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Abstract

We consider L4
xL∞

t boundedness for a solution to the wave equation with ra-

dial data in R
3+1. We derive Hardy type inequalities and Morrey type inequality.

We also use the rearrangement of functions to solve the problem.

1. Introduction

Let u be the solution to the following Cauchy problem for the wave equation

(1.1) ∂ttu(t, x) = Δu(t, x), u(0, x) = f(x), ∂tu(0, x) = g(x).

We write the solution of this problem by using the Fourier transform with respect
to x

u(t, x) = (2π)−n

∫
Rn

eix·ξ(cos(t|ξ|)f̂(ξ) +
sin(t|ξ|)

|ξ| ĝ(ξ))dξ.

Moreover we define the closely related operator e±it
√−Δ by

(1.2) e±it
√−Δf(x) := (2π)−n

∫
Rn

ei(x·ξ±t|ξ|)f̂(ξ)dξ.

We set the critical order for indices: For n ∈ N

(1.3) q∗ = q∗(n) :=
2(n + 1)
n − 1

, s∗ = s∗(n) :=
n

n + 1
=

n

2
− n

q∗
.

We note that Hs∗
↪→ Lq∗

. Rogers and Villarroya [9] have shown that, for any
n ∈ N, the inequality

(1.4) ‖e±it
√−Δf‖Lq

xL∞
t

� ‖f‖Hs(Rn)

holds for q ∈ [q∗,∞] and s > s∗, and does not hold for q < q∗ nor s < s∗, where
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Lq
xL∞

t = Lq
x(Rn;L∞

t (R)) and

‖e±it
√−Δf‖Lq

xL∞
t

= ‖ sup
t∈R

|e±it
√−Δf |‖Lq

x(Rn).

Rogers and Villarroya’s proof of (1.4) used the embedding Hs
q (R) ↪→ L∞(R), s >

1/q with respect to the variable t, and so it was not possible for them to obtain
the endpoint regularity s = s∗. For the proof for the negative result, they set
t = |x| to obtain

‖e±it
√−Δf‖Lq

xL∞
t

≥ ‖e±i|x|√−Δf‖Lq
x(Rn),

and they showed that the right hand side is not able to be bounded by ‖f‖Hs for
s < s∗ for some non-radial function f . It seems that the critical case s = s∗ still
remains open. Here we give one remark for the case n = 1. We have q∗(1) = ∞
and s∗(1) = 1/2, and the solution u of (1.1) with g = 0 can be written as

u(t, x) =
f(x + t) + f(x − t)

2
, t, x ∈ R.

Alternatively, we can also write this e±it
√−∂xxf = f(x ± t). Obviously

‖f(x ± t)‖L∞
x L∞

t
= ‖f(x)‖L∞

x
is not bounded by ‖f‖H1/2 . This corresponds

to the failure of the Sobolev embedding theorem. Therefore we are interested in
only cases where n ≥ 2. We also remark that these Lq

xL∞
t bound problems have

been intensively studied with respect to solutions for Schrödinger equations. This
is closely related to the problem of showing pointwise convergence of eitΔf to f

as t tends to zero. See the introduction in [10] and the references within.
We will add a contribution to the wave equation case when n = 3. We con-

sider the solution with f = 0 and radial functions g of (1.1) in a three dimensional
case. Note that q∗(3) = 4 and s∗(3) = 3/4. The best available result is

‖u‖L4
x(R3;L∞

t ) � ‖g‖H−1/4+ε(R3)

for ε > 0. We note −1/4 = s∗(3) − 1. We state our result.

Theorem 1. Let n = 3 and f = 0. Then the solution of (1.1) satisfies

(1.5) ‖u‖L4
x(R3;L∞

t ) � ‖g‖L12/7(R3)

for any radial data g ∈ L
12
7 (R3).

We remark that we have the embedding L
12
7 (R3) ↪→ H− 1

4 (R3). For the
proof of Theorem 1, which is contained in Section 4, we use the following explicit
representation for the solution u with radial data g,

(1.6) u(t, x) =
t

2π

∫
y∈R3,|y|<1

g(x + ty)√
1 − |y|2 dy =

1
2r

∫ r+t

|r−t|
λ

o
g(λ)dλ,
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where r = |x| and for a radial function g, we set
o
g(r) = g(x). We will use The-

orem 3 to estimate this. To deal with taking L∞
t norm on the solution first, we

apply some results on the rearrangement of functions. We will introduce the def-
inition and some properties which we require for the rearrangement of functions
in Section 3.

Moreover if the radial function g satisfies a certain monotonicity property, it
is easy to deal with taking L∞

t norm on the solution u. We have the following
result.

Theorem 2. Let n = 3 and f = 0. Then the solution of (1.1) satisfies

(1.7) ‖u‖L4
x(R3;L∞

t ) � ‖g‖Ḣ−1/4(R3)

for any radial data g ∈ C∞(R3) satisfying

(1.8) r|og(r)| ≥ λ|og(λ)| (0 < r < λ),

where
o
g(|x|) = g(x).

Here we remark that we have the following decay estimate from the monotone
decreasing property (1.8),

|og(λ)| � 1
λ

as λ → ∞. One may wonder whether this is too strong to deal with all H−1/4

functions. We have the Sobolev embedding L12/7(R3) ↪→ H−1/4(R3) and we
estimate the typical function 〈x〉−p in L12/7(R3) norm as∫

R3

1

〈x〉12p/7
dx ∼

∫ ∞

0

1

〈r〉 12p
7 −2

dr

to conclude 〈x〉−p ∈ L12/7(R3) if and only if p > 7/4(> 1). In this sense, we may
say that the condition (1.8) is not so strong.

Before closing this section, we give some notation. We use the bracket

(1.9) 〈x〉 = 1 + |x|, x ∈ R
n.

We write the Fourier transform of function,

f̂(ξ) = (FRnf(x))(ξ) =
∫

Rn

e−ix·ξf(x)dx.

We sometimes also use the Fourier transform for functions on (0,∞),
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(FR+f(x))(ξ) =
∫ ∞

0

e−ixξf(x)dx.

For any 1 ≤ p ≤ ∞, Lp(Rn) denotes the Lebesgue space on R
n and its norm is

‖f‖Lp(Rn) = (
∫

Rn

|f(x)|pdx)1/p, ‖f‖L∞(Rn) = sup
x∈Rn

|f(x)|.

We sometimes use the Lebesgue space on the half line R+ = {x ≥ 0}

‖f‖Lp(R+) = (
∫ ∞

0

|f(x)|pdx)1/p, ‖f‖L∞(R+) = sup
x≥0

|f(x)|.

Let S be the Schwartz space. For any s ∈ R, Ḣs(Rn) denotes homogeneous
Sobolev space on R

n defined as the space S ′ of classes of distributions modulo
polynomials for which the following (semi-)norm is finite,

‖f‖Ḣs(Rn) = ‖|ξ|sf̂‖L2(Rn).

For 0 < γ ≤ 1, C0,γ denotes Hölder space on R
n and its norm is

‖f‖C0,γ(Rn) = ‖f‖L∞(Rn) + sup
x�=y∈Rn

|f(x) − f(y)|
|x − y|γ .

See [2, 8] for more general information on these function spaces.

2. Inequalities

In this section, we introduce two inequalities which we use in the proof of
Theorem 1 and Theorem 2 respectively. First we introduce the well-known in-
equality, see [11] for example.

Theorem 3. ([11] et al.) Let n ∈ N, a, b ∈ R and 1 ≤ q ≤ p ≤ ∞. Then the
inequality

(2.1) ‖ 1
|x|a

∫
|y|<|x|

1
|y|b f(y)dy‖Lp(Rn) � ‖f‖Lq(Rn).

holds if and only if

a − n

p
= n − n

q
− b > 0.(2.2)

We give an alternative proof for this, that is using a dyadic decomposition
of R

n.
The second inequality is similar to Morrey’s inequality which can be stated

as follows. For n < p ≤ ∞, γ = 1 − n/p and a function f : R → C,
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(2.3) ‖f‖C0,γ(Rn) � ‖f‖W 1,p(Rn).

Our result is

Theorem 4. Let n ∈ N, 2 ≤ p ≤ ∞, a, s ∈ R satisfy

(2.4) 0 < a − n

p
= s − n

2
< 1.

Then

(2.5) ‖f(x) − f(0)
|x|a ‖Lp(Rn) � ‖f‖Ḣs(Rn)

holds.

Proof of Theorem 3. The desired inequality (2.1) is equivalent to

(2.6)
∫

R3

1
|x|a

∫
|y|<|x|

1
|y|b |f(y)|dy|φ(x)|dx � ‖f‖Lq‖φ‖Lp′ ,

where 1
p + 1

p′ = 1. We decompose the left hand side,∫
R3

1
|x|a

∫
|y|<|x|

1
|y|b |f(y)|dy|φ(x)|dx

∼
∑

−∞<j<k<∞
2−ak−bj

(∫
|x|∼2k

|φ(x)|dx

)(∫
|y|∼2j

|f(y)|dy

)
.

By using Hölder inequality with 1 ≤ p, q ≤ ∞,

∫
|x|∼2k

|φ(x)|dx � 2nk/p‖φ‖Lp′ (|x|∼2k),

∫
|x|∼2j

|f(y)|dy � 2nj/q′‖f‖Lq(|x|∼2j),

(2.7)

and so ∫
R3

1
|x|a

∫
|y|<|x|

1
|y|b |f(y)|dy|φ(x)|dx

�
∑
j<k

2( n
p −a)k+( n

q′ −b)j‖φ‖Lp′ (|x|∼2k)‖f‖Lq(|x|∼2j).(2.8)

We now set σ = a − n
p = n

q′ − b. We remark that σ > 0. We set also
ck = ‖φ‖Lp′ (|x|∼2k) and dj = ‖f‖Lq(|x|∼2j) for simplicity. By Young’s inequality∑

j<k

2σ(j−k)ckdj �
∑
j<k

2σ(j−k)((Ack)p′
+ (A−1dj)p) � Ap′ ∑

j∈Z

cp′
k + A−p

∑
k∈Z

dp
j
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= Ap′‖ck‖p′

lp
′

k (Z)
+ A−p‖dj‖p

lpj (Z)
≤ Ap′‖ck‖p′

lp
′

k (Z)
+ A−p‖dj‖p

lqj (Z)
,

where at the last inequality we used the condition p ≥ q. The desired estimate
(2.6) follows by setting

(2.9) A = ‖ck‖
−1
p ‖dj‖

1
p′ .

For the necessity of the condition (2.2), we put the rescaled function fλ(x) =
f(λx) into (2.1) to obtain

λb+a−(n/p)−n‖ 1
|x|a

∫
|y|<|x|

1
|y|b f(y)dy‖Lp(Rn) � λ−n/q‖f‖Lq(Rn).

Therefore the equality in (2.2) is needed. If we put a non zero function
f ∈ C∞

0 into (2.1), the right hand side is finite, however the left hand side
is infinite for a ≤ n/p and p < ∞. In the case p = ∞, we can take
f(x) = 〈x〉−n/q(log 〈x〉)−(n/q)−ε ∈ Lq(Rn), but |x|−bf /∈ L1(Rn) for a sufficiently
small ε > 0.

We sometimes call the argument in the lines from (2.8) to (2.9) the Schur
test. We also use this argument in the proof Theorem 4.

Proof of Theorem 4. We take I = F−1F as

f(x) − f(0) =
∫

Rn

(eixξ − 1)f̂(ξ)dξ =
∑
j∈Z

∫
|ξ|∼2j

(eixξ − 1)f̂(ξ)dξ,

and for any j ∈ Z we estimate |eixξ − 1| ≤ min{2, |x||ξ|} ≤ min{2, 2j+k} for
|x| ∼ 2k. We will prove (2.5) in the following duality form:∣∣∣ ∫

Rn

f(x) − f(0)
|x|a φ(x)dx

∣∣∣ � ‖f‖Ḣs(Rn)‖φ‖Lp′ (Rn),

where 1
p + 1

p′ = 1. We estimate the left hand side by using Hölder’s inequality as
in (2.7), ∣∣∣ ∫

Rn

f(x) − f(0)
|x|a φ(x)dx

∣∣∣
�
∑

j,k∈Z

2−ak min{1, 2j+k}
(∫

|ξ|∼2j

|f̂(ξ)|dξ

)(∫
|x|∼2k

|φ(x)|dx

)

�
∑

j,k∈Z

2(−a+ n
p )k+ nj

2 min{1, 2j+k}‖f̂‖L2(|ξ|∼2j)‖φ‖Lp′ (|x|∼2k).(2.10)

Here we write the Sobolev norm as ‖f‖Ḣs(Rn) ∼ ‖cj‖l2 with cj = 2sj‖f̂‖L2(|ξ|∼2j).
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We also denote dk = ‖φ‖Lp′ (|x|∼2k) for simplicity. Thus it suffices to estimate the
following∑
j,k∈Z

2(−a+ n
p )k+(−s+ n

2 )j min{1, 2j+k}cjdk =
∑

j,k∈Z

min{2−σ(k+j), 2(1−σ)(k+j)}cjdk

where we have set σ = a− n
p = s− n

2 and used the relation −σ < 0 < 1− σ from
the condition (2.4). Then we use the inclusion ‖cj‖lp ≤ ‖cj‖l2 for p ≥ 2 on the
way for the Schur test.

3. The rearrangement of functions

In this section, we introduce the definition of the equimeasurable decreasing
rearrangement of functions and some useful results. We consider functions on
measure space (M,m), but in later parts of this section we restrict the measure
space to be the Lebesgue measure on R, that is (M,m) = (R,m).

Definition 5. For any measurable function f on (M,m), the distribution func-
tion λf : (0,∞) → [0,∞], and the rearrangement f∗ : (0,∞) → (0,∞) are defined
respectively by

λf (s) = m({x ∈ M : |f(x)| > s}), s > 0,

f∗(t) = inf{s > 0 : λf (s) ≤ t}, t > 0.

We set out the properties on those functions without proofs: λf (s) is nonin-
creasing and right continuous with s. f∗(t) is nonincreasing and right continuous
with t. The following inequality is useful:

(3.1)
∫

E

|f(x)g(x)|dx ≤
∫ m(E)

0

f∗(t)g∗(t)dt,

where E ⊂ M , see [1], [6] for instance.
We call the following type of function a “simple function”:

(3.2) f =
N∑

j=1

cjχEj
,

where c1 > · · · > cN > 0 and measurable sets Ej ⊂ E, j = 1, 2, . . . , N satisfy

Ej ∩ Ek = ∅, if j = k,

N⋃
j=1

Ej = E,

and χE is the characteristic function of E. For any measurable function f ≥ 0
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on E ⊂ M , there exists a sequence of simple functions {fn} such that

(3.3) 0 ≤ fn(x) ≤ fn+1(x) ≤ · · · ≤ f(x), lim
n→∞ fn(x) = f(x)

pointwisely x ∈ E, and these functions satisfy

(3.4) 0 ≤ f∗
n(t) ≤ f∗

n+1(t) ≤ · · · ≤ f∗(t), lim
n→∞ f∗

n(t) = f∗(t)

pointwisely t ∈ R, see [1].
From here we restrict the measurable space to be the Lebesgue measure on

R. The follwing estimate can be derived in the same spirit of the proof for (3.1):

Lemma 6. For any nonnegative, nondecreasing function f and any 0 < p < ∞,

(3.5) ‖fg∗‖Lp(R+) ≤ ‖fg‖Lp(R+).

Proof. See [1]. We show this for the readers’ convenience. If we suppose that f

and g are simple functions f =
∑N

j=1 cjχEj
, g =

∑L
i=1 diχFi

and all m(Ej), j =
1, 2, . . . , N and m(Fi), i = 1, 2, . . . , L are irrational numbers, the estimate can be
reduced to the following discretized estimate: For any a1 ≤ a2 ≤ · · · ≤ an and
b1 ≥ b2 ≥ · · · ≥ bn,

(3.6)
n∑

j=1

ajbj ≤
n∑

j=1

ajbσ(j)

for any bijection σ : {1, 2, . . . , n} → {1, 2, . . . , n}. This is true. Indeed, we have
aj0bj0 +ajbk ≤ aj0bk +ajbj0 for the minimum number j0 satisfying σ(j0) = j0. So
(3.6) follows from the required number of times of this exchanging positions for
aj and aj0 as a pair of bj and bj0 respectively. From (3.4), we know fng∗n ↗ fg∗

pointwisely. We use Beppo-Levi’s theorem and the dominated convergence theo-
rem respectively for the following two equalities to obtain

(3.7) ‖fg∗‖Lp(R+) = lim
n→∞ ‖fng∗n‖Lp(R+) ≤ lim

n→∞ ‖fngn‖Lp(R+) = ‖fg‖Lp(R+).

The following lemma is the key lemma for the norm of L4
xL∞

t in Section 4.

Lemma 7. For any r > 0,

(3.8) sup
t>0

∫ t+r

t

f(s)ds ≤
∫ r

0

f∗(s)ds.

Proof. This follows from (3.1) with g = χ[t,t+r](s) and so g∗(s) = χ[0,r](s).
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4. Bound in L4
x∈R3L∞

t

Now we are going to prove Theorem 1, that is, for r = |x| and the radial
function g(x) =

o
g(r), we will show that

(4.1) ‖ sup
t>0

1
2r

∫ r+t

|r−t|
λ

o
g(λ)dλ‖L4(R3) � ‖g‖L12/7(R3).

Proof of Theorem 1. We may assume g ≥ 0. For each r,

sup
t>0

1
2r

∫ r+t

|r−t|
λ

o
g(λ)dλ ≤ sup

0<t<r

1
2r

∫ r+t

r−t

λ
o
g(λ)dλ + sup

t>r

1
2r

∫ r+t

t−r

λ
o
g(λ)dλ

=
1
2r

∫ 2r

0

λ
o
g(λ)dλ + sup

t>0

1
2r

∫ t+2r

t

λ
o
g(λ)dλ.(4.2)

We take the L4 norm and apply Theorem 3 to the first term

‖ 1
2r

∫ 2r

0

λ
o
g(λ)dλ‖L4(R3) ∼ ‖ 1

|x|
∫
|y|<|x|

1
|y|g(y)dy‖L4(R3) � ‖g‖L12/7(R3).

For the second term, we remove supt by using Lemma 7 and

‖ sup
t>0

1
2r

∫ t+2r

t

λ
o
g(λ)dλ‖L4(R3)

≤ ‖ 1
2r

∫ 2r

0

(λ
o
g)∗(s)ds‖L4(R3) ∼ ‖ 1√

r

∫ r

0

(λ
o
g)∗(s)ds‖L4(R+)

� ‖r 1
6 (r

o
g)∗‖

L
12
7 (R+)

≤ ‖r 7
6

o
g‖

L
12
7 (R+)

∼ ‖g‖L12/7(R3),

where we used Theorem 3 in the following form

‖ 1√
r

∫ r

0

1
s

1
6
f(s)ds‖L4(R+) � ‖f‖

L
12
7 (R+)

and we used Lemma 6 with f(r) = r
1
6 .

From here we consider the case restricted by t = |x| for the operator (1.2).
This setting was studied in [9] to give the counter example for (1.4) in the super-
critical case s < s∗. Here we consider the critical case s = s∗ for radial functions.

Lemma 8. Let n = 3. Then

(4.3) ‖e±i|x|√−Δf‖L4
x(R3) � ‖f‖Ḣ3/4(R3)

for any radial data f ∈ Ḣ3/4(R3).
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We remark that Theorem 2 is a corollary of this lemma since the supremum
in (4.2) is attained at t = |x| from (1.8), and the form of the solution of free wave
equation gives

‖ sup
t>0

1
2r

∫ r+t

|r−t|
λ

o
g(λ)dλ‖L4(R3) = ‖ 1

2r

∫ 2r

0

λ
o
g(λ)dλ‖L4(R3)

∼ ‖ sin(|x|√−Δ)√−Δ
g‖L4(R3) � ‖g‖Ḣ−1/4(R3).

Proof of Lemma 8. We calculate (1.2) with a radial function f in R
3 by using

the polar coordinate |x| = r, |ξ| = ρ as

(eit
√−Δf)(t, x) = (2π)−3

∫
R3

ei(x·ξ+t|ξ|)f̂(ξ)dξ

= C

∫ π

0

∫ ∞

0

eiρ(r cos θ+t)ρ2f̂(ρ) sin θdρdθ

= C

∫ 1

−1

∫ ∞

0

eiρ(ry+t)ρ2f̂(ρ)dρdy,

where θ is the angle between x and ξ, and we have changed y = cos θ. If we set
the function g (on R) as

(4.4) g(z) :=
∫ ∞

0

eiρzρ2f̂(ρ)dρ,

then we have one formula as

(eit
√−Δf)(t, x) = C

∫ 1

−1

g(ry + t)dy =
C

r

∫ t+r

t−r

g(z)dz.

From here we set t = r. We apply Theorem 4 with (n, p, a, s) = (1, 4, 1
2 , 3

4 ) as

(4.5) ‖1
r

∫ r

0

g(z)dz‖L4(R3) ∼ ‖ 1√
r

∫ r

0

g(z)dz‖L4(R+) � ‖g‖
Ḣ− 1

4 (R)
.

We can rewrite (4.4) as

g(z) =
∫ ∞

0

eiρzρ2(FR3f)(ρ)dρ

=
∫ ∞

−∞
eiρzρ2H(ρ)(FR3f)(ρ)dρ

= F−1
R

(ρ2H(ρ)(FR3f)(ρ)),

where H is the Heaviside function. From this we can continue the calculation for
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(4.5),

‖g‖2

Ḣ− 1
4 (R)

= ‖|ρ|− 1
4FRg‖2

L2(R) =
∫

R

|ρ|− 1
2 |FRg|2dρ

=
∫

R

ρ
7
2 H(ρ)|(FR3f)(ρ)|2dρ ∼

∫
R3

|ξ| 32 |(FR3f)(ξ)|2dξ = ‖f‖2

Ḣ
3
4 (R3)

to conclude the desired estimate.
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