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Abstract

We show that the trace of quotient of two Dirac operators and the infinitesi-

mally deformed chiral anomaly of Dirac operator on a twistor space have adiabatic

series expansions. Further their top terms will be explicitly described.

0. Introduction

Let M = (M, gM ) be an even dimensional compact oriented Riemannian
manifold equipped with a Spinq structure introduced in [8]

Ξq : PSpinq(n)(M) = PSpin(n)(M) ×Z2PSp(1) → PSO(n)(M) × PSO(3),(0.1)

where PSO(n)(M) (n = dimM) is the reduced structure bundle consisting
of SO(n)-frames of TM and PSO(3), PSpinq(n)(M) are some principal bundles
with structure groups SO(3), Spinq(n) := Spin(n) ×Z2 Sp(1), respectively. Re-
mark that PSpin(n)(M), PSp(1) are locally defined bundles and the bundle map
Ξq is assumed to be equivariant to the canonical Lie group homomorphism
Ξq = (Ξ,Ad) : Spinq(n) → SO(n) × SO(3). Then, using the canonical action
of Spinq(n) or Sp(1) on Spinq(n)/Spinc(n) = Sp(1)/U(1) and the identifica-
tion Sp(1)/U(1) = CP 1 through the representation rH : Sp(1) → GLC(H) =

GLC(C2) with rH(α+ jβ) =
(
α −β̄
β ᾱ

)
, we have a CP 1-fibration

π : Z = PSpinq(n)(M) ×can CP 1 = PSp(1) ×can CP 1 →M.(0.2)

Let us now take an Sp(1)-connection A of PSp(1), so that the twistor space Z
possesses canonically a Spin structure ([9], [10]). Namely, the connection induces
a splitting of TZ into horizontal and vertical components, TZ = H ⊕ V, with
natural orientation and with the metric gZ = π∗gM + gV (π∗gM = gZ |H), where
gV is the Riemannian metric on V induced from the Fubini-Study one of CP 1.
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Further we have the locally defined spinor bundle /SgM associated to PSpin(n)(M)
and a locally defined hermitian vector bundle /H = PSp(1) ×rH

H, which together
produce the globally defined vector bundle π∗/SgM ⊗ π∗ /H = π∗/SgM ⊗ /SgV =: /SgZ

on Z, whose rank is certainly equal to 2n/2+1. Then, the locally defined Clifford
action ρgM of Cl(T ∗M, gM ) on /SgM , together with the action ρgV of Cl(V∗, gV) on
/SgV induced from the fiberwise globally defined canonical Spin structure, gives the
globally defined action ρgZ of Cl(T ∗Z, gZ) on /SgZ , i.e., ρgZ (π∗ξb) = π∗ρgM (ξb)⊗1
(ξb ∈ T ∗M) and ρgZ (ξf ) = π∗ρgM (τgM ) ⊗ ρgV (ξf ) (ξf ∈ V∗), where τgM is the

complex volume element of (M, gM ). Thus (Z, gZ) has a canonical Spin structure,

which gives the Dirac operator /∂(±)

gZ : Γ(/S(±)

gZ ) → Γ(/S(∓)

gZ ). Note that the canonical

splittings /SgM = /S
+
gM ⊕/S−

gM , /SgV = π∗ /H = /S
+
gV ⊕/S−

gV = {([v], cv) ∈ π∗ /H}⊕(/S+
gV )⊥

induce the splitting /SgZ = /S
+
gZ ⊕ /S

−
gZ .

Now, let us take another metric hM on M and an associated Spinq struc-
ture with the same PSO(3) as in (0.1), whose twistor space is hence equal to
the one given at (0.2). We have thus another Spin structure for Z with metric
hZ = π∗hM+gV , which induces another Dirac operator /∂(±)

hZ : Γ(/S(±)

hZ ) → Γ(/S(∓)

hZ ).
Let us define then the invariants called the traces of the quotient /∂hZ//∂gZ

by

Tr±(/∂hZ//∂gZ ) =
d

ds

∣∣∣
s=0

1
Γ(s)

∫ ∞

0

ts Tr±
(
/∂gZ /∂hZ e−t/∂

2
gZ

)
dt,(0.3)

with the equalities Tr±
(
/∂gZ /∂hZ e−t/∂

2
gZ

)
= Tr∓

(
/∂hZ /∂gZ e−t/∂

2
gZ

)
.

(The equalities at the second line will be shown at (2.1).) Remark that e−t/∂
2
gZ

is a cross-section of the vector bundle /S
(±)

gZ � /S
(±)∗
gZ over Z × Z, on which the

operator /∂hZ cannot act in a naive sense. In the paper we will let /∂hZ act on
it (see (1.6)) by using the method introduced by Bourguignon and Gauduchon
([4], [5]), the explanation for which will be offered at the beginning of the next
section. The first purpose is then to study the adiabatic series expansions of (0.3)
and the difference STr(/∂hZ//∂gZ ) = Tr+(/∂hZ//∂gZ ) − Tr−(/∂hZ//∂gZ ). Namely, by
replacing the metrics gZ etc. by gZ

ε = ε−1π∗gM + gV = π∗gM
ε + gV (ε > 0)

etc., we obtain Tr±(/∂hZ
ε
//∂gZ

ε
) etc., and we want to investigate their asymptotic

expansions when ε → 0. Incidentally to express the right hand side of (0.3)
by Tr±(/∂hZ//∂gZ ) will be appropriate in the following sense: Using the series of
eigenvalues (0 <)λ±1 ≤ λ±2 ≤ · · · → ∞ (see Lemma 2.1) and the corresponding
series of orthonormal eigen-cross-sections of the operator /∂2

gZ acting on Γ(/S±
gZ ),

let us set e−t/∂
2
gZ =

∑
e−tλ±

j φ±j � φ±∗
j and put μ±

j = 〈/∂gZ /∂hZφ±j , φ
±
j 〉L2 where

〈 · , · 〉L2 = 〈 · , · 〉
L2Γ(/S

±
gZ )

is the global inner product which Γ(/S±
gZ ) has. Then,

formally the right hand side of (0.3) is equal to
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∑
μ±

j

d

ds

∣∣∣
s=0

1
Γ(s)

∫ ∞

0

tse−tλ±
j dt =

∑
μ±

j

∫ ∞

0

e−tλ±
j dt =

∑ μ±
j

λ±j
.

Second, let us consider some infinitesimal deformation of the so-called chi-
ral anomaly. That is, let us take a symmetric bilinear form X on TM and set
gM
(u) = gM +uX (0 ≤ u ≤ u0). The metric induces the Dirac operator /∂gZ

(u)
acting

on Γ(/SgZ ) as above and we have the infinitesimal deformation of /∂gZ

δX/∂gZ :=
d

du

∣∣∣
u=0

/∂gZ
(u)
.(0.4)

We are interested in the associated invariants called the infinitesimally de-
formed chiral anomalies of /∂gZ defined by

log det (δX/∂gZ )± =
d

ds

∣∣∣
s=0

1
Γ(s)

∫ ∞

0

ts Tr±
(
/∂gZ δX/∂gZ e−t/∂

2
gZ

)
dt,(0.5)

with the equalities Tr±
(
/∂gZ δX/∂gZ e−t/∂

2
gZ

)
= Tr∓

(
δX/∂gZ /∂gZ e−t/∂

2
gZ

)
and we want to investigate the asymptotic expansions of log det (δXε

/∂gZ
ε
)± and

also their difference when ε→ 0. If the operators /∂gZ /∂gZ
(u)

acting on Γ(/S±
gZ ) hap-

pen to have the spectra consisting of eigenvalues {λj(u) = λ±j (u)} all of which
lie in a positive cone about the positive real axis in C and have the correspond-
ing orthonormal eigen-cross-sections {φj(u) = φ±j (u)} which are all smooth with
respect to the parameter u at u = 0, then we have

λ′j(0) :=
d

du

∣∣∣
u=0

〈/∂gZ /∂gZ
(u)
φj(u), φj(u)〉L2

= 〈/∂gZ δX/∂gZφj(0), φj(0)〉L2 + 〈/∂2
gZφ′j(0), φj(0)〉L2 + 〈/∂2

gZφj(0), φ′j(0)〉L2

= 〈/∂gZ δX/∂gZφj(0), φj(0)〉L2 + λj(0)
∂

∂u

∣∣∣
u=0

〈φj(u), φj(u)〉L2

= 〈/∂gZ δX/∂gZφj(0), φj(0)〉L2 (hence, λj(0) > 0 if λ′j(0) 
= 0)

and the right hand side of (0.5) is formally equal to

∑
λ′

j
(0) �=0

λ′j(0)
d

ds

∣∣∣
s=0

1
Γ(s)

∫ ∞

0

tse−tλj(0)dt=
∑

λj(0)>0

λ′j(0)
λj(0)

=
d

du

∣∣∣
u=0

log
∏

λj(0)>0

λj(u)

=
d

du

∣∣∣
u=0

(
− ∂

∂s

∣∣∣
s=0

∑
(λj(0)>0)

e−s log λj(u)
)

=
d

du

∣∣∣
u=0

log det (/∂gZ /∂gZ
(u)

)±.

Thus, formally (0.5) are the infinitesimal deformations (into the direction X) of
the chiral anomalies log det (/∂gZ /∂gZ

(u)
)±, which were briefly explained by I.M.

Singer [12, Appendix]. (Note that, in general, all but a finite number of eigenvalues
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λ1(u), · · ·, λk(u) lie in a positive cone about the positive real axis and the eigen-
cross-sections φj(u) are generalized ones. In the paper he defined the anomalies
as log det (/∂gZ /∂gZ

(u)
)± = −λ1(u) · · ·λk(u)(∂/∂s)|s=0

∑
j>k e

−s log λj(u).)
Our investigation on the chiral anomaly etc., which will be quite interest-

ing but are not yet widely researched mathematically compared with the other
anomalies such as the global gravitational anomaly (the adiabatic limit of η-
invariant) ([3]), is an attempt to embody the idea ([3]) that such an operation
as replacing gZ by gZ

ε and taking the parameter ε up to 0, that is, blowing up
the metric gZ in the base space direction, will extract some intrinsic values from
various geometric invariants of Z. We want to emphasize here that it is mainly

the general adiabatic expansion theory concerning the kernel e−t/∂
2
gZ ([11] and

Lemma 2.3) that induces our main assertions, i.e., Theorem 1.2 and Corollary
1.3.

1. The operator /∂hZ acting on Γ(/SgZ ) and the Main Assertions

According to the Bourguignon and Gauduchon’s method ([4], [5]), first
we will make /∂hZ act on Γ(/SgZ ). The projection from the set F+(TpM) of
positively oriented frames on TpM to the set I(TpM) of inner products on
TpM , given by e �→ “ the inner product 〈·, ·〉e which has e as an orthonormal
frame ”, has a structure of principal SO(n)-bundle, which is trivial since the
base space I(TpM) is contractible. And the tangent space TeF

+(TpM) ∼= gl(n),
(d/da)|a=0(e ·Ba) ↔ (d/da)|a=0Ba, has a subspace He(F+(TpM)) ∼= {B ∈ gl(n) |
B = tB} which is projected onto T〈·,·〉e

I(TpM) isomorphically. Clearly the distri-
bution e �→ He(F+(TpM)) gives then a connection for the bundle, which induces
the parallel displacement ηM : PSO(n)(M)p

∼= PSO(n)(M,hM )p along the segment
from gM

p to hM
p . Gathering such displacements we get the bundle isomorphism

ηM : PSO(n)(M) ∼= PSO(n)(M,hM )(1.1)

with ηM : T (∗)M ∼= (T (∗)M,hM ), ηM ([eb, v]) = [ηM (eb), v],

where we use the canonical expression TM = PSO(n)(M) ×can Rn (� [eb, v]),
etc. More explicitly, for a gM -SO(n)-frame eb = (eb

1, · · · , eb
n), set ηb = (ηb

ij) =
(hM (eb

i , e
b
j))

−1/2, which is positive and symmetric. Then we have

ηM (eb) = eb · ηb , ηM (eb
i ) = ηM (eb)i =

∑
eb
j · ηb

ji.(1.2)

These come from the fact that, if we take the segment t �→ gM
p (t) = (1 −

t)gM
p + thM

p and for each gM
p (t) we put ηM

t (eb) = eb · (gM
p (t)(eb

i , e
b
j))

−1/2,
then ηM

t (eb) is a gM
p (t)-SO(n)-frame and (∂/∂t)ηM

t (eb) is horizontal. We use
the common PSp(1) for the two metrics (see (0.1)), which consequently deter-
mines (locally defined) Spin structures Ξ : PSpin(n)(M) → PSO(n)(M), ΞhM :
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PSpin(n)(M,hM ) → PSO(n)(M,hM ). Since the above connection for the (trivial)
bundle F+(TpM) → I(TpM) induces a connection for the associated (trivial)
Spin(n)-bundle F̃+(TpM) → I(TpM), similarly to the above we obtain a bun-
dle isomorphism ηM : PSpin(n)(M) ∼= PSpin(n)(M,hM ) and, further, we have the
bundle isometry

ηM : /SgM
∼= /ShM , ηM ([ψ, s]) = [ηM (ψ), s](1.3)

with ηM ◦ ρgM (ξ) = ρhM (ηM (ξ)) ◦ ηM (ξ ∈ T ∗M).

Thus we get the identifications

η = ηM⊕ id : TZ = H⊕ V ∼= (TZ, hZ) = (H, π∗hM ) ⊕ V(1.4)

given by eb
i (A) ≡ π∗eb

i , e
f
k �→ π∗ηM (eb

i ), e
f
k ,

η = ηM⊗ id : /SgZ = π∗/SgM ⊗ /SgV ∼= /ShZ = π∗/ShM ⊗ /SgV(1.5)

with η ◦ ρgZ (ξ) = ρhZ (η(ξ)) ◦ η (ξ ∈ T ∗Z),

where ef = (ef
1 , e

f
2 ) is a gV -SO(2)-frame of V. Set e∗(A) = (e1(A), · · ·) =

(eb(A), ef ), which is a gZ-SO(n + 2)-frame, and denote its dual by
e∗(A) = (e1(A), · · ·) = (eb, ef (A)). Then we have the expressions

/∂gZ =
∑
ρgZ (ei(A))∇/SgZ

ei(A) =
∑
ρgZ (ei(A)){ei(A) +

1
4
∑
gZ(∇gZ

ei(A)ei1(A),

ei2(A)) ρgZ (ei1(A))ρgZ (ei2(A))} etc., where ∇gZ

is the Levi-Civita connection
associated to the metric gZ , and now

/∂hZ :=η−1◦ /∂hZ ◦ η=
∑

ρgZ (ei(A))∇/SgZ ,hZ

η(ei(A)) : Γ(/SgZ ) → Γ(/SgZ ) with(1.6)

∇/SgZ ,hZ

v =v+
1
4

∑
gZ((η−1◦∇hZ

v ◦ η) ei1(A), ei2(A)) ρgZ (ei1(A))ρgZ (ei2(A))

=v+
1
4

∑
hZ(∇hZ

v η(ei1(A)), η(ei2(A))) ρgZ (ei1(A))ρgZ (ei2(A))

is the desired one at (0.3). By putting eε
∗(A) = (ebε(A), ef ) = (ε1/2eb(A), ef )

and e∗ε(A) = (ebε, ef (A)) = (ε−1/2eb, ef (A)), their adiabatic versions are then
expressed as

/∂gZ
ε

=
∑

ρgZ
ε
(ei

ε(A))∇/SgZ
ε

eε
i
(A) , /∂hZ

ε
=
∑

ρgZ
ε
(ei

ε(A))∇/SgZ
ε

,hZ
ε

η(eε
i
(A)).(1.7)

Remark that the map η for gZ
ε etc. coincides with (1.4) for gZ etc.

Let us next consider the identity

Tr±
(
/∂gZ

ε
/∂hZ

ε
e
−t/∂

2
gZ

ε

)
= Tr∓

(
/∂
∗
gZ

ε ,P ′ /∂hZ
ε ,P e

−t/∂
2
gZ

ε (P, P ′)
)
,(1.8)

where we put /∂∗gZ
ε ,P ′ /∂hZ

ε ,P ϕ1(P ) � ϕ2(P ′) = /∂hZ
ε ,P ϕ1(P ) � /∂gZ

ε ,P ′ ϕ2(P ′). The
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right hand side contains only derivatives up to the first order for each variables P ,

P ′. First we will study /∂
∗
gZ

ε
/∂hZ

ε
e
−t/∂

2
gZ

ε (P, P ) = /∂
∗
gZ

ε ,P ′/∂hZ
ε ,P e

−t/∂
2
gZ

ε (P, P ′)|P=P ′

(when ε→ 0) regarded as an element of the third side of the identification

Γ(/SgZ
ε
⊗ /SgZ

ε
) = Γ(/SgZ

ε
⊗ /S

∗
gZ

ε
) = Γ(∧T ∗Z ⊗ C),(1.9)

s(eε
∗(A)) ⊗ s(eε

∗(A)) ↔ s(eε
∗(A)) ⊗ s(eε

∗(A))∗, ρgZ
ε
(eI

ε(A)) ↔ eI
ε(A),

where s(eε
∗(A)) is the SU(2n/2+1)-frame of /SgZ

ε
induced from eε

∗(A), and I =
(Ib, If ) is a multi-index with Ib = (ib1 < · · · < ib|Ib|) and If = (if1 < · · · < if|If |),

and we put eIb

bε = e
ib
1

bε ∧ · · · ∧ e
ib

|Ib|
bε , eIf

f (A) = e
if
1

f (A) ∧ · · · ∧ e
if

|If |
f (A) and

eI
ε(A) = eIb

bε ∧ eIf

f (A). Let us take now a (globally defined) tensor field

TA =
1
2

∑{
[eb

i , e
b
j ](A) − [eb

i (A), eb
j(A)]

}⊗ ei
b ∧ ej

b =:
∑

ef
k ⊗ T k

A,(1.10)

where [eb
i , e

b
j ](A) is the H-horizontal lift (∈ H) of the bracket [eb

i , e
b
j ]. Remark

that the difference [eb
i , e

b
j ](A)− [eb

i (A), eb
j(A)] is vertical (∈ V). Consider then the

elliptic operator acting on Γ(∧T ∗
pM ⊗ /SgV |Zp) (Zp = π−1(p))

A2 = /∂
2
gV − 1

2

∑
T k

A ∧· 1⊗∇/SgV

ef
k

+
1
16

(∑
T k

A ∧· ρgZ (ek
f (A))

)2

,(1.11)

where we put /∂gV =
∑
ρgZ (ek

f (A))∇/SgV

ef
k

, ρgZ (ek
f (A)) = (−1)� ⊗ ρgV (ek

f ) for �-

forms in the M -direction and T k
A(P ) = (1/2)

∑
(ei

b ∧ ej
b)(p) · T k

A,ij(P ). This gen-
erates a (C0)-semi-group with C∞-kernel which belongs to Γ(∧T ∗

pM ⊗ (/SgV |Zp �
/S
∗
gV |Zp)). Its value at (P, P ) can be canonically regarded as an element of

∧(π∗T ∗M)P ⊗ ∧V∗(A)P ⊗ C = ∧T ∗
PZ ⊗ C (see (1.9)), which we denote by

exp(−tA2)(P ). Then we have

Proposition 1.1. When ε→ 0, there exists a formal series expansion

/∂
∗
gZ

ε
/∂hZ

ε
e
−t/∂

2
gZ

ε (P, P ) =
∞∑

m=−2

εm/2D(m/2)(t, P : /∂hZ//∂gZ ),(1.12)

D(−2/2)(t, P : /∂hZ//∂gZ )=−θ∧ 1
2t

〈
eb

∣∣∣ ηb tR
gM

2

{
coth

tRgM

2
−1
} ∣∣∣ eb

〉
(p)(1.13)

× 1
(4πt)n/2

det1/2

(
tRgM

/2
sinh (tRgM /2)

)
(p) exp

(
−tA2

)
(P ),

where we set p = π(P ), θ∧ ω = (−1)jω for j-form ω, and RgM

(p)
is an anti-symmetric matrix whose (i, j)-entries are equal to RgM

ij (p) =
(1/2)

∑
gM (F (∇gM

)(eb
i , e

b
j)e

b
i1
, eb

i2
)(p) (ei1

b ∧ ei2
b )(p). (See Lemma 2.4 for further
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informations for the coefficients.)

Now let us state the main assertions.

Theorem 1.2. In the definitions of Tr±(/∂hZ
ε
//∂gZ

ε
) (see (0.3)), the function

1
Γ(s)

∫ ∞

0

ts Tr±
(
/∂gZ

ε
/∂hZ

ε
e
−t/∂

2
gZ

ε

)
dt is absolutely integrable if Re(s) > n/2 + 2

and has the meromorphic extension to C (� s) which is analytic at s = 0. When
ε→ 0, then there exist the asymptotic expansions

Tr±(/∂hZ
ε
//∂gZ

ε
)(1.14)

=
∞∑

m=−2

εm/2 ∓2n/2

(
√−1)n/2+1

× d

ds

∣∣∣
s=0

1
Γ(s)

∫ ∞

0

dt · ts
∫

Z

D(m/2)(t, P : /∂hZ//∂gZ )

+
∞∑

m=−(n+2)

εm/2 2n/2

× d

ds

∣∣∣
s=0

1
Γ(s)

∫ ∞

0

dt · ts
∫

Z

D((m+n)/2)(t, P : /∂hZ//∂gZ ) ∧ dgZ(P ),

STr(/∂hZ
ε
//∂gZ

ε
) := Tr+(/∂hZ

ε
//∂gZ

ε
) − Tr−(/∂hZ

ε
//∂gZ

ε
)(1.15)

= −
∞∑

m=−2

εm/2 2n/2+1

(
√−1)n/2+1

× d

ds

∣∣∣
s=0

1
Γ(s)

∫ ∞

0

dt · ts
∫

Z

D(m/2)(t, P : /∂hZ//∂gZ ),

where the functions to be differentiated by s at s = 0 are also all absolutely inte-
grable if Re(s) > n/2 + 2 and have the meromorphic extensions to C which are
analytic at s = 0. In particular, as for (1.15), the coefficients of εm/2 with m < 0
are all pure imaginary.

As for the infinitesimally deformed chiral anomalies, we have

Corollary 1.3. In the definitions of log det(δXε
/∂gZ

ε
)± (see (0.5)), the function

to be differentiated by s is absolutely integrable if Re(s) > n/2 + 2 and has the
meromorphic extension to C which is analytic at s = 0. Set

CH(m/2)(t, P : δX/∂gZ ) =
d

du

∣∣∣
u=0

D(m/2)(t, P : /∂gZ
(u)
//∂gZ ) ,(1.16)

CH(−2/2)(t, P : δX/∂gZ ) = θ∧
1
4t

〈
eb

∣∣∣X tRgM

2

{
coth

tRgM

2
− 1
} ∣∣∣ eb

〉
(p)(1.17)

× 1
(4πt)n/2

det1/2

(
tRgM

/2
sinh (tRgM /2)

)
(p) exp

(
−tA2

)
(P ).
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Then we have the asymptotic expansions when ε→ 0

log det(δXε
/∂gZ

ε
)±(1.18)

=
∞∑

m=−2

εm/2 ∓2n/2

(
√−1)n/2+1

× d

ds

∣∣∣
s=0

1
Γ(s)

∫ ∞

0

dt · ts
∫

Z

CH(m/2)(t, P : δX/∂gZ )

+
∞∑

m=−(n+2)

εm/2 2n/2

× d

ds

∣∣∣
s=0

1
Γ(s)

∫ ∞

0

dt · ts
∫

Z

CH((m+n)/2)(t, P : δX/∂gZ ) ∧ dgZ(P ),

S-log det(δXε
/∂gZ

ε
) := log det(δXε

/∂gZ
ε
)+ − log det(δXε

/∂gZ
ε
)−(1.19)

= −
∞∑

m=−2

εm/2 2n/2+1

(
√−1)n/2+1

× d

ds

∣∣∣
s=0

1
Γ(s)

∫ ∞

0

dt · ts
∫

Z

CH(m/2)(t, P : δX/∂gZ ).

So are the functions to be differentiated by s and the coefficients of εm/2 with
m < 0 at (1.19) as in Theorem 1.2.

2. Proofs of Theorem 1.2 and Corollary 1.3

First let us show

Lemma 2.1. There exists a constant λ0 > 0 satisfying Spec(/∂2
gZ

ε
) ≥ λ0 for

every ε with 0 < ε ≤ ε0. And we have

Tr±
(
/∂gZ

ε
/∂hZ

ε
e
−t/∂

2
gZ

ε

)
= Tr∓

(
/∂hZ

ε
/∂gZ

ε
e
−t/∂

2
gZ

ε

)
(2.1)

= Tr∓
(
/∂gZ

ε
/∂hZ

ε
e
−t/∂

2
gZ

ε

)
+ Tr∓

(∑
i

ε1/2η(eb
i )(det ηb)

det ηb
ρgZ

ε
(ei

bε) /∂gZ
ε
e
−t/∂

2
gZ

ε

)

and further there exists a constant C > 0 satisfying∣∣∣Tr±
(
/∂
∗
gZ

ε ,P ′ /∂hZ
ε ,P e

−t/∂
2
gZ

ε (P, P ′)
)∣∣∣ ≤ C e−tλ0/3 Tr±

(
e
−(t/6)/∂

2
gZ

ε

)
(2.2)

( 0 < ∀ε ≤ ε0 and 0 < ∀t <∞ ).

Proof. The assertion concerning the spectrum of /∂2
gZ

ε
comes from the in-

vertibility of /∂gV ([10, (5.15)]) and [3, Proposition 4.41]. Namely, first consider
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connection ∇gV
= PV ◦∇gZ

of V, where PV : TZ = H ⊕ V → V is the pro-
jection. This together with the Levi-Civita one ∇gM

ε gives a new connection
∇gZ

ε ⊕ = π∗∇gM
ε ⊕∇gV

of TZ = H⊕ V, which is compatible with gZ
ε and whose

torsion is equal to TA given at (1.10) ([11, Lemma 3.1]). Denote by ∇/SgZ
ε
⊕ the

associated connection on /SgZ
ε

and set T �
A =

∑
ek
f (A) ⊗ T k

A =
1
2
∑
T �

A,ij ∧ ei
b ∧ ej

b.
Then we have

/∂gZ
ε

= ε1/2
∑

ρgZ
ε
(ei

bε)
{
∇/SgZ

ε
⊕

eb
i
(A)

+
ε1/2

8
ρgZ

ε
(
∑

T �
A,ij∧ ej

bε)
}

+ /∂gV(2.3)

=: ε1/2 /̃∂ε+ /∂gV ,

/∂
2
gZ

ε
= ε/̃∂

2

ε + /∂
2
gV + ε1/2

{
/̃∂ε ◦ /∂gV + /∂gV ◦ /̃∂ε

}
= ε/̃∂

2

ε + /∂
2
gV + ε1/2

{∑
ρgZ

ε
(ei

bε ∧ ek
f (A))∇/SgZ

ε
⊕

[eb
i
(A),ef

k
]

−ε
1/2

8
ρgZ

ε
(
∑

T �
A,ij ∧ ei

bε ∧ ej
bε) ◦ /∂gV

− /∂gV ◦
ε1/2

8
ρgZ

ε
(
∑

T �
A,ij ∧ ei

bε ∧ ej
bε)
}
.

Let ‖ · ‖p,1 be the Sobolev H1-norm of elements of Γ(/SgZ
ε
) restricted to Zp with

metric gZ
ε |Zp. Then there exist constants C > 0, C ′ > 0 such that for any p ∈M ,

ψ ∈ Γ(/SgZ
ε
) we have

∣∣∣ ∫
Zp

〈{/̃∂ε ◦ /∂gV + /∂gV ◦ /̃∂ε}ψ,ψ〉/S
gZ

ε

dgZ
ε |Zp

∣∣∣ ≤ C‖ψ‖p,1, C
′‖/∂gVψ‖p,1 ≥ ‖ψ‖p,1,

where 〈·, ·〉/S
gZ

ε

denotes the pointwise inner product which Γ(/SgZ
ε
) has. The first

estimate comes from the fact that /̃∂ε ◦ /∂gV + /∂gV ◦ /̃∂ε is a first order differential
operator on Zp and the second comes from the fact that /∂gV is invertible. Since

further /̃∂ε is self-adjoint and /̃∂
2

ε is nonnegative, finally we have

/∂
2
gZ

ε
≥ /∂

2
gV + ε1/2

{
/̃∂ε ◦ /∂gV + /∂gV ◦ /̃∂ε

}
≥ (1 − ε1/2CC ′)/∂2

gV .

We have thus shown the assertion concerning the spectrum. As for the equalities

(2.1): To simplify the description, let us assume ε = 1. Set e−t/∂
2
gZ =

∑
e−tλjφj �

φ∗j ∈ Γ(/S+
gZ � /S

+ ∗
gZ ) as usual (refer to the argument following (0.3)). Because of

/∂
2
gZ /∂gZφj/

√
λj = λj · /∂gZφj/

√
λj ∈ Γ(/S−

gZ ) and 〈/∂gZφj/
√
λj , /∂gZφi/

√
λi 〉L2 =

δji, we have

Tr−
(
/∂gZ /∂hZ e−t/∂

2
gZ

)
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=
∑

e−tλj

∫
〈/∂gZ /∂hZ /∂gZφj/

√
λj , /∂gZφj/

√
λj〉/SgZ

dgZ(P )

=
∑

e−tλjλ−1
j

∫
〈/∂hZ /∂gZφj , /∂

2
gZφj〉/SgZ

dgZ(P )

=
∑

e−tλj

∫
〈/∂hZ /∂gZφj , φj〉/SgZ

dgZ(P ) = Tr+
(
/∂hZ /∂gZ e−t/∂

2
gZ

)
.

Thus the first equality at (2.1) was proved. Next let us prove the second one. We
have

/∂
∗
hZ = det ηb◦ /∂hZ ◦ det(ηb)−1 = /∂hZ −

∑ η(eb
i )(det ηb)
det ηb

ρgZ (ei
b)(2.4)

because (1.6) implies∫
〈/∂hZψ, φ〉/SgZ

dgZ =
∫
〈
∑

ρgZ (ei(A))∇/SgZ ,hZ

η(ei(A))ψ,det(ηb)−1 ·φ〉/SgZ
dhZ

=
∫
〈
∑

ρhZ (η(ei(A)))∇/ShZ

η(ei(A))η(ψ),det(ηb)−1 ·η(φ)〉/ShZ
dhZ

=
∫
〈η(ψ),

∑
ρhZ (η(ei(A)))∇/ShZ

η(ei(A)) det(ηb)−1 ·η(φ)〉/ShZ
dhZ

=
∫
〈ψ,det ηb

∑
ρgZ (ei(A))∇/SgZ ,hZ

η(ei(A)) det(ηb)−1 ·φ〉/SgZ
dgZ .

Hence, using the above expression of Tr+
(
/∂hZ /∂gZ e−t/∂

2
gZ

)
, we have

Tr+
(
/∂hZ /∂gZ e−t/∂

2
gZ

)
=
∑

e−tλj

∫
〈/∂gZφj(P ), /∂hZφj(P )〉/SgZ

dgZ(P )

−
∑

e−tλj

∫
〈/∂gZφj(P ),

∑ η(eb
i )(det ηb)
det ηb

ρgZ (ei
b)φj(P )〉/SgZ

dgZ(P )

=
∑

e−tλj

∫
〈/∂hZφj(P ), /∂gZφj(P )〉/SgZ

dgZ(P )

+
∑

e−tλj

∫
〈
∑ η(eb

i )(det ηb)
det ηb

ρgZ (ei
b) /∂gZφj(P ), φj(P )〉/SgZ

dgZ(P ).

Thus we have proved the second equality. Last, as for the estimate (2.2): Assume

ε = 1 and remember the above expression of e−t/∂
2
gZ . We have

∣∣∣Tr+
(
/∂
∗
gZ /∂hZe−t/∂

2
gZ

)∣∣∣ ≤∑ e−tλj

∣∣∣∣
∫
〈/∂hZφj(P ), /∂gZφj(P )〉/SgZ

dgZ(P )
∣∣∣∣

≤
∑

e−tλj ‖/∂hZφj‖L2 ‖/∂gZφj‖L2 ≤
∑

e−tλj (C1λ
1/2
j + C0)λ

1/2
j

≤ C2

∑
e−tλj/2 ≤ C2 e

−tλ0/3
∑

e−tλj/6 = C2 e
−tλ0/3 Tr+(e−(t/6)/∂

2
gZ ).
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Thus (2.2) with ε = 1 was proved. And, remembering the estimate Spec(/∂2
gZ

ε
) ≥

λ0 for any ε with 0 < ε ≤ ε0, obviously we know that the above estimation holds
also for general ε.

Before we give the proofs of the three assertions stated in the previous section,
we will make some preparatory arguments. Take a point P 0 ∈ Z. Though we have
taken a gZ-SO(n+2)-frame e∗(A) around P 0 with no specific condition, now it is
convenient for the proofs to take such a frame in the following specific way. First
fix e∗(A)(P 0) = (eb(A)(P 0), ef (P 0)). Then let e∗(A) = (eb(A), ef ) be ∇gZ⊕-
parallel along the ∇gZ⊕-geodesics from P 0 and be equal to the fixed one at P 0,
and, further, let e∗(A) = (eb, ef (A)) be its dual. Remark that ∇gZ⊕ (= ∇gZ

1 ⊕) is
compatible with the metric gZ so that e∗(A) is certainly a gZ-SO(n+ 2)-frame.
Note also that eb(A) coincides with the H-horizontal lift of the gM -SO(n)-frame
eb on a neighborhood U b (⊂ M) which is ∇gM

-parallel along the ∇gM

-geodesics
from p0 = π(P 0) and is equal to the given eb(p0) at p0. Also take such a gV -
SO(2)-frame on Uf (⊂ Zp0) which coincides with the given ef (P 0) at P 0 and
then spread it on a neighborhood U (⊂ Z) by the the H-parallel displacement
along the ∇gM

-geodesics from p0. The frame on U thus obtained is certainly
equal to the above ef . Further, let us take the ∇gZ⊕-normal coordinate neigh-
borhood (U = U b × Uf , x = (xb, xf )) with (∂/∂x)P 0 = e∗(A)(P 0). Similarly to
the above, xb(P ) are ∇gM

-normal coordinates of π(P ) and xf (P ) are ∇V -normal
coordinates of the image (∈ Zp0) of the point P by the H-parallel displacement.
Hence we have

eb
i (x

b) =
∑

(∂/∂xb
j)xb · vb

ji(x
b), vb

ji(x
b) = δji + O(|xb|2),

(2.5)
C(∇gM

)i2i1(e
b
i ) := gM (∇gM

eb
i

eb
i1 , e

b
i2) = O(|xb|), A(eb

i ) = O(|xb|),

etc. Hereafter we will use the coordinates and the frames thus given and of
course the gZ

ε -SO(n + 2)-frame eε
∗(A) = (ebε(A), ef ) = (ε1/2eb(A), ef ) and its

dual e∗ε(A) = (ebε, ef (A)) = (ε−1/2eb, ef (A)) (see (1.7)) are assumed to be de-
fined by using such frames. Now first let us show

Lemma 2.2. On the coordinate neighborhood (U, x), we have

/∂gZ
ε

=
∑

∂/∂xf
k · ρgZ

ε
(ek

f (A)) +
∑

ε1/2∂/∂xb
i · ρgZ

ε
(ei

bε)(2.6)

−
∑

ε2/2 1
8
T k

A,i1i2(0) · ρgZ
ε
(ek

f (A))ρgZ
ε
(ei1

bε)ρgZ
ε
(ei2

bε) + O(|x|),

/∂hZ
ε

=
∑

∂/∂xf
k · ρgZ

ε
(ek

f (A)) +
∑

ε1/2ηb
ji(0) ∂/∂xb

j · ρgZ
ε
(ei

bε)(2.7)

−
∑

ε2/2 ηb
j1i1(0) ηb

j2i2(0)
1
8
T k

A,j1j2(0) · ρgZ
ε
(ek

f (A))ρgZ
ε
(ei1

bε)ρgZ
ε
(ei2

bε) + O(|x|).

Proof. Remark that we have ∇gM
ε = ∇gM

and ∇hM
ε = ∇hM

. Referring to
(2.4) we have
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/∂gZ
ε

=
∑

ρgZ
ε
(ei

bε) ε
1/2
{
eb
i (A) +

1
4

∑
C(∇gM

)i2i1(e
b
i ) ρgZ

ε
(ei1

bε)ρgZ
ε
(ei2

bε)

+
1
4

∑
C(∇V)k2k1(e

b
i (A)) ρgZ

ε
(ek1

f (A))ρgZ
ε
(ek1

f (A))
}

+
∑

ρgZ
ε
(ek

f (A))
{
ef
k +

1
4

∑
C(∇V)k2k1(e

f
k) ρgZ

ε
(ek1

f (A))ρgZ
ε
(ek1

f (A))
}

− ε

8

∑
T k

A,i1i2 ρgZ
ε
(ek

f (A))ρgZ
ε
(ei1

bε)ρgZ
ε
(ei2

bε).

Hence using (2.5) we obtain (2.6). Next, put C(∇hM

)i2i1(η(e
b
i )) =

hM (∇hM

η(eb
i
)
η(eb

i1
), η(eb

i2
)). Then we have

/∂hZ
ε

=
∑

ρgZ
ε
(ei

bε) ε
1/2
{
η(eb

i (A)) +
1
4

∑
C(∇hM

)i2i1(η(e
b
i )) ρgZ

ε
(ei1

bε)ρgZ
ε
(ei2

bε)

+
1
4

∑
C(∇V)k2k1(η(e

b
i (A))) ρgZ

ε
(ek1

f (A))ρgZ
ε
(ek1

f (A))
}

+
∑

ρgZ
ε
(ek

f (A))
{
ef
k +

1
4

∑
C(∇V)k2k1(e

f
k) ρgZ

ε
(ek1

f (A))ρgZ
ε
(ek1

f (A))
}

− ε

8

∑
T k

A(η(eb
i1), η(e

b
i2)) ρgZ

ε
(ek

f (A))ρgZ
ε
(ei1

bε)ρgZ
ε
(ei2

bε).

Hence using (1.2) and (2.5) we obtain (2.7).
Next let us consider the identification

Γ(/SgZ
ε
|U � /S

∗
gZ

ε
|U) = C∞(U × U,∧T ∗

p0Z)(2.8)

given by s(eε
∗(A))(x) ⊗ s(eε

∗(A))∗(x′) · φ(x, x′) ↔ ((x, x′), s(eε
∗(A))(0) ⊗

s(eε
∗(A))∗(0) · φ(x, x′)) ∈ U × U × /SgZ

ε
|P 0 ⊗ /S

∗
gZ

ε
|P 0 � ((x, x′), ρgZ

ε
(eI

ε(A)) ↔
((x, x′), eI

ε(A)(P 0)). The Clifford action ρgZ
ε
(ei

ε(A)) acting on the left hand side
can be expressed on the right hand side as

ρgZ
ε
(ei

ε(A)) = ei
ε(A) ∧ − ei

ε(A)∨(2.9)

and the operator /∂∗gZ
ε ,P ′ given at (1.8) can be expressed on the right hand side as

/∂
∗
gZ

ε
=
∑

ρ∗gZ
ε
(ei

ε(A)) · eε
i (A)(P ′)(2.10)

+
1
4

∑
ρ∗gZ

ε
(ei2

ε (A))ρ∗gZ
ε
(ei1

ε (A))ρ∗gZ
ε
(ei

ε(A)) · C(∇gZ
ε )(eε

i (A))i2i1(P
′)

with ρ∗gZ
ε
(ei

ε(A)) = θ∧(ei
ε(A) ∧ + ei

ε(A)∨).

Let us then regard the kernel e−t/∂
2
gZ

ε as an element of the right hand side of (2.8)

and set e−t/∂
2
gZ

ε (x, x′) :=
∑
eI(A)(P 0) ·

(
e
−t/∂

2
gZ

ε (x, x′)
)

I
, and moreover define its

differentiations as
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∂α
x ∂

α′
x′ e

−t/∂
2
gZ

ε (x, x′) :=
∑

eI(A)(P 0) · ∂α
x ∂

α′
x′

(
e
−t/∂

2
gZ

ε (x, x′)
)

I
(2.11)

with
∣∣∣∣∂α

x ∂
α′
x′ e

−t/∂
2
gZ

ε (x, x′)
∣∣∣∣
gZ

=
{∑∣∣∣∣∂α

x ∂
α′
x′

(
e
−t/∂

2
gZ

ε (x, x′)
)

I

∣∣∣∣
2 }1/2

,(2.12)

where α = (αb, αf ) = (αb
1, · · · , αb

n, α
f
1 , α

f
2 ) is a multi-index and we put ∂α

x =
(∂/∂x)α = (∂/∂xb)αb

(∂/∂xf )αf

= (∂/∂xb
1)

αb
1 · · · (∂/∂xb

n)αb
n(∂/∂xf

1 )αf
1 (∂/∂xf

2 )αf
2 ,

etc. Then we have

Lemma 2.3 (the general adiabatic expansion theorem as to e−t/∂
2
gZ : [11,

Theorems 1.2, 1.3 and the proof of Proposition 2.2 for E(t, ε) with t small]).
(1) For any integer m0 ≥ 0, there exist C∞-functions K(m/2)(t, P 0, x, x′)

(m = 0, 1, · · · ,m0), K((m0+1)/2,ε1/2)(t, P 0, x, x′) belonging to the right hand side
of (2.8), which are also C∞ with respect to the variable P 0 (and ε1/2), and sat-
isfying the following condition: For any α and α′, (2.11) with (x, x′) = (0, 0) has
the series expansion

∂α
x ∂

α′
x′ e

−t/∂
2
gZ

ε (P 0, P 0) =
m0∑

m=0

ε−(|αb|+|α′b|)/2+m/2 ∂α
x ∂

α′
x′K(m/2)(t, P 0)(2.13)

+ ε−(|αb|+|α′b|)/2+(m0+1)/2 ∂α
x ∂

α′
x′K((m0+1)/2,ε1/2)(t, P

0),

where we put |αb| =
∑
αb

i etc. and ∂α
x ∂

α′
x′K(m/2)(t, P 0) etc. mean ∂α

x ∂
α′
x′K(m/2)

(t, P 0, x, x′)|x=x′=0 etc. Further, there exist constants λ > 0, C > 0 and an
integer N > 0 satisfying∣∣∣∂α

x ∂
α′
x′K(m/2)(t, P 0)

∣∣∣
gZ

≤ C e−tλ t(1−δ0m)/2
( 1
t(n+2+|α|+|α′|)/2

+ 1
)
,

(2.14) ∣∣∣∂α
x ∂

α′
x′K((m0+1)/2,ε1/2)(t, P

0)
∣∣∣
gZ

≤ C t1/2
( 1
t(n+2+|α|+|α′|)/2

+ tN
)

( 0 < ∀ε1/2 ≤ ε
1/2
0 , 0 < ∀t <∞, ∀P 0 ∈ Z ).

And, if |α| + |α′| ≤ 2, then, given T0 > 0, we have the series expansion

∂α
x ∂

α′
x′K(m/2,·)(t, P 0)(2.15)

=
1

(4πt)(n+2)/2

{ i0∑
i=−δ0m

ti ∂α
x ∂

α′
x′K(m/2,·)(i : P 0) + O(ti0+1)

}

(∀i0 ≥ 0, 0 ≤ ∀m ≤ m0 + 1, 0 < ∀ε1/2 ≤ ε
1/2
0 , 0 < ∀t ≤ T0, ∀P 0 ∈ Z ).

(2) The top term K(0)(t, P 0, x, x′) can be written as

K(0)(t, P 0, x, x′) = KM (t, P 0, xb, x′b) exp
(
−tA2

)
(xf , x′f ) · det vb(x′b)(2.16)
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where we set

KM (t, P 0, xb, x′b) =
1

(4πt)n/2
det1/2

(
tRgM

(p0)/2
sinh (tRgM(p0)/2)

)
(2.17)

· exp
(
− 1

4t

〈
(xb− x′b)

∣∣∣ tRgM

(p0)
2

coth
tRgM

(p0)
2

∣∣∣(xb− x′b)
〉

+
1
4

〈
xb
∣∣∣RgM

(p0)
∣∣∣x′b〉)

and exp
(
−tA2

)
, see (1.11) around, is here regarded as an element of the right

hand side of Γ(∧T ∗
p0M ⊗ (/SgV |Uf � /S

∗
gV |Uf )) = C∞(Uf × Uf ,∧T ∗

P 0Z), and we
have det vb(x′b) = det(gM (∂/∂xb

i , ∂/∂x
b
j)(x

′b))−1/2 = 1 + O(|x′b|2) (see (2.5)).

Proof of Proposition 1.1. (2.10), (2.13) and Lemma 2.2 imply the formal
series expansion

/∂
∗
gZ

ε
/∂hZ

ε
e
−t/∂

2
gZ

ε (P 0, P 0) ≡ /∂
∗
gZ

ε ,P ′/∂hZ
ε ,P e

−t/∂
2
gZ

ε (P, P ′)|P=P ′=P 0(2.18)

=
∑

εm/2
∑

ρ∗gZ
ε
(ei′

bε)ρgZ
ε
(ei

bε) η
b
ji(0) (∂/∂x′bi′ )(∂/∂x

b
j)K(m/2)(t, P 0)

+
∑

εm/2
∑

ρ∗gZ
ε
(ek′

f (A))ρgZ
ε
(ei

bε) η
b
ji(0) (∂/∂x′fk′)(∂/∂xb

j)K(m/2)(t, P 0)

+
∑

εm/2
∑

ρ∗gZ
ε
(ei′

bε)ρgZ
ε
(ek

f (A))(∂/∂x′bi′ )(∂/∂x
f
k)K(m/2)(t, P 0)

+
∑

εm/2
∑

ρ∗gZ
ε
(ek′

f (A))ρgZ
ε
(ek

f (A))(∂/∂x′fk′)(∂/∂xf
k)K(m/2)(t, P 0)

+
∑

ε2/2+m/2
∑

ρ∗gZ
ε
(ei′

bε)ρgZ
ε
(ek

f (A))ρgZ
ε
(ei1

bε)ρgZ
ε
(ei2

bε)

· ηb
j1i1(0) ηb

j2i2(0)
(
−1

4
νk(FA,j1j2)

)
(0) (∂/∂x′bi′ )K(m/2)(t, P 0)

+
∑

ε2/2+m/2
∑

(ρgZ
ε
(ek′

f (A))ρgZ
ε
(ei′1

bε)ρgZ
ε
(ei′2

bε))
∗ρgZ

ε
(ei

bε)

· ηb
ji(0)

(
−1

4
νk′

(FA,i′1i′2)
)
(0) (∂/∂xb

j)K(m/2)(t, P 0)

+
∑

ε2/2+m/2
∑

ρ∗gZ
ε
(ek′

f (A))ρgZ
ε
(ek

f (A))ρgZ
ε
(ei1

bε)ρgZ
ε
(ei2

bε)

· ηb
j1i1(0) ηb

j2i2(0)
(
−1

4
νk(FA,j1j2)

)
(0)(∂/∂x′fk′)K(m/2)(t, P 0)

+
∑

ε2/2+m/2
∑

(ρgZ
ε
(ek′

f (A))ρgZ
ε
(ei′1

bε)ρgZ
ε
(ei′2

bε))
∗ρgZ

ε
(ek

f (A))

·
(
−1

4
νk′

(FA,i′1i′2)
)
(0) (∂/∂xf

k)K(m/2)(t, P 0)

+
∑

ε4/2+m/2
∑

(ρgZ
ε
(ek′

f (A))ρgZ
ε
(ei′1

bε)ρgZ
ε
(ei′2

bε))
∗ρgZ

ε
(ek

f (A))ρgZ
ε
(ei1

bε)ρgZ
ε
(ei2

bε)

· ηb
j1i1(0) ηb

j2i2(0)
(
−1

4
νk′

(FA,i′1i′2)
)
(0)
(
−1

4
νk(FA,j1j2)

)
(0)K(m/2)(t, P 0).

Hence, observing (2.10), we know that (2.18) can be expanded as in (1.12). And
(2.16) implies further
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D(−2/2)(t, P 0 : /∂hZ//∂gZ )(2.19)

= −θ∧
∑

ei′
b ∧ ei

b ∧ ηb
ji(0) (∂/∂x′bi′ )(∂/∂x

b
j)K(0)(t, P 0)

= −θ∧ 1
2t

〈
eb

∣∣∣ ηb tR
gM

2

{
coth

tRgM

2
− 1
} ∣∣∣ eb

〉
(p0)K(0)(t, P 0).

Thus we have obtained the formula (1.13).
Further, as for the coefficients in (1.12), Lemmata 2.2 and 2.3 say

Lemma 2.4. For any integer m0 ≥ 0, put D((m0+1)/2,ε1/2)(t, P 0 : /∂hZ//∂gZ ) =

/∂
∗
gZ

ε
/∂hZ

ε
e
−t/∂

2
gZ

ε (P 0, P 0)−∑m0
m=−2 ε

m/2D(m/2)(t, P 0 : /∂hZ//∂gZ ). Then there exist
constants λ > 0, C > 0 and an integer N > 0 satisfying

∣∣D(m/2)(t, P 0 : /∂hZ//∂gZ )
∣∣
gZ ≤ C e−tλ t(1−δ0m)/2

( 1
t(n+2)/2

+1
)

(m ≤ m0),(2.20)

∣∣D((m0+1)/2,ε1/2)(t, P
0 : /∂hZ//∂gZ )

∣∣
gZ

≤ C t1/2
( 1
t(n+2)/2

+tN
)

( 0 < ∀ε1/2 ≤ ε
1/2
0 , 0 < ∀t <∞, ∀P 0 ∈ Z ).

Further, for given T0 > 0, we have the series expansion

D(m/2,·)(t, P 0 : /∂hZ//∂gZ )(2.21)

=
1

(4πt)(n+2)/2

{ i0∑
i=−δ0m

tiD(m/2,·)(i : P 0 : /∂hZ//∂gZ ) + O(ti0+1)
}

(∀i0 ≥ 0, 0 ≤ ∀m ≤ m0 + 1, 0 < ∀ε1/2 ≤ ε
1/2
0 , 0 < ∀t ≤ T0, ∀P 0 ∈ Z ).

As the last preparation, let us investigate the pointwise trace tr±(ρgZ (eI(A))).

Lemma 2.5. We have

tr±(ρgZ (e∅(A))) = 2n/2, tr±(ρgZ (e(1,···,n+2)(A))) = ± 2n/2

(
√−1)n/2+1

,
(2.22) tr±(ρgZ (eI(A))) = 0 (otherwise),

Ω±(ε, P ) :=
∑

eI(A)(P ) · ε−(n−|Ib|)/2 tr±(ρgZ (eI(A)))(2.23)

= ε−n/2 2n/2 ± 2n/2

(
√−1)n/2+1

dgZ(P ).

Proof. The first two equalities at (2.22) and the equality tr±(ρgZ (eI(A))) =
0 (|I| is odd), and moreover tr+(ρgZ (eI(A))) = tr−(ρgZ (eI(A))) =
(1/2) tr(ρgZ (eI(A))) (|I| is even and |I| < 2n) are all obvious. Hence we have
only to prove

tr(ρgZ (eI(A))) = 0 (0 < |I| = 2m < n+ 2).(2.24)
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Take the standard frame (e1, · · · , e2r) = (e1, Je1, · · · , er, Jer) of R2r where
J is the standard complex structure, and let us prove (2.24) for the stan-
dard Clifford action ρ : Cl(R2r) → End(∧∗Cr), i.e., ρ(e2�−1) = e� ∧ −e�∨,
ρ(e2�) =

√−1(e� ∧ +e�∨) and hence ρ(e2�−1◦ e2�) =
√−1(e� ∧ e�∨ − e�∨ e�∧).

Assume I = ((2i1 − 1, 2i1), · · · , (2im − 1, 2im)) (I ≡ (i1 < · · · < im), 0 < m < r)
and set (1, 2, · · · , r) = I ∪ J with J = (j1 < · · · < jr−m). Then we have

ρ(eI) = (
√−1)m

m∏
�=1

(ei�
∧ ei�

∨ − ei�
∨ ei�

∧),

I ⊃ K = (k1 < · · · < k|K|), ρ(eI) eK ∧ eJ = (
√−1)m(−1)m−|K| eK ∧ eJ,

tr(ρ(eI)) = (
√−1)m

∑
K

(−1)m−|K| = 0.

Thus (2.24) for such a type of I was proved. And it will obviously holds if I is
not of such a type.

Proof of Theorem 1.2. Let us setD(m/2)(t, P 0) = D(m/2)(t, P 0 : /∂hZ//∂gZ ),
etc., to simplify the description, and put D(m/2)(t, P 0) =

∑
eI(A)(P 0) ·

D(m/2)(t, P 0)I as in (2.11). Then we have

TrgZ
ε± (D(m/2)(t)) :=

∫
Z

trgZ
ε± (D(m/2)(t, P 0)) dgZ

ε (P 0)(2.25)

=
∫

Z

∑
tr±(ρgZ

ε
(eI

ε(A))) · ε|Ib|/2
(
D(m/2)(t, P 0)

)
I
eI
ε(A) ∧ �gZ

ε
eI
ε(A)

=
∫

Z

D(m/2)(t, P 0) ∧ �gZ Ω±(ε, P 0),

where trgZ
ε± (D(m/2)(t, P 0)) mean the pointwise traces of D(m/2)(t, P 0) regarded

as an element of /SgZ
ε ,P 0 ⊗ /S

∗
gZ

ε ,P 0 and �gZ
ε

is the star operator associated to the
metric gZ

ε . Hence, setting Ω±(ε, P 0) =
∑

−n≤�≤0 ε
�/2 Ω±(�/2 : P 0) (see (2.23)),

(1.12) and the above give the formal series expansion

Tr±
(
/∂
∗
gZ

ε
/∂hZ

ε
e
−t/∂

2
gZ

ε

)
=

∞∑
m=−2

εm/2 TrgZ
ε± (D(m/2)(t))(2.26)

=
∞∑

m=−(n+2)

εm/2

∫
Z

∑
m=m1+m2

D(m1/2)(t, P 0) ∧ �gZ Ω±(m2/2:P 0)

=:
∞∑

m=−(n+2)

εm/2

∫
Z

D(m/2 : t, P 0).

Thus, observing (2.23), we find that Tr±(/∂hZ
ε
//∂gZ

ε
) can be expanded into (1.14)

(still not asymptotically but) formally. Further the first estimate at (1.17) and
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the series expansion (1.18) imply that, for given n0 > 0, if m ≤ n0 then the
function (to be differentiated by s)

1
Γ(s)

∫ ∞

0

dt · ts
∫

Z

D(m/2 : t, P 0)(2.27)

is absolutely integrable if Re(s) > n/2 + 1 and has a meromorphic extension
to C (� s) which is analytic at s = 0. Hence, to finish the proof of the as-
sertions concerning Tr±(/∂hZ

ε
//∂gZ

ε
), we have only to show that so is (2.27) with

D(m/2 : t, P 0) replaced by the remainder term D((n0 + 1)/2, ε1/2 : t, P 0) =

trgZ
ε±
(
/∂
∗
gZ

ε
/∂hZ

ε
e
−t/∂

2
gZ

ε (P 0, P 0)
)
dgZ

ε (P 0) − ∑n0
m=−(n+2) ε

m/2D(m/2 : t, P 0). To
prove it let us investigate the remainder term for t large. That is, fix T0 > 0
and assume t ≥ T0. Then there exists a constant C = C(T0) > 0 such that, for
any t (≥ T0), we have∣∣∣∣Tr±

(
/∂
∗
gZ

ε
/∂hZ

ε
e
−t/∂

2
gZ

ε

)∣∣∣∣ ≤ C ε−n/2 e−tλ0/4.(2.28)

Indeed (2.14) with α = α′ = ∅ implies∣∣∣∣Tr±(e−t/∂
2
gZ

ε )
∣∣∣∣ =

∣∣∣∣
∫

Z

e
−t/∂

2
gZ

ε (P 0, P 0) ∧ �gZ Ω±(ε, P 0)
∣∣∣∣ ≤ C ′ ε−n/2 tN ,

which, combined with (2.2), gives the estimate (2.28). Next let m0 > 0 be the
integer appearing in (2.20). Then (2.28) and the first estimate at (2.20) imply∣∣∣∣ε(m0+1)/2

∫
Z

D((m0 + 1)/2, ε1/2 : t, P 0)
∣∣∣∣

=

∣∣∣∣∣∣Tr±
(
/∂
∗
gZ

ε
/∂hZ

ε
e
−t/∂

2
gZ

ε

)
−

m0∑
m=−(n+2)

εm/2

∫
Z

D(m/2 : t, P 0)

∣∣∣∣∣∣ ≤ C1 ε
−(n+2)/2 e−tλ0/4,

which, combined with the second estimate at (2.20), yields∣∣∣∣ε(m0+1)/2

∫
Z

D((m0 + 1)/2, ε1/2 : t, P 0)
∣∣∣∣(2.29)

≤ C2 ε
−(n+2)/4 e−tλ0/8ε(m0+1)/4 tN/2 ≤ C3 ε

(m0−n−1)/4 e−tλ0/9.

Hence we may take m0 > 0 so large that we have∣∣∣∣
∫

Z

D((n0 + 1)/2, ε1/2 : t, P 0)
∣∣∣∣ ≤ C4 e

−tλ0/9.(2.30)

Indeed, since we have
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∫
Z

D((n0 + 1)/2, ε1/2 : t, P 0) =
∫

Z

{ m0∑
m=n0+1

ε(m−n0−1)/2D(m/2 : t, P 0)

+ ε(m0−n0)/2D((m0 + 1)/2, ε1/2 : t, P 0)
}

and (2.29) yields∣∣∣∣ε(m0−n0)/2

∫
Z

D((m0 + 1)/2, ε1/2 : t, P 0)
∣∣∣∣ ≤ C3 ε

(m0−2n0−n−3)/4 e−tλ0/9,

we have only to take m0 satisfying m0 − 2n0 − n − 3 ≥ 0. The estimate (2.30)
with t large and the series expansion (2.21) with m = m0 +1 (and here m0 = n0)
now imply the desired assertion about (2.27) for the remainder term.

Let us show the remained assertions concerning the difference (1.15). (1.15)
is obvious. And (1.1) says

Re
(
STr(/∂hZ

ε
//∂gZ

ε
)
)

(2.31)

=
1
2

(
Tr+(/∂hZ

ε
//∂gZ

ε
) − Tr−(/∂hZ

ε
//∂gZ

ε
)
)
− 1

2

(
Tr−(/∂hZ

ε
//∂gZ

ε
) − Tr+(/∂hZ

ε
//∂gZ

ε
)
)

= − d

ds

∣∣∣
s=0

1
2Γ(s)

∫ ∞

0

ts STr
(∑

i

ε1/2η(eb
i )(det ηb)

det ηb
ρgZ

ε
(ei

bε) /∂gZ
ε
e
−t/∂

2
gZ

ε

)
dt

and (2.6) implies

∑ ε1/2η(eb
i )(det ηb)

det ηb
ρgZ

ε
(ei

bε) /∂gZ
ε
e
−t/∂

2
gZ

ε

= ε0/2
∑ η(eb

i )(det ηb)
det ηb

(0) ei
b ∧
{∑

ej
b ∧ (∂/∂xb

j)K(1/2)(t, P 0)

+
∑

ρgZ (ek
f (A))(∂/∂xf

k)K(0/2)(t, P 0)

+
∑(

−1
8
T k

A,j1j2

)
(0) ρgZ (ek

f (A)) ej1
b ∧ ej2

b ∧K(0/2)(t, P 0)
}

+ · · · .

Thus the series expansion of (2.31) has no term with εm/2 (m < 0).

Proof of Corollary 1.3. We have ηb
(u) := (gM

(u)(e
b
i , e

b
j))

−1/2 = (E+uX)−1/2

where E is the unit matrix (compare with (2.1)), which implies

d

du

∣∣∣
u=0

ηb
(u) = −1

2
X.(2.32)

Hence, referring to (2.7) with hZ replaced by gZ
(u) = π∗gM

(u) + gV , we have

δXε
/∂gZ

ε
=

d

du

∣∣∣
u=0

/∂gZ
(u) ε

= −ε1/2
∑ 1

2
Xji(0) ∂/∂xb

j ·ρgZ
ε
(ei

bε)(2.33)
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+ ε2/2
∑

{Xj1i1δj2i2 + δj1i1Xj2i2}(0)
1
16
T k

A,j1j2(0)

· ρgZ
ε
(ek

f (A))ρgZ
ε
(ei1

bε)ρgZ
ε
(ei2

bε)

+O(|x|).

Thus obviously Theorem 1.2 implies the corollary.
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