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Abstract

We prove that a normal affine surface with non-positive Euler characteristic

has a structure of C or C∗-fibration over a smooth curve.

1. Introduction

Throughout the present paper, we work over the complex number field C.
Let e(T ) denote the topological Euler characteristic of a topological space T .

It is well-known from the classification theory of algebraic surfaces that, for
a smooth projective surface X, if e(X) < 0 (resp. e(X) ≤ 0) then κ(X) = −∞
(resp. κ(X) ≤ 1), where κ(X) denotes the Kodaira dimension of X. Several
mathematicians have studied the topological Euler characteristics of open alge-
braic surfaces. We recall some results. It follows from the log Miyaoka–Yau
inequality in [11] that every normal affine surface S with only quotient singular
points and with κ(S \ SingS) = 2 has positive Euler characteristic (see [20] and
[5]). Gurjar–Parameswaran [6] and Veys [26] studied the pairs (X,D) of smooth
projective surfaces X and connected curves D on X with e(X \ SuppD) ≤ 0. In
particular, Gurjar–Parameswaran [6] proved that, for every smooth affine surface
S with e(S) ≤ 0, there exists a C or C∗-fibration ϕ : S → T onto a smooth curve
T , where C∗ = C\{0}. These results on open algebraic surfaces with non-positive
Euler characteristic are very useful. For example, they have been applied for the
study of topologically contractible curves on Q-homology planes (see [20], [5], [7],
[10], [27], [23], [1], etc.).

In this paper, by using the structure theorems on open algebraic surfaces
(see, e.g., [17]) and the generalized log Miyaoka–Yau inequality in [15] and [21,
2.5 (ii)], we study the normal affine surfaces with non-positive Euler characteris-
tic and attempt to generalize some results in [6]. In Section 3, we study structure
of normal affine surfaces with non-positive Euler characteristic and prove the
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following results.

Theorem 1.1. Let S be a normal affine surface and S0 its smooth part. Then
the following assertions hold true.

(1) If κ(S0) = 2, then e(S) > 0.

(2) If κ(S0) = 0 or 1, then e(S) ≥ 0.

(3) If κ(S0) ≥ 0 and e(S) = 0, then S is smooth and there exists a C∗-fibration
ϕ : S → T onto a smooth curve T .

(4) If κ(S0) = e(S) = 0, then S is isomorphic to either C∗ × C∗ or H[−1, 0,−1]
(for the definition of H[−1, 0,−1], see [2, 8.5] or [12, Example 4.2]).

(5) If e(S) ≤ 0 and κ(S0) = −∞, then S is affine ruled, i.e., there exists a
C-fibration ϕ : S → T onto a smooth curve T .

Theorem 1.2. Let S be a normal affine surface with e(S) ≤ 0 and S0 its smooth
part. Then κ(S0) ≥ 0 if and only if P 2(S0) > 0.

In Section 4, we study reduced curves on a normal complete rational surface
of Picard number one (see [24] for the definition of the Picard number of a normal
complete surface). By using Theorem 1.1 and the structure theorems on open
algebraic surfaces, we prove the following result.

Theorem 1.3. Let X be a normal complete rational surface of Picard number
one and B a non-empty reduced algebraic curve on X. If e(X \ B) ≤ 0, then
every irreducible component of B is a rational curve.

When X in Theorem 1.3 is smooth (i.e., X = P2), Theorem 1.3 was conjec-
tured by Veys (cf. [25]) and was proved by de Jong and Steenbrink [8]. See [6]
and [13] for other proofs.

2. Preliminaries

For Q-divisors A and B, A ≡ B means A and B are numerically equiva-
lent. We denote by KX the canonical divisor of an algebraic variety X. For a
connected smooth quasi-projective variety S, we denote by Pn(S) (n ≥ 1) (resp.
κ(S)) the logarithmic n-genus of S (resp. the logarithmic Kodaira dimension of
S). For the definitions, see [17]. By a (−n)-curve, we mean a smooth projective
rational curve with self-intersection number −n. A reduced effective divisor is
called an SNC-divisor if it has only simple normal crossings.

We recall some basic notions in the theory of peeling. For more details, see
[17, Chapter 2]. Let (X,B) be a pair of a smooth projective surface X and an
SNC-divisor B on X. We call such a pair an SNC-pair. A connected curve T
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consisting of irreducible components of B (a connected curve in B, for short) is
called a twig if each irreducible component of T is rational, the dual graph of T is
a linear chain and T meets B − T in a single point at one of the end components
of T , the other end of T is called the tip of T . A connected curve R (resp. F )
in B is called a rational rod (resp. a rational fork) if R (resp. F ) is a connected
component of B and consists only of rational curves and if the dual graph of R

(resp. F ) is a linear chain (resp. the dual graph of the exceptional curves of the
minimal resolution of a non-cyclic quotient singular point). A connected curve E

in B is said to be admissible if SuppE contains no (−1)-curves and the intersec-
tion matrix of E is negative definite. An admissible rational twig T in B is said
to be maximal if it cannot be extended to an admissible rational twig with more
irreducible components of B.

Let {Tλ} (resp. {Rμ}, {Fν}) be the set of all maximal admissible rational
twigs (resp. all admissible rational rods, all admissible rational forks), where no
irreducible components of Tλ’s belong to Rμ’s or Fν ’s. Then there exists a unique
decomposition of B as a sum of effective Q-divisors B = B# + Bk B such that
the following two conditions (i) and (ii) are satisfied:

(i) Supp(BkB) = (∪λTλ) ∪ (∪μRμ) ∪ (∪νFν);

(ii) (B# + KX) · Z = 0 for every irreducible component Z of Supp(BkB).

Let π : X → X be the contraction of Supp(BkB) to quotient singular points
and put B := π∗(B). It then follows from the condition (ii) that π∗(B + KX) ≡
B# + KX .

Definition 2.1. An SNC-pair (X,B) is said to be almost minimal if, for every
irreducible curve C on X, either (B# + KX) · C ≥ 0 or (B# + KX) · C < 0 and
the intersection matrix of C + BkB is not negative definite.

Lemma 2.2. Let (X,B) be an SNC-pair. Then there exists a birational mor-
phism μ : X → V onto a smooth projective surface V such that the following four
conditions (1) – (4) are satisfied:

(1) D := μ∗(B) is an SNC-divisor.

(2) μ∗(Bk B) ≤ Bk D and μ∗(B# + KX) ≥ D# + KV .

(3) Pn(X \ SuppB) = Pn(V \ SuppD) for every integer n ≥ 1. In particular,
κ(X \ SuppB) = κ(V \ SuppD).

(4) The pair (V,D) is almost minimal.

Proof. See [17, Theorem 2.3.11.1 (p. 107)].

We call the pair (V,D) as in Lemma 2.2 an almost minimal model of (X,B).
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3. Proofs of Theorems 1.1 and 1.2

In order to prove Theorems 1.1 and 1.2, we construct an almost minimal
model of a normal affine surface.

Now, let S be a normal affine surface and SingS = {P1, . . . , Pq} the set of
all singular points on S. Set S0 := S \ {P1, . . . , Pq}. Let ε : S̃ → S be a min-
imal good resolution of S, i.e., S̃ is a smooth surface, the reduced exceptional
divisor Ẽ is an SNC-divisor, Ei · (Ẽ − Ei) ≥ 2 for any (−1)-curve Ei ⊂ SuppẼ

and the equality holds if and only if Ei meets a unique irreducible component
of Ẽ − Ei. We put Ẽi := ε−1(Pi) for i = 1, . . . , q. Let (X,Δ) be an SNC-pair
such that X \ SuppΔ ∼= S̃ and put B := Δ + Ẽ. Then B is an SNC-divisor. We
may assume that, for any (−1)-curve Δ′ ⊂ SuppΔ, Δ′ · (Δ − Δ′) ≥ 2 and the
equality holds if and only if Δ′ meets a unique irreducible component of Δ−Δ′.
We assume further that Pi (1 ≤ i ≤ r) is not a quotient singular point and Pj

(r + 1 ≤ j ≤ q) is a quotient singular point. With the same notations as in
Section 2, we have the following:

(a) B# = Δ# +
∑q

i=1 Ẽ#
i ;

(b) 
Ẽ#
i � �= 0 for i = 1, . . . , r and 
Ẽ#

i � = 0 for i = r + 1, . . . , q;

(c) Ẽ#
i = 0 if and only if Pi is a rational double point.

Suppose that (X,B) is not almost minimal. Then there exists an irreducible
curve C on X such that C ·(B#+KX) < 0 and the intersection matrix of C+Bk B

is negative definite. We consider the following cases separately.

Case 1: C is not an irreducible component of B. Since C2 < 0 and C · KX ≤
C · (B# + KX) < 0, C is a (−1)-curve. Since S = ε(X \ SuppΔ) contains no
complete curves, C · Δ > 0. Let Z1, . . . , Zn be all the irreducible components of
B meeting C. Then we infer from [17, Chapter 2, 3.6 (pp. 95–97)] that:

(i) Zi ⊂ Supp(BkB) for every i = 1, . . . , n;

(ii) Zi · C = 1 for every i = 1, . . . , n;

(iii) (Zi)2 = −2 at most one index i;

(iv) Zi · Zj = 0 if i �= j;

(v) n ≤ 2.

Suppose that n = 1. Then Z1 ⊂ SuppΔ and so C · Ẽ = 0. Here we note
that Δ is a big divisor since S is affine and SuppΔ = X \ S̃. So Δ is neither an
admissible rational rod nor an admissible rational fork. Since the coefficient of
Z1 in D# < 1, we see that Z1 is a component of an admissible maximal rational
twig in Δ. We know that ε∗(C|S̃) ∼= C. In particular, e(ε∗(C|S̃)) = 1.
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Suppose that n = 2. Since C · Δ > 0, we may assume that Z1 ⊂ SuppΔ.
Then Z1 is a component of an admissible maximal rational twig in Δ (see the pre-
ceding paragraph). Let Ai (i = 1, 2) be the connected component of Supp(BkB)
containing Zi. By [17, Lemma 2.3.7.1 (p. 97)], A1 �= A2. Moreover, we infer
from [17, Lemma 2.3.7.1] and its proof (see also [17, 2.3.8 (p. 101)]) that A2 is an
admissible rational rod or fork. So A2 = Ẽi for some i, r+1 ≤ i ≤ q. We see that
ε∗(C|S̃) is a topologically contractible curve on S. In particular, e(ε∗(C|S̃)) = 1.

Case 2: C is an irreducible component of B. Since C · (B# + KX) < 0, C is
not a component of Supp(BkB). So the coefficient of C in B# equals one. If
g(C) > 0, then we have

0 > C · (B# + KX) = C · (C + KX) + C · (B# − C) ≥ C · (C + KX) ≥ 0,

which is a contradiction. Hence g(C) = 0. Let Z1, . . . , Zn be all the irreducible
components of B − C meeting C and let αi (1 ≤ i ≤ n) be the coefficient of Zi

in B#. If αi < 1, then Zi is one of the terminal components of an admissible
maximal rational twig Ai in B and Zi is not a tip if Ai is reducible. We infer
from [17, p. 89] that αi = 1− 1

mi
, where mi is an integer ≥ 2. So 1

2 ≤ αi ≤ 1 for
every i = 1, . . . , n. Since C · (B# + KX) < 0, we have

2 = −C · (C + KX) > C · (B# − C) =
n∑

i=1

αiC · Zi.

In particular, n ≤ 3.
Suppose that n = 3. Since

2 > C · (α1Z1 + α2Z2 + α3Z3) ≥ 1
2
C · (Z1 + Z2 + Z3),

we know that C ·Zi = 1 and αi < 1 for i = 1, 2, 3. Hence Zi is one of the terminal
components of an admissible maximal rational twig Ai in B. Since the intersec-
tion matrix of C + A1 + A2 + A3 is negative definite, it follows from [17, Lemma
2.3.4.1 (pp. 90–91)] and [17, Remark 2.3.4.3 (p. 93)] that C + A1 + A2 + A3 is an
admissible rational fork in B. This contradicts C �⊂ Supp(BkB).

Suppose that n = 2. Since

2 > C · (α1Z1 + α2Z2) ≥ 1
2
C · (Z1 + Z2),

we may assume that α2 < 1. Then Z2 is one of the terminal components of an
admissible maximal rational twig A2 in B and Z2 is not a tip if A2 is reducible.
In particular, C · Z2 = 1. Since 2 − 1

2 > α1C · Z1, we know that C · Z1 = 1.
Indeed, if C · Z1 ≥ 2, then α1 = 1 and 2 − 1

2 > α1C · Z1 ≥ 2, a contradiction.
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Since, for any (−1)-curve E ⊂ SuppB, E · (B − E) ≥ 2 and the equality holds
then E meets a unique irreducible component of B −E, we know that C2 ≤ −2.
Then C is a component of Supp(BkB), which is a contradiction.

Suppose that n = 1. Then 2 > α1C · Z1. If C2 = −1, then C · Z1 ≥ 2
because C · (B − C) ≥ 2. So α1 = 1, a contradiction. Assume that C2 ≤ −2. If
C ·Z1 ≥ 2, then α1 = 1, a contradiction. If C ·Z1 = 1, then C is a component of
Supp(BkB), a contradiction.

Finally suppose that n = 0. Then C is an isolated component of B. Since
Δ is a big divisor, C is a connected component of SuppẼ. Since ε : S̃ → S is a
minimal good resolution, C is not a (−1)-curve. Then C2 ≤ −2 and so C is a
component of Supp(BkB), a contradiction.

As seen from the arguments as in Cases 1 and 2, we know that C is a (−1)-
curve and C �⊂ SuppB.

Now, let f1 : X → X ′ be the composite of the contraction of C and con-
tractions of all subsequently (smoothly) contractible components of Supp(BkB).
Namely, f1 is an operation (C) which is explained below (see before Lemma
3.1). Let Δ′ be the connected component of Supp((f1)∗(B)) containing (f1)∗(Δ).
Further, let f2 : X ′ → X1 be a successive contractions of (−1)-curves in
Supp(Δ′) such that (f2)∗(Δ′) is an SNC-divisor and that, for any (−1)-curve
E′ ⊂ Supp((f2)∗(Δ′)), either E′ · ((f2)∗(Δ′)−E′) ≥ 3 or E′ · ((f2)∗(Δ′)−E′) = 2
and E′ meets a unique irreducible component of (f2)∗(Δ′)−E′. Namely, f2 is an
operation (A) which is explained below (see before Lemma 3.1). Let f = f2 ◦ f1,
B1 = f∗(B), Ẽ1 = f∗(Ẽ), Ẽ1,i = f∗(Ẽi) for i = 1, . . . , q and Δ1 = (f2)∗(Δ′).

Claim.

(1) B1 is an SNC-divisor.

(2) Each connected component of f(Supp(BkB)) is an admissible rational twig,
rod or fork.

(3) f∗(Bk B) ≤ Bk (B1) and f∗(B# + KX) ≥ B#
1 + KX1 .

(4) C · Ẽ = 0 or 1. If C · Ẽ = C · Ẽi = 1 for some i, then i ≥ r +1. In particular,
Ẽ1, . . . , Ẽr are not changed by f .

(5) Let ε1 : X1 → X1 be the contraction of Supp(Bk (B1)) ∪ (∪r
i=1Ẽ1,i) and let

S1 = X1 \ ε1(Δ1). Then S1 is an affine open subset of S and S \ S1 is a
topologically contractible curve and contains at most one singular point of
S, which is a quotient singular point.

Proof. The assertions (1)–(3) follow from [17, Lemma 2.3.7.1 (p. 97)]. The as-
sertion (4) follows from the argument as above. As for the assertion (5), we infer
from the argument as above that S \ S1 contains at most one singular point of
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S, which is a quotient singular point. Since S has only rational singular points
on S \S1, we infer from [3, Theorem 2] that S1 is an affine open subset of S.

For an SNC-pair (X,B), its almost minimal model (V,D) is obtained by a
composite of the following operations (cf. [17, Chapter 2, 3.11]):

(A) Contract all possible superfluous exceptional components of B, where a com-
ponent E of B is called a superfluous exceptional component if E is a (−1)-
curve, E · (B −E) ≤ 2 and the equality holds then E meets just two compo-
nents of B − E;

(B) If there are no superfluous exceptional components in B, then construct B#

for the divisor B;

(C) Find a (−1)-curve C such that C �⊂ SuppB, C · (B# + KX) < 0 and the
intersection matrix of C +Bk B is negative definite. If there exists none then
we are done. If there exists one, consider the contraction σ : X → X1 of C

and all possible (smoothly) contractible components of Supp(BkB), and let
B1 = σ∗(B);

(D) Repeat the operations (A), (B) and (C) all over again.

We note that, under our assumption that ε : S̃ → S is a minimal good res-
olution, Ẽ = Ẽ1 + · · · + Ẽq = ε−1(SingS) contains no superfluous exceptional
components.

By virtue of the above argument, we obtain the following lemma.

Lemma 3.1. With the same notations and assumptions as above, let μ : X → V

be a birational morphism such that (V,D) (D = μ∗(B)) is an almost minimal
model of (X,B). Let D be the connected component of D containing μ∗(Δ).
Then the following assertions hold true.

(1) The divisor D −D has negative definite intersection matrix. In fact, D −D

is contained in the image of Ẽ1 + · · · + Ẽq via μ.

(2) Let ε : V → V be the contraction of Supp(D − D), which exists by (1), and
set S := V \ Supp(ε∗(D)). Then S is an affine open subset of S and S \ S is
either an emptyset or a disjoint union of topologically contractible curves.

(3) Each irreducible component of S \ S contains at most one singular point of
S, which is a quotient singular point.

(4) The surface V \ SuppD is a Zariski open subset of S0 = X \ SuppB and
e(V \ SuppD) ≤ e(S0).

Proof. We recall that an almost minimal model of the SNC-pair (X,B) is ob-
tained by a composite of the operations (A)–(C). The birational morphism μ can
be decomposed as follows:
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μ = gA,n ◦ gC,n ◦ gA,n−1 ◦ gC,n−1 ◦ · · · gA,1 ◦ gC,1,

where gA,i (i = 1, . . . , n) is either the identity map or an operation (A) and gC,i

(i = 1, . . . , n) is an operation (C). Here we note that the SNC-divisor B = Δ+ Ẽ

contains no superfluous exceptional components (see the second paragraph of
this section). By the construction of f before Claim as above, we know that
f = gA,1 ◦ gC,1. So μ is a composite of birational morphisms which are explained
before Claim as above. Hence all the assertions follow from Claim as above.

In Lemma 3.1, we call the surface S an almost minimal model of S.

Now we prove Theorems 1.1 and 1.2. We use the same notations as above.

Lemma 3.2. With the same notations and assumptions as above, assume further
that κ(S0) ≥ 0. Let (V,D) be an almost minimal model of (X,B) (cf. Lemma
3.1). For each connected component of D that is also a connected component of
Supp(BkD) (hence it is contractible to a quotient singular point P ), denote by
GP the local fundamental group of the respective singular point P . Then

1
3
(KV + D#)2 ≤ e(V \ SuppD) +

∑

P

1
|GP | .

Proof. By (3) of Lemma 2.2, we have κ(V \ SuppD) = κ(S0) ≥ 0. The assertion
then follows from [21, Corollary 2.5 (ii)].

Proof of Theorem 1.1. Let D(1), . . . , D(�) be the set of all admissible rational
rods and forks of D and let μ′(D(i)) (i = 1, . . . , �) be the proper transform of
D(i) by μ. As seen from the construction of an almost minimal model of (X,B),
we know that every μ′(D(i)) (i = 1, . . . , �) is an admissible rational rod or fork in
B, i.e., μ′(D(i)) = Ẽj for some j, r + 1 ≤ j ≤ q. Set Qi := ε(D(i)) for i = 1, . . . , �

(see Lemma 3.1 for the definition of ε). Suppose that κ(S0) ≥ 0. We infer from
Lemma 3.2 that

1
3
(KV + D#)2 ≤ e(V \ SuppD) +

�∑

i=1

1
|GQi

| ,

where GQi
(i = 1, . . . , �) is the local fundamental group of Qi. Since � ≤ q and

e(V \ SuppD) ≤ e(S0) = e(S) − q, we have

(0 ≤)
1
3
(KV + D#)2 ≤ e(V \ SuppD) +

�∑

i=1

1
|GQi

|

≤ e(S) − q +
�

2
≤ e(S) − q

2
.
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Therefore, e(S) ≥ 0. If κ(S0) = 2, then (KV + D#)2 > 0 (cf. [9] and [17,
Chapter 2, Section 6]) and hence e(S) > q

2 ≥ 0. We consider the case κ(S0) = 0
or 1. Then (KV + D#)2 = 0 (cf. [9] and [17, Chapter 2, Section 6]). If e(S) = 0,
then q = 0 and so S is smooth. If κ(S) = 1, then we infer from [17, Theorem
2.6.1.5 (p. 175)] (see also [9]) that S = S0 has a structure of C∗-fibration. As-
sume that κ(S) = 0. We infer from [12] that S is isomorphic to C∗ × C∗ or
H[−1, 0,−1]. As seen from the constructions of C∗ × C∗ or H[−1, 0,−1] in [2,
Section 8], we know that S has a structure of C∗-fibration. The assertions (1)–(4)
are thus verified.

We consider the case where e(S) ≤ 0 and κ(S0) = −∞ and prove the as-
sertion (5). If S is smooth, then S is affine ruled (cf. [17, Theorem 3.1.3.2 (p.
194)]). We assume further that q > 0. Since S is affine and V \ SuppD ⊂ S0, we
know that if V \ SuppD is affine ruled then so is S. Suppose that V \ SuppD is
not affine ruled. By [17, Theorem 2.5.1.2 (p. 143)], which is originally proved in
[19], the surface V \ SuppD is a Platonic C∗-fiber space (for the definition, see
[17, Chapter 2, Section 5] or [19]). So, e(V \SuppD) = 0. On the other hand, by
Lemma 3.1, we have 0 = e(V \ SuppD) ≤ e(S0) = e(S) − q ≤ −q < 0. This is a
contradiction. This proves the assertion (5).

Proof of Theorem 1.2. Assume that e(S) ≤ 0 and κ(S0) ≥ 0. Then S is smooth,
e(S) = 0 and κ(S) ≤ 1 by (1)–(3) of Theorem 1.1. If κ(S) = 0, then S is iso-
morphic to C∗ × C∗ or H[−1, 0,−1] (cf. Proof of Theorem 1.1). So P 2(S) > 0
by [12]. Assume that κ(S) = 1. Since S is smooth affine surface with e(S) = 0,
it follows from [14, Lemma 3.1 and Remark 3.2] that P 2(S) > 0. This proves
Theorem 1.2.

4. Proof of Theorem 1.3

In this section, we prove Theorem 1.3.
Let X be a normal complete rational surface of Picard number one and B a

non-empty reduced algebraic curve on X. Set SingX = {P1, . . . , Pn} and assume
that P1, . . . , Pk ∈ B and Pk+1, . . . , Pn �∈ B. Let μ : X̃ → X be a minimal good
resolution of X, Ẽi = μ−1(Pi) for 1 ≤ i ≤ n and B̃ the proper transform B on
X̃. Then μ−1(B) = B̃ +

∑k
i=1 Ẽi as a reduced divisor. Let B =

∑r
i=1 Bi be the

decomposition of B into irreducible components. We use the intersection theory
given in [24]. Since ρ(X) = 1, for every two Weil divisors L1 and L2 on X, L1 is
numerically equivalent to αL2 for some rational number α. So, Bj (j = 2, . . . , r)
is numerically equivalent to ajB1 for some rational number aj . For j = 2, . . . , r,
we note that Bj �≡ 0, that Bj ·B1 ≥ 0 and that Bj ·B1 > 0 ⇐⇒ Bj ∩B1 �= ∅ (cf.
the intersection theory given in [24, Section 1]). If (B1)2 ≤ 0, then there exist no
divisors Δ such that SuppΔ ⊂ Supp(B̃ +

∑n
i=1 Ẽi) and Δ2 > 0. This is impossi-
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ble because the irreducible components of B̃ +
∑n

i=1 Ẽi generates Pic(X̃) ⊗Z Q.
So (B1)2 > 0 and aj > 0 for j = 2, . . . , r. Hence B is connected. Moreover,
S := X \ B contains no complete algebraic curves.

Let ν : V → X̃ be a composite of blowing-ups of points on SuppB̃ including
its infinitely near points such that D = ν∗(B̃ +

∑n
i=1 Ẽi)red becomes an SNC-

divisor.

Lemma 4.1. With the same notations as above, the surface S is affine.

Proof. Since ρ(X) = 1, the assertion is clear. The assertion can be verified also
by using [22, Corollary 2.6].

Lemma 4.2. Assume that κ(S \ SingS) = −∞. Then every irreducible compo-
nent of D is rational.

Proof. The assumption implies that |D+KV | = ∅. Since V is a rational surface,
it follows from [17, Lemma 2.2.2.2 (p. 73)] that every irreducible component of
D is a rational curve.

By Lemma 4.2, Theorem 1.3 is verified when κ(S \ SingS) = −∞. In partic-
ular, if e(S) < 0, then κ(S \ SingS) = −∞ by Theorem 1.1, and so Theorem 1.3
holds true.

From now on, we assume that e(S) = 0 and κ(S \ SingS) ≥ 0. Then Theorem
1.1 implies that S is smooth and κ(S) = 0 or 1.

Lemma 4.3. With the same notations and assumptions as above, assume further
that κ(S) = 0. Then every irreducible component of D is rational.

Proof. Since κ(S) = e(S) = 0, S is isomorphic to either C∗ × C∗ or the sur-
face H[−1, 0,−1] by (4) of Theorem 1.1. The assertion can be verified easily by
considering the constructions of C∗ × C∗ and H[−1, 0,−1] in [2, Section 8].

Finally we assume further that κ(S) = 1. By virtue of [17, Theorem 2.6.1.5
(p. 175)], there exists a P1-fibration Φ : V → P1 onto P1 such that Φ|S gives rise
to a C∗-fibration on S.

Suppose to the contrary that B contains an irrational curve, say B1. Let D1

be the proper transform of B1 on V . Since Φ is a P1-fibration, D1 is not a fiber
component of Φ, i.e., D1 is a horizontal component. Moreover, Φ|D1 : D1 → P1

is a morphism of degree two because FD = 2 for every fiber F of Φ and D1 is
irrational. So every component of D − D1 is a fiber component of Φ. All the
exceptional curves with respect to μ◦ν : V → X are contained in Supp(D−D1).
Hence we know that Φ induces a fibration on X whose general fiber is isomorphic
to P1. However, this contradicts ρ(X) = 1. Therefore every irrational curve in
SuppD can be contracted to a point by μ ◦ ν.

The proof of Theorem 1.3 is thus completed.
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5. Remarks on topologically contractible curves on Q-homology
planes

A Q-homology plane is, by definition, a normal surface with Betti numbers
of the affine plane C2. It is well-known that every Q-homology plane is affine and
birationally ruled (cf. [22, Theorem 1.1 (1)]). In this section, we give a following
result on topologically contractible curves on Q-homology planes.

Proposition 5.1. Let S be a Q-homology plane and C a topologically contractible
algebraic curve on S. If S \C is not smooth (i.e., SingS \ (C ∩SingS) �= ∅), then
there exists a C-fibration ϕ : S → A1 onto the affine line A1 such that C is the re-
duced part of some fiber of ϕ. In particular, κ(S \ SingS) = κ(S \ (C ∪ SingS)) =
−∞ and S has only cyclic quotient singularities.

Proof. Set S′ := S \ C. Then S′ is a normal affine surface by [22, Corollaries
2.6 and 3.2 (iv)], e(S′) = 0 and SingS′ �= ∅. It then follows from Theorem 1.1
that S′ is affine ruled and so we have a C-fibration ϕ′ on S′. Since S is affine,
this C-fibration ϕ′ can be extended to a C-fibration ϕ : S → T on S onto a
smooth curve T and C is contained in a fiber F0 of ϕ. Since S is affine ruled, it
has only cyclic quotient singular points by [16, Theorem 1]. It then follows from
[18, Theorem 2.8] (or [22, Proposition 3.3]) that T ∼= A1 and every fiber of ϕ is
irreducible. So C is the reduced part of F0.

As an easy consequence of Proposition 5.1, we obtain the following corollary.

Corollary 5.2. (cf. [1, Theorem 5.1], [4, Sublemma in the proof of Theorem 3.6])
Let S = A2/G, where G is a non-abelian, finite, small subgroup of GL(2, C). Then
S \ SingS contains no topologically contractible algebraic curves.

Proof. Since S has a non-cyclic quotient singular point, it is not affine ruled by
[16, Theorem 1]. So the assertion follows from Proposition 5.1.
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