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Abstract

Let k be a field of positive characteristic p, let k[x] be the polynomial ring in

n variables over k, and let σ be a k-algebra automorphism of k[x] whose order is

p. We define the twisted derivation Dσ : k[x] → k[x] by Dσ(a) := σ(a) − a for all

a ∈ k[x]. We give an algorithm to determine whether or not a given polynomial of

k[x] belongs to the image Dσ(k[x]) of Dσ .

1. Introduction

Let k be a field of positive characteristic p and let A be a k-domain. We
denote by Autk(A) the group of all k-algebra automorphisms of A. The multipi-
cation of the group Autk(A) is defined by the composition of automorphisms. Let
σ be an element of Autk(A) whose order is p. Associating with the automorphism
σ, we can define a k-linear transformation Dσ : A → A as Dσ(a) := σ(a) − a for
all a ∈ A. The k-linear transformation Dσ has the following two properties:

(1) Dσ(a · b) = Dσ(a) · σ(b) + a · Dσ(b) for all a, b ∈ A.

(2) Dp
σ = 0.

We say that Dσ is a twisted derivation associated to σ. For each 1 ≤ i ≤ p − 1,
we define the kernel ADi

σ of Di
σ as

ADi
σ := {a ∈ A | Di

σ(a) = 0},

and define the image Di
σ(A) of Di

σ as

Di
σ(A) := {Di

σ(a) ∈ A | a ∈ A}.

For simplicity, we express AD1
σ as ADσ and express D1

σ(A) as Dσ(A). Then
ADσ is a k-subalgebra of A, each ADi

σ is an ADσ -module, and each Di
σ(A) is an

ADσ -module. We assume that the following conditions (i) and (ii) are satisfied
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(especially when A = k[x1, . . . , xn] is a polynomial ring in n variables over k, the
following conditions (i) and (ii) are satisfied):

(i) The kernel ADσ is a Noetherian ring.

(ii) The ADσ -module A is finite as an ADσ -module.

Then the kernel ADi
σ and the image Di

σ(A) are finite as ADσ -modules for all
1 ≤ i ≤ p − 1. We have the inclusion Dp−i

σ (A) ⊂ ADi
σ for all 1 ≤ i ≤ p − 1. It is

an interesting problem to construct a generating set of the ADσ -module

ADi
σ/Dp−i

σ (A)

for each 1 ≤ i ≤ p − 1. We explain the reason why the problem is interesting
in connection with modular invariant theory. We know that the kernel ADσ of
Dσ coincides with the invariant ring A〈σ〉 of the cyclic group 〈σ〉 generated by σ,
and the image Dp−1

σ (A) of Dp−1
σ coincides with the image TrG(A) of the transfer

TrG, where the transfer TrG : A → A is defined by TrG(a) :=
∑p−1

i=0 σi(a) for all
a ∈ A. The i-th cohomology Hi(〈σ〉 , A) of the cyclic group 〈σ〉 with coefficients
in A has the following expression (see [2, Page 6]):

Hi(〈σ〉 , A) =

⎧⎨⎩
ADσ if i = 0,

ADp−1
σ /Dσ(A) if i odd,

ADσ/Dp−1
σ (A) if i even and i > 0.

So, the problem is related to constructing a generating set of the i-th cohomology
Hi(〈σ〉 , A) as an ADσ -module for i > 0. In particular when p = 3, constructing
a generating set of H1(〈σ〉 , A) as an ADσ -module is related to constructing a
generating set of AD2

σ as an ADσ -module. A generating set of the kernel AD2
σ

can be constructed from a generating set of the ideal Dσ(A) ∩ADσ of ADσ since
Dσ(AD2

σ ) = Dσ(A) ∩ ADσ . It seems that the image membership algorithm for
the twisted derivation Dσ is useful for guessing a generating set of the ideal
Dσ(A) ∩ ADσ .

In this article, we give an algorithm to determine whether or not a given poly-
nomial of k[x1, . . . , xn] belongs to the image Dσ(k[x1, . . . , xn]). As an applica-
tion, in particular when p = 3 and a cyclic group 〈σ〉 of order three acting linearly
and irreducibly on k[x1, x2, x3], we give a generating set of the i-th cohomology
Hi(〈σ〉 , k[x1, x2, x3]) of the cyclic group 〈σ〉 with coefficients in k[x1, x2, x3] as a
k[x1, x2, x3]Dσ -module for each i = 1, 2.

2. The image membership algorithm

An element a of A is said to be Dσ-integrable if there exists an element b of
A such that Dσ(b) = a.
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Lemma 1. Let a be a Dσ-integrable element of A. Then we have Dp−1
σ (a) = 0.

Proof. Since a is Dσ-integrable, there exists an element b of A such that
Dσ(b) = a. So, we have Dp−1

σ (a) = Dp
σ(b) = 0. Q.E.D.

An element s of A is said to be a slice of Dσ if Dσ(s) = 1. For any element

a of A and any integer i with 1 ≤ i ≤ p − 1, we define the symbol
(

a

i

)
as

(
a

i

)
:=

⎧⎨⎩
1 if i = 0,

a(a − 1) · · · (a − (i − 1))
i!

if 1 ≤ i ≤ p − 1.

Lemma 2. Let s be a slice of Dσ. Then we have

Dσ

(( −s

i + 1

))
= −

(−s − 1
i

)
for all 0 ≤ i ≤ p − 2.
Proof. We know from the definition of Dσ that

Dσ

(( −s

i + 1

))
= σ

(
(−s)(−s − 1) · · · (−s − i)

(i + 1)!

)
− (−s)(−s − 1) · · · (−s − i)

(i + 1)!
.

Since s is a slice of Dσ, we have σ(s) = s + 1 and thereby have

σ

(
(−s)(−s − 1) · · · (−s − i)

(i + 1)!

)
=

(−s − 1)(−s − 2) · · · (−s − (i + 1))
(i + 1)!

.

Now we have

Dσ

(( −s

i + 1

))
=

(−s − 1) · · · (−s − i)
(i + 1)!

· (−s − (i + 1) − (−s))

= − (−s − 1) · · · (−s − i)
i!

= −
(−s − 1

i

)
.

Q.E.D.

Lemma 3. Let s be a slice of Dσ. Then, for any element a of A satisfying the
condition Dp−1

σ (a) = 0, we have the equality

Dσ

(
−

p−2∑
i=0

Di
σ(a) ·

( −s

i + 1

))
= a.
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Proof. Since Dσ is a twisted derivation associated to σ, we have

Dσ

(
−

p−2∑
i=0

Di
σ(a) ·

( −s

i + 1

))

= −
p−2∑
i=0

(
Di+1

σ (a) · σ
(( −s

i + 1

))
+ Di

σ(a) · Dσ

(( −s

i + 1

)))
.

The right hand side of the above equality can be calculated by Lemma 2 and the
condition Dp−1

σ (a) = 0, as follows:

−
p−2∑
i=0

(
Di+1

σ (a) ·
(−s − 1

i + 1

)
− Di

σ(a) ·
(−s − 1

i

))

= −
p−2∑
i=0

Di+1
σ (a) ·

(−s − 1
i + 1

)
+

p−2∑
i=0

Di
σ(a) ·

(−s − 1
i

)

= −
p−3∑
i=0

Di+1
σ (a) ·

(−s − 1
i + 1

)
+

p−2∑
i=0

Di
σ(a) ·

(−s − 1
i

)

= −
p−3∑
i=0

Di+1
σ (a) ·

(−s − 1
i + 1

)
+

p−2∑
i=1

Di
σ(a) ·

(−s − 1
i

)
+ a

= a.

Thus we have the desired equlity. Q.E.D.

From now on, we assume that A is the polynomial ring k[x] := k[x1, . . . , xn]
in n variables over k. Now, σ is a k-automorphism of k[x] of order p.

Since k[x] 	= k[x]Dσ , there exists a polynomial α ∈ k[x] not belonging to
k[x]Dσ . So, Dm

σ (α) 	= 0 and Dm+1
σ (α) = 0 for some 1 ≤ m ≤ p − 1. Let

d := Dm
σ (α) ∈ k[x] and let s := Dm−1

σ (α)/d ∈ k[x][1/d]. We can naturally extend
the automorphism σ of k[x] to an automorphism σ̃ of k[x][1/d]. The order of σ̃

is p and the element s of k[x][1/d] is a slice of D
σ̃
.

We know that the invariant ring k[x]〈σ〉 is finitely generated as a k-algebra.
So, let f1, . . . , fr be a generating set of k[x]Dσ as a k-algebra, i.e., k[x]Dσ =
k[f1, . . . , fr]. Let k[x, y] := k[x1, . . . , xn, y1, . . . , yr] be the polynomial ring in
n + r variables over k. Let I be the ideal

I := (y1 − f1, . . . , yr − fr, d
p−1)

of k[x, y]. Let ≺ be a term order of k[x, y] satisfying xi1
1 xi2

2 · · ·xin
n � yj for all

i1, i2, . . . , in ≥ 0 excluding the case where i1 = i2 = · · · = in = 0 and for all
1 ≤ j ≤ r. Let G be a Gröbner basis of I with respect to the term order ≺. For
any polynomial f of k[x], we denote by f∗ the normal form of f with respect to
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the Gröbner basis G.

Theorem 4. Let k[x], σ, d, s, k[x, y],≺, G be as above. Let a be a polynomial of
k[x]. Let b′ and β be the elements of k[x][1/d] defined by⎧⎪⎨⎪⎩ b′ := −

p−2∑
i=0

Di
σ(a) ·

( −s

i + 1

)
,

β := dp−1b′.

Then the following assertions (1), (2) and (3) hold true:

(1) The element β of k[x][1/d] belongs to k[x].

(2) The following conditions (i) and (ii) are equivalent:
(i) The polynomial a of k[x] is Dσ-integrable.

(ii) The equality Dp−1
σ (a) = 0 holds true, and the normal form β∗ of β with

respect to G belongs to k[y], where k[y] := k[y1, . . . , yr] is the polynomial
ring in r variables over k.

(3) If the equivalent conditions (i) and (ii) in assertion (2) are satisfied, then
b := (β − β∗(f1, . . . , fr))/dp−1 ∈ k[x] and Dσ(b) = a.

Proof. Assertion (1) is clear from the definition of β.
We prove (i) =⇒ (ii) in assertioin (2). We have only to show the latter state-

ment of (ii) in assertion (2) (see Lemma 1). There exists an element b of A such
that Dσ(b) = a. We know from Lemma 3 that

Dσ(β − dp−1b) = Dσ(dp−1b′ − dp−1b) = dp−1D
σ̃
(b′) − dp−1Dσ(b) = 0.

So, we have

β − dp−1b = h(f1, . . . , fr)

for some h(y1, . . . , yr) ∈ k[y]. Since dp−1 ∈ I and y1 − f1, . . . , yr − fr ∈ I, we
have

β − h(y1, . . . , yr) ∈ I.

Thus we have β∗ − h(y1, . . . , yr)∗ = 0, which implies β∗ ∈ k[y] by the condition
of the term order ≺.

We prove (ii) =⇒ (i) in assertion (2). Since β reduces to β∗ with respspect
to G, we have

β =
r∑

i=1

ci(yi − fi) + c′dp−1 + β∗

for some polynomials c1, . . . , cr, c
′ ∈ k[x, y]. Substituting fi for yi for all 1 ≤ i ≤ r,
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we have

β = c′(x, f1, . . . , fr)dp−1 + β∗(f1, . . . , fr).

Differentiating this equality with Dσ, we have Dσ(β) = Dσ(c′(x, f1, . . . , fr))dp−1.

Since β = dp−1b′, we have

D
σ̃
(b′) = Dσ(c′(x, f1, . . . , fr)).

Note that D
σ̃
(b′) = a. In fact, since D

σ̃
has a slice s and Dp−1

σ̃
(a)(= Dp−1

σ (a)) =
0, we know form Lemma 3 that D

σ̃
(b′) = a. Thus, we have

Dσ(c′(x, f1, . . . , fr)) = a,

which implies that a is Dσ-integrable.
We prove assertion (3). Assume that the condition (ii) in assertion (2) is

satisfied. We have already shown that⎧⎨⎩
Dσ(c′(x, f1, . . . , fr)) = a,

c′(x, f1, . . . , fr) =
β − β∗(f1, . . . , fr)

dp−1
.

Hence, we have b ∈ k[x] and Dσ(b) = a. Q.E.D.

3. An application

Assume that the characteristic of k is three, assume that A is the polynomial
ring k[x] := k[x1, x2, x3] in three variables over k, and assume that the k-algebra
automorphism σ of k[x] is defined by

σ(xi) :=
{

x1 if i = 1,

xi + xi−1 if i > 1.

Clearly, the order of σ is three. The kernel k[x]Dσ of the twisted derivation Dσ is
generated as a k-algebra by the following four polynomials f1, f2, f3, f4 (see [1]):

f1 := x1,

f2 := x1x2 + 2x2
2 + 2x1x3,

f3 := 2x2
1x2 + x3

2,

f4 := x1x2x3 + 2x2
2x3 + x1x

2
3 + x3

3.

As an application of the image membership algorithm, we can find a generating
set of the i-th cohomology Hi(〈σ〉 , k[x]) of the cyclic group 〈σ〉 with coefficients in
k[x] for each i = 1, 2. Recall that the cohomology Hi(〈σ〉 , k[x]) has the following
expression:
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Hi(〈σ〉 , k[x]) =

⎧⎨⎩
k[x]Dσ if i = 0,

k[x]D
2
σ/Dσ(k[x]) if i = 1,

k[x]Dσ/D2
σ(k[x]) if i = 2.

So, we construct a generating set of the k[x]Dσ -module k[x]D
2
σ , a generating set of

the k[x]Dσ -module Dσ(k[x]), and a generating set of the k[x]Dσ -module D2
σ(k[x]).

Theorem 5. (1) We have

k[x]D
2
σ = k[x]Dσ + k[x]Dσ · g1 + k[x]Dσ · g2 + k[x]Dσ · g3,

where the polynomials g1, g2, g3 are defined by

g1 := x2,

g2 := 2x1x2 + x2
2 + 2x2x3,

g3 := x1x
2
2 + 2x3

2 + 2x1x2x3 + x2
2x3 + 2x1x

2
3.

(2) We have

Dσ(k[x]) = k[x]Dσ · h1 + k[x]Dσ · h2 + k[x]Dσ · h3 + k[x]Dσ · h4 + k[x]Dσ · h5,

where the polynomials h1, h2, h3, h4, h5 are defined by

h1 := Dσ(x2) = x1,

h2 := Dσ(x3) = x2,

h3 := Dσ(x2x3) = x1x2 + x2
2 + x1x3,

h4 := Dσ(x2
3) = x2

2 + 2x2x3,

h5 := Dσ(x2x
2
3) = x1x

2
2 + x3

2 + 2x1x2x3 + 2x2
2x3 + x1x

2
3.

(3) We have

D2
σ(k[x]) = k[x]Dσ · h′

2 + k[x]Dσ · h′
4 + k[x]Dσ · h′

5,

where the polynomials h′
2, h

′
4, h

′
5 are defined by

h′
2 := Dσ(h2) = x1,

h′
4 := Dσ(h4) = x2

1 + x1x2 + 2x2
2 + 2x1x3,

h′
5 := Dσ(h5) = 2x3

1 + x1x
2
2 + 2x3

2 + x2
1x3.

In order to know whether each polynomial fi (1 ≤ i ≤ 4) belongs to the
image Dσ(k[x]) or not, we run the image membership algorithm in Section 1 to
each fi (1 ≤ i ≤ 4). Using a computational software program Mathematica 8,
we know that all fi (1 ≤ i ≤ 3) are Dσ-integrable, the equalities Dσ(gi) = fi

(1 ≤ i ≤ 3) hold true, and f4 is not Dσ-integrable. We can check by hand that
Dσ(gi) = fi for all 1 ≤ i ≤ 3. We can generalize the non-integrability of f4 as in
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the following Lemma.

Lemma 6. Let ϕ(t) ∈ k[t] be a non-zero polynomial. Then ϕ(f4) is not Dσ-
integrable.

Proof. We first consider the case where ϕ(t) is a non-zero element of k. Any
non-zero element of k is not Dσ-integrable. So, the polynomial ϕ(f4)(= ϕ(t)) is
not Dσ-integrable.

We next consider the case where ϕ(t) is a polynomial of degree ≥ 1 in t.
Then ϕ(f4) = Dσ(g) for some polynomial g ∈ k[x]. Among monomials appearing
in f4, the monomial x3

3 is the unique monomial of highest degree in x3. So, the
monomial x3m

3 appears in ϕ(f4), where m is the degree of ϕ(t) in t. We can write
g as

g =
∑

i1,i2,i3≥0

ai1,i2,i3x
i1
1 xi2

2 xi3
3

for some ai1,i2,i3 ∈ k where i1, i2, i3 ≥ 0. Then we have

Dσ(g) =
∑

i1,i2,i3≥0

ai1,i2,i3Dσ(xi1
1 xi2

2 xi3
3 ).

Expand Dσ(xi1
1 xi2

2 xi3
3 ) as a polynomial in x3, as follows:

Dσ(xi1
1 xi2

2 xi3
3 ) = xi1

i (x2 + x1)i2(x3 + x2)i3 − xi1
1 xi2

2 xi3
3

= xi1
1 (x2 + x1)i2

i3∑
j=0

(
i3
j

)
xi3−j

2 xj
3 − xi1

1 xi2
2 xi3

3

= xi1
1 (x2 + x1)i2

i3−1∑
j=0

(
i3
j

)
xi3−j

2 xj
3 + (xi1

1 (x2 + x1)i2 − xi1
1 xi2

2 )xi3
3 .

The monomial x3m
3 appears in Dσ(xi1

1 xi2
2 xi3

3 ) for some i1, i2, i3 ≥ 0. So, the
monomial x3m

3 appears in

xi1
1 (x2 + x1)i2

i3−1∑
j=0

(
i3
j

)
xi3−j

2 xj
3 for some 1 ≤ j ≤ i3 − 1,

or the monomial x3m
3 appears in

(xi1
1 (x2 + x1)i2 − xi1

1 xi2
2 )xi3

3 .

In either case, we have i1 = i2 = 0. So, x3m
3 has to appear in

∑i3−1
j=0

(
i3
j

)
xi3−j

2 xj
3.

This is a contradiction. Q.E.D.

We use the following Lemma on proving assertion (1) of Theorem 5.



THE IMAGE MEMBERSHIP ALGORITHM FOR TWISTED DERIVATIONS IN MODULAR INVARIANT THEORY 63

Lemma 7. The equality Dσ(k[x])∩k[x]Dσ = k[x]Dσ ·f1+k[x]Dσ ·f2+k[x]Dσ ·f3

holds true.

Proof. Take any element f of Dσ(k[x])∩k[x]Dσ . Then f is Dσ-integrable, and
f ∈ k[f1, f2, f3, f4]. We can write f as

f =
∑

i1,i2,i3,i4≥0

aii,i2,i3,i4f
i1
1 f i2

2 f i3
3 f i4

4

for some aii,i2,i3,i4 ∈ k for all i1, i2, i3, i4 ≥ 0. We define polynomials F1, F2 by

F1 :=
∑
i4≥0

a0,0,0,i4f
i4
4 ,

F2 := f − F1.

So, for any polynomial aii,i2,i3,i4f
i1
1 f i2

2 f i3
3 f i4

4 appearing in F2, at least one of suf-
fixes i1, i2 and i3 is not zero. Note that F2 is Dσ-integrable (because f1, f2, f3 are
Dσ-integrable and f1, f2, f3 ∈ k[x]Dσ ). Since f is Dσ-integrable, F1(= f − F2)
is also Dσ-integrable. We know from Lemma 6 that F1 = 0, which implies
f = F2 ∈ k[x]Dσf1 + k[x]Dσf2 + k[x]Dσf3. To check the converse inclusion is left
to the reader. Q.E.D.

In the following, we give a proof of Theorem 5. First, we prove assertion (1).
Take any element f of k[x]D

2
σ . Then Dσ(f) ∈ Dσ(k[x]) ∩ k[x]Dσ . By Lemma 7,

we can write f as

Dσ(f) = α1f1 + α2f2 + α3f3

for some α1, α2, α3 ∈ k[x]Dσ . Now we have

Dσ(f) = Dσ(α1g1 + α2g2 + α2g3)

since Dσ(gi) = fi for all 1 ≤ i ≤ 3. Thus,

f − (α1g1 + α2g2 + α2g3) ∈ k[x]Dσ .

This implies that f belongs to the right hand side of the desired equlity. To check
the converse inclusion is left to the reader.

Next, we prove assertion (2). Let P := k[f1, f3, f4] be the k-subalgebra of
k[x]Dσ . We have

k[x] =
∑

0≤i≤2, 0≤j≤2

P · xi
2x

j
3

since f3 = x3
2 +(terms of lower degree in x2) and f4 = x3

3 +(terms of lower degree
in x3). The monomials x2

2, x2
2x3, x2

2x
2
3 have the following expression:
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x2
2 = −f2 + f1 · x2 + 2f1 · x3,

x2
2x3 = −f2 · x3 + f1 · x2x3 + 2f1 · x2

3,

x2
2x

2
3 = −f2x

2
3 + f1x2x

2
3 + 2f1x

3
3

= −f2x
2
3 + f1x2x

2
3 + 2f1(f4 − f1x2x3 − 2x2

2x3 − f1x
2
3)

= 2f1f4 − 2f2
1 · x2x3 + (−f2 − 2f2

1 ) · x2
3 + f1 · x2x

2
3 − f1 · x2

2x3.

So, the monomials x2
2, x

2
2x3, x

2
2x

2
3 belong to

∑
0≤i≤1, 0≤j≤2 k[x]Dσ ·xi

2x
j
3. Now, we

have

k[x] =
∑

0≤i≤1, 0≤j≤2

k[x]Dσ · xi
2x

j
3.

Differentiating this equality with Dσ, we have

Dσ(k[x]) =
5∑

i=1

k[x]Dσ · hi.

Finally, we prove assertion (3). We can easily check the following:

Dσ(h1) = 0,

Dσ(h2) = x1,

Dσ(h3) = 2x2
1,

Dσ(h4) = x2
1 + x1x2 + 2x2

2 + 2x1x3,

Dσ(h5) = 2x3
1 + x1x

2
2 + 2x3

2 + x2
1x3.

Thus, we have D2
σ(k[x]) = k[x]Dσ · Dσ(h2) + k[x]Dσ · Dσ(h4) + k[x]Dσ · Dσ(h5).

We complete the proof of Theorem 5.
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