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Abstract

It was shown that there exist generalized rotational hypersurfaces of Types I
and II, for which the mean curvature is any prescribed continuous function, by
Kenmotsu and the present author [4]. In this paper, the existence of generalized
rotational hypersurfaces of all types with the prescribed continuous mean curvature
is proven.

1. Introduction

Let H be a continuous function on R. Our purpose is to construct general-
ized rotational hypersurfaces with mean curvature H. A generalized rotational
hypersurface M in the n-dimensional Euclidean space R"™ where n 2 3 is defined
by a compact Lie group G and its representation to R™, i.e., M is invariant under
an isometric transformation group (G, R™) with codimension two principal orbit
type. Such transformation groups (G,R™) have already been known and been
classified in 5 types by Hsiang [2]:

Typel (G,R™) = (0(n—1),R").
Type I (G,R") = (O({ + 1) x O(m + 1), RF+m+2),
Type III  (G,R"™) = (SO(3),R®), (SU(3),R¥), (Sp(3),R14), (Fy, R?5).
Type IV (G,R") = (SO(5),R'%), (U(5),R?°), (U(1) x Spin(10), R3?),
(SO(2) x SO(m), R2™), (S(U(2) x U(m)), R*™),
(Sp(2) x Sp(m), RS™)).
Type V. (G,R") = (SO(4),R?), (Go,R').

The hypersurfaces of Type I with prescribed mean curvature were constructed
by Kenmotsu [3] when n = 3 and H is a continuous function, and by Dorfmeister-
Kenmotsu [1] when n 2 4 and H is an analytic function. In the previous paper
[4] we have shown the global existence of hypersurfaces of Types I and II with
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mean curvature H which is merely continuous. We shall show similar results for
all types here.
Let (z(s),y(s)) be the generating curve with archlength parameter s:

(1.1) (@'())* + (/' (s))* = 1.

The equation of a generalized rotational hypersurface with mean curvature H
can be found in [2] for each Type. Introducing notation

e(¢) = ‘(cos¢,sing), e(p)" = (—sing,cosg),

we can describe the equation uniformly.

Fact 1.1. There exist a finite set J, angles ¢; € (=%, 5], and natural numbers
n; € N for j € J such that the equation can be described by

12) () (s + 3T g )P =1,

= eldy)t - x(s)

where

an =n—-2
jeJ

s the number of principal curvatures except the curvature of generating curve.

For each type, the set J, angles ¢;, and natural numbers n; for j € J are given

as follows:

Typel J={0}, ¢o =0, ng=n—2.

TypeIl J={0,1}, ¢1 =%, ¢o =0, no =m, ny = L.

TypeIll J = {-1,0,1} ¢1 = %, ¢; = jo1. And n; = 1, 2, 4, or 8 for
(SO(3),R?), (SU(3),R8), (Sp(3),R™), or (Fy,R?%) respectively.

Type IV J = {-1,0,1,2}, ¢1 = §, ¢; = jo1. And nyy = £, ng = ny = k,
where (k,0) = (2,2), (5,4), (9,6), (m —2,1), (2m — 3,2), (4m — 5,4) for
(SO(5),R'?), (U(5),R*), (U(1) x Sp(10),R*?),

(SO(2) x SO(m), R™), (S(U(2) x U(m)), R™™),
(Sp(2) x Sp(m),R¥™)) respectively.

Type V. J = {-2,-1,0,1,2,3}, ¢1 = §, ¢; = jo1. And n; = 1, or 2 for

(SO(4),R®), or (Ga, R') respectively.

This is by direct calculations. For example the equation of Type II, which
we have already investigated in [4], is

a"(s)y'(s) —y"(s)2'(s) —
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and (1.1). Each term in the left-hand side of the above equation is
2" (s)y'(s) = y"(s)2"(s) = & ()" - &'(s),
() 00,1 W@ (5), () _ melon) - @'(s)
z(s)  {=1,0)- (x(s)y(s))  e(dr)*-m(s)

ma'(s) _ m'(1,0)- (2'(s),y'(s)) _ moe(do) - &’

y(s) — H0,1) - Ha(s),y(s))  eldo)t-m(s)’

and
an =l{+m=n-—2.
jeJ
Our main result is:

Theorem 1.1. Let H be a continuous function on R. Put
S ={x cR?|e(p;)"-x =0 for some j € J}.

For any xo € S and so € R, there exists a solution x(s) to (1.2) on R satisfying
x(so) = xo.

Our equation is singular on the set S. Since x(sg) € S, then it is easy to con-
struct a solution near s = sg, and we can extend the solution as long as z(s) ¢ S.
To extend the solution, a problem happen when x(s) approaches to S as s — s,
for some s, € R. It is not trivial that the solution can be extended beyound
s = s«. We must study asymptotic behavior of @’(s) as s — s,, in particular the
existence of sllgl x'(s), say .. Furthermore we must construct solutions beyond
s, with @/(s,) = @,

By formal blow-up argument we can evaluate the limit x,. For simplicity we
assume s, = 0. Let the generating curve be in the sector
(1.3)

g _ { {x € R?|e(0)* -z >0} = {(z,y) € R? |y > 0} for Type I,
T {zeR?|e(pir1)t Tz <0< e(pi)t - x} for Types II-V

for i = 0 (Type I), or for some ¢ € J\ {maxJ} (Types II-V). There are three
cases: (i) llg}) x(s) = x. # 0, e(¢;)* - . = 0 (The condition =, # o can be re-
moved for Type I by translation.); (i)’ 21—% x(s) =z, # 0, e(¢i11)" -z = 0; and
(i) 11_r)r(1) x(s) = o for Types II-V. Since the argument for (i)’ is similar to that for
(i), we consider (i) and (ii) only.

For the case (i), we assume that there exists the limit lim z'(s) = e(6,) and

s——+0
that «”(s) is bounded. Put
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x(s) = A H(z(\s) — x.)

for A > 0, and then it is easy to see

)‘”J ) - @)\ (s) —(n— s
(1.4) +J§€; mA( . = (n—1)AH()s).

Since we have

. _ ! _ _ ! _ : " _
Jim @(s) = 52/(0) = se(6.). lim @4(s) = 2(0) = e(0.), lim @(s) = o.

we get

e(:) - e(6.) = 0

by passing A — +0 in (1.4). Consequently, 0. = ¢; + 7. We can obtain a similar
result when s — —0. Thus the generating curve touches perpendicularly the
boundary of sector .S;.

For the case (ii), we assume the existence of 1111101: (s) = e(by), 0, # ¢; for
s—

j € J, and the boundedness of x(s). Putting
xx(s) = A\ tx(\s),

we have

)+ 3 ELL B - naH(),

jeJ ¢] l N (8)

and

an cot(6. — ;) =0

jeT
by A = +0. Put
(1.5) A(0) = " njcot(6 — ).

jed

Since A(-) is monotone decreasing on each interval (¢;, ¢i+1), and since

lim A(f) = oo, lim A(f) = —0
0—¢;+0 0—¢it1—0

there exists a unique 6; on each interval (¢;, ¢;+1) such that A(6;) = 0. Thus the
generating curve approaches to the origin with angle 6;.
In the above argument we have assumed the existence of liH(l) Z'(s), the bound-
s—
edness &’ (s) and so on. In the following sections, we shall prove the asymptotic
behavior as above without these assumptions, and shall show the existence of
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solutions of (1.2) with the initial value

(1.6 e(6)" - 2(0) =0, a(0) £o. o(0)=e(6+T)
for Types IV, or

(L.7) z(0) =0, '(0)=e(6)

for Types TI-V.

Remark 1.1. By direct calculations, we know the explicit values of 0;:
Type I 0y = arctan , /Z—‘;.
Type I 60; = (¢ + dis1).
Type IV 041 = —% arctan \/g, 6o = %arctan %.

Type V. 0; = 5(¢i + ¢it1).
See Fact 5.1 in Appendix.

We shall discuss the following two cases in §§ 3—4 respectively:
Case (i) The asymptotic behavior of x'(s) when ig% x(s) = x, # o, and the
solvability of initial-value problem (1.2) and (1.6), as Propositions 3.1-3.2.
Case (ii) The asymptotic behavior of #’(s) when 11_1&1) x(s) = o, and the solv-
ability of initial-value problem (1.2) and (1.7), as Propositions 4.1-4.2.
Theorem 1.1 follows from these Propositions. For all types in the case (i)
and for Types II-1II in the case (ii), the derivation of setting the problem is more
complicate than [4], however the discussions is similar to those of [4]. Therefore,
we shall mention the setting in detail, but various estimates briefly. For the Types
IV-V in the case (ii), we need one more extra procedure than [4]. Though we
can prove our results without the extra procedure for Types II-III as [4], this
procedure is applicable not only for Types IV-V but also for all types. In this
sense our proof is universal.

2. A transformation

Let define the matrix R(¢) and a vector u = *(u, v) by

R = (S0 ) = ) = R

It is easy to see that when x(s) satisfies (1.2), the new unknown functions
u(s) = (u(s),v(s)) satisfies

21) w'(s) () + Y ”;(eqf‘biz;ﬂ) : Z’(S) = (n—1)H(s), |lu'(s)|> = 1.
jeJ J



6 T. Nagasawa

This is a useful transformation for our purpose.
Assume that the generating curve x(s) is in the sector S; defined by (1.3).
We transform x to u with ¢» = —¢;, then u(s) is in the sector Sy in wv-plane.

3. Case (i)
First we show

Proposition 3.1. Let the generating curve x(s) be in the sector S;, and assume
that

lim e(¢;)t - x(s) = 0, ilg%) x(s) =xg #0.

s—0

Then there exists the limit of '(s) as s — 0 and

lim e(¢;) - ' (s) = 0.

s—0

Proof. As stated in § 2, we transform x(s) to u(s) with ¢ = —¢;. And then
u(s) = (u(s),v(s)) satisfies

" ", .1 u ne(¢_¢l) -/ 112
3.1 E 20 Y — (n—1)H, -1
G v 7 e(dj—di)t-u = el

The assumption on lirr%) x(s) is written as
S—

(3.2) lim u(s) >0, limwv(s) =40

s—0 s—0

in terms of u(s) and v(s). What we want to show is

lim u/(s) = 0.
5—0

Multiplying both sides of the first equation of (3.1) by v™v’, and using the
second relation, we have

(v"u') =< (n—1)H — Z nj 1 : v
oy ¢1 ‘U

Taking (3.2) into account, we get

=L [ Cmelgme) W |
u'(s) = v”i(s)/o (n—1)H(t) ; e(b;—d0) - ~ult) (t)v'(t) dt

by integration of the equation of w(s).
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Now we show v'(s) # 0 near s = 0. Assume that there exists a sequence {sy}
such that v'(sg) = 0, klim sk = 0. Inserting s = s, into (u/)° + (¢v/)> = 1 and
—00

ulull + 'U"UN =

, we have
u'(sg) = +1, u’(s;) =0.

From these it follows that

U//(sk):q: 1+an H(Sk)+ (
jed k) i

n; n; cos(¢;—o;)
) F 2 e(¢j—di)t - u(sk)

by evaluating the equation (3.1) at s = s;. It holds that

lim e(gbj—(bi)l -u(sk) = —u(0)sin(gp; —¢;) #0 for j#i.

k—o0
Therefore, we have

2

lim v”(sg) = a finite value + lim

= Q.
k—o0 k—o0 ’U(Sk)

Consequently, v(sy)’s are always local minimum values for large k. This contra-
dicts with lim v(s) = +0.
s—0
Since v'(s) # 0 near s = 0, we can use L’Hospital theorem to obtain

. /
lig o' (s)

1+ n; | H(s) = njeld;— i) wls) L (s)(s)

= lim jeJ j#i e(gj—¢i)* - u(s)

50 n o L(s)v'(s)

= lim 1+ an H(s) — Z n;e(p;—@;) - u'(s) | v(s)

o0 jeg J#i e(¢j—¢i)* - uls) i
=0.
Here we use

lim e(¢j—¢i)L -u(s) = —u(0)sin(¢,; —¢;) #0 for j#i.

s—0

O

Next we prove the converse of Proposition 3.2 below, i.e., the solvability of
(1.2) and (1.6). The problem is equivalent to (3.1) and

(3.3) u'(0) = 0.
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Since v/(0)? = 1, the map s +— v is monotone near s = 0. Therefore, there exists
the inverse function s = s(v). Put

as a function of v. We divide both sides of the first equation of (3.1) by (v')%.
Using ||u/(s)]| = 1, we get

dq | mig _ _nig®

(3:4) dv ' w v
Y n (¢° +1) {gcos(¢; — i) +sin(¢; — i)}
i < +/ ) sin(¢; —¢i) — v cos(¢; — i)
+(n—1) (> +1)? A,
where
H = (sgn v') H.

We multiply both sides of (3.4) by v™ and integrate from 0 to v. Since

fno(0) = i 455 =0
we obtain
1 v

(3.5) o) = 5 [ wtman
where

w(q)(n) = wi(q)(n) + w2(q)(n) +ws(q)(n),

wi(q)(n) = —nig(n)’n™ 1,

wal(@)(n) = (¢° +1) {a(n) cos(¢; — i) + sin(¢; — ) } 0™ ,

j#i (u(O) + /077 q(¢) dC) sin(¢; — i) — 1 cos(d;—¢;)

wslg)(n) = (m — 1) (q(m)? + 1) H ()™

Define the Banach space Xy and its bounded set Xy, s by

Xy ={feCOV]|Ifl <oo}, Ifl= sup M

ve(0,V]

i

Xva ={f e Xv[lfl = M}.
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Using the boundedness of H, we can show that if M is large and if V is small,
the map

B(g)(v) = / () () dn

Y
defined on Xy s into itself and it is contraction. Indeed we have

1

Vi

/ wl(q)(n)dnH < oMV,
0

o [ elmal <o),
- /va?,( )(n) dnH <0 (14 M3V?)
for ¢ € Xnr,v;
o [ e~ wram)a) | £ V2 1as — .
0
[ )~ ] £ € VIV V24V s~
i [ Ceata) o) atamyan| £ 0LV 21V s - el

for g1 € Xu,v and g2 € Xj,v. Since these estimates can be obtained in the
same way as [4], we omit details. Hence, there exists the unique fixed point of
® in X v, which solves (3.5). If H is continuous, then it solves (3.4) satisfying
q(0) = 0. We can derive the solvability of original problem from this fact.

Proposition 3.2. Let H be continuous. Then there ezists a unique local solution
x to (1.2) and (1.6).

4. Case (ii)
Consider the equation of Types II-V.

Proposition 4.1. Let the generating curve x(s) be in the sector S;, and assume
that

li =o.
Jig,2(9) = o

Then there exists the limit of '(s) as s — £0 and
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. / _ .
slgilow (s) = Le(b;).

Here 0; is the unique angle satisfying

an cot(0i—¢;) =0, ¢ <b; < diy1.

jeJ

This proposition is proved by a series of Lemmas. In what follows, x(s) sat-
isfies the assumption of Proposition 4.1. For simplicity we consider only the case
s — 40, and assume that @(s) is defined on (0, sg]. As in the previous section,
we transform @ to w with ¥ = —¢;. Then it holds that

ety = (- 1 = 30 G0 Wy

% el o)

We integrate this from s € (0, sg) to sg, and get

v (s)u'(s) = /S (n—1)H(t) — Z n;(z(%;?l) Zl(i? ™ () (t) dt
so j#i o

+ 0™ (s0)u’(s0)-

Since the left-hand side tends to 0 as s — 40, so does the right-hand side. Hence,
we get

(4.1)

oy L o N (@ =) W) |
wle) = IRLEEEEE 2 eyt utn (OO

+ 0™ (s0)u’(s0) | ,

and want to apply L’Hospital theorem to this.

Lemma 4.1. If the limit u'(s) as s — +0 exists, then it holds that
lim u/(s) = e(;— ;).

s——+0

Proof. Since u/(s) is a unit vector, so is its limit, say e(t),). Under the assump-
tion we can apply L'Hospital theorem to (4.1), and get
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2+ e(o; 00t uls)

I nje(g;—¢i) - e(x)v(s)
2 e(pj—di)t - u(s)
n; cos(¢j —di — Ps)u(s)
e(gj—¢i)t-ul(s)

(42) cosy = i lim {(n B I)H(S) B Z lee((bj*q&i) ~u’($) } U(S)

Il
|
=

Il
|
AR
]’:._-
+8B
[}
iM%

Since u € Sp in uwv-plane, it holds that . € [0, ¢;11 — &;).
We will show v, € (0, pj41 — ¢;). Assume ), = 0, and then

e(dj—¢i)" - e(¥.) =sin(¢;— 1) # 0
for j # i. By use of L’Hopital’s theorem again we have

v(s) . v'(s) sin 1),

= lim = =0.

li =
s—1>I-ri-10 e(qzﬁj—gbi)l . U(S) s—+0 e(qzﬁj—qbi)l . ’U/(S) sin(d)j—qzﬁi)

Hence, from (4.2) it follows that

1
cosq/)*:—f x 0=0.

n;
This contradicts with ¢, = 0. We can show ¥, # ¢;11 — ¢; in a similar argument
to R(—¢¢+1)$-

We have already known ¢, € (0, ¢;+1 — ¢;), and therefore

e(pj—di)" - e(y.) =sin(d;—¢i — ) #0

for j # i. We obtain
cost, = — — lim n; €03(¢; — i — P )u(s)
n; s—+0 g e((b]—d)l)J- . ’LL(S)

1 n;jcos(¢;—¢i — . )v'(s)
_ 1y j j
o Z e(pj—¢i)*t - u'(s)
_ sind, n; cos(p; —d; — )
BT P Crrn e
_singy, nj cos(pj— i — Ps)
n Z —sin(¢j— @i — u)

L
sin ¥,
= — - an COt(w*—f—(bi —d)j)
bogi
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by L’Hospital theorem. This shows

Z”j cot(Vx + ¢; — ¢j) = 0,
jer

and therefore ¥, = 0; —¢;. O

Lemma 4.2. On a neighborhood of s — +0, we have
v'(s)
u/(s)

Proof. Since lirilov(s) =0, and since v(s) > 0, v'(s) # 0 for small s > 0, we
S—r

uw'(s) >0, o' (s)>0, 0< < tan(gii1 — ;).

have
v'(s) = e(0)F -/ (s) > 0.
Applying a similar argument to R(—¢;+1)x, we have
—e(Pis1 — ¢i)" - u'(s) >0,
i.€.,

u'(s)sin(gir1 — ¢i) — v'(8) cos(dir1 — @) > 0.

Because of 0 < ¢;11 — ¢ = F, we have sin(¢i11 — ¢3) > 0, cos(¢ir1 — @) = 0.
Therefore, we obtain

/ v'(s) cos(div1 — ¢i) v'(s)
O im0 -0 " v

< tan(giy1 — ¢;)

Corollary 4.1. It holds that

/ /
0 < liminf v(s) < liminf @ < limsup @ < lim sup v(s) < tan(gip1 — ¢).
s—+0 u/(s) s—+0 u(s) so10 u(s) so40 u'(s)

Proof. It is by virtue of previous lemma and L’Hospital theorem for limit supe-
rior and limit inferior. O

u(s)
[u(s)l]

Lemma 4.3. There exists the limit of as s — 40.

Proof. Put

—@ zs:vl(s) iminfw(s) = imsupw(s) = L
UJ(S) - U(S)’ ( ) u/(s)’ 18—>b—§ ( ) L7 ls—>b—0p ( ) L7
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and
L = tan(0; —¢;).

Assume L # L and L < L. And, then, taking into consideration of the shape
of the geretating curve, there exists sequences {s;} and {3;} such that

m §j :+0,

S5 > §j > Sj41 > §j+1) hm S = +0, 11
j—00 — 00

lim w(s;) =L, lim w(3;) =1L,
J—0 Jj—o0

the generating curve is tangent to the line v = L;u at s = s;, and jlgrgo L;=0L.
The last property implies
z(sj;)=L; - L as j— oo.
Put
B = {(w,z) € R*|(w - L)* + (z — L)> < &*}.
If € > 0 is sufficiently small, then we may assume that

(w(s;),2(s;)) € Be,  (w(5;),2(55)) € BE.

Hence, there exists {5;} such that

s;>8;>38;, (w(s),2(s)) € B. for se(35,s5], (w(8;),2(5;)) € 0B-.
Now we consider the behavior of (w(s), 2(s)) on the interval I; = [$;, s;]. Then

1d 2 /
L ) 12 = (wls) — D9

When s € [,

Therefore,
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which implies

u(s) v(s)
Consequently,
Td o el [V +0E)Y(s) _0(e)
245~ 1) O AT
Here we use |u/(s)| £ 1, [v/(s)] £ 1. On the other hand
1d s ,
5375 #(8) = L)" = (2(s) = L)Z'(s)
ey V() — () (s)
= (2(s) - L) W)
— Z( >_ u (s 1 (s
= e )
_ )L nje(d;—i)w(s) |
S We)? { 2 oGy gt i) T D >}-

Define 6 and by w(s) = tan(A(s) — ¢;), and z(s) = tan(f(s) — ¢;). Then

w(s) = —2) (i) - gr), w(s) = —l)

cos(6(s) — &) cos(6(s) — ¢1)

e(¢;=0:) - w'(s) _ w(s)w(s)cos(0(s) — 1) cos(0(s) — ;)
e(¢j—¢i)* - uls) v(s) cos(9(s) — ¢i) sin(9(s) — ¢;)
Define § by L = tan(f — ¢;). When (w(s), z(s)) € B., we have

0(s) =0+ O(e), 0(s)=0+O0(e).

Hence,

an (cot(8 — ¢;) + O(¢))

jeJ

jeléj—¢:) -u'(s) _ w(s)cos(d(s) — o
Z e(d;—¢i)t - u(s) u(s) cos(0(s) — ¢;)

JjeJ

Our assumption L < L implies § < 6;, and therefore A(8) > A(6;) = 0. There
exists A € [0,1) such that

(L+ ML
2 )

(1+ ML

0
<w(s) < 5

0<z(s) <
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cos(0(s) — ¢i)) = cos(f — ¢i) + O(e),  cos(8(s) — ¢i)) = cos(l — ¢i) + O(e)

hold on I; for large j. Hence, there exists § > 0 independent of € such that

2(s) — L~ nje(¢j—¢i) w'(s) . 6
(u/(s))? ]GZJ e(d;—¢i)t - u(s) = v(s)’
On the interval I},
1 L*(1+0(1))  L*(1+o(1))

@) W) 1-((s))?
If there exists a sequence {53} C UIj such that
J
lim 5, = +0, lim «/(5;) =0,
k—o0 k—o0

then as kK — oo

1 L*(1+o0(1)
(u'(5))2 1= (u(58))

This is contradiction, and therefore we may assume

inf {(u’(s))2 s€ Ulj } > 0.

00 Z%L2<L2.

Hence,
(n—1)H(s)(2(s) — L)
| e
Consquently,
L s~ 1) 4 (w(s) — 1P} € ——— (54 0() + C
2ds = w(s)

on I;. If j is sufficiently large, then v(s) > 0 is sufficiently small. Taking ¢ small,
we have

1d 9 9
3y {0 = D)7+ (o) — 1)) £ — 505

on I; for large j. Hence,

<0
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Taking a suitable subsequence, we have (w(3;), 2(8;)) = (¥, £), where
(0, 2) € 9B N {(w,z) ER® | (w—L)* + (2 — L)> 22(L— L)*}.
This shows that
w<L or Z<L.
This is contradition. Indeed, if w < L, then

o _ N 2 S i
llgrgiréfw(s) L>w jhﬁrgo w($;) 2 lggir(l)fw(s).

If 2 < L, then

o _ B A S T s
lgrgi%fz(s) L>2z jli,rgoz(sj)zhsgi%fz(s).

Now we go back to the 5th line of the proof, and L = L or L < L has been
proved.

Similarly we have L = L or L < L.

Combining these, we finally get L = L, proving Lemma 4.3. O

Put

Ao, B) = n; .Cos(a - qu)'
jEZJ sin(B — ¢;)

Here we assume 8 # ¢; for all j € J. It is easy to see

0A _ n;sin(a — ¢,)
92T X w4

When ¢; < a < Dit1 and ¢; < B < Pit1, it holds that
sgnsin(a — ¢;) = sgnsin(8 — ¢;).

Therefore, we have

0A
— < 0.
Oa <
Lemma 4.4. There exists the limit of u'(s) as s — 40 and
lim u/(s) = lim _u(s) =e(b;— i)
s—+0 s—=+0 [|u(s)]| A

Proof. 1t is enough to show

v'(s) . uls) o
s——+0 ’u,/ 8) B sl—lg—lo Ws) B tan(ez (bl)




GENERALIZED ROTATIONAL HYPERSURFACES WITH PRESCRIBED MEAN CURVATURE, II 17

. ) . V(s
) is monotone near s = 40, then there exists hrEO i ;
u' (s S— u (s
Otherwise we put
v'(s)

liminf ——~% = tan(§’ — ¢;), limsu v(s)
so+0 u/(s) . v S%wp u'(s)

= tan(d' — ;).

There exists a sequence {sy } such that v’(s)u/(s) takes a minimum value at s = s,
and

v’ (s1)
' (sk)
as k — oo. From the third relation it follows that u” (sy
the equation (2.1) with ¢ = —¢; and s = s, we have

lusi) (0 — 1) H(sy) = 37 2EGi 0D Wlsk) 0 )

U(sk) =
jer €@ =0T iy

as k — oo. Because of the boundedness of H, it is clear that

Sk—>0,

— tan(0’ — ¢;), (Z—i)/ (sk) =0

)t -4/(sy) = 0. By using

[[u(sk)l[(n — 1) H(sk) — 0.
Hence, we have A(6',0) = 0. Using a sequence of s where v(s)u/(s) takes a max-
imum value, we get A(#’,6) = 0. Combining these, we know A(¢',0) = A(#',0).

Since — < 0, we obtain ' = @'
da

!/
Consequently, in any cases, there exists lim is) From Lemma 4.1 it fol-
s—+0 u/(s)
lows that the limit value is tan(6;—¢;). Finally we know lim u(s) = tan(0; —¢;)
s—+0 U(S)

by Corollary 4.1, proving Lemma 4.4.

Thus we complete the proof of Proposition 4.1.
Next we prove the converse of Proposition 4.1, i.e., the solvability of (1.2)
and (1.7). We define the function ¢ as before. For the case (ii),

lim g(v) = cot(0; — ;).
v—0
Hence, we introduce new unknown functions r and p by
1 v
(o) = ale) = cotl6;-6). pw) = [ rlmdn
0
Then our problem is equivalent to

Wy L RO = 2re) = 2= 2p0) + 3 A0,

r(0) = p(0) =0,
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where

) Fl( ) —(Tl—2)7"2 {7‘—|—2cot(9i—¢i)}sin2(9i—¢i),
)= —(n—2)rp{r+ 2cot(d;—¢:)} sin*(6; — ),
) = —rp{r®+2rcot(6;—¢;) + cosec®(0; — ;) }
XZ n; sin (Hz—gbz) COS(¢j —(251) Sln(qu _¢z)
e sin(0; —¢;) {sin(6; — ¢;) — psin(¢; — ¢;) sin(6; — ;) }’
Fy(r,p) = —p* {7‘2 + 2rcot(0;— ;) + cosecz(ei—@)}
XZ n; sin2(91—¢>¢) sin2 (qf)] —(251') COS(oi—d)j)
ey sin®(0; — ¢;) {sin(0; — ¢;) — psin(¢; — ;) sin(6; — ;) }

and

Fs(r,p)(0) = F5(r)(0) = (n— 1) [{eot(0: =) + (o)} + 1] Aw)o.

The derivation of (4.3) is elementary but needs lengthy calculations, so we per-
form it in Appendix.

Multiplying both sides of the first equation in (4.3) by v" 3, and integrating
from 0 to v, we have

—9) [V 1
r(v) = —%/0 p(n)n™~>dn + U,H/ Zwk 7, p)(n) dn,

where

Yi(r, p)(n) = Fi(r, p) (mn" .

Since the function p is defined by r, we can define the map ¥ by

) (v __7(11—2) ! n—3 L 'S r
V(r)(v) = ——=—> /Op(n)n dn+vn_2/0 ;W(,p)(n)dn

Un

Taking M large, and V' small, we can show this is a contraction map from Xy s
into itself for Types IT-TI1. This fact can be proved in the same way as [4]. Indeed,
the principal part of ¥ is the map

(4.4) U _yn=2) /U p(n)n"3dn.

Un72

Because
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'—an) /Ov(pl(n)—pz(n))n”?’dn < aln Un”'(ilfsz/ " 2dn

y(n —2)
< 7 —
= 2(n_l)Hﬁ T2,

U is contractive when v < 2, which is fulfilled for Types II-III. Since ¥ is a small
perturbation of W, it is also contractive for Types II-III. Testing linear functions
r; = ¢;v, we find that the map W is expansive for Types IV-V. This suggests that
¥ is not contractive for these types, and therefore we must deal with our problem
more carefully.

Since

d 1 (v r r

L (I S

dv v% Jo v v
we have

5
()0 ) () (B

0

FEigenvalues of the matrix in the left-hand side are

n—14n2-22y+3)n+8y+9

)\ =
+ 2

Since
(27 4+3)2 = (8 +9) =4y(v+1) > 0,

we know A # A_. Therefore, there exists a non-singular matrix P such that

P_1< (n_—12) 'y(nl— 2) ) . ( A0+ )\0, )

Put P = (p;;), P71 = (p%7). These are matrices with constant entries. Define 7

and p by
(7?> 1<T)'
p p

Then the equation can be rewritten as
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where

Fy (7, p) = Fy(pu1# + przp, par 7 + p2ap) (= Fi(r, p)).

Hence, we have

-
Let Xy x Xy be a Banach space with norm

17, D)y xx = [IFllxy + [1Allxy -
Define the map ¥ by
7 2 Ap—1 o[ = A_—1
U(#, p) 1)>‘+/ ZFk(ﬁﬁ)(n)n o dn,vT/ > Ee(#, p) (" ).
=1 0 k=1

We will show that if M is large, and if V is small, then U is a contraction map
from Xy pr x Xy, s into itself.
When n? — 2(2y +3)n +8y+9 <0,

n—1
2

R\ = > 0.
If n? —2(2y +3)n + 8y +9 = 0, then
0 <2 =202y +3)n+87+9 = (n— 12 —A(y + D)(n—2) < (n— 1%,

and hence

n—14n2-22y+3)n+8y+9

RAL = 5

> 0.

v
Therefore, in any cases, the integral / " +Pdy converges for p > —1, and
0

pRAE+p+1

! RAL+P 1y — )
/0 1 " RAL +p+1

Since both P and P! are constant matrices, it holds that

I(r, o)l = CUE P 1 I Cllr, p)I-
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Let (7, ) € Xv,m X Xv,u, and then we have

[EL (7, p) ()| = |Eu(r, p) ()] < Cllrl*n? (llrlln + 1)
< Ol p)IPn* (I, p)lln +1) = CMn* (Mn +1).

Therefore, we get

1 v B C v )
UA++1/O Fy (7, p) (mn ldn‘ < W/ M%) (Mn+ 1) ™+ Ldy
0
C o oy
S ooy (MR 4 MR

S C(MPVZ+ MPY).

1 Yo
We can estimate W/o Ey (7, p)()n™+ ~tdn for k = 2, 3, 4, 5 in a similar
manner, and can obtain

11

p - _
rmﬂ/o > Eu(Fp)

k=1

SC(MPV?+ MPV + M*V? + MPV? +1).

We can derive
p21 v 5
L N
m/o ZFk(TaP)(W)U tdn
k=1

in the same way. From these it follows that

SC(MPV? + MV + M*V? + MPV? 4 1)

1B (7, p)]| < C (MPV? 4+ M2V 4+ M*V? 4 M3V® 4 1).

Consequently, T is a map from Xy y x Xy, pr into itself provided M is large and
V is small.
Using

1(r1, 1) = (r2; p2) || < CI(P1; 1) = (P2, pa)l,

(71, p1) — (P2, p2)|| = C||(r1, p1) — (72, p2)|l,
we can get
[@(F1, p1) = U (Fa, p2)]|
SC(MPVZ+ MV 4+ MYV MPV3 4+ V) |71, p1) — (P2, p2) |-

Indeed, from

‘Fl(fl,,ﬁl) - Fl(f’z,/%)’ = |Fi(r1) — Fi(r2)]
= |—=(n—2)(ry —r2) {rf +rire + r2 + 2(r1 + r2) cot(6; — ¢;) } sin®(6; — ¢;) |
< Cllry = r2lln (M?n* + Mn)
< Cliiy — 72l (Mn* + Mn)
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it follows that

11 v
P - - _
Kt [ (B = A )
< C”’Fl - ,F‘QH Y (M2 3 + M 2) %)ur—ld
S g ) " n)n U
Cllf1 — o] 2, RA++3 RAL+2
< D W (MP"AT2 4 My™Ae )

S C(MPV? 4+ MV) ||y — #al.

Similarly we have

,U/}\?i:-l /0” (FQ(ThPl)(U) - F2(7“2,p2)(77)> 77’\+1d77‘

S C(MPVZ+MV) ||fy — 7o,

Ui;ﬂ /OU (Fk(mm)(n) - Fk(T2,p2)(7])) ™+ tdn

SC (MW MV) (|fy — P2l + |11 — pall)  for k=3, 4,

% /0” (F5(7“1701)(77) - F5(7“2,P2)(77)) n’\+_1dn‘

= C(MPVP+ V) [y = o]

Therefore, it holds that

v/\+/ Z By (1, p1)( F(T27P2)(77)> M

Xv
<cC (M2V2 + MV + M*V* 4+ MV + V) |[(71, p1) — (P2, po) |

We can derive

P2
/0 Z Fk (71, p1)( F(%PQ)(”)) n="tdn

k=1

Xv
< C(MPVZ4+ MV + MV 4+ M2V + V) |[(71, p1) — (o, po) |

in the same way.

Consequently, the map U is contraction if V is sufficiently small. The unique
fixed point is a local solution to (4.3).

Because eigenvalues A1 and matrix P are not necessarily real, our solution
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might not be real-valued. Therefore, we must conform that our r and p are real-
valued. Putting r, = Qr and p, = Sp, we want to show r, = p, = 0. It is easy
to see that r, satisfies

5
d
vr, (= 2)r, +(n = 2)p, = Y SFilr,p).
k=1

Multiplying both sides by 2r,, we have

]
@

d
o [v{r’ +~(n—2)p*}] + (2n—5)r? + y(n —2)p> = 2r, Fy (7, p).

k=1

Lemma 4.5. Assume that V is sufficiently small. There exists a positive con-
stant C depending on M and V' such that

ISER (7, p)| < Co (Ir, |+ 1p,])

We shall give the proof of this lemma later. Using the lemma, n —2 > 0,
2n —5 > 0, and v > 0, we have

v{r?—&—’y(n—Z)pf} §C/ 77{7“12+’y(n—2)p?}d17.
0

From Gronwall’s lemma it follows that

Proof of Lemme 4.5 for SFy, -, SFy. Put Rr = Tr, Rp = pn. Since rp,, 7, Pp,
p, € Xv,u, these modulus are dominated by Cv. Therefore, we have
[SE, ) = [SF(r)] £ C{[S () [+ 1S ()|}
(Irare [+ 3] + I ])

IA A IA
Q Q Q
=
+
&
5

ISE(7,p)| = |SFa(r, p)| £ C{[S ()| + S (rp)[}
< C(PIr | +1rappllr L+ logllr L+ lrallo )
< C (v +0) (I ] + o)
< Co(lr |+ lp)-

%Fg is estimated as follows:
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|SE3(#, p)| = |SF3(r, p)|
< |S [Tp {7’2 + 2r cot(0; — ;) + cosec2(0i—¢i)}] |
[ .2 .
% n; sin”(0; — ;) cos(¢; — ;) sin(d; — ¢s)
X Jez; sin(8; —¢;) {sin(0; —¢;) —psin(¢; —¢;) sin(6; — ;) }
+ R [rp{r® + 2r cot(6; — ¢;) + cosec®(6; — ;) }]|
[ .2 .
. n; sin®(0; — ;) cos(¢; — ;) sin(d; —¢:)
< ;} sin(0; — ;) {sin(b; — p;) — psin(¢; — ¢;) sin(0; — i)} | |
We can estimate each term as follows:

|S [rp {r* + 2r cot(8; — ¢;) + cosec® (6;—¢;) } ]|
= (IS (o) +[S ()| + 13(rp)])
s Co(lr |+ oD,

A

n; sin®(0;— i) cos(9; — i) sin(¢; — i)
‘% |:Z sin( j ] J “

in(0; —¢;) {sin(0; —¢;) —psin(¢p; —¢;) sin(0; — ;) }

[rp {r + 21 cot(0; — ¢;) + cosec? (0; — ;) }]| < Cv? £ Ow,

sin(0; — ;) {sin(0; — ;) — psin(p; —¢;) sin(0; — ;) }
| {sin(f; —¢;) —psin(¢; — ;) sin(6; — ;) }
=3 |sin(0;— ;) {sin(8; — &;) — psin(p; — ¢;) sin(6; — ;) }|?
< Clp, |-

%
‘ [ njsm (0;— i) cos(p; — @) sin(@; — ;)
=C

Similarly it holds for SF} that
ISEW(#, p)| = |SFu(r, p)|
< ‘% [p2 {r2 + 2rcot(0; — ;) + COSGCQ(QZ'—(bZ-)}] |

< % Z n; SiIl2 (al—d)z) sin2(¢j —(251) cos(@i—d)j)
i sin®(0; — ¢;) {sin(0; — ¢;) — psin(¢; — ;) sin(6; — d;) }
+ R [p* {r* + 2r cot(8; — ¢;) + cosec® (6; — ¢;) } |

) .92
o~ n; Sin (Glfgbz) Sin (¢jf¢l) COS(G@*QZSJ')
“® _jeZJ Sil’l2(9¢—¢j) {sin(6; — ;) —psin(¢; —¢;) sin(@i—qbi)}_
S C([S ()] +[S (ro*) [+ ]S (07)]) + Cvlp,|
< Co(lr, | +1p,)).
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We need the following lemma for the estimate of SFy.

Lemma 4.6. Let Br be the closed disc in C with center O and with radius R.
Assume that the function f is analytic on Bg, and that f|gpnr is real-valued.
Then there exists C > 0 such that

ISf(r)l = Clr,|
holds for r € Bgs.
Proof. We have

flr)y= chrk for r e Bgr, and Z lex| RF < o0.
k=0 k=0

Since f|pynr is real-valued, so are ¢;’s. Therefore, we get
(o]
Sf(r) = chi‘s (r¥).
k=1

Furthermore we have

S ()| = |8 (ra + v=Tr)"|
k

< D kG|
(=1
k
> kCelr* |
=0
2[r))*

= |r1|'

R

IV

Consequently,

> as ()| < S e
k=1 k=1
and the right-hand side converges for r € Bg/s. [l
Proof of Lemme 4.5 for SFy.
3
The function f(r) = [{cot(&i—qﬁi) +r} 4+ 1} * satisfies the assumption of

Lemma 4.6. Taking V small, we may assume |r, (v)| < 3 Hence, we have

3 [feot(0i—00 +r()* +1]°| < I
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Consequently, it holds that

e

ISE5 (7, )| = |SF5(r)| < Cw

S [{eot(B:—¢0) + r(®))* +1]

< Colry|.

O

Now we complete the proof of existence of a real-valued local solution to
(4.3), which implies the following proposition.

Proposition 4.2. Let H be continuous. Then there exists a unique local solution
x to (1.2) and (1.7).

5. Appendix

5.1 The values of 0;
Fact 5.1. ]fA( ) =0, (bi <0, < ¢i+17 then
Type I 0y = arctan , /22 e
Type III 60; = 3(; + ¢is1),
Type IV 04, = f% arctan %, 0o = %arctan \/%,
Type V. 0; = 5(¢i + dit1).
Proof. Type II: Since J = {0,1}, ¢; = 7r we have

0= an cot(6yp — ¢j) = ng cot By + nq cot (90 — g) = ng cot Oy — nq tan .
jeJ

Combining this with 6y € (0, 5 ), we get the assertion.

We prepare the following for Types I1I-V. When +j € J, we have ¢_; = —¢;,
n_; = n;. Therefore, it holds that
sin 20;

sin? §; cos? ¢; — cos? 0; sin® ¢;

cot (b — ¢—;) + cot(bi— ;) =
Furthermore —maxJ ¢ J, ng = Nmax s, o = 0 and @maxs = 5 for Types IV
and V. For these cases
cot(8; — ¢o) + cot(8; — Pmax 7) = 2 cot 26;.
Using these relation we have

1 .
0= an cot(0; — ;) = Z (6‘z — —7r>

jeJ j=-1

= no Hcot (ei n §> + cot (ei - %)} + cot ei]

_ 3ngcosb; (2sinf; — 1) (2sin6; + 1)
N sin 0; (sin2 0; — 3 cos? Hi)




GENERALIZED ROTATIONAL HYPERSURFACES WITH PRESCRIBED MEAN CURVATURE, II 27

for Type III;
0= an cot((‘)i—@-)

jeJ
= E{cot (Gi + g) + cot (Hi — g)} + k (cot 8; — tan ;)
= — 2(tan 20; + 2k cot 20,

for Type IV;
3 .
0= njcot(bi—¢;) = Z (9 ——71')
JjeJ j=—2

= no [{cot (0 + 5 ) +cot (6= T ) } + {cot (6 + %) +cot (0: = T) |
+ {CotGi + cot (0 — —)H

6ng cos 26; (1 — 2sin 26;) (1 + 2sin 26;)
sin 20; (sin2 0; — 3 cos? 91) (3 sin? 0; — cos? 92-)

for Type V. Taking 6; € (¢;, ¢;+1) into consideration, we have the assertion. O
Remark 5.1. The result 6; = 1(¢; + ¢iy1) for Types III and V is by virtue of

symmetry n; = ng.

5.2 The derivation of (4.3)
We insert r = ¢ — cot(0; —¢;) into (3.4) with «(0) = 0. It is trivial that

dg dr
dv  dv’
(n—1) (q2+1)% H=(n-1) [{Co'ﬁ(ei—¢i)+r}2+1 %ﬁ = qufr).

Summation of remainder terms of (3.4) are
~ni(®+1)g LN (4> +1) {gcos(p;— i) + sin(¢p;— i)}

T s [ aldn—veos(o,—a)

()Y {q 008(925%—(/%‘) + sin(¢; — i)}
I sin(o;~00) [ atn) dn = veos(o,—a)
= [{cot(@zfqﬁl) + 7’}2 -+ ].:|
> n; [{cot(0i—¢i) +r} COS(Q?-@) + sin(¢; — )]
J€J sin(¢; — ;) {v cot(6; — ;) —l—/o r(n) dn} —vcos(p;—;)
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= — {cot®(0; — ¢;) + 2r cot(0; — ;) + r* + 1}
5 Z n; {cos(;—¢;) + 1 cos(¢;— ;) sin(6; — ;) }
- v {sin(0; —¢;) —psin(p; — ;) sin(0; — i)}

Using an cot(8;—¢;) = 0, we have
Jj€J
— {cot?(0;—¢;) + 2r cot(0;— ;) + r° + 1}
XZ n;j {cos(; —¢;) + rcos(¢;—¢;) sin(0; — ;) }
2 (S0, 0,) —psin(d, 6, snlfi—5,))

= —{r® + 2rcot(6;— ¢;) + cosec®(0; — ;) }
XZ nj {cos (0;i—¢;) + rcos(p;— ;) sin(0; — ;) B cos(0; — ;) }
sin(6; —¢;) — psin(¢; — ;) sin(0; — ¢;) sin(6; — ¢;)

JjeJ
= —{r® + 2rcot(6;— ¢;) + cosec®(0; — ;) }
« Z nj sin(0; — ;) {r cos(d; —¢;) sin(0; — ;) +psin(d; — ;) cos(0;— ;) }
vsin(0; —¢;) {sin(b; —¢;) —psin(¢; — ¢;) sin(6; — ;) } '

jeJ
Extracting the linear parts with respect to r and p, we get

— {r2 + 27 cot(0; — ;) + cosecQ(Hi—qbi)}
y Z nj sin(0; — ;) {7 cos(¢p; — ;) sin(0; — ;) +psin(p; — ;) cos(0; —p;) }
2T usin(l—a) (S0 6,) —psin(d, —bu) sin(6, 1))

= —{r® + 2rcot(6; — ¢;) + cosec®(0; — ;) }
[r cos(¢; —bi) N psin(¢;—¢;) cos(0; —¢;)
= sin(6; —¢;) sin?(0; —¢;)
n {rcos(¢; —¢i) sin(0i —¢;) +psin(¢; —¢;) cos(bi — ;) }
sin(0; — ;)

% Z TLj sin(@i 7¢1)

v

1 1
x {sin(0 —¢j)—psin(¢;—¢;) sin(6; — ¢;) - sin(6; — ;) H
n; cos(p; —o;)
Z v sin( Gj — &) iln(@ — ;)

cJ
s 2ot }Z n; sin 10)8111(2(5;) co;i?; bi)

JjEJ
B Z n;psin(¢; —¢;) cos(0;— ;)
vsin(6;— ;) sin®(0; — ¢;)

jeJ
n;psin(6; @)Sln(% ¢i) cos(6; —¢;)
— r{r+2cot(; (bl}z vsin® (6 —;)

jeJ
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_ {r2 + 2r cot(0; — ;) + coseCZ(Gi—dh')}
> nyrpsin® (0; — ;) cos(¢; — i) sin(d; — ¢:)
2.5 sin(0; — ¢;) {sin(0; — ;) — psin(¢; — ;) sin(6; — ;) }
_ {7"2 + 2r cot(0; — ;) + COSQCQ(&_@)}
5 n;p? Sin2(.9i*¢i) Sing((lbj.*ﬁbi) 005(91'.*‘1%‘) _
ey Usin (0;— ;) {sin(0; — @) —psin(p; — ;) sin(6; — ;) }

We use an cot(;—¢;) = 0 again, and then the coefficients of linear terms are
jeJ
simplified as follows:

njcos(pj—di) = nycos{(d;—0;)+(0i—pi)}
; sin(0; — ¢;) sin(6; —d;) J%;] sin(0; — ¢;) sin(6; — ;)
Y {cos(¢; —0:) cos(0; — ;) — sin(¢; —0;) sin(0; — i)}
= sin(0; — ;) sin(0; — ;)

= cot(0i— ) Y mjcot(li—¢;) + Y nj=) nj=n-2

jeJ jeJ jeJ

Z n; sin(qzﬁj _¢z) COS(Gi—éj)
e sin(6; — ¢;) sin® (0, — p;)
_ 3 masin {(95=0)+(8i—6u)} ot =0,

= sin(6; — ;) sin®(0; — ¢;)
¥ n; {sin(¢; —0;) cos(8; — ;) + cos(¢; —0;) sin(6; — d;) } cos(8; —¢;)
- = sin(0; — ¢; ) sin®(6; — ¢;)
= —cot(0;—¢:i) > _mnjcot(0;—¢;) + Y njcot*(0;— ;)
jeJ jeJ
= an cot?(0;— ;).
jeJ

Consequently, we get (4.3) if
> njcot’(Bi—=9;) = ~(n - 2),
jeJ
which we shall prove in the remainder. To do this, we use Fact 5.1.

Type II: Since J = {0,1}, y=4J—-1=1, ¢; = %7‘(‘, and tan? 6y = Z—‘l), we get

Z n; cot? (0 — ®j) = no cot? 6y + ny cot? (90 — g)
jeJ
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No cot? 0o + nq tan? 0o

ny ny
ng-— +mni-— =n1+ng
no n

an =7y(n—2).

jedJ

As in the proof of Fact 5.1, we prepare the following for Types III-V. When
+j € J, we have ¢_; = —¢;, n_; = n;. Therefore, it holds that
2 (sin2 0; cos? 0; + sin’ o} cos? d)j)

cot?(0; — ¢—j) + cot?(0;— ;) = :
’ ! (sin2 0; cos? ¢; — cos? b; sin? ¢j)2

Furthermore —maxJ & J, ng = NmaxJ, ¢o = 0 and ¢paxy = 5 for Types IV
and V. For these cases
2(2 — sin? 26;
COtQ(ei — ¢0) + COtQ(ei - (bmax J) = w
sin” 26;

Type III: Since J = {-1,0,1}, v = §J — 1 = 2, ¢; = 4w, n; = no, and
sin®; = 1, cos?0; = 3 for all i € J, we have

Z n; C0t2(9¢ 7(,25]‘) =Nyo {COtQ(ei - ¢_1 + Cot2(0i — le) + COt2 91}
jeJ
2 (sin2 0; cos? 0; + sin? ¢, cos? ¢)1) cos? 6;
= N, N
(Sin2 0; cos? ¢1 — cos? 6; sin” ¢1) 2 sin?¢;

9(L.343.1) 3
=no{(44—442)+%
4

Type IV: Since J = {-1,0,1,2}, v =4J -1 =3, ¢; = %ﬂ', n_1=mn; =4,

ng = ne = k, and
k /
Sin2 292 = k_—|—€7 C082 291 = m

for all 4 € J, we have

Z n; C0t2(9i —¢j)

jed
_ 2(p . T 2(p. _
= é{cot (01 + 4> + cot (9,
B 20 (sin2 6; cos? 0; + sin® 1 cos?

INERTN

)} + k {cot2 6; + cot? (01- — g)}
) 2k (2 — sin® 26;)
)2 + sin? 26,

(sin2 0; cos? 5 — cos? 6; sin? T
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2 (sin®0; cos?0; + 1) 2k (1 + cos? 26;)
- 1 (sin®6; — cos? 01-)2 sin” 20;
_ 20(1+sin26;) 2k (1 + cos®26;)
cos? 20; sin? 26;
=2+ 0+k)+2(k+L+0) =6(k+0)
= San =~v(n—2).
jeJ

Type V: Since J = {-2,-1,0,1,2,3}, and n; = ng, we have

Z n; CO‘E2 (01 7¢])

jeJ
2
=ng Z {cot?®(0; — ¢_;) + cot®(0;—¢;) } + cot? ; + cot(0; — ¢3)
j=1
) (sin2 6; cos? 0; + sin? o} cos? ¢j) 2 (2 — sin® 29i)

3 . 2 . 2
=1 (sin?0; cos? ¢; — cos? 0; sin® ¢ sin” 26,

:’)’LO

When ¢ = —2, 1, it holds that

1
sin?0; = cos? 0; = 37 sin” 260; = 1.

2 1 in2 b cos2 b
221(4+sm ¢j cos qﬁj) Lo 1)
4

{ (cos? ¢; — sin® ¢j)2
{ 2. 2(2 + sin? 2¢)

2
cos? 2¢, +

-2 .22
- 2 (1 +sin 3)+2(1+s1n 37T)+2}

2 T 22
cos® 5 cos” gm

1

4

n0{2(1+%)+2(1+%)+2}

N

= 30ng ZSan =~(n—2).
JjeJ

When ¢ = —1, 0, 2, it holds that

2 —
4 )

[\
+
1%

1
sin? 20, = T sin? 6, = cos? f; =

31
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Therefore, we obtain

(1]
(2]
(3]

(4]

Z n; cot?(0; — b;)

jeJ

2 27\/5 . 2+4\/§ + sin® ¢ cos? ¢j) 2(2— 1)
- 2_316 \/§)c032¢j_(2+\/§)sin2¢j}2 T
2, 2 (1 +4sin®2¢ I
- {; 20032(;5J \/_]))2 1
(1+4sin® %)  2(1+4sin® Z7)
:”°{ 2-V3)" (2c0 i VB)’
{ 2(1+3)

2+ 2—i—14
-V3)" (-1-V3)

4
=n + 14
0(2 YRV )

- 4{(2+f) (2-v3)}+14]

= 30no = 5an =7(n—2).
J€s

NM
\_/

4
1
:no
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