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Abstract

1. Introduction

Throughout this paper, let k be a domain of characteristic p ≥ 0, and
k[x] = k[x1, . . . , xn] the polynomial ring in n variables over k, where n ∈ N. We
denote by AutAn the automorphism group of the affine scheme An := Spec k[x]
over k. Note that An also has a structure of affine algebraic group scheme over
k where the coproduct μ : k[x] → k[x] ⊗k k[x], the coidentity ε : k[x] → k, and
the coinverse ι : k[x] → k[x] are defined by

μ(xi) = xi ⊗ 1 + 1 ⊗ xi, ε(xi) = 0 and ι(xi) = −xi

for i = 1, . . . , n, respectively. This algebraic group scheme is called the n-
dimensional vector group and denoted by Gn

a . The set AutGn
a of automorphisms

of the group Gn
a becomes a subgroup of AutAn.

Recall that there exists a bijection AutAn � φ �→ φ∗ ∈ Autk k[x] such that
(φ ◦ ψ)∗ = ψ∗ ◦ φ∗ for each φ, ψ ∈ AutAn. Hence, we may identify AutAn with
Autk k[x]. Take any φ ∈ AutAn and set fi = φ∗(xi) for i = 1, . . . , n. Then, φ
belongs to AutGn

a if and only if the diagram

k[x]
μ−−−−→ k[x] ⊗k k[x]

φ∗
⏐⏐� ⏐⏐�φ∗⊗φ∗

k[x] −−−−→
μ

k[x] ⊗k k[x]

commutes, and hence if and only if

fi(x1 ⊗ 1 + 1 ⊗ x1, . . . , xn ⊗ 1 + 1 ⊗ xn)

= fi(x1, . . . , xn) ⊗ 1 + 1 ⊗ fi(x1, . . . , xn)
(1.1)
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holds for i = 1, . . . , n. If p = 0, then this implies that φ is a linear automorphism,
i.e.,

(f1, . . . , fn) = (x1, . . . , xn)A for some A ∈ GL(n, k).

Assume that p > 0. Then, (1.1) is equivalent to the condition that fi is a p-
polynomial, i.e., a linear combination of xpe

j for j = 1, . . . , n and e ∈ Z≥0 over k
(cf. [2, Sect. 20.3, Lemma A]). For example, Nagata [7] considered φλ ∈ AutA2

defined by

φ∗λ(x1) = x1 − 2(λx1 + x2
2)x2 − λ(λx1 + x2

2)
2, φ∗λ(x2) = x2 + λ(λx1 + x2

2)

for each λ ∈ k. If p = 2, then φλ is an element of AutG2
a.

In [10], Tanaka-Kaneta studied the structure of the group AutGn
a when p > 0

and k is an algebraically closed field, and determined a generating set for AutGn
a .

The purpose of this paper is to study AutGn
a from a different point of view.

We say that φ ∈ AutAn is elementary if there exists l ∈ {1, . . . , n} such that
φ∗(xi) = xi for all i 	= l. If this is the case, then we have

φ∗(xl) = axl + g

for some a ∈ k∗ and g ∈ k[x1, . . . , xl−1, xl+1, . . . , xn], since k is a domain. The
subgroup T(n, k) generated by all the linear automorphisms of An and all the
elementary automorphisms of An is called the tame subgroup of AutAn. When
k is a field, we know by linear algebra that every linear automorphism of An is
obtained by the composition of elementary, linear automorphisms of An. Conse-
quently, T(n, k) is generated only by the elementary automorphisms of An.

The following problem is one of the fundamental problems in Affine Algebraic
Geometry.

Problem 1.1. Does it hold that AutAn = T(n, k)?

It is well known that AutA2 = T(2, k) if k is a field by Jung [3] and van der
Kulk [4]. On the other hand, we have AutA2 	= T(2, k) whenever the domain k is
not a field due to Nagata. Actually, he showed that φa above does not belong to
T(2, k) if a does not belong to k∗∪{0} (cf. Exercise 1.6 of [7, Part 2]). Note that,
if k = k′[x3] is the polynomial ring in one variable over a field k′, then we may
regard φx3 as an automorphism of the three-dimensional affine space over k′. Na-
gata conjectured that this automorphism does not belong to T(3, k′). Recently,
Shestakov-Umirbaev [8], [9] settled this conjecture in the affirmative in the case
where k′ is of characteristic zero. This easily implies that AutA3 	= T(3, k) if
p = 0. Problem 1.1 is not solved in the other cases.

When p = 0, every element of AutGn
a is linear, and hence belongs to T(n, k)

by definition. In the case where p > 0 and k is an algebraically closed field,
Tanaka-Kaneta [10, Theorem 1] implies that AutGn

a is generated by elementary
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automorphisms belonging to AutGn
a , although they defined “elementary auto-

morphism” in a different way. In this paper, we study AutGn
a using a technique

of “reductions” of polynomial automorphisms, and give a simpler description of
the structure of AutGn

a . As a consequence of our main result (Theorem 2.2),
it follows that AutGn

a is generated by elementary automorphisms belonging to
AutGn

a if p > 0 and k is a field (Corollary 2.3). Thus, AutGn
a is contained in

T(n, k) whenever k is a field. On the other hand, φa belongs to AutG2
a if p = 2,

while φa does not belong to T(2, k) for each a ∈ k not belonging to k∗ ∪ {0} as
mentioned. Hence, AutG2

a is not contained in T(2, k) if p = 2 and k is not a
field. In Section 4, we show that the same holds for any p > 0 (Theorem 4.1).

We mention that analysis of reductions of polynomial automorphisms is of
great importance in the study of Problem 1.1. Actually, Shestakov-Umirbaev [9]
constructed a powerful theory of reductions of polynomial automorphisms, from
which they derived that AutA3 	= T(3, k) (see also [5]). The results of this paper
may have some significance in constructing a similar theory in the case of p > 0.

The author would like to thank Prof. Eric Edo and the referee for useful
comments.

2. Main result

Let Γ be a totally ordered additive group, i.e., an additive group equipped
with a total ordering such that α ≤ β implies α+ γ ≤ β + γ for each α, β, γ ∈ Γ.
Let w = (w1, . . . , wn) be an n-tuple of elements of Γ. We define the w-weighted
Γ-grading

k[x] =
⊕
α∈Γ

k[x]α

by setting k[x]α to be the k-submodule of k[x] generated by the monomials
xi1

1 · · ·xin
n for i1, . . . , in ∈ Z≥0 with i1w1 + · · · + inwn = α for each α ∈ Γ. Here,

Z≥0 denotes the set of nonnegative integers. Write f ∈ k[x]\{0} as f =
∑

γ∈Γ fγ ,
where fγ is an element of k[x]γ for each γ ∈ Γ. Then, we define the w-degree of
f by

degw f = max{γ ∈ Γ | fγ 	= 0}.
We define fw = fδ, where δ := degw f . If Γ = Z and wi = 1 for i = 1, . . . , n,
then the w-degree of f is the same as the total degree deg f of f .

For each φ ∈ AutAn, we define the w-degree of φ by

degw φ =
n∑

i=1

degw φ
∗(xi).

Then, the following lemma holds (cf. [6, Lemma 1.1.1]).
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Lemma 2.1. For any w ∈ Γn and φ ∈ AutAn, we have

degw φ ≥ |w| := w1 + · · · + wn.

Furthermore, it holds that degw φ = |w| if and only if φ∗(x1)w, . . . , φ∗(xn)w are
algebraically independent over k.

We say that φ ∈ AutAn admits an elementary reduction for the weight w if
there exists an elementary automorphism of An such that

degw ε ◦ φ < degw φ.

If degw φ = |w|, then φ admits no elementary reduction for the weight w by
Lemma 2.1.

The following theorem is the main result of this paper.

Theorem 2.2. Assume that n ≥ 1 and k is a field. Let Γ be any totally ordered
additive group, and let φ ∈ AutGn

a and w ∈ (Γ\{0})n be such that degw φ > |w|.
Then, there exists ε ∈ AutGn

a such that ε is elementary and degw ε◦φ < degw φ.
Hence, φ admits an elementary reduction for the weight w.

Note that φ ∈ AutA1 is defined by φ∗(x1) = ax1 + b for some a ∈ k∗ and
b ∈ k. Then, φ belongs to AutG1

a if and only if b = 0. If this is the case, we have
degw φ = |w|. Hence, Theorem 2.2 is clear if n = 1.

As a consequence of Theorem 2.2, we get the following corollary.

Corollary 2.3. If k is a field, then AutGn
a is generated by elementary automor-

phisms belonging to AutGn
a for any n ∈ N.

Proof. Since k is a field, every linear automorphism of An is a composite of
elementary linear automorphisms, and hence is a composite of elementary auto-
morphisms belonging to AutGn

a . Thus, the assertion is true if p = 0.
Assume that p > 0. Let G be the subgroup of AutAn generated by elemen-

tary automorphisms belonging to AutGn
a , and let Γ = Z and w = (1, . . . , 1).

We prove that φ belongs to G for each φ ∈ AutGn
a by induction on degw φ. By

Lemma 2.1, we have degw φ ≥ |w| = n. If degw φ = n, then φ is linear. Hence, φ
belongs to G by the discussion above. Assume that degw φ > n. By Theorem 2.2,
there exists ε ∈ AutGn

a which is elementary and satisfies degw ε ◦ φ < degw φ.
Then, ε ◦φ belongs to G by induction assumption. Thus, φ belongs to G. There-
fore, we get AutGn

a = G.

The following proposition is a key to proving Theorem 2.2.

Proposition 2.4. Assume that p > 0 and k is a field. Let f1, . . . , fr ∈ k[x] \ {0}
be p-polynomials with r ≥ 2, and Γ any totally ordered additive group. If
fw
1 , . . . , f

w
r are algebraically dependent over k for w ∈ (Γ \ {0})n, then there
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exist l ∈ {1, . . . , r}, and ai ∈ k and ei ∈ Z≥0 for i = 1, . . . , r with i 	= l such that

degw

⎛
⎝fl +

∑
i�=l

aif
pei

i

⎞
⎠ < degw fl.

We prove Proposition 2.4 in the next section. In the rest of this section,
we show Theorem 2.2 by assuming this proposition. By the remark after The-
orem 2.2, we may assume that n ≥ 2. Let φ ∈ AutGn

a and w ∈ (Γ \ {0})n be
such that degw φ > |w|. Then, φ∗(x1)w, . . . , φ∗(xn)w are algebraically dependent
over k by Lemma 2.1. First, assume that p > 0. Then, φ∗(x1), . . . , φ∗(xn) are
p-polynomials. Thanks to Proposition 2.4, there exist l ∈ {1, . . . , n}, and ai ∈ k

and ei ∈ Z≥0 for i = 1, . . . , n with i 	= l such that the w-degree of

f := φ∗(xl) +
∑
i�=l

aiφ
∗(xi)pei

is less than degw φ
∗(xl). Define ε ∈ AutGn

a by

ε∗(xl) = xl +
∑
i�=l

aix
pei

i

and ε∗(xi) = xi for i 	= l. Then, ε is elementary and

degw ε ◦ φ =
n∑

i=1

degw(φ∗ ◦ ε∗)(xi) = degw f +
∑
i�=l

degw φ
∗(xi)

< degw φ
∗(xl) +

∑
i�=l

degw φ
∗(xi) =

n∑
i=1

degw φ
∗(xi) = degw φ.

Thus, Theorem 2.2 holds when p > 0.
Next, assume that p = 0. Then, φ is a linear automorphism. Hence,

φ∗(x1)w, . . . , φ∗(xn)w are nonzero linear combinations of x1, . . . , xn over k.
Since φ∗(x1)w, . . . , φ∗(xn)w are algebraically dependent over k, it follows that
φ∗(x1)w, . . . , φ∗(xn)w are linearly dependent over k (cf. Lemma 3.2). Thus, there
exist l ∈ {1, . . . , n}, and ai ∈ k for i = 1, . . . , n with i 	= l such that

φ∗(xl)w +
∑
i�=l

aiφ
∗(xi)w = 0.

Then, the w-degree of

f := φ∗(xl) +
∑
i�=l

aiφ
∗(xi)

is less than degw φ
∗(xl). Define ε ∈ AutGn

a by



84 S. Kuroda

ε∗(xl) = xl +
∑
i�=l

aixi

and ε∗(xi) = xi for i 	= l. Then, ε is elementary, and degw ε◦φ < degw φ as above.
Hence, Theorem 2.2 holds when p = 0. This proves Theorem 2.2 by assuming
Proposition 2.4.

3. Proof of Proposition 2.4

The goal of this section is to prove Proposition 2.4. Throughout, assume
that p > 0 and k is a field, and let Γ be a totally ordered additive group, and
w = (w1, . . . , wn) an element of (Γ \ {0})n. We denote by k[x]′ the set of p-
polynomials of k[x]. Then, for each α ∈ Γ, the k-vector space k[x]′ ∩ k[x]α is
generated by xpe

i for e ∈ Z≥0 and i = 1, . . . , n such that pewi = α. Since wi 	= 0
by assumption, pewi = α holds for at most one e ∈ Z≥0 for each i. Hence, xpe

i

belongs to k[x]α for at most one e ∈ Z≥0 for each i. Therefore, the monomials
contained in k[x]′ ∩ k[x]α are algebraically independent over k.

Lemma 3.1. For any α ∈ Γ and f1, . . . , fr ∈ k[x]′∩k[x]α, it holds that f1, . . . , fr

are linearly independent over k if and only if f1, . . . , fr are algebraically indepen-
dent over k.

The “if” part of Lemma 3.1 is obvious. For the “only if” part, it suffices to
prove the following lemma by the discussion above.

Lemma 3.2. Let f1, . . . , fr, g1, . . . , gs ∈ k[x] be such that f1, . . . , fr are alge-
braically independent over k, and g1, . . . , gs are linear combinations of f1, . . . , fr

over k. If g1, . . . , gs are linearly independent over k, then g1, . . . , gs are alge-
braically independent over k.

Proof. Let V be the k-vector space generated by f1, . . . , fr. Then, g1, . . . , gs

belong to V . Since g1, . . . , gs are linearly independent over k, there exist
gs+1, . . . , gr ∈ V such that g1, . . . , gr form a basis of V . Then, we have
k(g1, . . . , gr) = k(f1, . . . , fr). Since f1, . . . , fr are algebraically independent over
k, this implies that g1, . . . , gr are algebraically independent over k. Therefore,
g1, . . . , gs are algebraically independent over k.

For each f ∈ k[x]′ \ {0}, we define S(f) to be the set of i ∈ {1, . . . , n} such
that xpe

i appears in fw with nonzero coefficient for some e ∈ Z≥0. Then, fw

belongs to k[{xi | i ∈ S(f)}].
Lemma 3.3. Let f, g ∈ k[x]′ \ {0} be such that S(f) ∩ S(g) 	= ∅. Then, we have
degw f = pe degw g for some e ∈ Z.

Proof. Take any i ∈ S(f) ∩ S(g). Then, xpa

i and xpb

i appear in fw and
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gw for some a, b ∈ Z≥0, respectively. This implies that degw f = pawi and
degw g = pbwi. Therefore, we have degw f = pa−b degw g.

Now, let us prove Proposition 2.4. Without loss of generality, we may assume
that degw f1 ≤ · · · ≤ degw fr. Since fw

1 , . . . , f
w
r are algebraically dependent over

k by assumption, we can find the minimal number l such that fw
1 , . . . , f

w
l are al-

gebraically dependent over k. Then, we have l ≥ 2. Actually, since f1 is a nonzero
p-polynomial, fw

1 does not belong to k, and hence is algebraically independent
over k. Put α = degw fl, and define I to be the set of i ∈ {1, . . . , l} such that
pei degw fi = α for some ei ∈ Z≥0. Then, l belongs to I, since pel degw fl = α

holds for el = 0. Hence, we have

J := {1, . . . , l} \ I = {1, . . . , l − 1} \ I. (3.1)

We show that

S :=
⋃
i∈I

S(fi) and T :=
⋃
j∈J

S(fj)

are disjoint by contradiction. Suppose that S ∩ T 	= ∅. Then, we have
S(fi) ∩ S(fj) 	= ∅ for some i ∈ I and j ∈ J . By Lemma 3.3, it follows that
degw fi = pe degw fj for some e ∈ Z. Since i is an element of I, we have
pei degw fi = α. Hence, we get pei+e degw fj = α. Since j ≤ l, we have
degw fj ≤ degw fl = α. This implies that ei + e ≥ 0. Thus, j belongs to I,
a contradiction. Therefore, we have S ∩ T = ∅. By the definition of S and
T , we see that fw

i belongs to k[{xi | i ∈ S}] for each i ∈ I, and fw
j belongs

to k[{xj | j ∈ T}] for each j ∈ J . Since S ∩ T = ∅ and fw
1 , . . . , f

w
l are alge-

braically dependent over k, it follows that fw
i ’s for i ∈ I, or fw

j ’s for j ∈ J must
be algebraically dependent over k. By the minimality of l, the latter case does
not occur due to (3.1). Hence, fw

i ’s for i ∈ I are algebraically dependent over
k. Then, (fw

i )pei ’s for i ∈ I are algebraically dependent over k. Since (fw
i )pei

belongs to k[x]′ ∩ k[x]α for each i ∈ I, we know by Lemma 3.1 that (fw
i )pei ’s

for i ∈ I are linearly dependent over k. Hence, there exists (ai)i∈I ∈ kI \ {0}
such that

∑
i∈I ai(fw

i )pei = 0. On the other hand, fw
i ’s for i ∈ I ′ := I \ {l}

are algebraically independent over k by the minimality of l. Hence, (fw
i )pei ’s for

i ∈ I ′ are algebraically independent over k, and so linearly independent over k.
Thus, we may assume that al = 1. Since el = 0, it follows that

fw
l +

∑
i∈I′

ai(fw
i )pei = 0.

This gives that

fl +
∑
i∈I′

aif
pei

i = fl +
∑
i∈I′

aif
pei

i −
(
fw

l +
∑
i∈I′

ai(fw
i )pei

)
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= (fl − fw
l ) +

∑
i∈I′

ai

(
fpei

i − (fpei

i )w
)
.

Since degw f
pei

i = degw fl = α for each i ∈ I, the w-degree of the right-hand side
of this equality is less than degw fl. This completes the proof of Proposition 2.4.

4. The case where k is not a field

In this section, we show that AutG2
a is not contained in T(2, k) if p > 0 and

k is not a field. Take any λ ∈ k \ (k∗ ∪ {0}). Then, φ ∈ AutG2
a is defined by

φ∗(x1) = x1 − λp−1(λx1 + xp
2)

p, φ∗(x2) = x2 + λ(λx1 + xp
2).

Actually, noting φ∗(λx1 + xp
2) = λx1 + xp

2, we can check that φ−1 is defined by

x1 �→ x1 + λp−1(λx1 + xp
2)

p, x2 �→ x2 − λ(λx1 + xp
2).

If p = 2, then φ is the same as φλ defined in Section 1, and hence does not belong
to T(2, k) as mentioned. We show that φ does not belong to T(2, k) in the general
case. Let Γ = Z and w = (1, 1). Then, we have degw φ

∗(x1) = pdegw φ
∗(x2).

Now, suppose that φ belongs to T(2, k). Then, we have φ∗(x1)w = α(φ∗(x2)w)p

for some α ∈ k (cf. [1, Proposition 1]). Since φ∗(x1)w = −λp−1xp2

2 and
φ∗(x2)w = λxp

2, it follows that −λp−1 = αλp, and hence λ(−α) = 1. Thus,
λ belongs to k∗, a contradiction. Therefore, φ does not belong to T(2, k).

By the discussion above, we get the following theorem.

Theorem 4.1. If p > 0 and k is not a field, then AutG2
a is not contained in

T(2, k).

Because of this theorem, it seems better to define the “tame subgroup” of
AutAn to be the subgroup generated by all the elementary automorphisms of An

and the automorphisms of Gn
a . Let us denote this subgroup by T′(n, k). Then,

we have T′(n, k) = T(n, k) if p = 0 or k is a field by Corollary 2.3, while T(2, k)
is a proper subgroup of T′(2, k) if p > 0 and k is not a field. In the case where
n ≥ 3, p > 0 and k is not a field, we do not know whether T′(n, k) = T(n, k). We
also do not know whether AutAn = T′(n, k) if n ≥ 2 and p > 0.
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