W disjoint from K;

(4) an essential disk of W intersecting K transversely in a single point;

(5) a torus bounding a solid torus which forms a regular neighborhood of K in
W .

Definition 2.4. A (1, 1)-splitting (M,K) = (V1, t1) ∪H1 (V2, t2) is called K-
reducible if there are K-compressing disks D1 and D2 of H1 in V1 and V2 respec-
tively such that ∂D1 ∩ ∂D2 = ∅.
Definition 2.5. A knot K in M is called a core knot if its exterior is a solid
torus.

Note that a knot in the 3-sphere is a core knot if and only if it is the trivial
knot.

Proposition 2.6 (Lemmas 3.1 and 3.2 in [7]). Let M be the 3-sphere or a lens
space other than S2 ×S1, and K a knot in M . Let (M,K) = (V1, t1)∪H1 (V2, t2)
be a (1, 1)-splitting. If it is weakly K-reducible, then one of the following occurs:

(1) K is a trivial knot;

(2) K is a core knot in a lens space;

(3) K is a 2-bridge knot in the 3-sphere;

(4) K is a connected sum of a core knot in a lens space and a 2-bridge knot in
the 3-sphere.

When the (1, 1)-splitting H1 is K-reducible, K is trivial.

Definition 2.7. A (2, 0)-splitting (M,K) = (W1,K) ∪H2 (W2, ∅) is called K-
reducible if there are a K-compressing disk D1 of H2 in (W1,K) and an essential
disk D2 in W2 such that ∂D1 = ∂D2 in H2.

Definition 2.8. A knot K in M is called a split knot if its exterior E(K) =cl(M−
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N(K)) is reducible. A knot K is called composite if there is a 2-sphere S em-
bedded in M such that S is separating in M , that S intersects K transversely
in precisely two points and that the annulus S ∩ E(K) is incompressible and
∂-incompressible in E(K).

Proposition 2.9 (Proposition 2.9 in [5]). A (2, 0)-splitting (M,K) =
(W1,K) ∪H2 (W2, ∅) is K-reducible if and only if K is either a core knot or
a split knot.

Proposition 2.10 (Proposition 2.14 in [5]). A (2, 0)-splitting (M,K) =
(W1,K) ∪H2 (W2, ∅) is weakly K-reducible if and only if one of the following
occurs:

(1) the (2, 0)-splitting H2 is K-reducible;

(2) the (2, 0)-splitting H2 is meridionally stabilized; or

(3) K is a composite knot.

Proposition 2.11 (Proposition 4.9 in [4]). Suppose (M,K) has a (1, 1)-splitting
H1 and a (2, 0)-splitting H2. Further, we suppose that H1 admits a satellite
diagram. Then one of the following holds:

(1) the (2, 0)-splitting H2 is K-reducible;

(2) the knot K is a torus knot;

(3) the knot K is a satellite knot;

(4) the (1, 1)-splitting H1 admits a satellite diagram of a longitudinal slope.

In the proof of Theorem 1.2, we use the next proposition. The condition
that M has a 2-fold branched cover with branch set K is necessary only when we
apply this proposition.

Proposition 2.12 (Proposition 3.4 in [9]). Let M be a closed orientable 3-
manifold, and L a link in M . Assume that M has a 2-fold branched cover with
branch set L. Let Hi be (gi, ni)-splitting of (M,L) for i = 1 and i = 2, and W a
genus g2 handlebody bounded by H2 in M . Suppose that H1 is contained in the
interior of W , and that there is an L-compressing or meridionally compressing
disk D of H2 in (W,L∩W ) with D∩H1 = ∅. Then either (i) M = S3 and L = ∅
or L is the trivial knot, or (ii) the splitting H2 is weakly L-reducible.

3. Separation of the proof into cases

We begin to prove Theorem 1.2. Let M be the 3-sphere or a lens space (other
than S2×S1), and K a knot in M . Let (V1, t1)∪H1 (V2, t2) and (W1,K)∪H2 (W2, ∅)
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be a (1, 1)-splitting and a (2, 0)-splitting of (M,K). According to the assumption
of Theorem 1.2, we suppose that H1 ∩ H2 consists of two loops, say l1 and l2,
which are K-essential both in H1 and in H2.

Since the (2, 0)-splitting surface H2 separates M , there are two patterns of
intersection loops of H1 ∩ H2 in H1: (1) l1 and l2 together divide H1 into a disk
Q, an annulus A1 and a torus with one hole H ′

1, or (2) l1 and l2 together divide
H1 into two annuli A11 and A12. Since the (1, 1)-splitting torus H1 also separates
M , there are two patterns of intersection loops of H1 ∩ H2 in H2: (A) l1 and
l2 are parallel separating essential loops, or (B) they are parallel non-separating
essential loops. See Figure 2. In the following sections, we study each case.

Figure 2

4. Case (1)(A)

In this section, we consider the case where H1 ∩ H2 is of the pattern (1) in
H1, and of the pattern (A) in H2 in Figure 2. In this case we show (a), (b), (c)
or (d) of Theorem 1.2 holds. In Case (1), we assume, without loss of generality,
that l1 = ∂Q. The disk Q contains the two intersection points K ∩ H1 because
the loop l1 is K-essential in H1. Then the torus with one hole H ′

1 and the an-
nulus A1 are disjoint from K. In particular, the loops l1 and l2 are parallel in
H1−K. These loops are K-essential but inessential in H1. Since the handlebody
W1 contains K as a core, and since Q intersects K, Q and H ′

1 are contained in
W1, and A1 in W2. In Case (A), for i = 1 and 2 the loop li bounds a torus with
one hole, say H2i, such that H21 ∩ H22 = ∅. The complementary region is an
annulus, say A2, between l1 and l2. We can assume, without loss of generality,
that A2 is contained in the solid torus V1, and H21 ∪ H22 in V2.

By Lemma 2.3 (Lemma 3.10 in [5]), Q ∪ H ′
1 is K-compressible or K-∂-
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compressible in (W1,K). A1 is compressible or ∂-compressible in the handlebody
W2.

Lemma 4.1. If A1 is compressible in W2, then the (2, 0)-splitting H2 of (M,K)
is weakly K-reducible.

Proof. A compressing operation on A1 yields a disk D2 bounded by l1 in W2.
By Lemma 2.3, the disk Q with two intersection points with K is K-compressible
or K-∂-compressible in (W1,K) if we ignore the once punctures torus H ′

1. We
perform a K-compressing or K-∂-compressing operation on Q, to obtain a K-
compressing or meridionally compressing disk D1 of H2 in (W1,K). We can
slightly move D1 near its boundary circle so that it is disjoint from l1. Then the
disks D1 and D2 together show that H2 is weakly K-reducible.

In the rest of this section, we assume that A1 is incompressible in W2. Then
A1 is ∂-compressible, and hence parallel to the annulus A2 in W2.

Lemma 4.2. Suppose that A1 is incompressible in W2 and that W1 contains
either (1) a t2-compressing disk of H21 ∪ H22, (2) a t2-∂-compressing disk of
H21 ∪ H22 incident to H21, (3) a K-compressing disk of Q ∪ H ′

1 in V2 or (4) a
K-∂-compressing disk of Q ∪ H ′

1 incident to Q. Then H2 is weakly K-reducible.

Proof. In Case (2), the t2-∂-compressing disk is also a K-∂-compressing disk of
Q by the unusual definition of a ∂-compressing disk. (See Definition 2.1.) In
Case (4), the K-∂-compressing disk is incident to H21 rather than A2 by the def-
inition of a ∂-compressing disk. Hence, in Cases (2), (3) and (4), by performing
a compressing or ∂-compressing operation on a copy of Q or H ′

1, we obtain a
K-compressing or meridionally compressing disk D of H21 ∪H22 in (W1,K) such
that D ⊂ V2 ∩W1 as in (1). We can isotope H1 along the parallelism between A1

and A2 so that H1 is contained in intW1 and is disjoint from D. Then Proposi-
tion 2.12 shows that H2 is weakly K-reducible, or K is the trivial knot. In the
latter case, H2 is K-reducible by Proposition 2.9.

Definition 4.3. We call a (2, 0)-splitting (M,K) = (W1,K) ∪H2 (W2, ∅) semi-
stabilized if there is a K-compressing disk Di of H2 in (Wi,K ∩ Wi) for i = 1
and 2 such that ∂D1 and ∂D2 intersect each other transversely in precisely two
points.

Proposition 4.4 (Theorem 7.2 in [5]). If (M,K) admits a semi-stabilized
strongly K-irreducible (2, 0)-splitting, then one of the following occurs:

(1) the knot K is a torus knot in M ;

(2) the knot K is a satellite knot;

(3) the 3-manifold M admits a Seifert fibered structure over the 2-sphere with
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three exceptional fibers, and K is an exceptional fiber; or

(4) the exterior of the knot K contains a non-separating torus.

When M is the 3-sphere or a lens space except for S2 × S1, the conclusions
(3) and (4) do not occur.

Lemma 4.5. Suppose that A1 is incompressible in W2, and that V2∩W1 contains
a t2-∂-compressing disk of H21 ∪H22 incident to H22 or a K-∂-compressing disk
of Q ∪ H ′

1 incident to H ′
1. Then one of the following conditions holds.

(1) H2 is weakly K-reducible.

(2) We can isotope H1 in (M,K) so that H1 ∩ H2 is a single loop which is
K-essential both in H1 and in H2.

(3) H2 is semi-stabilized, and K is a torus knot or a satellite knot.

Moreover, if Q ∪ H ′
1 is K-incompressible in (W1,K), then (1) or (2) holds.

Figure 3

Proof. Let D be the ∂-compressing disk in the preliminary condition. Note that,
when D is a K-∂-compressing disk of Q∪H ′

1, the arc ∂D∩∂W1 is contained in H22

by Definition 2.1. We isotope H1 along the ∂-compressing disk D slightly beyond
the arc ∂D∩H22. Then, by the definition of a ∂-compressing disk, H ′

1 is deformed
into an annulus A, each of the boundary loops ∂A is non-separating in H22, and
these loops cobound an annulus, say A′, in H22. The annulus A1 is deformed into
a disk with two holes, say P , in the handlebody W2. Set P ′ = cl (H2−(H21∪A′)).
See Figure 3. Note that P is parallel to P ′ in W2 since A1 is parallel to A2 in W2

before the isotopy. By Lemma 2.3, Q∪A is K-compressible or K-∂-compressible
in (W1,K).

Case (a). We first assume that Q ∪ A is K-incompressible and has a K-∂-
compressing disk, say R, in (W1,K). (This holds if Q ∪ H ′

1 is K-incompressible
before the isotopy.) If the arc ∂R ∩ H2 is contained in H21, then R is there also
before the isotopy, and H2 is weakly K-reducible by Lemmas 4.1 and 4.2. If the
arc ∂R∩H2 is contained in the annulus A′, then A is parallel to A′ in W1−K. We
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can isotope H1 along the parallelism so that H1 and H2 intersect each other only
in the loop l1 which is K-essential both in H1 and in H2. Hence we may assume
that the arc ∂R ∩ H2 is contained in the disk with two holes P ′. If the disk R is
incident to the annulus A, then by performing a K-∂-compressing operation on
A along R, we obtain a disk, say R′, disjoint from K. Since the arc ∂R∩H2 is an
essential arc in P ′ and since it connects the two loops ∂A′, the boundary loop ∂R′

is parallel to l1 = ∂Q. This implies that the disk Q is K-compressible in (W1,K).
This contradicts our assumption. Hence R is incident to Q. By ∂-compressing
Q along R, we obtain a disk, say R1, which intersects K transversely in a single
point. We can isotope R1 in (W1,K) so that it is bounded by a component of
∂A′. By Lemma 2.2 (Lemma 2.10 in [7]), H21 ∪ A′ is t2-compressible or t2-∂-
compressible in (V2, t2). First we consider the former case. If H21 ∪ A′ has a
t2-compressing disk in W1, then by compressing a copy of H21 ∪ A′, we obtain a
K-compressing disk of Q∪A, which contradicts our assumption. Hence H21 ∪A′

has a t2-compressing disk in W2. This disk together with R1 shows that H2 is
weakly K-reducible.

We consider the latter case, where H21 ∪A′ has a t2-∂-compressing disk, say
C. If C is contained in W1, then it is also a K-∂-compressing disk of Q∪A. When
C is incident to A′, the annulus A is parallel to A′ in (W1,K), and we obtain the
conclusion (2) of this lemma. When C is incident to H21, it is a K-∂-compressing
disk of H21 before the isotopy along D, and Lemmas 4.1 and 4.2 imply that H2

is weakly K-reducible. Hence we may assume that C is contained in W2. If C is
incident to H21, then this disk is extended to an essential disk with boundary loop
in H21 ∪ P ′ because P is parallel to P ′ in W2. This disk together with R1 shows
that H2 is weakly K-reducible. If C is incident to the annulus A′, then this disk
is extended to an essential disk in W2 such that its boundary loop intersects ∂R1

transversely in a single point because P is parallel to P ′ in W2. Then this disk
together with R1 shows that H2 is meridionally stabilized, and hence is weakly
K-reducible by Proposition 2.10 (Proposition 2.14 in [5]).

Case (b). We consider the case where Q ∪ A has a K-compressing disk E

in (W1,K). Note that E gives a K-compressing disk of Q ∪ H ′
1 before the iso-

topy. By Lemma 4.2, we can assume that E is contained in W1 ∩ V1. Then a
K-compressing operation on Q ∪ H ′

1 yields a K-compressing disk E′ of the an-
nulus A2 in (W1,K). After an adequate isotopy, we may assume that ∂E′ = l1
and E′ is disjoint from (intQ) ∪ H ′

1. After the isotopy along D, H21 ∪ A′ is
t2-compressible or t2-∂-compressible in (V2, t2) by Lemma 2.2. We first consider
the case where H21∪A′ is t2-compressible. If the compressing disk is in W2, then
it shows that H2 is weakly K-reducible together with E′. If it is in W1, then
Lemma 4.2 shows that H2 is weakly K-reducible.

Hence we can assume that H21∪A′ is t2-incompressible in (V2, t2), and has a
t2-∂-compressing disk, say Z, in (V2, t2). First suppose that Z is incident to A′.



36 H. Goda and C. Hayashi

If Z is contained in W1, then A is parallel to A′ in W1 − K, and the conclusion
(2) holds. If Z is contained in W2, then this disk gives an essential disk in W2

such that its boundary loop is disjoint from ∂E′, since P is parallel to P ′ in W2.
This shows that H2 is weakly K-reducible.

Thus we may assume that Z is incident to H21. If Z is contained in W1,
then H2 is weakly K-reducible by Lemma 4.2. Hence we may assume that Z is
contained in W2. The boundary loop ∂Z intersects P in an essential arc with
both endpoints in l1. Since P and P ′ are parallel in W2, Z gives an essential
disk in W2 such that its boundary loop intersects ∂E′ transversely in two points.
Thus H2 is semi-stabilized, and the conclusion (3) holds by Proposition 4.4 and
the note just after it.

Lemma 4.6. Suppose that A1 is incompressible in W2, and that Q ∪ H ′
1 is K-

compressible in (W1,K). Then one of the following conditions holds.

(1) H2 is weakly K-reducible.

(2) We can isotope H1 in (M,K) so that H1 ∩ H2 is a single loop which is
K-essential both in H1 and in H2.

(3) H2 is semi-stabilized, and K is a torus knot or a satellite knot.

Proof. By compressing Q ∪ H ′
1 we obtain a disk, say D, disjoint from K. An

adequate isotopy moves D so that ∂D = l1.
H21 ∪ H22 is t2-compressible or t2-∂-compressible in (V2, t2) by Lemma 2.2.

In the former case, let R be a t2-compressing disk of H21 ∪H22. If R is contained
in W1, then H2 is weakly K-reducible by Lemma 4.2. If R is contained in W2,
the disks D and R together show that H2 is weakly K-reducible.

Hence we may assume that H21 ∪ H22 has a t2-∂-compressing disk R′ in
(V2, t2). Since H1 ∩ W2 = A1 is an annulus disjoint from K, the disk R′ is con-
tained in W1 rather than W2 because of the definition of a t2-∂-compressing disk.
Thus R′ is contained in V2 ∩ W1, and we obtain the conclusion by Lemmas 4.2
and 4.5.

Lemma 4.7. Suppose that A1 is incompressible in W2 and that Q ∪ H ′
1 is K-

incompressible in (W1,K). Then either H2 is weakly K-reducible, or we can
isotope H1 in (M,K) so that H1 ∩ H2 is a single loop which is K-essential both
in H1 and in H2.

Proof. Because Q∪H ′
1 is K-incompressible in (W1,K), it has a K-∂-compressing

disk, say D. By the definition of a K-∂-compressing disk, the arc ∂D ∩ H2 is
contained in H21 or H22 rather than in A2. Then we obtain the conclusion by
Lemmas 4.2 and 4.5.

Thus, in Case (1)(A), we have Conclusion (a), (b), (c) or (d) of Theorem 1.2
by Lemmas 4.1, 4.6 and 4.7.
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5. Case (1)(B)

In this section, we consider the case where the intersection loops H1∩H2 are
of the pattern (1) in H1 and of the pattern (B) in H2 in Figure 2. In this case,
we show (b), (c) or (d) of Theorem 1.2 holds. In Case (B), each of the loops l1
and l2 of H1 ∩ H2 is non-separating in H2, and they cobound an annulus, say
A2. The complementary region H ′

2 = cl (H2 −A2) is a torus with two holes. Let
Q,A1,H

′
1 be as in the previous section. In particular, l1 = ∂Q and l2 = ∂H ′

1.
We may assume, without loss of generality, that A2 is contained in V1, and H ′

2

in V2. See Figure 2.
By Lemma 2.3, Q ∪ H ′

1 is K-compressible or K-∂-compressible in (W1,K).
A1 is compressible or ∂-compressible in the handlebody W2. When A1 is ∂-
compressible, either A1 is parallel to A2 in W2, or A1 has a ∂-compressing disk
that is also a t2-∂-compressing disk of H ′

2 in (V2, t2).

Lemma 5.1. Suppose that A1 is incompressible and not parallel to A2 in W2.
Then H2 is weakly K-reducible.

Proof. Since the annulus A1 is incompressible and not parallel to A2 in W2, it
has a ∂-compressing disk D such that the arc ∂D ∩ H2 is contained in H ′

2. By
∂-compressing a copy of A1 along D, we obtain a compressing disk D2 of H ′

2 in
W2.

The annulus A2 is t1-compressible or t1-∂-compressible in (V1, t1) by Lemma
2.2. First we consider the former case. Let R be a t1-compressing disk of A2. If R

is contained in W1, then R and D2 together show that H2 is weakly K-reducible.
If R is contained in W2, then by compressing a copy of A2 along R we obtain a
compressing disk of A1 in W2. This contradicts our assumption.

Hence we may assume that A2 has a t1-∂-compressing disk C in (V1, t1). This
disk C is not contained in W1 since the two boundary loops ∂A2 are contained
in distinct components of H1 ∩ W1 = Q ∪ H ′

1. Then it is contained in W2, and
incident to A1. Hence the annuli A1 and A2 are parallel in W2. This again
contradicts our assumption.

In other cases, the arguments are similar to those in the previous section.
The proofs of the next two lemmas are the same as those of Lemmas 4.1 and 4.2,
and we omit them.

Lemma 5.2. If A1 is compressible in W2, then H2 is weakly K-reducible.

The above two lemmas allow us to assume that A1 is incompressible, and
parallel to A2 in W2 in the rest of this section.

Lemma 5.3. Suppose that A1 is parallel to A2 in W2, and that W1 contains ei-
ther (1) a t2-compressing disk of H ′

2, (2) a t2-∂-compressing disk of H ′
2 incident
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to Q, (3) a K-compressing disk of Q ∪ H ′
1 in V2 or (4) a K-∂-compressing disk

of Q ∪ H ′
1 incident to Q. Then H2 is weakly K-reducible.

We call a (2, 0)-splitting (M,K) = (W1,K) ∪H2 (W2, ∅) K-stabilized if there
is a K-compressing disk of H2 in (Wi,K ∩ Wi) for i = 1 and 2 such that ∂D1

and ∂D2 intersect each other transversely in a single point. A K-stabilized (2, 0)-
splitting is K-reducible. See, for example, Lemma 4.1 in [5].

Lemma 5.4. Suppose that A1 is parallel to A2 in W2. Assume that V2∩W1 con-
tains a t2-∂-compressing disk of H ′

2 incident to H ′
1 or a K-∂-compressing disk of

Q ∪ H ′
1 incident to H ′

1. Then one of the following conditions holds.

(1) H2 is weakly K-reducible.

(2) H2 is semi-stabilized, and K is a torus knot or a satellite knot.

Moreover, if Q ∪ H ′
1 is K-incompressible in (W1,K), then the conclusion (1)

holds.

Proof. We isotope H1 along the ∂-compressing disk D in the preliminary condi-
tion slightly beyond the arc ∂D∩H ′

2. Then, by the definition of a ∂-compressing
disk, H ′

1 is deformed into an annulus A, each of the boundary loops ∂A is es-
sential in H ′

2. The annulus A1 is deformed to a disk with two holes P . The
annulus A2 is deformed to a disk with two holes P21. The torus with two holes
H ′

2 is deformed to a 2-manifold H ′′
2 , which is either a disk with two holes P22,

or a disjoint union of an annulus A′ and a torus with one hole H∗
2 . Note that

one of the components of ∂A′ is l1 = ∂Q. See Figure 4. Then P is parallel to
P21 since A1 is parallel to A2 in W2 before the isotopy. By Lemma 2.3, Q ∪ A is
K-compressible or K-∂-compressible in (W1,K).

Figure 4
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Case (a). First, we assume that Q ∪ A is K-incompressible and has a K-∂-
compressing disk R in (W1,K). (This holds if Q∪H ′

1 is K-incompressible before
the isotopy.) The arc ∂R ∩ H2 is not contained in the annulus A′ because of the
definition of a ∂-compressing disk. The arc ∂R∩H2 is not contained in H∗

2 since
it contains only one component of ∂A. Thus the arc ∂R ∩ H2 is contained in a
disk with two holes P21 or P22.

If the arc ∂R ∩ H2 is contained in P22, then by ∂-compressing Q ∪ A along
R we obtain an essential disk R1 in W1 such that it intersects K in at most one
point. Since P is parallel to P21 in W2, we can isotope H1 into intW1 so that it
is disjoint from R1. Then Proposition 2.12 shows that H2 is weakly K-reducible.

Hence we may assume that the arc ∂R ∩ H2 is contained in P21. If R is
incident to A, then by performing a K-∂-compressing operation on A along R,
we obtain a disk R2, disjoint from K. Since the arc ∂R ∩ H2 is an essential arc
in P21 and since it connects the two loops ∂A, the boundary loop ∂R2 is parallel
to l1 = ∂Q. This implies that Q is K-compressible in (W1,K), contradicting
our assumption. Hence R is incident to Q. By compressing Q along R, we ob-
tain two disks R3 and R4, each of which intersects K transversely in a single
point. We can isotope R3 and R4 in (W1,K) so that they are bounded by the
two loops ∂A. When H ′′

2 = A′ ∪ H∗
2 , one of the disks R3 and R4 is bounded by

∂H∗
2 , and hence is separating in W1. This contradicts that each of R3 and R4

intersects K transversely in a single point. Hence H ′′
2 = P22. By Lemma 2.2, P22

is t2-compressible or t2-∂-compressible in (V2, t2). First we consider the former
case. If the t2-compressing disk of P22 is in W1, then the same argument as in
the third paragraph in this proof shows that H2 is weakly K-reducible. If the
t2-compressing disk of P22 is in W2, then this disk together with R3 shows that
H2 is weakly K-reducible.

We consider the latter case, where P22 has a t2-∂-compressing disk C. If C

is contained in W1, then it is also a K-∂-compressing disk of Q ∪ A. We have
considered this situation in the third paragraph of this proof. Hence we may as-
sume that C is contained in W2. The loop ∂C intersects one of the loops ∂R3 and
∂R4, say ∂R3, in at most one point. Since P is parallel to P21 in W2, and we can
extend C to an essential disk in W2 such that its boundary loop intersects ∂R3

in at most one point. Hence H2 is weakly K-reducible or meridionally stabilized.
Also in the latter case, H2 is weakly K-reducible by Proposition 2.10.

Case (b). We consider the case where Q ∪ A is K-compressible in (W1,K).
Then Q ∪ H ′

1 is K-compressible before the isotopy. If the compressing disk is in
V2, then H2 is weakly K-reducible by Lemma 5.3. Hence we can assume that
the K-compressing disk is in V1, and a compressing operation on Q ∪ H ′

1 yields
a K-compressing disk X of A2 in V1 ∩ W1. We can isotope so that ∂X = l1.
H ′′

2 is t2-compressible or t2-∂-compressible in (V2, t2). Suppose that H ′′
2 is t2-

compressible. If the t2-compressing disk is in W2, then this disk and X show
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that H2 is weakly K-reducible. If it is in W1, then H ′
2 has a K-compressing

disk in (W1,K) before the isotopy, and H2 is weakly K-reducible by Lemma 5.3.
Hence we can assume H ′′

2 is t2-incompressible and has a t2-∂-compressing disk Z

in (V2, t2). First suppose that Z is contained in W1. Then Z is not incident to
the annulus A′ because the two boundary loops of ∂A′ are contained in distinct
components of H1 ∩ W1 = Q ∪ A separately. Moreover, Z is not incident to the
torus with one hole H∗

2 because it contains only one component of ∂A. Hence
H ′′

2 = P22. By performing the K-∂-compressing operation on Q ∪ A along the
disk Z, we obtain a disk Z1 which intersects K in at most one point. Note that
∂Z1 is essential in H2 since Z is a t2-∂-compressing disk of P22. Along the paral-
lelism of P and P21, we can isotope H1 so that P is pushed into intW1 and that
H1 ∩ Z1 = ∅. Then Proposition 2.12 shows that H2 is weakly K-reducible. This
is the conclusion (1).

Therefore, we may assume that the t2-∂-compressing disk Z of H ′′
2 is con-

tained in W2. We can extend Z into an essential disk Z ′ in W2 because P and
P21 are parallel in W2. Since ∂Z intersects the loop l1 at most in two points, so
does ∂Z ′. Hence the disks Z ′ and X show that H2 is either weakly K-reducible,
K-stabilized or semi-stabilized. In the second case, H2 is weakly K-reducible.
In the last case, we have the conclusion (2) by Proposition 4.4 and the note just
after it.

Lemma 5.5. Suppose that A1 is parallel to A2 in W2, and that Q ∪ H ′
1 is K-

compressible in (W1,K). Then one of the following conditions holds.

(1) The (2, 0)-splitting H2 of (M,K) is weakly K-reducible.

(2) H2 is semi-stabilized, and K is a torus knot or a satellite knot.

Proof. Let D be a K-compressing disk of Q ∪ H ′
1 in (W1,K). If D is in

V2, then Lemma 5.3 shows that H2 is weakly K-reducible. Thus we may as-
sume that D is in V1. By compressing a copy of Q or H ′

1 along D, we obtain
a disk D1 which is disjoint from K. We can isotope D1 in (W1,K) so that
D1 ∩ (Q ∪ H ′

1) = ∂D1 ∩ ∂Q = l1. Then D1 forms a K-compressing disk of A2.
H ′

2 is t2-compressible or t2-∂-compressible in (V2, t2) by Lemma 2.2. In the
former case, let R be a t2-compressing disk of H ′

2. If R is contained in W1, then
Lemma 5.3 shows that H2 is weakly K-reducible. If R is contained in W2, the
disks D1 and R together show that H2 is weakly K-reducible.

Hence we may assume that H ′
2 is t2-incompressible and has a t2-∂-

compressing disk R′ in (V2, t2). We first consider the case where R′ is contained
in W2. Since H1∩W2 = A1 is an annulus disjoint from K, the loop ∂R′ intersects
each of the loop components of ∂A1 transversely in a single point. Because A1

is parallel to A2 in W2, we can extend R′ to an essential disk in W2 such that
its boundary loop intersects the loop l1 = ∂D1 transversely in a single point.
This disk and D1 show that H2 is K-stabilized, and we obtain the conclusion (1).
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Hence we may assume that the disk R′ is contained in W1. Then we obtain the
conclusion by Lemmas 5.3 and 5.4.

Lemma 5.6. Suppose that A1 is parallel to A2 in W2, and that Q ∪ H ′
1 is K-

incompressible in (W1,K). Then the (2, 0)-splitting H2 of (M,K) is weakly K-
reducible.

Proof. Since Q ∪ H ′
1 is K-incompressible, it has a K-∂-compressing disk D in

(W1,K). By the definition of a K-∂-compressing disk, the arc ∂D ∩ H2 is con-
tained in H ′

2 rather than A2, since one component of ∂A2 bounds Q and the other
bounds H ′

1. Then Lemmas 5.3 and 5.4 show that H2 is weakly K-reducible.

Thus, in Case (1)(B), we have Conclusion (b), (c) or (d) of Theorem 1.2 by
Lemmas 5.1, 5.5 and 5.6.

6. Case (2)(A)

We consider in this section the case where the loops H1 ∩H2 are of the pat-
tern (2) in H1 and of the pattern (A) in H2. (See Figure 2.) In this case we show
(b) of Theorem 1.2 holds.

In Case (2), the loops l1 and l2 of H1 ∩ H2 together separate the torus H1

into two annuli A11 and A12, where A1i is contained in the handlebody Wi for
i = 1 and 2. Note that the two intersection points K ∩ H1 are contained in A11

since the knot K is entirely contained in W1. Let A2,H21,H22 be as in Section 4.
We assume, without loss of generality, that A2 is contained in V1, and H21 ∪H22

in V2.
By Lemma 2.3, A11 is K-compressible or K-∂-compressible in (W1,K). A12

is compressible or ∂-compressible in the handlebody W2.

Lemma 6.1. Suppose that A12 is compressible in W2. Then H2 is weakly K-
reducible.

Proof. Let D be a compressing disk of A12 in W2. By compressing a copy of
A12 along this disk D, we obtain two disks D1 and D2 bounded by l1 and l2
respectively. Suppose that D is contained in V1. Then the disk D1 is also con-
tained in V1, and we can isotope it slightly into intV1 so that ∂D1 ⊂ int A2 and
D1 ∩A12 = ∅. The disk D1 is separating in W2 and separates the loops l1 and l2.
This contradicts that the annulus A12 connects these loops and is disjoint from
D1. Hence the disks D, D1 and D2 are contained in V2.

Suppose first that A11 is K-compressible in (W1,K). Let R be a K-
compressing disk of A11. If ∂R is essential in A11 ignoring the intersection points
with K, then, by performing a K-compressing operation on A11, we obtain a disk
R1 bounded by l1 or l2 such that R1 intersects K transversely in at most one
point. Then the disks D1 and R1 together show that H2 is weakly K-reducible.
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Hence we may assume that ∂R is inessential in the annulus A11. Suppose
that R is contained in V1. Then the disks R and D show that H1 is K-reducible.
This implies that K is the trivial knot by Proposition 2.6 (Lemma 3.1 in [7]),
and hence H2 is (weakly) K-reducible by Proposition 2.9 (Proposition 2.9 in [5]).
Hence we may assume that the disk R is contained in V2. By compressing A11

along R, we obtain an annulus A disjoint from K. Note that ∂A = ∂A11 = l1∪ l2,
and that K is entirely contained in the 3-manifold between A2 and A in W1. The
annulus A is K-compressible or K-∂-compressible in (W1,K) by Lemma 2.3. In
the former case, by compressing A, we obtain two disks which are disjoint from
K and bounded by the loops l1 and l2. Then the union of these disks and the
annulus A2 forms a 2-sphere, which bounds a 3-ball B in W1 such that B entirely
contains K. This contradicts that K is a core in W1. In the latter case, let R′ be
a K-∂-compressing disk of A. Since the two loops of ∂A are contained in distinct
components of H2 ∩ V2 = H21 ∪ H22, the arc ∂R′ ∩ H2 is contained in A2. By
performing a K-∂-compressing operation on the annulus A along this disk R′,
we obtain a peripheral disk which cuts off a 3-ball containing K from W1. This
again contradicts that K forms a core of W1.

Hence we may assume that the annulus A11 is K-incompressible, and then it
has a K-∂-compressing disk C in (W1,K). Suppose first that C is contained in
V1. Then, by the definition of a K-∂-compressing disk, ∂C intersects the annulus
A2 in an essential arc, and C forms a t1-∂-compressing disk of A2 in (V1, t1).
By performing a ∂-compressing operation on a copy of A2 along C, we obtain
a K-compressing disk of A11. This contradicts our assumption. Hence we may
assume that C is contained in V2. Since the two boundary loops of ∂A11 are
contained in distinct components of H2 ∩ V2 = H21 ∪ H22, ∂C intersects the an-
nulus A11 in an arc which is inessential on A11 ignoring the intersection points
with K. By performing a ∂-compressing operation A11 along C, we obtain an
annulus Z and a disk P . Note that one of the components of ∂Z is l1 or l2,
say l1, and hence the other component of ∂Z and ∂P are disjoint from the loop
l1 = ∂D1. Moreover, the loops of ∂Z are essential and not parallel in H2 because
of the unusual definition of a K-∂-compressing disk. The disk P intersects K

transversely in one or two points. When it intersects K in one point, it forms a
meridionally compressing disk of H2 in (W1,K). Hence the disks D1 and P to-
gether show that H2 is weakly K-reducible. When P intersects K in two points,
the annulus Z is disjoint form K. Then Z is K-compressible or K-∂-compressible
in (W1,K) by Lemma 2.3. In the former case, by compressing Z, we obtain a
K-compressing disk of H2 in (W1,K) such that it is bounded by l1. Hence this
disk and D1 together show that H2 is weakly K-reducible. In the latter case,
by performing a ∂-compressing operation on Z and isotoping the resulting disk
slightly, we obtain a K-compressing disk of H2 in (W1,K) such that its boundary
loop is disjoint from the loop l1. Hence this disk and D1 together show that H2

is weakly K-reducible.
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Lemma 6.2. Suppose that A12 is incompressible in W2. Then H2 is weakly
K-reducible.

Proof. Since A12 is incompressible in W2, it is ∂-compressible. Then A12 is
parallel to A2 in W2.

By Lemma 2.2, H21 ∪H22 is t2-compressible or t2-∂-compressible in (V2, t2).
We consider first the former case. Let D be a t2-compressing disk of H21 ∪ H22.
When D is in W2, by compressing H21 ∪ H22, we obtain a compressing disk of
A12. This contradicts our assumption. When D is in W1, we can isotope the
torus H1 into intW1 so that H1 ∩ D = ∅. Then Proposition 2.12 shows that H2

is weakly K-reducible.
Hence we may assume that H21 ∪ H22 has a t2-∂-compressing disk R. R

cannot be in W2, since A12 cannot contain the arc ∂R ∩ H1 by the definition of
a ∂-compressing disk. Hence R is contained in W1, and is a K-∂-compressing
disk of the annulus A11 by the definition of a t2-∂-compressing disk again. We
assume, without loss of generality, that R is incident to H22 rather than H21. We
isotope the torus H1 in (M,K) along the disk R slightly beyond the arc ∂R∩H22.
Then the annulus A11 is deformed into an annulus, say A, and a disk, say R1.
The torus with one hole H22 is deformed into an annulus A′. The annuli A12

and A2 are deformed into disks with two holes, say P1 and P2 respectively. See
Figure 5. Note that P1 is parallel to P2 in W2 since A12 is parallel to A2 in W2

before the isotopy. The disk R1 intersects K transversely in one or two points.
When it intersects K in one point, we can isotope the torus H1 into intW1 along
the parallelism between P1 and P2. Further, we can take a parallel copy of R1

so that it is disjoint from H1. Then Proposition 2.12 shows that H2 is weakly
K-reducible.

Figure 5



44 H. Goda and C. Hayashi

Hence we may assume that the disk R1 intersects K in two points. Let R2

be a disk bounded by the loop l1 in W1 such that it is obtained from the disk
A∪A′∪R1 by pushing its interior into intV2∩W1. Then this disk R2 is bounded
by the loop l1, and intersects K transversely in two points. Moreover, R2 divides
the handlebody W1 into two solid tori U1 and U2 where U1 is bounded by the
torus H21 ∪ R2. By Lemma 2.3, R2 is K-compressible or K-∂-compressible in
(W1,K). We consider first the latter case. Let E be a K-∂-compressing disk of
R2. When E is contained in U1, by performing a K-∂-compressing on R2 along
E, we obtain a disk E1 intersecting K in a single point. We isotope E1 slightly
off of the disk R2 so that ∂E1 is in H21. We can isotope the torus H1 into intW1

along the parallelism between P1 and P2 so that H1 ∩E1 = ∅. Then Proposition
2.12 shows that H2 is weakly K-reducible. When E is contained in the other
solid torus U2, by performing a K-∂-compressing operation on R2, we obtain a
meridian disk, say E2, intersecting K in a single point. We can form a knot K ′

taking a sum of the arc K ∩ U2 and an arc connecting the two points K ∩ R2

in R2. Thus the disk R1 intersects K ′ transversely in precisely two points, while
the disk E2 intersects K ′ transversely in a single point. This contradicts the fact
that R1 and E2 represent the same homology class in H2(U2; ∂U2), and hence
they have the same algebraic intersection number with [K ′] ∈ H1(U2).

Hence we may assume that R2 has a K-compressing disk in (W1,K). By
performing a K-compressing operation on R2, we obtain a disk, say G, bounded
by the loop l1. If G is contained in U2, then it separates the intersection points
K∩R2 from K∩R1, a contradiction. Hence G is contained in U1. Then we move
H1 into intW1 along the parallelism between P1 and P2 so that H1 ∩ G = ∅, to
see that H2 is weakly K-reducible by Proposition 2.12.

Thus, in Case 2(A), we have the conclusion (b) of Theorem 1.2 by Lemmas
6.1 and 6.2.

7. Case (2)(B)

We consider in this section the case where the intersection loops H1 ∩ H2 =
l1 ∪ l2 are of the pattern (2) in H1 and of the pattern (B) in H2 in Figure 2. In
this case we show that one of the conclusions (a)–(f) of Theorem 1.2 holds, or we
can isotope H1 in (W1,K) so that intersection of H1 and H2 is in case (1)(A) or
(1)(B).

Let A2,H
′
2 be as in Section 5, and A11, A12 as in Section 6. See Figure 2.

We may assume, without loss of generality, that A2,H
′
2 are properly embedded

in V1, V2 respectively. Note that A11, A12 are properly embedded in W1,W2 re-
spectively, and the two intersection points K ∩ H1 are contained in the annulus
A11 since the knot K is entirely contained in W1.

A12 is compressible or ∂-compressible in the handlebody W2, so we have four
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cases below.

(i) A12 has a compressing disk in V1.

(ii) A12 has a compressing disk in V2.

(iii) A12 has a ∂-compressing disk in V1.

(iv) A12 has a ∂-compressing disk in V2.

By Lemma 2.3, A11 is K-compressible or K-∂-compressible in (W1,K). Here
we divide into seven cases as below.

(A) A11 has a K-compressing disk whose boundary loop is essential in A11.

(B) In V1, A11 has a K-compressing disk whose boundary loop is inessential in
A11.

(C) In V2, A11 has a K-compressing disk whose boundary loop is inessential in
A11.

(D) In V1, A11 has a K-∂-compressing disk.

(E) In V2, A11 has a K-∂-compressing disk whose boundary loop intersects A11

in an essential arc.

(F) In V2, A11 has a K-∂-compressing disk whose boundary loop intersects A11

in an inessential arc cutting off from A11 a disk which intersects K in a single
point.

(G) In V2, A11 has a K-∂-compressing disk whose boundary loop intersects A11

in an inessential arc cutting off from A11 a disk which intersects K in two
points.

Hence we have 4× 7 = 28 cases. By the next lemma, we do not need to con-
sider the 10 cases (ii)(B), (ii)(C), (ii)(E), (ii)(F), (ii)(G), (iv)(B), (iv)(C), (iv)(E),
(iv)(F) and (iv)(G).

Lemma 7.1. At least one of the four conditions (i), (iii), (A) and (D) holds.

Proof. By Lemma 2.2, A2 is t1-compressible or t1-∂-compressible in (V1, t1). In
the former case, let D be a t1-compressing disk of A2. If D is contained in W1,
then by compressing a copy of A2 along D, we obtain a K-compressing disk D1

of A11 such that ∂D1 is essential in A11 ignoring the intersection points K ∩A11.
Thus the condition (A) holds. Hence we may assume that D is contained in W2.
By compressing a copy of A2 along D, we obtain a compressing disk D2 of A12

such that D2 is contained in V1. Thus the condition (i) holds.
In the latter case, let R be a t1-∂-compressing disk of A2. When R is con-

tained in W1, it is also a K-∂-compressing disk of A11 in (W1,K) because of the
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definition of a t1-∂-compressing disk. Thus the condition (D) holds. Hence we
may assume that R is contained in W2. Then R is also a ∂-compressing disk of
A12. Thus the condition (iii) holds.

Lemma 7.2. In Case (D) the condition (B) holds.

Proof. In Case (D), there is a K-∂-compressing disk D of A11 in (W1,K) such
that D is contained in V1. Then ∂D∩H2 is an essential arc in A2 by the definition
of a K-∂-compressing disk. Hence D is a t1-∂-compressing disk of A2 in (V1, t1).
Note that the arc ∂D∩A11 is also essential in A11 ignoring the intersection points
K ∩A11. By performing a t1-∂-compressing operation on A2 along D, we obtain
a K-compressing disk of A11 such that its boundary loop is inessential in A11

ignoring the intersection points K ∩ A11. Hence the condition (B) holds.

We will show the present case of Theorem 1.2 in accordance with Table 1.

Table 1

(A) (B) (C) (D) (E) (F) (G)

(i) 7.8 7.12 7.4 7.12 7.3 7.5 7.5

(ii) 7.8 — — 7.9 — — —

(iii) 7.8 7.12 7.4 7.12 7.3 7.6 7.7

(iv) 7.8 — — 7.10 — — —

Lemma 7.3. In Case (E) we can isotope H1 in (M,K) so that H1∩H2 consists
of a single loop which is K-essential both in H1 and in H2.

Proof. In Case (E), there is a K-∂-compressing disk D of A11 such that D is
contained in V2 and such that the arc ∂D ∩ A11 is essential in A11 ignoring the
intersection points with K. We isotope H1 along D, so that a band neighborhood
of the arc ∂D∩A11 in A11 is isotoped into W2. Then the annulus A11 is deformed
into a disk Q intersecting K in two points. Note that the boundary loop ∂Q is
essential in H2 since the arc ∂D ∩ H ′

2 is essential in H ′
2 by the definition of a

K-∂-compressing disk.

Lemma 7.4. In Case (C), the condition (E) holds.

We have already considered Case (E) in Lemma 7.3.

Proof. In Case (C), there is a K-compressing disk D of A11 such that D is con-
tained in V2 and that ∂D bounds a disk D′ in A11. Then D′ intersects K in two
points, and a K-compressing operation on A11 along D yields an annulus A such
that it is disjoint from K and that ∂A = ∂A11. Since A11 is separating in W1, so
is A. Note that K is between the annuli A and A2.

The annulus A is K-compressible or K-∂-compressible in (W1,K) by Lemma
2.3. In the former case, by performing a K-compressing operation on A, we ob-
tain two disks bounded by H1 ∩ H2 = l1 ∪ l2. The knot K is in the ball between
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these disks in W1, which contradicts that K is a core of W1. In the latter case, A

has a K-∂-compressing disk R. We assume first that the arc ∂R∩H2 is contained
in A2. By performing a K-∂-compressing operation on A along R, we obtain a
peripheral disk which cuts off a ball containing K from W1. This is again a con-
tradiction. Hence R is contained in V2. We can isotope R so that it is disjoint
from the copy of D in A. Then R gives a K-∂-compressing disk of A11. Because
the arc ∂R∩A is essential in A so is the arc ∂R∩A11 in A11. Thus the condition
(E) holds.

Lemma 7.5. In Cases (i)(F ) and (i)(G), H2 is weakly K-reducible.

Proof. In Case (i), compressing A12 in W2, we obtain two disks D1 and D2

(⊂ V1) bounded by the loops l1 and l2 respectively.
In Case (F), a K-∂-compressing operation on a copy of A11 along D yields

a meridionally compressing disk Q of H2 in (W1,K). We can isotope Q slightly
off of A11. Then the disks D1 and Q show that H2 is weakly K-reducible.

In Case (G), there is a K-∂-compressing disk R of A11 in V2 such that the
arc ∂R ∩ A11 is inessential in A11 and cuts off a disk R′ from A11 and that R′

intersects K in two points. By the definition of a K-∂-compressing disk, the arc
∂R ∩ H2 is an essential arc in H ′

2. By performing a K-∂-compressing operation
on A11 along R, we obtain an annulus A which is disjoint from K. Note that one
component of ∂A is l1 or l2, say l1, and the other component is not parallel to
l1 in H2. By Lemma 2.3, A is K-compressible or K-∂-compressible in (W1,K).
In the former case, by performing a K-compressing operation on A, we obtain
a disk E1 bounded by l1. Note that E1 is disjoint form K. Then the disks D1

and E1 show that H2 is weakly K-reducible. In the latter case, by performing a
K-∂-compressing operation on A, we obtain a disk E2 such that it is disjoint form
K and that ∂E2 is essential in H2. We can isotope E2 slightly off of A, and hence
off of l1. Then the disks D1 and E2 show that H2 is weakly K-reducible.

Lemma 7.6. In Case (iii)(F ), H2 is weakly K-reducible.

Proof. In Case (iii), A12 is parallel to A2 in W2. In Case (F), a K-∂-compressing
operation on A11 yields a meridionally compressing disk Q of H2. We can isotope
Q slightly off of A11. We isotope H1 in (M,K) along the parallelism between
A12 and A2, so that H1 is contained in W1 and that H1 is disjoint from the disk
Q. Then Proposition 2.12 shows that H2 is weakly K-reducible.

Lemma 7.7. In Case (iii)(G), we can isotope H1 in (M,K) so that H1 and H2

intersect each other transversely in two loops which are K-essential both in H1

and H2 and of the pattern (1) in H1 in Figure 2.

Proof. In Case (iii), A12 is parallel to A2 in W2.
In Case (G), we isotope H1 along the K-∂-compressing disk of A11. Then
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the annulus A11 = H1∩W1 is deformed into a disjoint union of an annulus A and
a disk Q such that A is disjoint from K and Q intersects K in two points. Note
that each loop of ∂Q and ∂A is essential in H2. The annulus A12 = H1 ∩ W2 is
deformed into a disk with two holes P and also the annulus A2 = H2 ∩ V1 into a
disk with two holes P ′. Since A12 is parallel to A2 in W2, P is parallel to P ′ in
W2.

There is a ∂-compressing disk R of P in W2 such that the arc ∂R ∩ H2 is
contained in P ′ and connects the two boundary loops ∂A. We further isotope H1

along R. Then P is deformed into an annulus, and A is deformed into a torus
with one hole T . Note that ∂T is parallel to ∂Q in H2 since the arc ∂R ∩ H2

is contained in P ′. Thus we have isotoped H1 so that H1 and H2 intersect each
other transversely in two loops which are K-essential both in H1 and in H2 and
of the pattern (1) in H1 in Figure 2.

Lemma 7.8. In Case (A), one of the two conditions below holds.

(1) The (2, 0)-splitting H2 is weakly K-reducible.

(2) (iii)(E), (iii)(F ) or (iii)(G) holds.

We have already considered Cases (iii)(E), (iii)(F) and (iii)(G) in Lemmas
7.3, 7.6 and 7.7 respectively.

Proof. By performing a K-compressing operation on A11 along a K-compressing
disk as in the condition (A), we obtain a disk D1 in W1, which is bounded by l1
or l2, say l1, and intersects K transversely in at most one point.

In Cases (i) and (ii), by performing a compressing operation on A12, we ob-
tain a disk D2 which is bounded by l2. Hence the disks D1 and D2 show that H2

is weakly K-reducible.
In Case (iv), by performing a ∂-compressing operation on A12, we obtain a

disk D′
2 whose boundary loop ∂D′

2 is essential in H2 and is disjoint from l1 after
an adequate small isotopy. Thus the disks D1 and D′

2 show that H2 is weakly
K-reducible.

In Case (iii), the annulus A12 is parallel to the annulus A2 in W2. By Lemma
2.2, H ′

2 is t2-compressible or t2-∂-compressible in (V2, t2). In the former case, let
R be a t2-compressing disk of H ′

2. If R is contained in W2, then the disks D1

and R show that H2 is weakly K-reducible. Therefore we may assume that R is
contained in W1. We can isotope H1 in (M,K) along the parallelism between the
annuli A12 and A2 so that H1 is contained in W1 and so that it is disjoint from
R. Then Proposition 2.12 shows that H2 is weakly K-reducible. We consider
the latter case, where H ′

2 has a t2-∂-compressing disk R′ in (V2, t2). If R′ is con-
tained in W2, it is also a ∂-compressing disk of A12 in W2 by the definition of a
∂-compressing disk. We have already considered this case in the third paragraph
in this proof. Hence we can assume that R′ is contained in W1. Then R′ is also
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a K-∂-compressing disk of A11 in (W1,K) by the definition of a ∂-compressing
disk. Thus one of the conditions (E), (F) and (G) holds.

Lemma 7.9. In Case (ii)(B), and hence, also in Case (ii)(D), H2 is weakly
K-reducible.

Proof. In Case (ii), there is a compressing disk D2 of A12 in W2 ∩ V2. In Case
(B), there is a K-compressing disk D1 of A11 in W1 ∩ V1. Then these disks D1

and D2 show that H1 is K-reducible. Then H2 is weakly K-reducible as shown in
the third paragraph in the proof of Lemma 6.1. We have this lemma via Lemma
7.2.

Lemma 7.10. In Case (iv)(D), the conclusion (f) of Theorem 1.2 holds.

Proof. In Case (iv), there is a ∂-compressing disk D of A12 in W2 such that D is
contained in V2. Let P = N(∂A12 ∪ (A12 ∩ ∂D)) be a neighborhood of the union
of the two boundary loops ∂A12 and the arc A12 ∪∂D in A12. Note that P is the
disk with two holes. We can isotope H1 in (M,K) along D so that P is isotoped
into H ′

2. After this isotopy, H1 intersects int W2 in an open disk. Let D2 be the
closure of this open disk. Then ∂D2 separates H2 into the once punctured torus
A2 ∪ (H ′

2 ∩ P ) and the complementary once punctured torus, and D2 cuts W2

into two solid tori, one of which, say U1, contains A2.
In Case (D), there is a K-∂-compressing disk R of A11 in (W1,K) such that

R is contained in V1. The arc β = A11 ∩∂R is essential in A11 ignoring the inter-
section points K ∩ A11 since the arc A2 ∩ ∂R is essential in A2 by the definition
of a K-∂-compressing disk. Set B = N(β), the band neighborhood of the arc β

in A11. We can isotope H1 in (M,K) along R so that B is isotoped into A2 and
that B ∩ P ⊂ ∂A2. After this isotopy, H1 intersects int W1 in an open disk. Let
R1 be the closure of this open disk. Since ∂R1 is inessential on ∂W1 = H2, R1 is
a ∂-parallel disk in W1 ignoring K, and cuts off a 3-ball X from W1 such that X

intersects K in a single arc t which is trivial in X. (See Lemma 3.2 in [5].)
After these isotopies, H1 intersects H2 in the torus with two holes P ∪ B.

The solid torus V1 is the union U1 ∪ X. Hence t = t1. We take an arc α in the
3-ball X so that an endpoint of α in int t, that the other endpoint of α is in the
disk X ∩ H2 and so that X collapses to t ∪ α. See Figure 1. Thus we obtain the
conclusion (f) of Theorem 1.2.

We need the next lemma to consider Case (iii)(B).

Lemma 7.11. Suppose that the handlebody W1 contains a separating disk D

such that D cuts off from W1 a solid torus U1 disjoint from the knot and that
the complementary 3-manifold cl (M − U1) is also a solid torus. Then the (2, 0)-
splitting H2 is meridionally stabilized, and hence H2 is weakly K-reducible (see
Proposition 2.10 ).
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Proof. The disk D cuts off another solid torus U2 from W1. Note that K forms a
core of U2 (Lemma 3.3 in [5]). There is a meridian disk Q of U2 which intersects K

transversely in a single point. We can take Q so that ∂Q intersects the disk D in a
single arc. Let N(Q) be a small regular neighborhood of Q in U2. The solid torus
U ′

1 = U1 ∪N(Q) intersects K in a trivial arc s1. The 3-ball cl(U2 −N(Q)) forms
a regular neighborhood of the complementary arc s2 = cl (K − s1) in the comple-
mentary solid torus U ′

2 = cl (M −U ′
1). The exterior of s2 in U ′

2 is homeomorphic
to W2. Hence we can see that the arc s2 is trivial in U ′

2, applying Theorem 1 in
[6]. Therefore (M,K) = (U ′

1, s1) ∪ (U ′
2, s2) is a (1, 1)-splitting. Moreover, we can

take a meridian disk D1 of s2 in cl (U2 −N(Q)) and a canceling disk D2 of s2 in
cl (U ′

2 − cl (U2 − N(Q))) = W2 so that ∂D1 and ∂D2 intersects transversely in a
single point. These disks D1 and D2 show that H2 is meridionally stabilized.

Lemma 7.12. In Cases (i)(B) and (iii)(B), one of the following four conditions
holds.

(1) The (2, 0)-splitting H2 is weakly K-reducible.

(2) The (1, 1)-splitting H1 has a satellite diagram.

(3) One of the conditions (E), (F ) and (G) holds.

(4) The conditions (iv) and (D) hold.

We have already considered the cases (i)(E), (i)(F), (i)(G), (iii)(E), (iii)(F),
(iii)(G) and (iv)(D) in Lemmas 7.3, 7.5, 7.6, 7.7 and 7.10. In the case of the
conclusion (2), we have the conclusion (b), (c), (d) or (e) of Theorem 1.2 by
Proposition 2.11.

Proof. In Case (i), there is a compressing disk D of A12 in V1. By compressing
a copy of A12 along D, we obtain disks D1 and D2 bounded by the intersection
loops H1∩H2 = l1∪l2. Note that these disks D1 and D2 are contained in W2∩V1,
and form compressing disks of A2.

In Case (iii), the annulus A12 is parallel to the annulus A2 in W2.
In Case (B), there is a K-compressing disk R of A11 in V1 such that ∂R

bounds in A11 a disk R′ which intersects K in precisely two points. By com-
pressing a copy of A11 along R, we obtain an annulus A which is disjoint from
K.

The surface H ′
2 is t2-compressible or t2-∂-compressible in (V2, t2) by Lemma

2.2. Suppose first that H ′
2 has a t2-compressing or t2-∂-compressing disk P in W1.

When P is a t2-compressing disk, D1 and P show that H2 is weakly K-reducible
in Case (i), and in Case (iii) we isotope H1 along the parallelism between A12 and
A2 so that H1 is contained in intW1 and that H1 is disjoint from P , to see that
H2 is weakly K-reducible by Proposition 2.12. This is the conclusion (1) of this
lemma. When P is a t2-∂-compressing disk, it is also a K-∂-compressing disk of
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A11 by the definition of a t2-∂-compressing disk. Thus one of the conditions (E),
(F) and (G) holds. This is the conclusion (3) of this lemma.

Figure 6

Hence we may assume that H ′
2 has a t2-compressing or t2-∂-compressing disk

Z in W2. When Z is a t2-∂-compressing disk of H ′
2, it is also a ∂-compressing

disk of A12. By performing the ∂-compressing operation on a copy of A12 along
Z, we obtain a compressing disk of H ′

2 in W2 ∩ V2. Thus we may assume that
Z is a t2-compressing disk of H ′

2. If ∂Z is parallel to a component of ∂H ′
2,

then Z (⊂ V2) and the K-compressing disk R (⊂ V1) of A11 show that H1 is K-
reducible. Hence H2 is weakly K-reducible as shown in the third paragraph in
the proof of Lemma 6.1. So we may assume that ∂Z is not parallel to a compo-
nent of ∂H ′

2. By compressing a copy of H ′
2 along R2, we obtain an annulus Z ′

in W2 ∩ V2 such that ∂Z ′ = ∂H ′
2. We isotope intZ ′ slightly into int (V2 ∩ W2)

so that Z ′ ∩ H ′
2 = ∂Z ′ = ∂H ′

2. A typical example is described in Figure 6. This
annulus Z ′ is t2-compressible or t2-∂-compressible in (V2, t2) by Lemma 2.2. In
the former case, by performing a t2-compressing on Z ′, we obtain a disk which
is disjoint from K and bounded by a loop of ∂H ′

2. This disk and R show that
H1 is K-reducible. This implies the conclusion (1) again. In the latter case, let
Q be a t2-∂-compressing disk of Z ′. If the arc ∂Q∩H1 is contained in A11, then
by performing the t2-∂-compressing operation on Z ′ along Q, we obtain a disk
Q′ (⊂ V2) such that ∂Q′ bounds a disk in A11, which intersects K in two points.
Note that Q′ is disjoint from K. The disks R and Q′ show that H1 has a satellite
diagram on A11. (In fact, for i = 1 and 2, we can take a canceling disk Ci of
ti in (Vi, ti) so that C1 is disjoint from R and C2 is disjoint from Q.) This is
the conclusion (2) of this lemma. Then we may assume that the arc ∂Q ∩ H1

is contained in A12. This implies that the annulus Z ′ is parallel to A12 in W2.
Since Z ′ is obtained by a compression on H ′

2, it has a ∂-compressing disk G in
(V2, t2) such that it is contained in W2∩V2 and ∂G∩H2 is an essential arc in H ′

2.
(There is an arc connecting the two loops l1 and l2 in H ′

2 such that it is disjoint



52 H. Goda and C. Hayashi

from ∂Z.) Therefore A12 also has a ∂-compressing disk in W2 ∩ V2. Thus the
condition (iv) holds.

The annulus A, which was obtained from A11 by K-compressing along R,
is K-compressible or K-∂-compressible in (W1,K) by Lemma 2.3. In the for-
mer case, by performing the K-compressing operation on A, we obtain a K-
compressing disk bounded by l1. Then this disk and Z show that H2 is weakly
K-reducible. This is the conclusion (1). In the latter case, let C be a K-∂-
compressing disk of A. First suppose that the arc ∂C ∩ H2 is contained in A2.
We can take C to be disjoint from the copy of R in A. Then C forms a K-
∂-compressing disk of the annulus A11 such that the arc A11 ∩ ∂C is essential
in A11. Thus the condition (D) holds, and we obtain the conclusion (4) of this
lemma. Hence we may assume that the arc ∂C ∩H2 is contained in H ′

2. In Case
(i), ∂-compressing A along C, we obtain an essential disk disjoint from K in W1.
An adequate small isotopy moves this disk so that it is disjoint from l1. Hence,
this disk together with D1 shows that H2 is weakly K-reducible. We consider
Case (iii). In this case, we will move H1 ignoring K so that we can use Lemma
7.11. Recall that R is a K-compressing disk of A11 such that ∂R bounds a disk
R′ on A11. In W1 the 2-sphere R ∪R′ bounds a 3-ball, and hence A11 and A are
isotopic in W1 fixing their boundary loops ∂A11 = ∂A ignoring K. Hence H1 is
isotopic to the torus H = A ∪ A12 in M , ignoring K. Since we are in Case (iii),
we can isotope H along the parallelism between the annuli A12 and A2 so that
A12 is isotoped onto A2. Recall that the K-∂-compressing disk C of A intersects
H2 in an essential arc in H ′

2. (See Figure 7 for a typical example.) We isotope
H along C so that H ∩ H2 is a torus with one hole H0 and that H ∩ int W1 is
an open disk the closure of which is an essential separating disk C ′ bounded by
the loop ∂H0. Then the solid torus V1 is isotopic to the solid torus U1 bounded
by the torus H = H0 ∪ C ′ in W1, ignoring K. The complementary 3-manifold
cl (M − U1) is isotopic to the solid torus V2. Then Lemma 7.11 shows that H2

is meridionally stabilized, and hence H2 is weakly K-reducible by Proposition
2.10.

Figure 7
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Remark 7.13. In Case (i)(B), we can delete the conclusion (2) of the above lemma.
In fact, we can see the annuli Z ′ and A12 are parallel in W2 as below. The torus
A12 ∪ Z ′ bounds in W2 a 3-manifold that is homeomorphic to an exterior E of a
(possibly trivial) knot in S3, because a handlebody is irreducible. Since the loop
l1 bounds the disk D1 in W2, it is of meridional slope on the boundary torus of
the knot exterior E. Because l1 is a meridian of the solid torus V1 and M is not
homeomorphic to S2 × S1, l1 is not a meridian of the solid torus V2. Since E is
cut off from V2 by Z ′, it is not homeomorphic to the exterior of a non-trivial knot
exterior, but is the exterior of the trivial knot in S3 with l1 being a meridian of
the knot. Hence E is a solid torus with l1 being a longitude, and hence A12 and
Z ′ are parallel in W2.
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