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Abstract

‘We show that the trace of quotient of two Dirac operators and the infinitesi-
mally deformed chiral anomaly of Dirac operator on a twistor space have adiabatic
series expansions. Further their top terms will be explicitly described.

0. Introduction

Let M = (M,g™) be an even dimensional compact oriented Riemannian
manifold equipped with a Spin? structure introduced in [8]

(0.1)  E7: Pspina(n) (M) = Pspin(n) (M) Xz, Psp1) = Psom)(M) X Pso(s),

where Pgomy(M) (n = dim M) is the reduced structure bundle consisting
of SO(n)-frames of TM and Pgso(s), Pspine(n)(M) are some principal bundles
with structure groups SO(3), Spin?(n) := Spin(n) xz, Sp(1), respectively. Re-
mark that Pspinm) (M), Pspa) are locally defined bundles and the bundle map
=9 is assumed to be equivariant to the canonical Lie group homomorphism
27 = (E,Ad) : Spin?(n) — SO(n) x SO(3). Then, using the canonical action
of Spin?(n) or Sp(1) on Spin¢(n)/Spin°(n) = Sp(1)/U(1) and the identifica-
tion Sp(1)/U(1) = CP! through the representation rz : Sp(1) — GLc(H) =

GLc(C?) with rg(a+jB) = ( % _c‘uﬁ >, we have a CP!-fibration

(0.2) 71 Z = Pspina(n) (M) Xcan CP' = Psp(1) Xcan CP' — M.

Let us now take an Sp(1)-connection A of Pg, (1), so that the twistor space Z
possesses canonically a Spin structure ([9], [10]). Namely, the connection induces
a splitting of T'Z into horizontal and vertical components, TZ = H & V), with
natural orientation and with the metric g% = n*gM + ¢g¥ (7*gM = g#|H), where
gY is the Riemannian metric on V induced from the Fubini-Study one of CP'.
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Further we have the locally defined spinor bundle $, associated to Pgpinn) (M)
and a locally defined hermitian vector bundle I = Pgyp 1) X, H, which together
produce the globally defined vector bundle 7* 8 x @ 7 M = 7* 3 .m0 @ B =: §,z
on Z, whose rank is certainly equal to 2"/2t1. Then, the locally defined Clifford
action pyar of CI(T*M, gM) on $,u, together with the action pyv of CL(V*, g¥) on
B,v induced from the fiberwise globally defined canonical Spin structure, gives the
globally defined action p,z of CI(T*Z, g%) on $,z, i.e., pyz (7*&) = 7* pyn (&) @1
(& € T*M) and pgz(ff) = W*ng (TgM) & pgv (ff) (ff € V*), where Tgm 18 the
complex volume element of (M, g*). Thus (Z, g%) has a canonical Spin structure,
which gives the Dirac operator @;) : F($g(f)) — 1"($;§)). Note that the canonical

splittings $yv = iu ©F . v =" H = $L @80 = {([v],cv) € T HIB(FH)"
induce the splitting $,z = $;Z © 2.

Now, let us take another metric h* on M and an associated Spin? struc-
ture with the same Pgo(3) as in (0.1), whose twistor space is hence equal to
the one given at (0.2). We have thus another Spin structure for Z with metric
h? = 7*hM 4¢Y which induces another Dirac operator &9%2) :I( f(;)) — I'( }ngF))
Let us define then the invariants called the traces of the quotient @,z/@,z

by

03) T/ = 32| 575 1 (e 9 e 7 )

2 2
with the equalities Tr (@gz Dnz e_tagz) =Try (@hz P,z e_t@gz).

(The equalities at the second line will be shown at (2.1).) Remark that e_taiz
is a cross-section of the vector bundle $g(f) X $g(;t)* over Z x Z, on which the
operator @,z cannot act in a naive sense. In the paper we will let @,z act on
it (see (1.6)) by using the method introduced by Bourguignon and Gauduchon
([4], [5]), the explanation for which will be offered at the beginning of the next
section. The first purpose is then to study the adiabatic series expansions of (0.3)
and the difference STr(@y,z /@yz) = Try (Ppz/Pyz) — Tr_(Ppz /Pyz). Namely, by
replacing the metrics gZ ete. by g2 = e ln*gM + g¥ = 7°gM + ¢¥ (¢ > 0)
etc., we obtain Try (@7 /@Pyz) ete., and we want to investigate their asymptotic
expansions when ¢ — 0. Incidentally to express the right hand side of (0.3)
by Tr4(@pz/@,z) will be appropriate in the following sense: Using the series of
cigenvalues (0 <)A\f < AF < - — 0o (see Lemma 2.1) and the corresponding
series of orthonormal eigen-cross-sections of the operator @Zz acting on F($;EZ),

2
let us set e~Poz — Ze_tkfi(b;: X gbjc* and put ,u;t = (@gz&hzqﬁf,é]i),;z where
(-, )2 = <"'>L2F($giz) is the global inner product which F($;tz) has. Then,
formally the right hand side of (0.3) is equal to
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d 1 + i + Mi

Z + 5 —tA7 + —tAd j
t idt = E . i dt - g -

Hi dSSoF()/ € ,uj/oe /\ji

Second, let us consider some infinitesimal deformation of the so-called chi-
ral anomaly. That is, let us take a symmetric bilinear form X on T'M and set
ggVuf) = g™ +uX (0 <u < up). The metric induces the Dirac operator @g(z) acting

on I'($,z) as above and we have the infinitesimal deformation of @,z

d

(0.4) Sxyr = =

Z .
u=0" J(w)

We are interested in the associated invariants called the infinitesimally de-
formed chiral anomalies of ¢ z defined by

_4
T ds

1 e 2
—_— ST z z —t@gz
s=0 I'(s) /0 s (@g OxPg7 ) at,

2 2
with the equalities Tr4 (&gz 5X$gz eitagz) = TI‘$ (5xﬁgz @gz 67t$92>

(0.5) logdet (x@,z)*

and we want to investigate the asymptotic expansions of logdet (dx. @g )* and
also their difference when ¢ — 0. If the operators @z g?g(z acting on F($ 2) hap-
pen to have the spectra consisting of eigenvalues {\;(u) = /\f( )} all of which
lie in a positive cone about the positive real axis in C and have the correspond-

ing orthonormal eigen-cross-sections {¢;(u) = (b;t (u)} which are all smooth with
respect to the parameter v at © = 0, then we have

X0 = ] Dy 65,650}

(
= (P2 0x Py 93(0), ¢5(0)) 12 + (#267(0), 65(0)) 12 + (P52 65(0), #5(0)) 12
=
=

2 5xy263(0),050)) 12 + 45 (0) 2| (050, 65(u)

Pyz0xPyz$;(0),$;(0)) > (hence, A, (O) > 0 if \(0) # 0)

and the right hand side of (0.5) is formally equal to

d L[ o A%(0)

S X0+ sor(s)/ peNOg= 3 ﬁ<o>—* g TT A
X, (0)#0 - 0 2;(0)>077 T (0)>0
_ d 9 —slog Aj(u) ) _ d +
T du u:0< 0sls= Z ¢ )_ du‘u:O log det (agzagfu)) '

0
(A;(0)>0)

Thus, formally (0.5) are the infinitesimal deformations (into the direction X) of
the chiral anomalies logdet (9, @g(z >)i, which were briefly explained by I.M.

Singer [12, Appendix]. (Note that, in general, all but a finite number of eigenvalues
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A1(u), -+, Ag(u) lie in a positive cone about the positive real axis and the eigen-
cross-sections ¢;(u) are generalized ones. In the paper he defined the anomalies
as log det (@gz@g(zu))i = —A1(u) - A(u)(0/08)[s=0 2 s i eslog i)

Our investigation on the chiral anomaly etc., which will be quite interest-
ing but are not yet widely researched mathematically compared with the other
anomalies such as the global gravitational anomaly (the adiabatic limit of #-
invariant) ([3]), is an attempt to embody the idea ([3]) that such an operation
as replacing gZ by gZ and taking the parameter € up to 0, that is, blowing up
the metric gZ in the base space direction, will extract some intrinsic values from
various geometric invariants of Z. We want to emphasize here that it is mainly

2
the general adiabatic expansion theory concerning the kernel et ([11] and
Lemma 2.3) that induces our main assertions, i.e., Theorem 1.2 and Corollary
1.3.

1. The operator ¢,z acting on I'($,z) and the Main Assertions

According to the Bourguignon and Gauduchon’s method ([4], [5]), first
we will make @,z act on I'(§,z). The projection from the set F*(T,M) of
positively oriented frames on T,M to the set I(T,M) of inner products on
T,M, given by e — “the inner product (,-). which has e as an orthonormal
frame”, has a structure of principal SO(n)-bundle, which is trivial since the
base space I(T,M) is contractible. And the tangent space T. F* (T, M) = gl(n),
(d/da)|a=o(e-Ba) < (d/da)|qs=0Ba, has a subspace He(F(T,M)) = {B € gl(n) |
B = 'B} which is projected onto T. .y, I(T,, M) isomorphically. Clearly the distri-
bution e — H(F*(T,M)) gives then a connection for the bundle, which induces
the parallel displacement 7™ : Pso ) (M), & Pso(n) (M, h*M), along the segment

M

from g," to hg/f . Gathering such displacements we get the bundle isomorphism

(11) 77M : PSO(n)(M) = PSO(n)(Ma hM)
with ™ : TOM = (T M M), M (b, v]) = ™ ("), v,

where we use the canonical expression TM = Pso(n) (M) Xcan R (3 [e%,1]),
etc. More explicitly, for a g™-SO(n)-frame ” = (€},---,€b), set n® = (nf;) =

(h™ (e}, eb)) /2, which is positive and symmetric. Then we have
(1.2) M) =", nM(ed) =nM ()i =D el

These come from the fact that, if we take the segment t — g/(t) = (1 —
t)gh" + th)’ and for each g)!(t) we put nM(e’) = e - (ggj(t)(eg,eg))_lp,
then nM (eb) is a 93" (t)-SO(n)-frame and (0/0t)nM (€b) is horizontal. We use
the common Pg,;) for the two metrics (see (0.1)), which consequently deter-
mines (locally defined) Spin structures = : Pgpinn)(M) — Psom)(M), Epm :
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Pspin(n) (M, hM) — Pgo(ny (M, h™). Since the above connection for the (trivial)
bundle F*(T,M) — I(T,M) induces a connection for the associated (trivial)
Spin(n)-bundle F*+(T,M) — I(T,M), similarly to the above we obtain a bun-
dle isomorphism nM : Pspin(n) (M) = Pspinn) (M, hM) and, further, we have the
bundle isometry

(1.3) M B 22 Fpar, M ([, 8]) = M (¥), ]
with 9™ o pgar (&) = ppa (™ (€)) o™ (£ € T*M).

Thus we get the identifications

(1.4) n=nM@id:TZ=HaoV=(TZh”)=H,mr) eV
given by ef(A) = n*el, ef — 7 nM(el), el,
(15) 1]:77M®id:$gz =7T*$9M®$gv = $hz :ﬂ'*$hM®$gV

with 10 pyz(§) = prz(n(§))on (£ €T"Z),

where e/ = (e{,eg) is a g¥-SO(2)-frame of V. Set e.(A) = (e1(A), ) =
(e’(A),ef), which is a ¢Z-SO(n + 2)-frame, and denote its dual by
e*(4) = (e*(A4),---) = (ep,ef(A)). Then we have the expressions

. . 1 z
Dy = Toe@ )V = Top(e()feld) + 2 a7 (97 e (A)
€iy(A)) pyz (€' (A))pyz(e2(A))} etc., where v9” is the Levi-Civita connection
associated to the metric g%, and now

(16) D= LoDz ="y (€1(A) VI L (8,) = T(8,2) with

Vfgzyhzzy"‘iz gZ((U_longo n) ei, (A), e, (A))pgz(e“(A))ng(eiz (4))
:’l}‘f’iz hZ(Van(eil (A)), 77(67;2 (A))) Pgz (eil (A))pgz (eig (A))
is the desired one at (0.3). By putting e5(A) = (e?(A),ef) = (e'/2e4(A),ef)
)

and eZ(A) = (e, ep(A) = (72, ¢4(A)
expressed as

$q i $9Z’hEZ
(1.7) 9z = Zpga V (A) Pnz = Zﬂgg(es(A))Vn('%(A))'

Remark that the map 7 for gZ etc. coincides with (1.4) for g%
Let us next consider the identity

their adiabatic versions are then

2 2
(1.8) Try (@ggz Dnz e—t@gg) ~Tr, (@;EZJD, Dzpe D7 (P, p/)),

where we put @;g,p/ @hEZ,P ©1(P) K po(P') = @hEZ,P ¢1(P) X @gf,P/ ©2(P'). The
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right hand side contains only derivatives up to the first order for each variables P,
2

2
P’. First we will study a;azaheze—t@af (P,P) = @;Esz,ahazfe—t@gf (P, P')|p—p
(when ¢ — 0) regarded as an element of the third side of the identification

(1.9)  T($57 ® $g2) =T($yz ® $,2) =T(NT"Z @ C),
s(e5(A4)) ® s(e5(A)) © s(e(A)) @ s(e2(A))", pyz(el(A)) < el(A),

where s(eS(A)) is the SU(2"/2t1)-frame of B4z induced from ef(A), and I =
(1°, 1) is a multi-index with 1" = (& < - <P, ) and I7 = (if < <if,),

. - f if
and we put egz = e;}; Ao A eb”b , efpf (A) = ef(A) A A ef”f'(A) and
el(A)=el’ nel i "(A). Let us take now a (globally defined) tensor field

(1.10) Ta== Z{ e;, J i’(A) }®eb/\eb Zek®TA,

where [e}, e8](A) is the H-horizontal lift (€ H) of the bracket [e}, e%]. Remark

that the difference [€?,€%](A) — [e?(A), e%(A)] is vertical (€ V). Consider then the

(R 7 7]
elliptic operator acting on T(ATyM @ $v|Z,) (Z, =7 (p))

(L11) A2 = ZTA/\ B G(ZTQ Ay (E5(4)))

where we put @pv = Y pyz (e’}(A))Vfﬁv, pgz(e’}(A)) = (-1 @ pyv (e’}) for (-

forms in the M-direction and T%(P) = (1/2) > (e} A eg)(p) . TXZ-J-(P). This gen-
erates a (C°)-semi-group with C*-kernel which belongs to T(AT; M & (8 ,v|Z, X
$ov|Zy)). Its value at (P, P) can be canonically regarded as an element of
NT*T*M)p @ A\V*(A)p @ C = ANTHZ ® C (see (1.9)), which we denote by
exp(—tA?)(P). Then we have

x

Proposition 1.1. When ¢ — 0, there exists a formal series expansion

(1.12) @yznz 2z (p,p) = > &2 Dy (8, P Iz [Dg2),

m=—2

(113) Doyt P: Pz /9,2) =—0" 5 <eb’n gM{cothtRQgM—lHeb>(p)

1 ol tRYY )2
x (4t)n/? det’/ (sinh (tR9M/2)>(p) exp(—tAQ)(P),

where we set p = w(P), 0"w = (=1)Yw for j-form w, and RQM(p)
M

is an anti-symmetric matriz whose (i,7)-entries are equal to Rfj (p) =

(1/2)ZgM(F(VgM)(ef,eé’)ei—’l,eg)(p) (e)* Nep?)(p). (See Lemma 2.4 for further
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informations for the coefficients.)
Now let us state the main assertions.

Theorem 1.2. In the definitions of Tro(@nz/Pyz) (see (0.3)), the function
ﬁ /Ooot Tro (@q Pnz e tags ) dt is absolutely integrable if Re(s) > n/2 + 2
and has the meromorphic extension to C (3 s) which is analytic at s =0. When
€ — 0, then there exist the asymptotic expansions

(1.14)  Tre(Pnz/Pyz)

= e o
=, ( /_1)71/2-‘1—1
d 1
<ol OT dt t? D(m/z) (t, P: Pnz/Pyz)

+ Z €m/2 2n/2

m=—(n+2)
X% o= ﬁ/o dt- tS/ZD((m+n)/2>(t,P: Pnz [Pyz) N dg?(P),
(1.15)  STr(@nz/Pyz) = Tr(Pnz /Dgz) — Tr—(Pnz /Pyz)
>0 on/2+1
- L e
d 1

_ oﬁ/ dt - t/D(m/2)tP Dnz[Pg2),

where the functions to be differentiated by s at s = 0 are also all absolutely inte-
grable if Re(s) > n/2 + 2 and have the meromorphic extensions to C which are
analytic at s = 0. In particular, as for (1.15), the coefficients of €™/ withm < 0
are all pure imaginary.

ds

As for the infinitesimally deformed chiral anomalies, we have

Corollary 1.3. In the definitions of log det(6x,Pyz)= (see (0.5)), the function
to be differentiated by s is absolutely integrable if Re(s) > n/2 + 2 and has the
meromorphic extension to C which is analytic at s = 0. Set

d
(1.16) CH(yyo)(t, P: 6xPyz) = %‘ B D(m/z)(t,Pr Dyz [9q2)

(117) CH o1, P xy2) =0 - (e x { thth 1} en)(w)

1 o tRI/2 ,
8 Wdet ! (m)(p) eXp(—tA )(P).
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Then we have the asymptotic expansions when € — 0

(1.18) logdet(6x,Pyz)™
0 . :|22n/2
=2 =
m=—2 ( o )

d 1 >
—_— - t° H P: z
. OF(S)/O dt t/ZC (m/g)(t, 6X@g )

s |

4 i Em,/Q 271/2

m=—(n+2)
4
ds

1 o0

s | dt-tt | CH t,P: 4 dg? (P
s=0 F(s)/o /ZC (m+n)/2) (6, P2 0xPgz) N dg™(P),
(1.19) S-logdet(dx.@,z) := log det(éXE(;)gEZ)Jr ~ log det(9x.f,2) "
2n/2+1

Z em n/2+1

m=—2
d
Xi
ds

—_— dt - t° H t,P:§ z).
s=0 F(s)/o /ZC (m/2)(t; xPq7)

So are the functions to be differentiated by s and the coefficients of €™/? with
m <0 at (1.19) as in Theorem 1.2.

2. Proofs of Theorem 1.2 and Corollary 1.3

First let us show

Lemma 2.1. There exists a constant A9 > 0 satisfying Spec(@ ) > Ao for
every € with 0 < € < egg. And we have

(1) Tre <$95Z Dz eitaig) - (@h? Dyz eit@f’g)
= Try (@gf Dz ez ) +Try (Z w pyz(€h) Py e—tajg)

detn

and further there exists a constant C' > 0 satisfying
2 2
(2.2) ) Try (@;gypl @hazf, e—t@gaz (P, P/)) ’ < Ce /3 Try (e_(t/6)@gaz)
(0<Ve<egpand 0 <Vt < o0).

Proof. The assertion concerning the spectrum of @zz comes from the in-
vertibility of @, ([10, (5.15)]) and [3, Proposition 4.41]. Namely, first consider
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connection V9~ = PYoV9~ of V, where PY : TZ = H®V — V is the pro-
jection. This together with the Levi-Civita one v gives a new connection
VIEe = prvet @V of TZ =H @ V, which is compatible with gZ and whose

torsion is equal to T4 given at (1.10) ([11, Lemma 3.1]). Denote by V$9-EZ@ the
1 o
associated connection on ;7 and set Tg =3 e’]i (A) Tk = 3 > Tg,ij NepNep.

Then we have

1 $qz ® 51/2 1
(2.3)  Pyz = el/? Z Pgz (ebe){veg&) + g Po? (Z Tf‘lj,ij/\ 6?)5)} + Pgv

= 61/25954— @gv,
~92 ~ ~
@35 =ef. + @5" + 51/2{@5 oPgv + Pgv 0@5}
$gg ®

~92 .

= e+ + b el AGAN VD
el/? i i j

—g Pz (Z T} Nepe Nep)o@ygy

- @gv o T pgsz (Z Tgvl] A 625 A\ 6'[])5)}.

Let || - lp.1 be the Sobolev H'-norm of elements of I'($,z) restricted to Z, with
metric gEZ|Zp. Then there exist constants C' > 0, C’ > 0 such that for any p € M,
Y € I'($,2) we have

| [@eopyy 0,0 2Dciv)g o212, | < Clells, Wl = Wl

where (-, ) $ denotes the pointwise inner product which I'($,z) has. The first
gz ~ ~

estimate comes from the fact that @. o @yv + @yv o @, is a first order differential

operator on Z, and the second comes from the fact that @,v is invertible. Since

~ =2
further @. is self-adjoint and @, is nonnegative, finally we have

@ziz Z @zv + 61/2{55 o@gv + @gv oég} Z (1 — 81/200/)@511.

We have thus shown the assertion concerning the spectrum. As for the equalities
2

(2.1): To simplify the description, let us assume € = 1. Set ez — Ye g X

o5 € I’($;_Z X $;‘Z*) as usual (refer to the argument following (0.3)). Because of

P220y205 N = Nj - Dezdi /N € T($,2) and (Dyz i \/Nj, Doz b1V Ni )2 =

d;i, we have

Tr_ <$gz@hz e_taiz)
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= Y™ [Py a0y 631/ 265 R) g, 4o (P)
_ Z et )\j—l/<$hzé992¢j, @zz¢j>$gz ng(P)
=Y e [@e0,001.00) g Ao (P) = Tei (Pueye D7),

Thus the first equality at (2.1) was proved. Next let us prove the second one. We
have

)(det .
(24)  Pis = detnbo Puz odet(n®) ! = Pz — Z” detn” pyz(ch)

because (1.6) implies
[nrv.o1g, a7 = [ pyoteanvhe (et g an”
- [« thz i 6’(A)))Vﬁhe,zi(,4))77(¢)adet(??b)_l'n(¢)>$hzdhz
= [0, 3 e (AN 7 detlr) @),
= [tw.detr? S oy @A)V L et o) do”.

2
Hence, using the above expression of Tr (@hz P gz e_tagz), we have

_Ze—w\j/@g 6;(P Zn detd;tn) Z(eg)¢j(P)>$gzdgz(P)
_ Y e / @123 (P). Dy 0P g dg” (P)
£y e /Z” detd;t" pgz(€}) Pgz6;(P), 6;(P)) g, dg”(P).

Thus we have proved the second equality. Last, as for the estimate (2.2): Assume

2
€ = 1 and remember the above expression of e_t&sz . We have

Tey (P dneeP02)[ <S¢ | [(9265(P). Dye 6, (P)) g , dg” (P)
o ) / 5

< e Dz il 10970502 <3 e (CIAE + Co)AY?
< sze /2 < 0 e—t)\g/SZe—tA 16— Oy e /3Ty, (e —(t/6)@§z).
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Thus (2.2) with € = 1 was proved. And, remembering the estimate Spec(&iz) >
Ap for any € with 0 < € < g, obviously we know that the above estimation holds
also for general ¢. 1

Before we give the proofs of the three assertions stated in the previous section,
we will make some preparatory arguments. Take a point PY € Z. Though we have
taken a gZ-SO(n+2)-frame e, (A) around P° with no specific condition, now it is
convenient for the proofs to take such a frame in the following specific way. First
fix e,(A)(P%) = (eb(A)(PP),ef (P°)). Then let e,(A) = (e’(A),ef) be V9~ -
parallel along the ng@—geodesics from P and be equal to the fixed one at PY,
and, further, let e*(A) = (ep, ef(A)) be its dual. Remark that V9~ ® (= V97 @) is
compatible with the metric gZ so that e.(A) is certainly a g?-SO(n + 2)-frame.
Note also that e?(A) coincides with the H-horizontal lift of the ¢™-SO(n)-frame
e’ on a neighborhood U (C M) which is v parallel along the VgM—geodesics
from p° = 7(P°) and is equal to the given e’(p®) at p°. Also take such a g¥-
SO(2)-frame on U' (C Z,0) which coincides with the given ef(P%) at P° and
then spread it on a neighborhood U (C Z) by the the H-parallel displacement
along the VgM—geodesics from p°. The frame on U thus obtained is certainly
equal to the above ef. Further, let us take the V9”@ normal coordinate neigh-
borhood (U = U® x U/, x = (2%, 27)) with (0/0x)po = e,(A)(P°). Similarly to
the above, z°(P) are V4" -normal coordinates of 7(P) and 27 (P) are VY-normal
coordinates of the image (€ Z,0) of the point P by the H-parallel displacement.
Hence we have

e (@ ) > (9/0 x?)wh-vﬂ( "), vji(a®) = ;i + O(a"?),
C(V7 ) iis (e}) = (nge b)=(9(lwb\)a Ale) = O(|2"]),

i1 ’Lg

(2.5)

etc. Hereafter we will use the coordinates and the frames thus given and of
course the gZ-SO(n + 2)-frame eS(A) = (e?*(A),ef) = (e1/2e(A),ef) and its
dual e(A) = (epe,er(A4)) = (¢ l/zeb,ef(A)) (see (1.7)) are assumed to be de-
fined by using such frames. Now first let us show

Lemma 2.2. On the coordinate neighborhood (U, x), we have
(26) Pz =D 0/0w] - pyz(ef(A)) + 3 €'/20/0n] - pyz (eic)
=D e ET,'X,MQ (0) - pgz (el;(A))ngZ (ehe)pgz (€2) + O(|zl),
(2.7) Pz =Y 0/0x] - pyz(f(A)) + "/ *n}(0)0/02} - pyz (el)
=l ()1, 0) ész,m (0) 7 (€5 (A)) gz (ef2 oz (e2) + O(J2])

Proof. Remark that we have V9 = V9" and V' = vh", Referring to
(2.4) we have
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Dz = 0z () 2 {eb(A) 4 1 30T )i () iz ()2 ()
£ D Ot (HA)) gz (e (AN <A>>}

£ oz (AN el + § 32 OO it (o) oz (¢ (A))pyz (¢ (4))}
o D T oz (5 () pyz (e} Doz (e12):

Hence using (2.5) we obtain (2.6). Next, put C(V*"),i (n(eb)) =

h}\l

hM(Vn@b)”( 2, m(el))). Then we have
M i i
Dz = Zpg e )e 1/2{ ZC (V™" )igiy (n(e)) Pyz (€pe)pgz (€4)

1O s (n <A>>>pgz<ef1<A>>pgz<efl<A>>}
£ paz AN ef + 1 3 OO s (e]) pz (2 (A)py (e (4)) )
— = ST neh,)) ooz (e (A))pyz (e Doz (€32).

Hence using (1.2) and (2.5) we obtain (2.7). 1
Next let us consider the identification

(2.8) T(8,2|U R 8. |U) = C=(U x U, AT} Z)

given by s(eZ(A))(z) @ s(eX(A))" (') - o(z,2') < ((z,27), s(ei(A))(0) ®
s(e2(4))*(0) - ¢(z,2")) € U x U x Fyzlpo @ $yzlpo > ((z,2), pyz(el(A)) <
((z,2"),eL(A)(P%)). The Clifford action Py (el (A)) acting on the left hand side
can be expressed on the right hand side as

(2.9) pyz(€1(A)) = ¢ (A4) A — L (A)V

and the operator @ZEZ pr given at (1.8) can be expressed on the right hand side as

(2.10) Pz =D phz(el(A)) - 5 (A)(F)
S (e ()0 (€ () () - OV ) (€ (4) s (P)
with pgz (eL(A)) = 0" (eL(A) A+ €L (A)V).

2
Let us then regard the kernel eit@gsz as an element of the right hand side of (2.8)
2 2
and set eft&-%z(:c, 2') = el (A)(PO) - (eft@gsz(x,x’))l, and moreover define its

differentiations as
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11) oo e P (e,at) = 3 AP - oy (P, at)).

/ —t@QZ 4 —t@2Z ? 1/2
(2.12) with |920% e WoZ(z,a')| = {Z 8o (e o2 (x,x/))I’ } :
QZ
where a = (af,af) = (a?,---,al,af,ad) is a multi-index and we put 9

(8/0x)* = (9/0x)*" (80T ) = (/0% - - (8)8h) % (0/0x])*1 (9/ D)3,

etc. Then we have

Lemma 2.3 (the general adiabatic expansion theorem as to e*t@jz o [11,
Theorems 1.2, 1.3 and the proof of Proposition 2.2 for E(t,e) with t small]).

(1) For any integer mg > 0, there exist C™-functions K(m/g)(t,PO,:c,x')
(m=0,1,---,m0), K((mot1)/2,1/2)(t, P°,x,2") belonging to the right hand side
of (2.8), which are also C> with respect to the variable P° (and £'/?), and sat-
isfying the following condition: For any « and o, (2.11) with (z,z’) = (0,0) has
the series expansion

2 o
(213) ooy PA(PO PP = 3 et D 2 02 0 I (1, )
m=0
— ab a/b m (6% a
4 e~ (e?1+1a)/2+(mo+1)/2 ga go! K (mo 1) /2.6 (1, PYy,

where we put [a’] = Y al etc. and 0202 K(m/z)(t PY) etc. mean 85‘32‘;1{(,”/2)
(t, P°,2,2")|y=z'—0 etc. Further, there ewist constants A\ > 0, C > 0 and an
integer N > 0 satisfying

, |
a 0 —tA 1 (1—b0m)/2
@11y |7 (&, P )‘gz =Ce ™t (s +1):
. , 1
e 0 1/2 N
2 0 K (mo+1) /2,61 (1 P )’gz <c/ (t<n+2+|a|+\a/|>/2 +1%)

(0<Vel2<el? 0< VWt <oo, VPO € Z).
And, if |a| + || < 2, then, given Ty > 0, we have the series expansion

(2.15) 920 K)o, )t PY)

(471-t (n+2)/2{ Z tlaaa K(m/2 )( )+O(t10+1)}

1=— Om

(Vip >0, 0<Vm <mg—+1, 0<Ve/? <el/?

, 0<Vt< Ty, VP° € 7).
(2) The top term K ) (t, P°,x,2") can be written as

(2.16) K(g)(t,P° z,2") = Kp(t, PP 2%, 2") exp(—t.A2> (zf,2'7) - det v®(2"")
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where we set

(2.17) Kt PO x , T b) n tl)n/2 det!/? (Sinﬁ?:ngg){)i/z)>
. ( 4175 < R ‘ thZ(pO) ot tRQZ(pO) ‘(xb_ x/b)>
(o [R0)a))

and exp(—t.AQ), see (1.11) around, is here regarded as an element of the right
hand side of D(NTo M & (8,v UM R v |UT)) = C(UT x UF, AT}, Z), and we
have det v*(z'") = det(g™ (0/0x%,0/025) (x N2 =14 O(|2"|?) (see (2.5)).

Proof of Proposition 1.1. (2.10), (2.13) and Lemma 2.2 imply the formal
series expansion

218) Byzthze PHEO P = Dy oz pe PP e
=D MY przlehe)pgz (ehe) n3i(0) (8/02) (002 K o (2, P°)
302 ';< pgs (che) 153 0) (8/ 0 ) (D0 K 2y (. P°)
+ YY" oz (che)pgz (€ (A)(0/02 ) (D)0 ) K imya) (2, P)
372 g ';< ))pgz (€§(A)) (/02 (90w ) K im 2 (¢, P°)
+ 32N g (b )pgz (€ (A))pyz (it )pyz (e12)
O iy O (= 14 () (0) (010 Koy 1, P)
302 S (g (€ (A))pgz (e pyz (612)) g (€f)
“n%:(0) (_ZV (FA,i;z;))( ) (/02 K (2 (£, P°)
Y RN z(e’fc,( ))pgz (€5(A))pgz (1) pyz (¢2)
is0) 1y 0) (= 4 (Fa5112)) 000/ Ko (1, P)
+ 3220257 (g2 (K (A)) pgz (e2)pyz (€12))7 pyz (€5(A))
(57 (Fa) ) O 0/0]) Ko (8, P)
+ 302N (2 (K (A))pyz (€42)pz (€12)) oz (5(A))pyz (€422 (€12)
b (0) 1., (0 (ffv (Faii ))(0)(*31/ (FA,jljz))(O)K(m/m(tv PY).
(

Hence, observing (2.10), we know that (2.18) can be expanded as in (1.12). And
(2.16) implies further
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(2.19) D(,Q/g)(t,PO: @hz/@gz)
=—0"Y"ep Aep Anbi(0) (9/0x8)(0/02) K o) (¢, P°)

=" 1 <eb ‘ n’ tR;M {coth tR;M - 1} ‘ eb>(p0) K)(t, P°).

Thus we have obtained the formula (1.13). 1
Further, as for the coefficients in (1.12), Lemmata 2.2 and 2.3 say

Lemma 2.4. For any integer mg > 0, put D (,n, 11)/2,c1/2)(t, P*: @z [Pgz) =
2
Doz Pz o=tz (PO, PO =30, e™2 Dipyoy(t, PO @z /Pyz). Then there exist
constants A > 0, C' > 0 and an integer N > 0 satisfying

1
(n+2) /2

(2:20) |Dny2y (8, PO Pz [Py2)| o < Ce™ t(l";o’”)ﬂ( +1) (m < my),

N
| D((mot1)/2,6172) (t, PO @hZ/@gZ)|gz < Ctl/z( iz Tt )
(0<Vel/2<et/? 0<Vt < oo, VPO € Z).
Further, for given Ty > 0, we have the series expansion

(2.21)  Dyyo,.(t, PO @hz/agz)

~ () <n+2>/2{ Zt%m PO Py [Dy2) + O )

== Om

(Vig > 0,0 <Vm <mo+1,0<Ve/2<el/? 0<Vt<Ty, VP° € 2).
As the last preparation, let us investigate the pointwise trace tr (p,z (el (A))).

Lemma 2.5. We have

2n/2
Z 0 — on/2 5 (1,--,n+2) _
iy N =2 rsloye () = 2
: tra (pgz (e’ (A))) = 0 (otherwise),
(2.23) QF(e,P) =) /(A e (ID2 41 (po2 (T (A)))
271/2
_ ~—n/29n/2 zZ
€ 2Me 4 V=D g (P)
Proof. The first two equalities at (2.22) and the equality try (p,z (e (A))) =
0 ([I] is odd), and moreover tri(p,z(ef(A))) = tr_(pyz(e'(A))) =

(1/2) tr(p,z (e’ (A))) (|I| is even and |I| < 2n) are all obvious. Hence we have
only to prove

(2.24) tr(p,z (e’ (4))) =0 (0< |I| =2m < n+2).
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Take the standard frame (el,---,e*") = (e1,Jer, -+, e Je,) of R?" where
J is the standard complex structure, and let us prove (2.24) for the stan-
dard Clifford action p : CI(R?") — End(A*C"), ie., p(e**71) = e/ A —eyV,
p(e?Y) = vV—1(ex A +eV) and hence p(e?~1oe?!) = /—1(eq A eV — gV egh).
Assume T = (201 — 1,2i1), -+, (2im — 1, 2i)) (1= (i1 < -+ <), 0 < m < 1)
and set (1,2,---,r) =1UJ with J = (j1 <--- < jr—m). Then we have

)
x
X

i
ﬁ
=

3
— s

(ei,z A eil\/ — 61'2\/6“_7/\)7

o~
Il
-

IDK=(k < <k, ple)ex Aey = (V=1)"(=1)" ¥l ex A ey,
tr(p(e!)) = (V=D)" Y (=)™ =o.

K

Thus (2.24) for such a type of I was proved. And it will obviously holds if T is
not of such a type. ]

Proof of Theorem 1.2. Let us set D, /2)(t, P°) = Dy, /2)(t, P: Pz /D y2),
etc., to simplify the description, and put D, 2 (¢, P%) = > el (A)(PO) -
D12y (t, P°)1 as in (2.11). Then we have

(2.25) T (Do) (1)) = / 60 (D oy (1, P*)) dg? (P°)
= [ Stz €)' (D (6.P) | €(4) Aozl (4)

= / D(m/g)(t,PO) A *gzﬂi(&‘, Po),
4

where trfgz (D(m/2)(t, P°)) mean the pointwise traces of Dy, 2 (t, P°) regarded
as an element of §,z po @ $ZEZ po and *x,z is the star operator associated to the
metric gZ. Hence, setting QF (e, PY) = > _,.,e/2QF(¢/2: PO) (see (2.23)),
(1.12) and the above give the formal series expansion

a2 s z
(2.26) Try (@Zgz&hsze t@sf) = Z gm/2 Tr“;]f (D(m/2)(t))

m=—2

= Z m/2/ Z D(m1/2) t P )/\* ZQ (m2/2 PO)

n+2) m=mi+mgo

= Z 7"/2/ D(m/2: t,PP).

m=—(n+2)

Thus, observing (2.23), we find that Try(¢),z/@,z) can be expanded into (1.14)
(still not asymptotically but) formally. Further the first estimate at (1.17) and
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the series expansion (1.18) imply that, for given ng > 0, if m < ng then the
function (to be differentiated by s)

(2.27) ﬁ/ooodﬁts/ZD(mﬂ . t, P%)

is absolutely integrable if Re(s) > n/2 + 1 and has a meromorphic extension
to C (2 s) which is analytic at s = 0. Hence, to finish the proof of the as-
sertions concerning Try (@2 /@yz), we have only to show that so is (2.27) with
D(m/2 : t, P%) replaced by the remainder term D((ng + 1)/2,e%/2 : t,P%) =

z 2
(D Prze™ P (PO, P))dgZ(PY) — S0 (o) €™ 2D(m/2 ¢ 1, PY). To
prove it let us investigate the remainder term for ¢ large. That is, fix T > 0
and assume t > Tp. Then there exists a constant C = C(Tp) > 0 such that, for

any t (> Tp), we have
(2.28) 'Tri (@;SZ @hsze—t@gz) ‘ < Qe /2 tho/4,

Indeed (2.14) with a = o’ = (} implies

2
Tri(et@-%z)‘ -

2
/e*t@-q? (P2, PO) A x,zQ% (e, PY)| < C'e™/2 4N,
Z

which, combined with (2.2), gives the estimate (2.28). Next let my > 0 be the
integer appearing in (2.20). Then (2.28) and the first estimate at (2.20) imply

glmo+1)/2 / D((mo +1)/2,e'/? - t, PY)
Z

2 Mo
|t i)~ 322 [ Dz, < 0y e
m=—(n+2) z

which, combined with the second estimate at (2.20), yields

(2.29) s(m°+1)/2/D((mo +1)/2,e2 ¢, PY)
Z

< Oy e (/4 g=120/8 (mot1)/4N/2 < o (mo—n—1)/4 ;—120/9
Hence we may take mg > 0 so large that we have

(2.30) < Cye o/,

/D((no +1)/2,eY% ¢, P%)
Z

Indeed, since we have
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mo
/D((no+1)/2 e/? 4, PY) = / > elmmmo=b/2D(m/2 1 t, P°)
P m=ngp+1
+5(m0_n0)/2D((m0 + 1)/2,61/2 : L, PO)}
and (2.29) yields

S Cg €(m072n07n73)/4 eft/\o/g,

6(m07n0)/2/D((m0 + 1)/2,61/2 : taPO)
zZ

we have only to take mg satisfying mg — 2ng —n — 3 > 0. The estimate (2.30)
with ¢ large and the series expansion (2.21) with m = mg+ 1 (and here my = ng)
now imply the desired assertion about (2.27) for the remainder term.

Let us show the remained assertions concerning the difference (1.15). (1.15)
is obvious. And (1.1) says

(2.31) Re(smahg /@95))
= %(Tu(@hf/ Dz) TPz [042)) ~ %(Tr-whg/agg) ~ T Pnz /9,2))

d 1 >~ 61/277(6?)((1(% nb) . 7t@2Z
7% s-OQF(S)/O t STI‘(;detnbpggz(ebe)agEZe E)dt

and (2.6) implies

e 2n(el)(det n® ; .y
Z M sz(ebs) @95 e t@gez

detn
L0/2 n(e})(det ")
Z detn {Zeb 6/8£E K(l/g)(t P)
+> " pgz (e (A)(0/0x]) K (o2 (t, P)

+ Z( ,Juz) (0) PgZ (el}(A)) eil A eiZ A K(0/2)(t7 PO)} +

Thus the series expansion of (2.31) has no term with e™/2 (m < 0). 1

Proof of Corollary 1.3. We have n(u) (g(u)( b J))*l/Q = (E+uX)~1/?
where FE is the unit matrix (compare with (2.1)), which implies

(2.32) —

Hence, referring to (2.7) with hZ replaced by g(Zu) = W*gf\;f) +¢Y, we have

d

@g(Zu)E = —¢'/? Z 8/83j "Pgz (ebs)

u=0
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1
+ 52/2 Z{Xj1i16j2i2 + 6j1i1 ijiz}(o) ETﬁ,jljz(())

Pz (e (A))pgz (1) pyz (€f2)
+ O(|z)).

Thus obviously Theorem 1.2 implies the corollary. 1
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