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Abstract

Let k be a field of positive characteristic p, let k[z] be the polynomial ring in
n variables over k, and let o be a k-algebra automorphism of k[z] whose order is
p. We define the twisted derivation D, : k[z] — k[z] by Do (a) := o(a) — a for all
a € k[z]. We give an algorithm to determine whether or not a given polynomial of
k[z] belongs to the image Dg(k[z]) of Ds.

1. Introduction

Let k£ be a field of positive characteristic p and let A be a k-domain. We
denote by Auty(A) the group of all k-algebra automorphisms of A. The multipi-
cation of the group Auty(A) is defined by the composition of automorphisms. Let
o be an element of Auty(A) whose order is p. Associating with the automorphism
o, we can define a k-linear transformation D, : A — A as D,(a) := o(a) — a for
all a € A. The k-linear transformation D, has the following two properties:

(1) Dy(a-b) = Dy(a) - o(b) + a- D, (b) for all a,b € A.
(2) D2 = 0.

We say that D, is a twisted derivation associated to o. For each 1 <7 <p—1,
we define the kernel AP> of D% as

APz = {a € A| Dj(a) =0},
and define the image D! (A) of D! as
Di(A):={D!(a) € A|ac A}.
For simplicity, we express AP as AP+ and express DL(A) as D,(A). Then

AP< is a k-subalgebra of A, each AP+ is an AP--module, and each D! (A) is an
APs_module. We assume that the following conditions (i) and (ii) are satisfied
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(especially when A = k[z1,...,x,] is a polynomial ring in n variables over k, the
following conditions (i) and (ii) are satisfied):

(i) The kernel AP+ is a Noetherian ring.
(ii) The AP7-module A is finite as an AP=-module.

Then the kernel AP> and the image Di(A) are finite as AP7-modules for all
1 <i < p—1. We have the inclusion D2~(A) C APs forall1<i<p—1. It is
an interesting problem to construct a generating set of the A”--module

APz /DE7H(A)

for each 1 < 7 < p—1. We explain the reason why the problem is interesting
in connection with modular invariant theory. We know that the kernel AP~ of
D, coincides with the invariant ring A‘”) of the cyclic group (o) generated by o,
and the image D2~1(A) of D2~! coincides with the image Tr®(A) of the transfer
Tr®, where the transfer Tr% : A — A is defined by Tr¢(a) := Zf:_ol o'(a) for all
a € A. The i-th cohomology H'({c), A) of the cyclic group (o) with coefficients
in A has the following expression (see [2, Page 6]):

AD- if i=0,
Hi({o),A) =< APY" /D, (A) if iodd,
APs | DP=L(A) if 4 even and i > 0.

So, the problem is related to constructing a generating set of the i-th cohomology
Hi({o),A) as an AP--module for i > 0. In particular when p = 3, constructing
a generating set of H'({(0),A) as an AP--module is related to constructing a
generating set of AP> as an AP<-module. A generating set of the kernel A%
can be constructed from a generating set of the ideal D, (A) N AP+ of AP+ since
D, (ADET) = D,(A) N AP+ Tt seems that the image membership algorithm for
the twisted derivation D, is useful for guessing a generating set of the ideal

D,(A)N AP-.
In this article, we give an algorithm to determine whether or not a given poly-
nomial of k[z1,...,x,] belongs to the image D, (k[x1,...,2,]). As an applica-

tion, in particular when p = 3 and a cyclic group (o) of order three acting linearly
and irreducibly on k[x1,x9, 23], we give a generating set of the i-th cohomology
Hi({o) , k[r1, 22, 23]) of the cyclic group (o) with coefficients in k[x1, 22, 23] as a
k[z1, 29, v3]P7-module for each i = 1,2.

2. The image membership algorithm

An element a of A is said to be D,-integrable if there exists an element b of
A such that D, (b) = a.
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Lemma 1. Let a be a D,-integrable element of A. Then we have D?~(a) = 0.

PRrROOF. Since a is D,-integrable, there exists an element b of A such that
D,(b) = a. So, we have DP~1(a) = DP(b) = 0. Q.E.D.

An element s of A is said to be a slice of D, if D,(s) = 1. For any element

a of A and any integer i with 1 < i < p — 1, we define the symbol (a) as
i

Lemma 2. Let s be a slice of D,. Then we have

-5 —s—1
DD’ . = - .
((5) =)
forall0 <i<p-—2.
ProoOr. We know from the definition of D, that

b, ((177)) = (I ) - Ce e

Since s is a slice of D,, we have o(s) = s + 1 and thereby have

NECEDECEL CERC Ity
(i+1)! (i+1)

Now we have

po((2) = S e
(—s—1)--(=s—i)

il

Q.E.D.

Lemma 3. Let s be a slice of D,. Then, for any element a of A satisfying the
condition D?~1(a) = 0, we have the equality

D, <§D;(a). <Zfl>> = a.
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PROOF. Since D, is a twisted derivation associated to o, we have
p-2 _s
(e (20)
p—2
=z (e () e ((25)))

The right hand side of the above equality can be calculated by Lemma 2 and the
condition DP~1(a) = 0, as follows:

p2 s—1 (e —s5—1
_ i+1 PN
==y o () o ()
=0 =0
p3 s—1 p2 s—1
- _ DZ+1 - DZ o
> ot () r X o (77
1=0 1=0
p3 s—1 h2 s—1
— Di-i—l - D? N
> ot (7)) + s () v
=0 i=1
= a.
Thus we have the desired equlity. Q.E.D.
From now on, we assume that A is the polynomial ring k[z] := k[z1,...,z,)

in n variables over k. Now, o is a k-automorphism of k[x] of order p.

Since k[x] # k[z]P~, there exists a polynomial @ € k[z] not belonging to
k[z]P-. So, D™(a) # 0 and D™*'(a) = 0 for some 1 < m < p— 1. Let
d:= D"(a) € k[z] and let s := D"~ !(a)/d € k[z][1/d]. We can naturally extend
the automorphism o of k[z] to an automorphism & of k[z][1/d]. The order of &
is p and the element s of k[z][1/d] is a slice of D-.

We know that the invariant ring k[x]<"> is finitely generated as a k-algebra.
So, let fi,...,f, be a generating set of k[z]P~ as a k-algebra, i.e., k[z]Ps =
klf1,..., fr]- Let k[x,y] := k[x1,...,%n,¥1,...,¥:] be the polynomial ring in
n + r variables over k. Let I be the ideal

I:= (yl 7f17"'7y7“ 7fr7dp71)
of k[z,y]. Let < be a term order of k[z,y] satisfying z}'z¥ - zin = y; for all
11,42, ...,1n > 0 excluding the case where i; = io = --+ = 4,, = 0 and for all
1 <7 <r. Let G be a Grobner basis of I with respect to the term order <. For
any polynomial f of k[z], we denote by f. the normal form of f with respect to
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the Grobner basis G.

Theorem 4. Let klz],0,d, s, k[x,y], <, G be as above. Let a be a polynomial of
klx]. Let V' and (8 be the elements of k[x][1/d] defined by

p—2
W=—-5S"D@) (. °
> ()
Bi=dP7 Y.
Then the following assertions (1), (2) and (3) hold true:
(1) The element 3 of k[x][1/d] belongs to k[x].
(2) The following conditions (1) and (ii) are equivalent:
(i) The polynomial a of klx| is D,-integrable.

(ii) The equality D?~1(a) = 0 holds true, and the normal form (. of B with
respect to G belongs to kly], where kly] := k[y1,...,yr] is the polynomial
ring in T variables over k.

(3) If the equivalent conditions (i) and (ii) in assertion (2) are satisfied, then
b:= (8- Bc(f1,---, fr)/dP~! € k[z] and D, (b) = a.

PROOF. Assertion (1) is clear from the definition of 3.

We prove (i) = (ii) in assertioin (2). We have only to show the latter state-
ment of (ii) in assertion (2) (see Lemma 1). There exists an element b of A such
that D, (b) = a. We know from Lemma 3 that

Do (B —d’~'b) = Dy (dP~ "0 — dP~'b) = dP" " D= (V') — d’~' Dy (b) = 0.

So, we have

B—dP~ b =h(fi,..., fr)
for some h(yi,...,yr) € kly]. Since d?=* € I and y1 — f1,...,yr — fr € I, we
have
B_h(ylv'-'7y7')€]'

Thus we have 8. — h(y1,...,yr)« = 0, which implies 5. € k[y] by the condition
of the term order <.

We prove (ii) = (i) in assertion (2). Since  reduces to (. with respspect
to G, we have

B = Zcz(yz —fi)+dd" + .
i=1

for some polynomials ¢y, ..., ¢, ¢ € k[z,y]. Substituting f; for y; forall 1 < i <r,
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we have

6 = C/(.’E,fl,. . ‘,fT)dpil +6*(f1, . 'afr)'
Differentiating this equality with D,, we have D, (3) = Dy (c'(x, f1,..., f))dP~ L.
Since 8 = dP~, we have

Do(V) = Do(c(x, frs -, J1).

Note that Dx(b') = a. In fact, since D3 has a slice s and D2 Ha)(= D2 Y(a)) =
0, we know form Lemma 3 that D>(b’) = a. Thus, we have

Dy (d(z, f1,..., fr)) = a,

which implies that a is D,-integrable.
We prove assertion (3). Assume that the condition (ii) in assertion (2) is
satisfied. We have already shown that

D,(d(z, f1,--, fr)) = a,

afrofy) = DTV )

Hence, we have b € k[z] and D, (b) = a. Q.E.D.

3. An application

Assume that the characteristic of k is three, assume that A is the polynomial
ring k[z] := k[z1, 22, z3] in three variables over k, and assume that the k-algebra
automorphism o of k[x] is defined by

0'(.1‘) L X1 if = 1,
Lo T+ Xi—1 if 4> 1.

Clearly, the order of o is three. The kernel k[x]P~ of the twisted derivation D, is
generated as a k-algebra by the following four polynomials f1, fa, f3, f4 (see [1]):

fl = Ty,

fg = x1T2 + 2.23% + 2123,
fs = 23@3@2 + x%,
fi = ximox3 + 223w3 + 12l + 2l

As an application of the image membership algorithm, we can find a generating
set of the i-th cohomology H*((c) , k[x]) of the cyclic group (o) with coefficients in
k[z] for each i = 1,2. Recall that the cohomology H*((c), k[z]) has the following
expression:
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k[z]P- if q ,
H'((0) ,k[z]) = k[2]7 /D, (k[z]) it i=1,
k[z]P= /D2 (k[z]) if =2

So, we construct a generating set of the k[z]P--module k[z]P >, a generating set of
the k[z]Ps-module D, (k[z]), and a generating set of the k[x]Ps-module D2 (k[z]).

Theorem 5. (1) We have
k)P = k[a] 27 + k(o] - g1+ K[2]P7 - go + k[x]P7 - gs,

where the polynomials g1, g2, g3 are defined by

g1 = T2,
ge = 2x1T9 + x% + 2x913,
gs = a:lx% + 2x§ + 2z 1073 + m%xg + 2m1x§.

(2) We have
Dy (k[x]) = k[z]P7 - hy + k[z]P7 - hg + E[z]P7 - hs + k[z]P7 - hy + k[2]P7 - hs,

where the polynomials hy, ho, hs, hy, hs are defined by

ha D, () = o,

hy = Dg(x3) = Iy,

hg = Dg(xgxg) = T1X2 —‘rl’% +£L’1.’E3,

hs = Dg(z3) = 2%+ 2xox3,

hs = Dy(z22%) = x1235+ 23 + 2212003 + 20323 + 1123,
(3) We have

D3 (k[a]) = k2] - hy + kla]P7 - Wy + k[2] P - b,

where the polynomials h, b}y, hy are defined by

h/2 = Do—(hg) = I,
By = Dgy(hy) = 2%+ 2129+ 223+ 22173,
ht = Dg(hs) = 223+ z123+ 223 + 2323.

In order to know whether each polynomial f; (1 < i < 4) belongs to the
image D, (k[z]) or not, we run the image membership algorithm in Section 1 to
each f; (1 < i < 4). Using a computational software program Mathematica 8,
we know that all f; (1 < ¢ < 3) are D,-integrable, the equalities D,(g;) = f;
(1 <1 < 3) hold true, and fy is not D,-integrable. We can check by hand that
D,(g;) = fi for all 1 <1 < 3. We can generalize the non-integrability of f4 as in
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the following Lemma.

Lemma 6. Let ©(t) € k[t] be a non-zero polynomial. Then ¢(fs) is not Dy-
integrable.

PROOF. We first consider the case where ¢(t) is a non-zero element of k. Any
non-zero element of k is not D,-integrable. So, the polynomial ¢(f4)(= ¢(t)) is
not D,-integrable.

We next consider the case where ¢(t) is a polynomial of degree > 1 in t.
Then ¢(f4) = D, (g) for some polynomial g € k[x]. Among monomials appearing
in f;, the monomial x3 is the unique monomial of highest degree in x3. So, the
monomial 3™ appears in ¢(f4), where m is the degree of (t) in t. We can write
g as

9= Z ail,iz,i3xlllx;2x§3
i1,in,i5>0

for some a;, ;,.i; € k where i;,%2,73 > 0. Then we have
_ . i1 02 ,.,13
DU(Q) - E ai17i2,23D0(x1 Loy Ty )
1,%2,i3>0
Expand D, (z}'z5?z5*) as a polynomial in x3, as follows:

D, (a3 af) = ol (v2 + 1) (w3 + 22)" — al' 2l 2}

13 .
11 2 13—7,.J 1 .22 .23
2y (22 + 1) E (j>$2 T3 — Ty Ty T3

=0

is—1 .
_ b 1o U3\ is—j, .j i1 1o i1 ,.92\ .43
= i (x2 + 1) i g ot + (27 (w2 + 1) — 2 xR )xy.
Jj=0
The monomial 3™ appears in D, (x{'zi?z%) for some iy,is,i3 > 0. So, the
monomial 23™ appears in

is—1 ,.
. . - I . .
] (@e +21)" E <3>x;‘°’ Jal for some 1 < j <iz—1,
i=0

or the monomial 3™ appears in

i i i1, 2y, i
(@1 (w2 + 21)" — a'as’)as’.
; . i 3m . : i3—1 (ig\ iz—j .Jj
In either case, we have i; = ip = 0. So, x3™ has to appear in >/, (j JEZEY
This is a contradiction. Q.E.D.

We use the following Lemma on proving assertion (1) of Theorem 5.



THE IMAGE MEMBERSHIP ALGORITHM FOR TWISTED DERIVATIONS IN MODULAR INVARIANT THEORY 63

Lemma 7. The equality D, (k[z])Nk[z]Pe = k[x]P7 - f1 + k[z]P7 - fo+k[z]P - f3
holds true.

PROOF. Take any element f of D, (k[z])Nk[z]P~. Then f is D,-integrable, and
I € k[f1, f2, f3, f1]. We can write f as

f_ a___,'1i2i3i4
- 24,12,3,24J1 J2 J3 J4
i1,12,43,14>0
ia € k for all 41,49,143,74 > 0. We define polynomials Fy, Fy by

A 7
Fy o= E @0,0,0,i5.f4"5

i4>0

FQ = f_Fl-

for some a;; 4, is,

So, for any polynomial a;; s, i,i4 f 5 §3 24 appearing in F5, at least one of suf-
fixes i1, 12 and 45 is not zero. Note that F5 is D,-integrable (because f1, fa, f3 are
D,-integrable and fi, f2, f3 € k[z]P7). Since f is D,-integrable, F\(= f — Fy)

is also D,-integrable. We know from Lemma 6 that F; = 0, which implies
f = Fy € k[z]P7 f1 + k[z]P7 fa + k[x]P7 f5. To check the converse inclusion is left
to the reader. Q.E.D.

In the following, we give a proof of Theorem 5. First, we prove assertion (1).
Take any element f of k[z]P>. Then D, (f) € Dy (k[z]) N k[z]P~. By Lemma 7,
we can write f as

Dy (f) = a1 fi +azfo+ asfs

for some a1, az, as € k[z]P7. Now we have

D, (f) = Do(a191 + a2g2 + aags3)

since D, (g;) = f; for all 1 <i < 3. Thus,

[ —(a191 + a2g2 + aags) € k[w}D"-

This implies that f belongs to the right hand side of the desired equlity. To check
the converse inclusion is left to the reader.
Next, we prove assertion (2). Let P := k[f1, f3, fa] be the k-subalgebra of
k[z]P-. We have
0<i<2, 0<5<2
since f3 = x3 + (terms of lower degree in z3) and f; = 3 + (terms of lower degree
in z3). The monomials 23, 233, r372 have the following expression:
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x5 = —fot f1 @2+ 2f1 - 73,
T3y = —fo- w3+ f1 - xox3 + 2f1 - 23,
x%x% = —fgfL'g + f1x2m§ + 2f1:1c§
= —fori + frz223 + 2f1(f1 — frzaws — 20323 — f13)
= 2f1fa = 2ff -wowy + (—fo — 2f7) - @5 + f1 - waaF — f1 - iy

So, the monomials x3, x3x3, z573 belong to Y5 ;<. 0<j<2 k[x]Pe - xbx). Now, we
have
klx] = E k[z]Pe - xba).
0<i<1, 0<j<2

Differentiating this equality with D,, we have

D, (hy) = 0,

D, (h2) = 1,

Dy (h3) = 23,

D, (hg) = 22 + x129 + 225 + 27123,
D, (hs) = 223 4+ x123 + 225 + 233,

Thus, we have D2 (k[z]) = k[z]P7 - Dy (h2) + k[z|P7 - D, (hg) + k[x]Pe - D, (hs).
We complete the proof of Theorem 5.
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