
Saitama Math. J.
Vol. 30 (2013), 1–14

1

Extremal hyperelliptic fibrations on rational surfaces

Shinya Kitagawa

(Received 6 January, 2013; Revised 8 October, 2013; Accepted 8 October, 2013)

Abstract

The Picard number of a rational surface equipped with a relatively minimal

fibration is bounded in terms of the genus g of a general fibre. When the Picard

number attains the maximum for g ≥ 2, we give necessary and sufficient conditions

for the Mordell-Weil group of such a fibred surface to be trivial.

1. Introduction

The theory of the Mordell-Weil lattices are sufficiently developed by Ogu-
iso and Shioda in [7] for minimal elliptic rational surfaces. In their work, the
even unimodular root lattice E8 of rank eight played very important role as the
predominant frame. For example, it was shown that the Mordell-Weil group is
trivial if and only if there exists a singular fibre of type II∗ in the sense of Kodaira
[11] whose dual graph contains E8 as a subgraph. The lattice E8 also appears
in another application by Shioda [17] to describe a hierarchy of deformations of
rational double points.

Let X be a smooth projective rational surface and f : X → P1 a relatively
minimal fibration whose general fibre is a projective curve of genus g ≥ 2. We
know the Picard number ρ(X) is less than or equal to 4g + 6 (cf. [15, Theo-
rem 2.8]), and consider the case ρ(X) = 4g+ 6. Then the maximal Mordell-Weil
lattice is isomorphic to the unimodular lattice called D+

4g+4 in [2, §7, Ch. 4] of
rank 4g + 4 (cf. [15, Theorem C] and [6, Theorem 2.4]). Furthermore, Saito [14,
Remark 4.2] gives an example of f : X → P1 whose Mordell-Weil group is trivial
and which has an extension of a singular fibre of type II∗. Since D+

8 = E8, we
expect an application similar to the elliptic case.

The goal of this paper is to prove Theorem 3.1, which gives necessary and
sufficient conditions for the Mordell-Weil group of f to be trivial by singular fibres
of f , by defining equations, and so on. For example, the defining equations in
(5b) of Theorem 3.1 are of branch divisors on P1×P1 of the double cover induced
by the relative canonical map when g ≥ 2. This case is also characterized by the
dual graph of a reducible fibre in (2a) of Theorem 3.1, which is the same type as
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in [14, Remark 4.2]. It is a generalization of one of the extremal elliptic cases [12]
(see also [13]). The condition (3) of Theorem 3.1 seems like an interesting prop-
erty as follows. In the case where g = 2 and ρ(X) = 14, from Theorem 2.2 and
(3) of Theorem 3.1, we have that there exist no birational morphisms X → P2

if and only if the Mordell-Weil group of f is trivial. Here we note that for any
fibred rational surface of genus two whose Picard number is less than fourteen,
there exists a birational morphism from the surface to P2 (cf. [1, § 10.5], [9] and
[3]).

2. Preliminaries

We briefly review basic notation and results on fibred rational surfaces and
Mordell-Weil lattices. Here, a fibred rational surface means a smooth projective
rational surface X/C together with a relatively minimal fibration f : X → P1

whose general fibre F is a smooth projective curve of genus g ≥ 1. In particular,
any fibre of f is connected and contains no (−1)-curves as components. Since X
is rational, the first Betti number of X equals zero. The second Betti number of
X is equal to the Picard number ρ(X) since the geometric genus of X is zero.
Hence, we see that ρ(X) = 10−K2

X = 4g+6−(KX +F )2 from Noether’s formula.
The adjoint divisor (KX + F ) is nef when g ≥ 2 (cf. [10, Lemma 1.1]). Thus we
have that ρ(X) ≤ 4g + 6.

Via f , we can regard X as a smooth projective curve of genus g defined over
the rational function field K = f∗C(P1). We assume that it has a K-rational
point O. Let JF/K be the Jacobian variety of the generic fibre F/K of f . The
Mordell-Weil group of f is the group of K-rational points JF (K). It is a finitely
generated abelian group, since X/C is a rational surface. The rank rkJF (K) of
the group is called the Mordell-Weil rank. From [16] and [18], it is given by

rkJF (K) = ρ(X) − 2 −
∑
t∈P1

(vt − 1),(2.1)

where vt denotes the number of irreducible components of the fibre f−1(t). There
is a natural one-to-one correspondence between the set of K-rational points F(K)
and the set of sections of f . For P ∈ F(K), we denote by (P ) the section corre-
sponding to P which is regarded as a horizontal curve on X. In particular, (O)
corresponding to the origin O of JF (K) is called the zero section. Shioda’s main
idea in [16] and [18] is to view the free part of JF (K) as a Euclidean lattice with
respect to a natural pairing induced by the intersection form on H2(X). The lat-
tice is called the Mordell-Weil lattice of f and is denoted by MWL(f). In fact, by
describing the Néron-Severi group NS(X), we can explicitly determine the struc-
ture of MWL(f) as follows: Let T be the subgroup of NS(X) generated by (O)
and the irreducible components of the fibres of f . When we equip NS(X) and T
with the bilinear form which is (−1) times of the intersection form, we call them
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the Néron-Severi lattice NS(X)− and the trivial lattice T− respectively. Since X
is a rational surface, NS(X)− is a unimodular lattice, that is, the absolute value
of the determinant of the Gram matrix equals one. Then the following holds.

Theorem 2.1 ([16], [18]). Keep the notation and assumptions as above. Put
T̂ = (T ⊗ Q) ∩ NS(X). Then

JF (K) � NS(X)/T, JF (K)tor � T̂ /T.

Let L be the orthogonal complement (T−)⊥ ⊂ NS(X)−. Then the dual lattice

L∗ = {x ∈ L⊗ Q | 〈x, y〉L⊗Q ∈ Z, ∀y ∈ L}

is isomorphic to MWL(f).

Now, for a non-negative integer d, we put

Σd = {((X0 : X1 : X2), (Y0 : Y1))|X1Y
d
1 = X2Y

d
0 } ⊂ P2 × P1

and call it Hirzebruch surface of degree d. The restriction of the second projection
to Σd gives a structure of P1-bundle. We also remark that Σ0 � P1 × P1. Con-
versely, any P1-bundle over P1 is isomorphic to Σd for some d. We often consider
on the Zariski open subset defined by X0Y0 �= 0 and take (x, y) = (X1/X0, Y1/Y0)
as an affine coordinate. Let Δ[d] be a minimal section of Σd defined by x = 0
and Γ[d] the fibre defined by y = 0. Then we have that Δ2

[d] = −d, Γ2
[d] = 0 and

Δ[d].Γ[d] = 1.
To clarify the structure of the Mordell-Weil lattice, we choose a ruling on X

and its relatively minimal model Σd carefully so that we get a natural Z-basis
of NS(X) which gives us a simple presentation of F . This is done by choosing
a birational morphism μ : X → Σd which contracts step by step a (−1)-curve
whose intersection number with F is the smallest among all (−1)-curves. When
d = 0, we may assume that Γ[0].μ∗F < Δ[0].μ∗F without loss of generality. We
call a (−1)-curve E on X a (−1)-section of f if E.F = 1. When g = 1, f has a
(−1)-section if and only if f has no multiple fibres (e.g., [12] and [13]).

Theorem 2.2 (cf. [15, Theorem 4.1] and [6, Theorem 2.4]). Let X be a
smooth rational surface and f : X → P1 a relatively minimal fibration of genus
g ≥ 1. Assume that ρ(X) = 4g + 6 and f has no multiple fibres when g = 1.
Then there exists a birational morphism μ : X → Σd with d ≤ g+1 such that the
following conditions (i), (ii) hold.

(i) μ∗F is linearly equivalent to (2Δ[d] + (g + d+ 1)Γ[d]).

(ii) The pull-back to X of a (−1)-curve contracted by μ intersects with F at just
one point.
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In particular, f has at least one (−1)-section and F is a hyperelliptic curve when
g ≥ 2.

Proof. When g = 1, the assertion is well-known. In particular, we have
that f is the anti-canonical map Φ|−KX | from the canonical bundle formula and
the assumption, where |D| means the complete linear system of D.

Assume that g ≥ 2. From ρ(X) = 4g + 6 and [10, Remark 1.1], we have
KX + F ∼ (g − 1)D with D2 = 0, where the symbol ∼ means the linear equiv-
alence of divisors. Furthermore, |D| is a base-point-free pencil of rational curves
on X. We take a relatively minimal model of X with respect to Φ|D| and consider
the image of F . Then we perform a succession of elementary transformations ([4])
at singular points of the image of F to arrive at a particular relatively minimal
model called a #-minimal model in [5]. Let μ : (X,F ) → (Σd, μ∗F ) be a bira-
tional morphism to a #-minimal model of (X,F ). Then we have that μ satisfies
the conditions (i), (ii) from F.D = 2 and properties of #-minimal model.

When g = 1 and f has no multiple fibres, we have F.R = −KX .R = 2 for all
rulings on X with R as general fibres. Therefore,

(
f,Φ|R|

)
: X → Σ0 := P1 × P1

is a generically finite double cover, where
(
f,Φ|R|

)
is the morphism satisfying

f = pr1 ◦
(
f,Φ|R|

)
and Φ|R| = pr2 ◦

(
f,Φ|R|

)
, and the branch divisor is linearly

equivalent to (4Δ[0] + 2Γ[0]).
We assume that g ≥ 2 and ρ(X) = 4g + 6. Any fibred rational surface

f : X → P1 can be considered as a subpencil Λ ⊂ |2Δ[d] +(d+g+1)Γ[d]| through
a birational morphism as in Theorem 2.2. Conversely, any fibred rational surface
is obtained from a subpencil Λ ⊂ |2Δ[d] +(d+g+1)Γ[d]| by blowing Σd up at the
(4g+4) base points. Let (O) be a (−1)-section of f and U− a sublattice generated
by (O) and F in NS(X)−. Then the orthogonal complement (U−)⊥ ⊂ NS(X)−

is isomorphic to the unimodular lattice called D+
4g+4 in [2, §7, Ch. 4] of rank

4g + 4, which contains D4g+4 as the maximal root sublattice at index two. Fur-
thermore, all fibres of f are irreducible if and only if T = U , and then we have
MWL(f) � D+

4g+4 from Theorem 2.1. This case was studied in [15].
We take a birational morphism μ : X → Σd as in Theorem 2.2. We have

that (KX +F ) ∼ (g−1)μ∗Γ[d] and consider the ruling Φ|(KX+F )/(g−1)| : X → P1,
that is, Φ|Γ[d]| ◦ μ : X → P1. All (−1)-sections of f and (−2)-curves contained in
fibres of f do not intersect with (KX +F ). Hence they are components of degen-
erate fibres of the ruling Φ|(KX+F )/(g−1)|. Conversely, irreducible components of
degenerate fibres of Φ|(KX+F )/(g−1)| is obtained from base points of a subpencil
Λ ⊂ |2Δ[d] + (d+ g + 1)Γ[d]|. Therefore, we have the following.

Corollary 2.3 ([10, Remark 1.1]). Assume that g ≥ 2 and ρ(X) = 4g + 6.
Then any degenerate fibre of the ruling Φ|(KX+F )/(g−1)| : X → P1 consists of k
(−2)-curves contained in a fibre of f and one or two (−1)-sections of f . The
dual graph of the configuration has Dynkin diagram of a root lattice Ak+2 as in
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Figure 1 or Dk+1 as in Figure 2. Here the numbers without the circles denote the
multiplicities of components in the degenerate fibre. Conversely, (−1)-sections of
f and (−2)-curves contained in fibres of f are components of degenerate fibres of
the ruling Φ|(KX+F )/(g−1)| : X → P1.

Type Ak+2 :

Case k = 0

1 1� �
1 1

Case k ≥ 1

1 1� � � � � � �
1 1

k

1 1

Figure 1.

Type Dk+1 :

Case k = 2

1� � �
1 2 1

Case k ≥ 3

1

�

� � � � � � � �

1

2 2

k−3

2 2 1

Figure 2.

The hyperelliptic involution of f : X → P1 naturally induces a double cover
as follows.

Corollary 2.4 ([15, § 4] and [6, § 2]). If g ≥ 2 and ρ(X) = 4g + 6, then(
f,Φ|(KX+F )/(g−1)|

)
: X → Σ0 is a generically finite double cover and the branch

divisor is linearly equivalent to ((2g+ 2)Δ[0] + 2Γ[0]). Conversely, the finite dou-
ble cover of Σ0 branched along a reduced curve which is linearly equivalent to
((2g + 2)Δ[0] + 2Γ[0]) with a minimal resolution of the singularity gives a hyper-
elliptic fibration of genus g on a smooth rational surface whose Picard number is
(4g + 6).

3. Main theorem

Let X be a smooth projective rational surface with ρ(X) = 4g + 6 and
f : X → P1 a relatively minimal fibration of genus g ≥ 1. When g = 1, we
assume that f has no multiple fibres, or f has a section. Miranda and Persson
[12] studied extremal rational elliptic surfaces, where “extremal” means that the
Mordell-Weil rank of f is zero (see also [13]). Since f always has a section from
Theorem 2.2, we are interested in the Mordell-Weil group and lattice of f . In
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this section we consider the case where the Mordell-Weil group of f is trivial and
prove the following theorem.

Theorem 3.1. Let X be a smooth rational surface and f : X → P1 a rela-
tively minimal fibration of genus g ≥ 1. Assume that ρ(X) = 4g+6 and f has no
multiple fibres when g = 1. Put K = f∗(C(P1)). Then the following conditions
are equivalent to each other.

(1) The Mordell-Weil group of f is trivial.

(2a) f has a reducible fibre whose dual graph is as in Figure 3. Here �is a

(−2)-curve, g + 1 is a (−g− 1)-curve and the numbers without the circles
denote the multiplicities of components in the reducible fibre.

�

� � � � � � � � � g + 1

2g+1

1 2

4g−1

4g 4g+1 4g+2 2g+2

2

Figure 3.

(2b) f has a reducible fibre whose dual graph contains, as a subgraph, the extended
Dynkin diagram of the unimodular integral lattice D+

4g+4 as in Figure 4.

�

� � � � � � � � � g + 1

4g−2

Figure 4.

(3) X has a unique ruling and possibilities of its relatively minimal models are
Hirzebruch surfaces Σg of degree g and Σg+1 of degree g + 1 only.

(4a) f : X → P1 is obtained from Σg by eliminating the base points of the follow-
ing pencil Λ: Let Δ[g] be the minimal section and Γ[g],0 a fibre of Σg. Take a
curve H[g] which is linearly equivalent to (2Δ[g] +(2g+1)Γ[g],0) and which is
tangent to Γ[g],0 at the intersection point of Γ[g],0 with Δ[g]. Then the pencil
Λ is defined by (2Δ[g] + (2g + 1)Γ[g],0) and H[g].

(4b) There exist elements t, x, y in C(X) and complex numbers ci,j, i = 0, 1, 2,
j = 0, 1, . . . , ig + 1 such that they satisfy the following:

• C(X) = C(x, y) and K = C(t).
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• x2y2g+1 = t
∑
ci,jx

iyj, c1,0 = c0,0 = 0 and c2,0c0,1 �= 0.

(5a) f : X → P1 is obtained from Σ0 = P1 ×P1 as follows: Let Δ[0],0 be a section
of Σ0 with Δ[0],0

2 = 0 and Γ[0],0 a fibre of Σ0. Take a curve B[0],0 which
is linearly equivalent to ((2g + 1)Δ[0],0 + Γ[0],0) and which has a contact of
order (2g + 1) with Γ[0],0 at the intersection point of Γ[0],0 with Δ[0],0. Let
π� : X� → Σ0 be the finite double cover branched along (Δ[0],0+Γ[0],0+B[0],0).
Then X� has only one rational double point of type D4g+4 as its singular-
ity. Let ς : X → X� be a minimal resolution of the singularity. Define
f : X → P1 as the composite of π� ◦ ς : X → Σ0 and the projection Φ|Γ[0],0|
of Σ0.

(5b) There exist (2g+1) complex numbers b1,1, . . . , b1,2g+1, two non-zero complex
numbers b0,2g+1, b1,0 and t in K such that the followings hold: K = C(t) and
C(X) is isomorphic to the quotient field of C[t, y, z]/(ψ(t, y, z)), where

ψ(t, y, z) = z2 − ty(b0,2g+1y
2g+1 + b1,0t+ ty

∑2g+1
j=1 b1,jy

j−1).

In order to show Theorem 3.1, we prove some lemmas. As a first step, we
show that the conditions (2a), (4a), (4b), (5a) and (5b) are equivalent to each
other. As a second step, we show Lemmas 3.4–3.7 below, which induce that
(1) ⇔ (2a) and (2a) ⇔ (3). As a final step, we deduce (2a) ⇔ (2b).

Lemma 3.2. Assume that f has a reducible fibre F0 whose dual graph is as
in Figure 3. Then there exists a birational morphism μ : X → Σg such that the
images by μ of the fibres of f forms the pencil Λ as in (4a) of Theorem 3.1.

Proof. Let Θk, k = 0, 1, · · · , 4g + 4 be components of the reducible fibre
F0 such that

(Θi−1.Θj−1)1≤i,j≤4g+5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 · · · 0 0 0 0

1 −2
. . . . . .

...
...

...
...

0
. . . . . . 1 0

...
...

...
...

. . . 1 −2 1 0 0 0
0 · · · 0 1 −2 1 1 0
0 · · · · · · 0 1 −2 0 1
0 · · · · · · 0 1 0 −2 0
0 · · · · · · 0 0 1 0 −g − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We know that f has a (−1)-section E4g+4 from Theorem 2.2. Since Θ0 is a
unique component whose multiplicity in F0 is one, E4g+4 intersects with Θ0. Let
μ be the birational morphism contracting E4g+4,Θ0,Θ1, . . . ,Θ4g+2 in turn. Then
(μ∗Θ4g+3)2 = 0 and (μ∗Θ4g+4)2 = −g. Since ρ(X) = 4g + 6, the image of X
by μ is Σg, and we have that μ∗Θ4g+3 is a fibre of Σg and μ∗Θ4g+4 = Δ[g]. Let
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Γ[g],0 be the fibre μ∗Θ4g+3. In fact, μ is a birational morphism as in Theorem 2.2,
where d = g. We take the image by μ of a general fibre of f and denote it by
H[g]. Then the assertion follows.

Lemma 3.3. The conditions (2a), (4a), (4b), (5a) and (5b) of Theorem 3.1
are equivalent to each other.

Proof. (5a) ⇒ (2a) comes from a standard calculation for a double cover.
Lemma 3.2 states (2a) ⇒ (4a). Now, by taking t and y as coordinates of the first
component and the second one of Σ0 = P1 × P1 respectively, ψ(t, y, 0) = 0 in
(5b) of Theorem 3.1 defines a branch divisor of a double cover ς ◦π� : X → Σ0 in
(5a). Furthermore, C[t, y, z]/(ψ(t, y, z)) is an affine coordinate ring of the surface
obtained from the finite double cover of Σ0 whose branch divisor is defined by
ψ(t, y, 0) = 0. Therefore, (5a) follows from (5b). Conversely, we suppose (5a).
We may assume that the intersection point of Δ[0],0 and Γ[0],0 is (t, y) = (0, 0)
by performing projective transformations on Σ0 if necessary. Let ψB(t, y) = 0
be a defining equation of the branch divisor (Δ[0],0 + Γ[0],0 +B[0],0) in (5a). Put
ψ(t, y, z) = z2 − ψB(t, y). Then we have (5b) from a standard calculation. Simi-
larly, we deduce (4a) ⇔ (4b).

We show that (4a) and (4b) imply (5a). We consider on the Zariski open
subset defined by X0Y0 �= 0 in Σg. Then the pencil Λ as in (4a) is defined by

{x2y2g+1 = t(c2,2g+1x
2y2g+1 + c2,2gx

2y2g + · · · + c2,1x
2y + c2,0x

2(3.2)

+c1,g+1xy
g+1 + c1,gxy

g + · · · + c1,1xy + c0,1y)}t∈P1 ,

where ci,j ∈ C, i = 0, 1, 2, j = 0, 1, . . . , ig+1 with c1,0 = c0,0 = 0 and c2,0c0,1 �= 0.
The meromorphic map defined by (x, y) �→ (t, y) induces the generically finite
double cover

(
f,Φ|Γ[g]|

)
: X → Σ0 by eliminating the base points of Λ. It is the

double cover as in Corollary 2.4 when g ≥ 2. Therefore, the branch divisor B of(
f,Φ|Γ[g]|

)
contains the curves defined the discriminant of the equation (3.2) for

x. On the other hand, the discriminant

ty

⎛
⎝

4c0,1y
2g+1−4c2,0c0,1 t

−4c0,1t(c2,2g+1y
2g+1 + c2,2gy

2g + · · · + c2,1y)
+ty(c1,g+1y

g + c1,gy
g−1 + · · · + c1,2y + c1,1)2

⎞
⎠

defines Δ[0],0, Γ[0],0 and a section B[0],0 of Σ0 which is linearly equivalent
to ((2g + 1)Δ[0] + Γ[0]). In fact, the discriminant is a defining equation of
B = (Δ[0],0 + Γ[0],0 + B[0],0) from Corollary 2.4. Furthermore, we see that B[0],0

has a contact of order (2g + 1) with Γ[0],0 at the intersection point (0, 0) of Γ[0],0

with Δ[0],0 by considering c2,0c0,1 �= 0 and the defining equation.

Lemma 3.4. Assume that f has a reducible fibre F0 whose dual graph is as
in Figure 3. Then (A) and (B) hold:
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(A) The Mordell-Weil group of f is trivial. In particular, a (−1)-section of f is
unique.

(B) Let C be an irreducible reduced curve on X. If C2 < 0, then C is a smooth
rational curve satisfying one of the following:

• C is a (−1)-section of f .

• C is an irreducible component of F0.

Proof. (A) : We consider μ as in the proof of Lemma 3.2. Let Ei,
i = 1, 2, . . . , 4g + 4 be the pull-back to X of (4g + 4) (−1)-curves contracted by
the birational morphism μ : X → Σg. For components Θk, k = 0, 1, · · · , 4g + 4
of F0 as in the proof of Lemma 3.2, we have that Θk = E4g+3−k − E4g+4−k,
k = 0, 1, . . . , 4g + 2. For simplicity, we denote the pull-back to X of Δ[g] and
Γ[g],0 by the same symbols. We remark that Θ4g+3 = Γ[g],0 − E1 − E2 and
Θ4g+4 = Δ[g] − E1. Since NS(X) = ZΔ[g] ⊕ ZΓ[g],0 ⊕ ⊕4g+4

i=1 ZEi, we see that
E4g+4 and Θk, k = 0, 1, . . . , 4g + 4 also form Z-basis of NS(X). Furthermore,
we have that Θ1,Θ2, . . . ,Θ4g+4, F and E4g+4 also form Z-basis of NS(X) by
considering

Θ0 = F0 −
4g+1∑
k=1

(k + 1)Θk − (2g + 2)Θ4g+2 − (2g + 1)Θ4g+3 − 2Θ4g+4.

Therefore, the Mordell-Weil group of f is trivial from Theorem 2.1.
(B) : Keep the notation as above. Let C be an irreducible reduced curve

on X. We put C ∼ αΔ[g] + βΓ[g],0 − ∑4g+4
i=1 miEi for some integers α, β

and mi, i = 1, 2, . . . , 4g + 4. We assume that C is neither E4g+4 nor Θk

for k = 0, 1, . . . , 4g + 4. Since C.E4g+4 and C.Θk are non-negative, we have
0 ≤ m4g+4 ≤ m4g+3 ≤ · · · ≤ m2 ≤ m1, m1 +m2 ≤ α and αg +m1 ≤ β. Thus

C2 ≥ −α2g + 2αβ −m2
1 − (4g + 3)m2

2

≥ α2g + 2αm1 −m2
1 − (4g + 3)m2

2

≥ (m1 +m2)2g + 2(m1 +m2)m1 −m2
1 − (4g + 3)m2

2

= (g + 1)(m1 + 3m2)(m1 −m2)

≥ 0.

Lemma 3.5. Assume that f has a reducible fibre F0 whose dual graph is as
in Figure 3. Then X has a unique ruling. Furthermore, Σg and Σg+1 only can be
its relatively minimal model. In particular, there exists no birational morphisms
X → P2 if g ≥ 2.

Proof. We consider the birational morphism μ : X → Σg as in the proof
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of Lemma 3.2 and keep the notation. In particular, we remark that μ(E1) is on
Δ[g]. By performing an elementary transformation Σg ��� Σg+1 at μ(E1), we
have another birational morphism μ′ : X → Σg+1 as the composite of μ and
it. Here μ′ contracts Θ4g+3 in place of Θ4g+2. In fact, μ and μ′ give relatively
minimal models of the same ruling defined by |E4g+4 +

∑4g+3
k=0 Θk|. From (B) of

Lemma 3.4, there are no other birational morphisms X → Σd. Thus the assertion
follows.

Lemma 3.6. If the Mordell-Weil group of f is trivial, then f has a unique
reducible fibre and its dual graph is as in Figure 3.

Proof. Assume that the Mordell-Weil group of f is trivial. From The-
orem 2.2, there exists a birational morphism μ : X → Σd in order that
F ∼ 2Δ[d] + (d + g + 1)Γ[d] −

∑4g+4
i=1 Ei. We shall denote the (−1)-section of

f by E4g+4. In particular, we remark that a section of f is unique from the
assumption. Therefore, in the process of contracting by μ, we may assume that
the point corresponding to Ei+1 is an infinitely near point of that to Ei for
i = 1, 2, . . . , 4g + 3. Similarly, μ(E2) corresponds a tangential direction at μ(E1)
of a fibre Γ[d] of Σd. We recall that Δ[d], Γ[d] and Ei, i = 1, 2, . . . , 4g+ 4 form Z-
basis of NS(X). Since (−2)-curves Γ[d]−E1−E2 and Ei−Ei+1, i = 1, 2, . . . , 4g+3
are connected, a reducible singular fibre of f contains all of them. However, they
do not generate the reducible fibre of f . From ρ(X) = 4g + 6 and the equation
of the Mordell-Weil rank (2.1), we have that another component of the reducible
fibre is unique, where we denote it by Θ, and all other fibres of f are irre-
ducible. Furthermore, the assumption and Theorem 2.1 imply that components
Γ[d] − E1 − E2, Ei − Ei+1, i = 1, 2, . . . , 4g + 2, the other component Θ and the
unique section E4g+4 form Z-basis of NS(X). Hence we have Θ.Γ[d] = 1. We also
remark that Θ.(Γ[d] − E1 − E2) and Θ.(Ei − Ei+1) are non-negative. Then we
have that Θ is Δ[d] + βΓ[d] or Δ[d] + βΓ[d] − E1 for some non-negative integer β
in a way similar to the proof of (B) of Lemma 3.4. Here, Θ2 ≥ 0 if β > 0. It
contradicts the fact that Θ is a proper component of the reducible fibre of f . By
considering Θ.F = 0, when Θ = Δ[d] (resp. Θ = Δ[d] − E1), we have d = g + 1
(resp. d = g). Either way, Θ, Γ[d] − E1 − E2 and Ei − Ei+1, i = 1, 2, . . . , 4g + 3
form a singular fibre whose dual graph is as in Figure 3.

When we show (3) ⇒ (2a), we use a weaker condition than (3) as follows:

Lemma 3.7. Assume that d = g or g+1 for all birational morphisms X → Σd

satisfying conditions (i), (ii) of Theorem 2.2. Then f has a reducible fibre whose
dual graph is as in Figure 3.

Proof. Let μ′ : X → Σg+1 be a birational morphism satisfying condi-
tions (i), (ii) of Theorem 2.2. Then a base-point-free pencil |F | can be con-
sidered as a subpencil Λ′ ⊂ |2(Δ[g+1] + (g + 1)Γ[g+1])| with (4g + 4) sim-
ple base points on Σg+1 through μ′ (cf. [10, Proof of Lemma 1.2]). Since
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Δ[g+1].2(Δ[g+1] + (g + 1)Γ[g+1]) = 0, no base points of Λ′ lie on Δ[g+1]. We
consider a base point p′1 on Σg+1 and the corresponding (−1)-curve E′

1. Let
μ′

1 : X → X1 be the birational morphism which contracts (4g + 3) (−1)-curves
except E′

1 among (4g + 4) (−1)-curves contracted by μ′. The composite of μ′

and the elementary transformation Σg+1 ��� Σg at p′1 is a birational morphism
X → Σg which factors through μ′

1. Here the (−1)-curve contracted by the bi-
rational morphism X1 → Σg is the strict transform to X1 of the fibre of Σg+1

passing through p′1. In particular, it intersects with (μ′
1)∗F at just one point.

Therefore, there exists a birational morphism μ : X → Σg satisfying conditions
(i), (ii) of Theorem 2.2 from the assumption.

The base-point-free pencil |F | can be considered as a subpencil Λ ⊂ |2Δ[g] +
(2g + 1)Γ[g]| with (4g + 4) simple base points on Σg through μ. If there exists a
base point of Λ on Σg \ Δ[g], then we obtain a birational morphism X → Σg−1

satisfying conditions (i), (ii) of Theorem 2.2 from the elementary transformation
Σg ��� Σg−1 at the base point in the same way as in the previous paragraph. It
contradicts the assumption. Thus there exists a base point p1 of Λ on Δ[g]. Since
Δ[g].(2Δ[g] + (2g + 1)Γ[g]) = 1, other base points p2, p3, . . . , p4g+4 of Λ do not lie
on Δ[g] \ p1. Let Γ[g],1 be the fibre of Σg passing through p1. Then the pull-back
of Γ[g],1 to X is a unique degenerate fibre of the ruling Φ|Γ[g]| : X → P1. From
Corollary 2.3, the dual graph of the unique degenerate fibre μ∗Γ[g],1 of Φ|Γ[g]| is
either of type Ak+2 as in Figure 1 with k = 4g+3 or of type Dk+1 as in Figure 2
with k = 4g + 4. Hence, we may assume that pi+1 is infinitely near point of pi

for simplicity.
We suppose that the dual graph of the unique degenerate fibre μ∗Γ[g],1 of

Φ|Γ[g]| is of type Ak+2 as in Figure 1 with k = 4g + 3. Then the tangential
direction of Γ[g],1 at p1 is different from the direction corresponding to p2. Let
X3 → Σg be the blowing up at p1, p2 and p3. We denote the (−1)-curves cor-
responding to p1, p2 and p3 by E1, E2 and E3 respectively. Let μ3 : X → X3

be the birational morphism which contracts (4g + 1) (−1)-curves except E1, E2

and E3 among (4g + 4) (−1)-curves contracted by μ. We consider the bira-
tional morphism τ : X3 → Σd contracting (μ3)∗(μ∗Γ[g],1 − E1), (μ3)∗(E1 − E2)
and (μ3)∗(E2 − E3) in turn. We have that (τ ◦ μ3)∗(Δ[g] − E1) is a minimal
section of Σd and d = g − 1 since (τ ◦ μ3)∗(Δ[g] − E1).(τ ◦ μ3)∗Γ[g] = 1 and
(τ ◦μ3)∗(Δ[g] −E1)2 = −g+1 ≤ 0. In fact, (μ∗Γ[g],1 −E1) is a (−1)-section of f .
Furthermore, τ ◦ μ3 : X → Σg−1 is a birational morphism satisfying conditions
(i), (ii) of Theorem 2.2. It contradicts the assumption. Thus, the dual graph of
the unique degenerate fibre μ∗Γ[g],1 of Φ|Γ[g]| is of type Dk+1 as in Figure 2 with
k = 4g + 4. In particular, p2 corresponds to the tangential direction of Γ[g],1 at
p1. Hence, f has a reducible fibre whose irreducible components are (Δ[g] −E1),
(μ∗Γ[g],1 −E1 −E2) and (Ei −Ei+1), i = 1, 2, . . . , 4g + 3. The dual graph of the
reducible fibre of f is as in Figure 3.
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Proof of Theorem 3.1. We have (1) ⇔ (2a) from Lemma 3.6 and (A) in
Lemma 3.4. Lemma 3.5 states (2a) ⇒ (3). If we assume (3) of Theorem 3.1, then
the assumption in Lemma 3.7 is satisfied, which leads to (2a). Therefore, we see
that (1), (2a) and (3) of Theorem 3.1 are equivalent. From this and Lemma 3.3,
the proof of Theorem 3.1 is completed if we prove the following lemma.

Lemma 3.8. The conditions (2a) and (2b) of Theorem 3.1 are equivalent to
each other. Furthermore, a reducible fibre of f is unique.

Proof. If we assume (2a) of Theorem 3.1, then the equation of the Mordell-
Weil rank (2.1) implies the uniqueness of a reducible fibre of f . So (2b) holds. In
what follows, we assume (2b). When g = 1, the condition (2a) follows from the
classification of singular fibres by Kodaira [11]. We consider the case g ≥ 2 by
applying Corollary 2.3.

Let F0 be a reducible fibre of f whose dual graph contains the extended
Dynkin diagram of the unimodular integral lattice D+

4g+4 as in Figure 4. We de-
note the irreducible component of F0 whose self-intersection number is (−g − 1)
by Θ4g+4. We remark that the number of the irreducible components of F0 is at
most (4g + 5) from the equation of the Mordell-Weil rank (2.1).

At first, we suppose that the number of the irreducible components of F0 is
exactly (4g + 4). From Corollary 2.3, there exists a unique (−1)-section E4g+4

of f which does not intersect with Θ4g+4. Let Γ[d],0 be the degenerate fibre of
Φ|(KX+F )/(g−1)| which consists of E4g+4 and components of F0 except Θ4g+4. We
remark that the dual graph of Γ[d],0 is of type Dk+1 as in Figure 2 with k = 4g+3.
From Theorem 2.2, the ruling Φ|(KX+F )/(g−1)| has exactly one other degenerate
fibre Γ[d],∞ whose dual graph is of type Ak+2 as in Figure 1 with k = 0. We
remark that Γ[d],∞ consists of two (−1)-sections of f which intersect with F0 on
Θ4g+4. We have a birational morphism μ : X → Σd which satisfies conditions (i),
(ii) of Theorem 2.2 by contracting E4g+4 and (4g+3) of components of Γ[d],0 and
Γ[d],∞. Then μ∗Θ4g+4 intersects with the fibre μ∗Γ[d],0 of Σd at one point. On the
other hand, it intersects with the other fibre μ∗Γ[d],∞ of Σd at two point, which
is absurd. Therefore, F0 has exactly one component Θ other than the (4g + 4)
components corresponding to D+

4g+4.
Next, we suppose Θ2 < −2. In the quite same argument as in the previous

paragraph, the ruling Φ|(KX+F )/(g−1)| has exactly two degenerate fibres Γ[d],0

and Γ[d],∞ as above, and we have a birational morphism μ : X → Σd. Then
μ∗Θ4g+4 is a minimal section of Σd since μ∗Θ4g+4.μ∗Γ[d],0 = 1 and (μ∗Θ4g+4)2 ≤
(−g − 1) + 2 = −g + 1 ≤ −1. From Corollary 2.3, Θ is not a component of a de-
generate fibre of Φ|(KX+F )/(g−1)|. Therefore, we have that μ∗Θ is a section of Σd

from (i) of Theorem 2.2. In particular, (μ∗Θ)2 ≥ d = −(μ∗Θ4g+4)2 ≥ g − 1 and
μ∗Θ intersects with μ∗Γ[d],0 and μ∗Γ[d],∞ transversally. Remark that Γ[d],0 is a
degenerate fibre of Φ|(KX+F )/(g−1)| of type Dk+1 as in Figure 2 with k = 4g + 3.
Then we have Θ2 ≥ (g − 1) − 2 = g − 3 ≥ −1, which is absurd. Hence, we
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get Θ2 = −2. Thus, we see that the dual graph of F0 is as in Figure 3 from
Corollary 2.3.

This completes the proof of Theorem 3.1.
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